秩转换非参数检验

合集下载

公布规划-第八章秩转换的非参数检验

公布规划-第八章秩转换的非参数检验

假设:M=45.3 求差、编秩、求和
查表:n=11、T=1.5,P<0.005,差别有统 东部 西部 北部
第一季度 第二季度 第三季度 第四季度
20.4
27.4
90
20.4
30.6
38.6
34.6
31.6
45.9
46.9
45
43.9
计学意义,可认为该厂工人的尿氟含量
高于当地正常人的尿氟含量。
**第二节 两个独立样本 比较的Wilcoxon秩和检验
本含量相等的资料)
补充2、各实验组与对照组 比较的秩和检验
1、各样本秩和从大到小排列
2、q | RT RC | sRT RC
n(na)(na 1)
s RT RC
6
3、查表下结论(此法仅适用于各组样本含量相
等的资料)
结束
7
29.0
9
36.0
12

38

5
6.5
1
9.0
2
12.5
3
18.0
5
24.0
8

19

5
*一、多样本比较的秩和检验
1.建立检验假设: H0:三个处理组总体分布相同; H1:三个总体的分布不同或不全相同。 =0.05。
2.计算 编秩:将各组由小到大排队,再将三个组的数据统一
编秩。 编秩中,
若有相同的数据在同一组内,其秩次按位置顺序编号; 若相同的数据在不同组内,则取其平均秩次。
20 10 48 2 -2 0 15 13 31 6 -36 5 T =54.5 T
8 5 11 1.5 -1.5
7 6 9 4 -10 3 =11.5

秩转换的非参数检验

秩转换的非参数检验

(2)正态近似法u 检验 如果n超出附表10范 围,则用以下公式计算u值,进行u检验:
u T n1 (n1 n2 1) / 2 t 3 t j) ( j n1n2 (n1 n2 1) 1- 3 12 N N
( t C 1-
3 3 j
二、两组频数表或等级资料比较
例8-4 39名吸烟工人和40名不吸烟工人的碳氧血红蛋 白HbCO(%)含量见表8-6。问吸烟工人的HbCO(%)含量 是否高于不吸烟工人的HbCO(%)含量?
表8-6 吸烟工人和不吸烟工人的HbCO(%)含量比较 含量 吸烟 不吸烟 合 秩次 平均 秩和 工人 工人 计 范围 秩次 吸烟 不吸烟
(3)计算正负秩和: T = 54.5, T = 11.5 (4)确定检验统计量T 任取T 和 T 为T ,本例取T =11.5。 3.确定P 值,作出推论: (1) n≤50,查表法。本例n=11,查附表9得 T0.05, 为 ~56, 11 10
本例11.5在此范围内,故P >0.05,按α =0.05 水准,不拒绝Ho 还不能认为两法测定结果有差别。 (2) n>50,u 检验。
第八章
秩转换的非参数检验
非参数检验的概念: 非参数检验是指对原始资料无特殊要求(如正 态分布、总体方差相等)的一类检验方法,它不 是比较参数,而是比较分布的位置。不符合t 检验 和F检验的数值变量资料可用秩和检验,此外,秩 和检验还可用于两组或多组等级资料以及“开口” 资料的比较。等级相关也属于非参数检验。
表8-9 三种药物杀灭钉螺的死亡率(%)比较 甲药 乙药 丙药 死亡率 秩次 死亡率 秩次 死亡率 秩次 32.5 10 16.0 4 6.5 1 35.5 11 20.5 6 9.0 2 40.5 13 22.5 7 12.5 3 46.0 14 29.0 9 18.0 5 49.0 15 36.0 12 24.0 8 63 ─ 38 ─ 19 Ri ni 5 ─ 5 ─ 5

非参数检验的基本原理

非参数检验的基本原理

非参数检验的基本原理非参数检验是一种利用统计方法来检验假设的一种方法,与参数检验相比,非参数检验不需要对总体的分布做出假设,更为灵活。

本文将介绍非参数检验的基本原理。

一、概述非参数检验是一种统计方法,既不要求数据符合特定分布,也不对总体参数做出假设。

与之相反,参数检验通常假设数据服从特定的分布,例如正态分布。

非参数检验的主要优点是可以更全面地处理数据,更适用于复杂的情况。

然而,非参数检验的统计效率通常较低,需要更多的样本来达到相同的置信水平。

二、基本原理1. 秩次转换非参数检验通常使用秩次转换来处理数据。

所谓秩次转换是将原始的数值转换为它们在样本中的秩次,从而消除数值的大小差异。

对于同一组数据,秩次转换后,可以应用更广泛的统计方法。

2. Wilcoxon符号秩检验Wilcoxon符号秩检验是一种非参数检验方法,主要应用于配对样本或者两组独立样本之间的差异比较。

它的基本思想是对每个观测值计算它们的符号秩,然后通过比较两组样本的秩和来判断差异是否显著。

3. Mann-Whitney U检验Mann-Whitney U检验是一种非参数检验方法,用于比较两组独立样本之间的差异。

它的基本原理是将两组样本中的所有观测值汇总,然后对这些观测值进行秩次转换,并计算两组样本排名和。

通过比较两组样本排名和的大小来判断差异是否显著。

4. Kruskal-Wallis H检验Kruskal-Wallis H检验是一种非参数的方差分析方法,用于比较三组或以上独立样本之间的差异。

它的基本原理是将所有样本的观测值汇总,然后进行秩次转换,并计算各组样本排名和的平均值。

通过比较平均排名和的大小来判断差异是否显著。

三、案例研究为了更好地理解非参数检验的原理,我们以某家公司销售部门的两个月销售额作为例子进行案例研究。

假设第一个月公司销售额为[100, 80, 120, 90, 110],第二个月公司销售额为[95, 85, 115, 100, 105]。

秩转换非参数检验演示文稿

秩转换非参数检验演示文稿
T min{T ,T } T 25
第三十三页,共55页。
3、确定P 值和作出推断结论
n 10
查附表得
T0.05(10) 8 47
T min{T ,T } T 25
P 0.05
按α=0.05的水准,接受H0,表明样本平均数与总体
平均数差异不显著,可以认为该地成年公黄牛胸围 的平均数与该品种胸围总体平均数相同。
第二十九页,共55页。
1)求差值:d=X-M0;
2)编秩次:差值的绝对值由小到大编秩(即1、2、 3、…、n),并按差值的正负标上正负号,差数为
零不参加编秩,对子数n也随之减少,差值的绝对 值相同求平均秩;
3)求秩和并确定统计量T :分别求正号T+和负号T-的秩 和,取绝对值小的为T。
3、确定P 值和作出推断结论
146.2, 140.6,139.7, 134.1, 124.3, 147.9,
143.0(cm)。 问该地成年公黄牛胸围与该品种 胸围平均数是否有显著差异?
第二十八页,共55页。
7.2.1一组样本资料的符号秩和检验知识回顾
(一)检验目的
推断一个样本所在总体的中位数是否等于某一已
知总体的中位数。
(二)一般步骤 1、建立检验假设,确定检验水准 HO:样本所在的总体中位数=已知总体中位数; H1:样本所在的总体中位数≠已知总体中位数。 α=0.05 2、计算差值、编秩次、求秩和并确定统计量
第十六页,共55页。
例7-2 对28名患有轻度牙周炎疾病的成年人,指导
他们实行良好的口腔卫生习惯,6个月后,牙周情况
好转程度依高到低给予分数 +3,+2,+1;牙周情况 变差程度依次给予分数-1,-2,-3;没有变化给予0

8.秩转换的非参数检验-10.14

8.秩转换的非参数检验-10.14

11.5
一、配对样本差值的中位数和0比较 配对样本差值的中位数和 比较
附表9 T 界值表(配对比较的符号秩和检验用) 界值表(配对比较的符号秩和检验用) 单侧:0.05 0.025 0.01 0.005 N 双侧:0.10 0.05 0.02 0.010 5 0-15 .-. .-. .-. 6 2-19 0-21 .-. .-. 7 3-25 2-26 0-28 .-. 8 5-31 3-33 1-35 0-36 , 9 8-37 n=11,T=11.5 3-142 5-140 1-44 查表法: ①查表法: 10 10-45 8-47 5-50 3-52 11 13-53 10-56 7-59 5-61 当 n≤50 时 , 根 据 n 和 12 17-61 13-65 9-69 7-71 T 查 T 界值表 ( 附表 界值表( 13 21-70 17-74 12-79 0.05<P<0.10,按照 水准, 9-82 ,按照α=0.05水准,不 水准 14 25-80 21-84 15-90 12-93 9)。 ) 拒绝H30-90 拒绝 0,尚不能认为两组测定结果有 15 25-95 19-101 15-105 16 35-101 29-107 23-113 19-117 差别。 差别。 17 41-112 34-119 27-126 23-130 18 47-124 40-131 32-139 27-144 若统计量T值在某 界值范围内, 53-137 相应概率; 值在某T界值范围内 若统计量 值在某 界值范围内,P值 > 相应概率; 37-153 值 19 46-144 32-158 60-150 43-167 37-173 值恰好等于界值, 值 20相应概率; 若T值恰好等于界值,P值 = 相应概率; 52-158 值恰好等于界值 . . . . . . . . . 值在界值范围外, 值 相应概率。 若T值在界值范围外,P值 <. 相应概率。 值在界值范围外 50 466-809 434-841 397-878 373-902

秩转换的非参数检验

秩转换的非参数检验

秩转换的非参数检验基本概念1.参数检验方法(parametric test):总体分布类型已知的条件下对其参数进行估计或检验。

(如t-test, F- test)2.非参数检验方法(nonparametric test):一种不依赖总体分布的具体形式,也不对参数进行估计或检验的统计方法来分析此类资料这种方法不受总体参数的影响,检验的是分布或分布位置,而不是参数。

这样的检验方法称为非参数检验(如基于秩次的检验)3.秩次(rank)):秩统计量,是指全部观察值按某种顺序排列的位序。

在一定程度上反映了等级的高低。

4.秩和(rank sum):同组秩次之和。

在一定程度上反映了等级的分布位置非参数检验的优缺点:优点:无严格的条件限制,且多数非参数统计方法较为简单,易于理解和掌握,应用范围广缺点:对适宜参数统计的资料,若用非参数统计处理,常损失部分信息,降低检验效能。

总结:因此对适合参数统计条件的资料或经变量变换后适合参数统计的资料,应最好用参数统计。

但资料不具备用参数统计的条件时,非参数统计是很有效的分析方法适用范围:(1)总体分布为偏态或分布形式未知的计量资料(尤其在n<30的情况下)。

(2)等级资料。

(3)个别数据偏大或数据的某一端无确定的数值。

(4)各总体方差不齐。

检验步骤1、检验假设H0:差值的总体中位数Md=0 H1:差值的总体中位数Md≠0 α=0.052、求差值3、编秩:依差值的绝对值从小到大编秩遇差值为0的对子,舍去不计,同时样本量减一遇差值绝对值相等则取平均秩,称为相同秩(ties)然后按差值的正负对秩次冠以正负号4、求检验统计量:任取正秩和或负秩和为T5、确定P值并做出统计推断(查附表9,内大外小原则)正态近似法(n>50时)超出附表9范围,可用正态近似法作u检验。

两样本比较的秩和检验基本思想:如果H0 成立,即两组分布位置相同,则A组的实际秩和应接近理论秩和n1(N+1)/2; (B组的实际秩和应接近理论秩和n2(N+1)/2).或相差不大,差值很大的概率应很小。

秩转换的非参数检验

秩转换的非参数检验

2)正态近似法:大样本时 (n≥50时), 可按式11-1计算统计量u值,作正态检验:
| T-n(n+1) / 4|-0.5 u=
n(n+1)(2n+1) / 24
(11-1)
如有相同秩次,应用校正公式:
u=
| T n(n 1) / 4 | 0.5
n(n 1)(2n 1) 1
24
48
(t
3 j
Tests of Normality
Kolmogorov-Smirnova
Statistic
差值
.420
df
Sig.
8
.000
a. Lilliefors Significance Correction
Shapiro-Wilk
Statistic
df
.628
8
Sig. .000
Tests of Normality
第八章 秩转换旳非参数检验
癌症. 1997;16(3):219
用改良旳Seldinger’s插管技术对8例临床及病理证明旳恶性滋养细胞 肿瘤进行选择性盆腔动脉插管灌注化疗。治疗前后hCG放免测定值。 采用t检验进行分析,治疗前后血hCG值经统计学处理有明显性差别。
1、资料类型 2、何种设计 3、统计措施
差值对数
Kolmogorov-Smirnova
Statistic df
Sig.
.372
8 .002
Shapiro-Wilk
Statistic df
.559
8
a. Lilliefors Significance Correction
Sig. .000
参数统计
(parametric statistics)

秩转换的非参数检验

秩转换的非参数检验

参数检验

参数检验方法:t 检验,方差分析; 总体分布假定:各组样本所来自的总体为 正态分布(已知的分布形式),各组样本所 来自的总体方差齐性。
非参数检验

定义:不依赖于总体的分布类型,对样本 所来自总体的分布不作严格假定的统计推 断方法,称为非参数检验(nonparametric test)。直接对总体分布做假设检验。 又称为任意分布检验(distribution-free test)。
(1) 很低 低 中 偏高 高 合计
(2) 1 8 16 10 4
(3) 2 23 11 4 0
(4) 3 31 27 14 4 79
(5) 1~3 4~34 35~61 62~75 76~79 —
(6) 2 19 48 68.5 77.5 —
39(n1) 40(n2)
1917(T1) 1243(T2)
查T界值表。
(3)确定P值,作出结论
若n1≤10且n2-n1≤10,可通过查阅T界值表
(附表10)确定P值;
若两样本量不满足上述条件,则可采用正
态近似法作u检验,按公式(8-2)计算u值。
正态近似法
| T n 1(N 1)/2 | n 1 n 2(N 1) ( t j t j ) ) (1 3 12 N N
(通常取秩和较小者)。
, 较小例数组的秩和 n 1 n 2 T min(R1 ,R 2 ),n 1 n 2
N n1 n2 n0 min( n1 , n2 )
较小例数组的平均秩和为:
n0(1 N)/2
若H0成立,T值应接近 n0(1 N)/2 ,若T值严重偏离
n0(1 N)/2 ,则提示H0可能是不正确的。小样本时,

秩转换的非参数检验

秩转换的非参数检验

非参数检验是相对于参数检验而言地.参数检验——如果总体分布为已知地数学形式,对其总体参数作假设检验.计量资料——正态分布——假设检验——检验、检验计量资料:不满足参数检验条件地假设检验方法,一变量变换,二非参数检验(等级资料)非参数检验对总体分布不作严格假定(任意分布检验)秩转换————推断一个总体表达分布位置地中位数(非参数)和已知、两个或多个总体地分布是否有差别.秩转换地非参数检验时先将数值变量资料自小到大,或等级资料从弱到强转换成秩后,再计算检验统计量,其特点是假设检验地结果对总体分布地形状差别不敏感,只对总体分布地位置差别敏感.文档来自于网络搜索配对样本比较地符号秩检验符号秩检验符号秩和检验——用于配对样本差值地中位数和比较——用于单个样本中位数和总体中位数比较配对样本差值地中位数和比较———————<—————————————目地是推断配对样本差值地总体中位数是否和有差别——即推断配对地两个相关样本所来自地两个总体中位数是否有差别.平均秩——相同秩—————————————>———————————单个样本中位数和总体中位数比较—————————————————————目地是推断样本所来自地总体中位数和某个已知地总体中位数是否有差别——用样本各变量值和地差值,即推断差值地总体中为数和是否有差别本法地原理()界值表制作地原理()正态近似法地原理第二节两个独立样本比较地秩和检验————————秩和检验()————用于推断计量资料或等级资料地两个独立样本所来自地两个总体分布是否有差别. ——————推断两个总体分布地位置是否有差别.原始数据地两样本比较————计量资料为原始数据频数表资料和等级资料地两样本比较————计量资料为频数表资料,是按数量区间分组————等级资料是按等级分组本法地原理界值表制作地原理正态近似法地原理、检验第三节完全随机设计多个样本比较地检验一、多个独立样本比较地检验————用于推断计量资料或等级资料地多个独立样本所来自地多个总体分布是否有差别.原始数据地多个样本比较————计数资料为原始数据——————————频数表资料和等级资料地多个样本比较————计量资料为频数表资料,是按数量区间分组————等级资料是按等级分组本法地原理界值表制作地原理地近似法原理多个独立样本两两比较地法检验————进一步推断两两总体分布位置不同——————————————————随机区组设计多个样本比较地检验多个相关样本比较地检验————用于推断随机区组设计地多个相关样本所来自地多个总体分布是否相等.、方法步骤————————————————————————————————、本法地原理()界值表制作地原理()近似法地原理————————————>或>——————————、近似法二、多个相关样本两两比较地检验——————进一步推断两两总体分布位置不同秩转换地非参数检验参数检验————如果总体分布为已知地数学形式,对其总体参数作检验假设非参数检验(任意分布检验)————对总体分布不作严格假定,直接对总体分布作假设检验秩转换地非参数检验————推断一个总体表达分布位置地中位数(非参数)和已知、两个或多个总体地分布是否有差别.————先将数值变量从小到大,或等级从弱到强转换成秩后,再计算检验统计量.————假设检验地结果对总体分布地形状差别不敏感,只对总体分布地位置差别铭感.应用范围:——————对于计量资料不满足正态和方差齐性条件地小样本资料分布不明地小样本资料一端或两端是不确定数值地资料——————对于等级资料若选行*列表资料地检验,只能推断构成比差别选秩转换地非参数检验,可推断等级强度差别注意:如果已知其计量资料满足(或近似满足)检验或检验条件,当然选检验或检验,因为这时若选秩转换地非参数检验,会降低检验效能.文档来自于网络搜索配对样本比较地符号秩检验(符号秩和检验)————用于配对样本差值地中位数和比较;————用于单个样本中位数和总体中位数比较配对样本差值地中位数和比较————目地是推断配对样本差值地总体中位数是否和有差别——即推断配对地两个相关样本所来自地两个总体中位数是否有差别检验步骤()建立检验假设,确定检验水平()求检验统计量值()确定值,作出推断结论——————————————《时,查界值表——————————————>时,正态近似法作检验注意:配对等级资料采用符号秩和检验最好选用大样本单个样本中位数和总体中位数比较————目地是推断样本所来自地总体中位数和某个已知地总体中位数是否有差别————用样本各变量值和地差值,即推断差值地总体中位数和是否有差别第二节两个独立样本比较地秩和检验————用于推断两个独立样本所来自地两个总体分布是否有差别.————目地是推断两个总体分布地位置是否有差别、原始数据地两样本比较——————————《和《时,查界值表——————————> 或> 时,用正态近似法作检验频数表资料和等级资料地两样本比较————计数资料为频数表资料,是按数量区间分组————等级资料是按等级分组第三节完全随机设计多个样本比较地检验一、多个独立样本比较地检验————用于推断计量资料或等级资料地多个独立样本所来自地多个总体分布是否有差别.、原始数据地多个样本比较—————————————————或————查界值表———————且最小样本地例数大于或>时,查界值表、频数表资料和等级资料地多个样本比较二、多个独立样本两两比较地法检验————————————进一步推断两两总体分布位置不同第四节随机区组设计多个样本比较地检验一、多个相关样本比较地检验————用于推断随机区组设计地多个相关样本所来自地多个总体分布是否有差别.————————————————《和《时,查界值表————————————————>或>时,用近似法多个相关样本两两比较地检验——————进一步推断两两总体分布位置不同————检验。

秩转换的非参数检验

秩转换的非参数检验
秩次(rank),秩统计量 是指全部观察值按某种顺序排列的位序;


秩和(rank sum)
同组秩次之和。编秩 NhomakorabeaA组: - 、、+、+、+、++ B组: +、++、++、++、+++、+++
A组:- ± + + + 1 2 3 4 5
B组: + 6
++ 7
++ ++ ++ +++ +++ 8 9 10 11 12
第二节 两独立样本差别的秩和检验 Wilcoxon rank sum test
对于计量数据,如果资料方差相等,且服从
正态分布,就可以用t检验比较两样本均数。如
果此假定不成立或不能确定是否成立,就应采用
秩和检验来分析两样本是否来自同一总体。
Wilcoxon秩和检验(Wilcoxon rank sum test),用于推 断计量资料或等级资料的两个独立样本所来自的两个总体分 布是否有差别。 秩和检验的目的是推断两个总体分布的位置是否有差别, 如要推断两个不同人群的某项指标值的大小是否有差别或哪
秩 吸烟工人
和 不吸烟工人
(7) (6) (8)=(3) = (2) (6) 2 4 152 437 768 528 685 274 310 0 1917(T1) 1243(T2)
如果两 总体分 布相同
基本思想 两样本来自同一总体
任一组秩和不应太大或太小
T
与平均秩和 n0 (1 N ) / 2 应相差不大

秩转换非参数检验

秩转换非参数检验

其总体参数作假设检验。
如: t 检验和 F 检验 。
非参数检验
➢对总体分布不作严格假定,又称任意分
布检验(distribution-free test),
它直接对总体分布作假设检验。
a
3
秩转换的非参数检验
➢ 推断一个总体表达分布位置的中位数M (非参数)和已知M0、两个或多个总体的分 布是否有差别。
用 Wilcoxon 符号秩检验。
a
21
检验步骤
H 0: 尿 氟 含 量 的 总 体 中 位 数 M 45.30 H 1: M 45.30
0.05
据表8-2第(3)、(4)栏,取T=1.5。
有效差值个数n11。据n11和T1.5查 附表9(P534) , 得单侧P0.005, 按 0.05 水 准拒绝H0,接受H1,可认为该厂工人的尿氟 含量高于当地正常人的尿氟含量。
合计
(1)-45.30
(2)
-1.09
0
1.09
4.17
5.75
7.86
7.96
9.07
11.86
22.07
25.75
42.07

a
正秩 (3)
1.5 3 4 5 6 7 8 9 10 11 64.5
负秩 (4)
1.5
1.5
20
本例样本资料经正态性检验,推断
得总体不服从正态分布( P <0.05),现
对子数为n,见表8-1第(4)栏,本例 n=11;
➢若多个差值为0,可通过提高测量工具的精
度来解决。
a
13
②按差值的绝对值从小到大编秩,然后分别 冠以正负号。遇差值绝对值相等则取平均秩,称为 相同秩(ties)(样本较小时,如果相同秩较多, 检验结果会存在偏性,因此应提高测量精度,尽量 避免出现较多的相同秩), 表8-1第(4)栏差值的 绝对值为2有2个,其秩依次应为1,2,皆取平均秩 为1.5,见表8-1第(5)、(6)栏;

秩转换非参数检验

秩转换非参数检验
第八章
秩转换的非参数检验 (Nonparametric Test)
秩转换非参数检验
主要内容
第一节 配对样本资料的Wilcoxon符号秩检验 第二节 两个独立样本比较的Wilcoxon秩和检验 第三节 完全随机设计多个样本比较的Kruskal-
Wallis H检验 第四节 随机区组设计多个样本的Friedman M检验
秩转换:将某一变量值从小到大排序后, 获得每一变量值的秩次,并用此秩次代替 原有变量值的过程。
秩转换非参数检验
秩和检验的方法----秩转换
秩和检验的基本计算步骤: 1.将数据(x)按大小转化为秩次(i),用秩次的
大小反映变量值的大小。 2.对各组”秩次”求和,称为秩和(T =∑i)。 3.对各组秩和(T)做检验的方法称为秩和检验。
60 142 195 80 242 220 190 25 198 38 236
95
新法 (3)
76 152 243 82 240 220 205 38 243 44 190
100
差值d (4)=(3)-(2)
16 10 48 2 -2 0 15 13 45 6 -46
5



秩转换非参数检验
例8-1:两种方法测量12份血清ALT测量结果
秩转换非参数检验
非参数检验的优缺点:
优点:
适用范围广
对数据要求不严
方法简便、易于理解和掌握
缺点:
损失信息、检验效能低
符合条件
首选参数检验
不符合条件
非参数检验
秩转换非参数检验
第一节 配对样本比较的Wilcoxon 符号秩检验
秩转换非参数检验
Wilcoxon符号秩检验简介

卫生统计学 第十二章 基于秩转换的非参数检验

卫生统计学 第十二章 基于秩转换的非参数检验
2020/6/27
分析步骤:
1.建立检验假设,确定检验水准(α) H0:两总体分布位置相同,总体中位数
M1=M2 H1:两总体分布位置不同,总体中位数 2.选择B组,清点M每1≠组M数2据B前A组数据的 个数. 按数值由小α到=大0.0排5列。,若有相同数据,
取平均秩。
2020/6/27
分析步骤:
第十二章 基于秩 转换的非参数检验
2020/6/27
非参数检验的优点:
①适用范围广 ②受限条件少。参数检验对总体分布等有特别限定,而非 参数检验的假定条件少,也不受总体分布的限制,更适合 一般的情况。 ③具有稳健性。参数检验是建立在严格的假设条件基础之 上的,一旦不符合假设条件,其推断的正确性将受到怀疑; 而非参数检验都是带有最弱的假定,所受的限制很少,稳 健性好。
2020/6/27
2020/6/27
第四节 随机区组设计资料比较的秩和检验
随机区组设计资料比较,如果观察结果 不满足方差分析条件,可用Friedman M 检验(Friedman’s M test)。
分析步骤
1.建立检验假设和确定检验水准 2.编秩:
•先在每一配伍组内将数据从小到大编秩, 如有相同数据,取平均秩次;
•再求各处理组秩和Ri,i=1,2,...,k。
2020/6/27
分析步骤
3.计算检验统计量M值
(1)查表法(b≤15,k≤15): ➢M=Σ(Rj-R)2 ==》M界值表 ➢基于χ2分布近似法得到χ2值查有关的 M界值表 (2)χ2分布近似法
H1:k个总体分布位置不同或不全相同; α=0.05。
2.混合编秩 将各组数据混合,由小到大编秩。遇有 原始数据相同时,若相同数据在同一组内 ,则仍按顺序编秩;若相同数据在不同组

秩转换的非参数检验

秩转换的非参数检验

A法
B法
差值 d 正秩
负秩
3 0 .6
3 0 .6
0
--
--
5 9 .9
6 3 .1
-3 .2
3
4 6 .0
5 8 .0
-1 2 .0
6
2 3 .0
1 0 .9
1 2 .1
7
2 0 .3
3 3 .7
-1 3 .4
9 .5
4 8 .6
9 9 .5
-5 0 .9
11
2 5 .0
2 4 .4
0 .6
1
2 3 .4
3 6 .2
-1 2 .8
8
4 4 .1
4 5 .2
-1 .1
2
3 9 9 .8 4 0 4 .1 -4 .3
4
2 5 .9
3 9 .3
-1 3 .4
9 .5
5 3 5 .6 5 4 4 .8 -9 .2
5
——
——
——
8
58
可编辑ppt
9
秩和分布的特点
对子号
1 2 3
N = 3 时两样本配对比较
10
•秩和分布的特点 (1)离散型的对称分布; (2)N一定时,秩和分布也一定; (3)靠近中央的频数较多; (4)当N足够大时,秩和分布逼近正态分布。
可编辑ppt
11
配对资料的秩和均数:
T+与T-是以T为中心的两个对称点 例11.2资料:T= 11(11 + 1)/ 4 = 33 T+ = 8 , T- = 58, 差值均为 25。
可编辑ppt
4
一、秩和检验的基本思想
总体A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号
强化1班 强化2班
1
70 80
2
62 86
3
68 77
4
68 73
5
81 91
6
84 81
7
64 72
8
86 89
9 10
37 72 79 79
SPSS统计分析-07选修
练习7-2 某研究者欲研究保健食品对小鼠抗疲劳 作用,将同种属的小鼠按年龄和性别相同、体重相 近者配成对子,共10对,并将每对的两只小鼠随机 分到保健食品两个不同的剂量组,过一定时期将小 鼠杀死,测得其肝糖原含量( mg/100g),结果见 表,问不同剂量组的小鼠肝糖原含量有无差别?
143.0(cm)。 问该地成年公黄牛胸围与该品种
胸围平均数是否有显著差异?
SPSS统计分析-07选修
7.2.1一组样本资料的符号秩和检验知识回顾
(一)检验目的 推断一个样本所在总体的中位数是否等于某一已 知总体的中位数。 (二)一般步骤 1、建立检验假设,确定检验水准 HO:样本所在的总体中位数=已知总体中位数; H1:样本所在的总体中位数≠已知总体中位数。 α=0.05 2、计算差值、编秩次、求秩和并确定统计量
a. 正 常部 位 < 白 班部 位 b. 正 常部 位 > 白 班部 位 c. 白 班部 位 = 正 常部 位
秩 N 正常部位 - 白班部位 负秩 正秩 结 总数 a. 正常部位 < 白班部位 b. 正常部位 > 白班部位 c. 正常部位 = 白班部位 1a 7b 0c 8 秩均值 3.00 4.71 秩和 3.00 33.00
Z 渐近显著性(双侧) a. 基于负秩。
b. Wilcoxon 带符号秩检验
SPSS统计分析-07选修
练习7-1 某大学进行英语教学模式探讨,将20名 大学生按性别、英语初试成绩相近配成10对,随机 分配每对学生到两种英语教学模式强化班进行训 练,训练一个月后测量其英语四级考试成绩如下表 所示。问参加不同英语教学模式强化班的效果有无 差异?
b. Wilcoxon 带符号秩检验
P 0.147 0.05
按α=0.05的水准,接受H0,可以认为此项指 导的结果无统计意义。
SPSS统计分析-07选修
7.2 一组样本资料的符号秩和检验
例7-3 已知某品种成年公黄牛胸围平均数为140厘 米,今在某地随机抽取10头该品种成年公黄牛, 测得一组胸围数字:128.1, 144.4, 150.3, 146.2, 140.6,139.7, 134.1, 124.3, 147.9,
校正公式。
SPSS统计分析-07选修
当n>50时, 正态近似公式:
u
| T n(n 1) / 4 | 0.5 n(n 1)(2n 1) / 24
| T n(n 1) / 4 | 0.5 n( n 1)(2n 1) (t ti ) 24 48
3 i
当相同秩次较多时,校正公式:

| 91 23(23 1) / 4 | 0.5 23(23 1)(2 23 1) (10 3 10) (7 3 7) (6 3 6) 24 48
1.44
SPSS统计分析-07选修
u0.05 1.96 u 1.44 u0.05 1.96
病人号 1 2 3 4 5 6 7 8 白斑部位 40.03 97.13 80.32 25.32 19.61 14.50 49.63 44.56 正常部位 88.57 80.00 123.72 39.03 24.37 92.75 121.57 89.76
SPSS统计分析-07选修
7.1.1配对设计的Wilcoxon检验知识回顾
SPSS统计分析-07选修
2)操作如下:
单击Analyze/Nonparametric Tests/TwoRelated-Samples菜单,打开2个相关样本非参 数检验的对话框,选项如下图。
SPSS统计分析-07选修
2、结果解释
中 位数 - 变 化值 Negative Ranks Positive Ranks Ties Total
P 0.05
按α=0.05的水准,接受H0,可以认为此项指 导的结果无统计意义。
SPSS统计分析-07选修
1)录入数据文件格式(频数表格形式)如下:
SPSS统计分析-07选修
2)操作如下:
单击Analyze/Nonparametric Tests/TwoRelated-Samples菜单,打开2个相关样本非参 数检验的对话框,选项如下图。
Ranks N 15 8b 1c 24
a
Mean Rank 12.33 11.38
Sum of Ranks 185.00 91.00
a. 中 位数 < 变 化值 b. 中 位数 > 变 化值 c. 变 化值 = 中 位数
秩 N 中位数 - 变化值 负秩 正秩 结 总数 a. 中位数 < 变化值 b. 中位数 > 变化值 c. 中位数 = 变化值 15a 8b 1c 24 秩均值 12.33 11.38 秩和 185.00 91.00
胸围平均数是否有显著差异(见数据文件data7-3)?
SPSS统计分析-07选修
解 1、建立假设,确定检验水准。
HO:该地成年公黄牛胸围的平均数=140厘米;
H1:该地成年公黄牛胸围的平均数≠140厘米。
α=0.05 2、计算差值、编秩次、求秩和并确定统计量
SPSS统计分析-07选修
2、计算差值、编秩次、求秩和并确定统计量
SPSS统计分析-07选修
1)求差值:d=X-M0;
2)编秩次:差值的绝对值由小到大编秩(即1、2、 3、…、n),并按差值的正负标上正负号,差数为 零不参加编秩,对子数n也随之减少,差值的绝对 值相同求平均秩;
3)求秩和并确定统计量T :分别求正号T+和负号T的秩和,取绝对值小的为T。 3、确定P 值和作出推断结论
SPSS统计分析-07选修
实验结果统计表 变化对应分数 +3 +2 +1 0 -1 -2 -3 人数 4 5 6 5 4 2 2
SPSS统计分析-07选修
解 1、建立假设,确定检验水准。
HO:差值 d 总体中位数Md=0; H1:差值 d 总体中位数Md≠0。
α=0.05 2、计算差值、编秩次、求秩和并确定统计量
概念 它是配对设计下两计量或等级资料总体分布 差异的检验。 检验目的 推断配对设计差值总体的中位数是否为零。
SPSS统计分析-07选修
检验步骤 1、建立检验假设,确定检验水准 HO:甲、乙两处理差值 d 总体中位数Md=0; H1:甲、乙两处理差值 d 总体中位数Md≠0。 α=0.05 2、计算差值、编秩次、求秩和并确定统计量 1)求差值:d=X-Y; 2)编秩次:差值的绝对值由小到大编秩(即1、2、 3、…、n),并按差值的正负标上正负号,差数为 零不参加编秩,对子数n也随之减少,差值的绝对 值相同求平均秩;
SPSS统计分析-07选修
2)操作如下:
单击Analyze/Nonparametric Tests/TwoRelated-Samples菜单,打开2个相关样本非参 数检验的对话框,选项如下图。
SPSS统计分析-07选修
2、结果解释
Ranks N 正 常部 位 - 白 班部 位 Negative Ranks Positive Ranks Ties Total 1a 7b 0c 8 Mean Rank 3.00 4.71 Sum of Ranks 3.00 33.00
SPSS统计分析-07选修
小鼠对号 1 2 3 4 5 6 7 8 9 10 合计
中剂量组
高剂量组
620.16 866.50 641.22 812.91 738.96 899.38 760.78 694.95 749.92 793.94
958.47 838.42 788.90 815.20 783.17 910.92 758.49 870.80 862.26 805.48
SPSS统计分析-07选修
例7-3 已知某品种成年公黄牛胸围平均数为140厘 米,今在某地随机抽取10头该品种成年公黄牛, 测得一组胸围数字:128.1, 144.4, 150.3, 146.2, 140.6,139.7, 134.1, 124.3, 147.9,
143.0(cm)。 问该地成年公黄牛胸围与该品种
SPSS统计分析-07选修
第七讲 秩转换的非参数检验(1)
主要内容
7.1 配对设计资料的符号秩和检验 7.2 一组样本的资料的符号秩和检验
7.3 完全随机两独立计量样本检验
SPSS统计分析-07选修
7.1 配对设计的Wilcoxon检验
例7-1 临床某医生研究白癜风病人的白介素IL-6水 平在白斑部位与正常部位有无差异,调查资料如表:
SPSS统计分析-07选修
例7-2 对28名患有轻度牙周炎疾病的成年人,指导 他们实行良好的口腔卫生习惯,6个月后,牙周情况 好转程度依高到低给予分数 +3,+2,+1;牙周情况 变差程度依次给予分数-1,-2,-3;没有变化给予0 分。数据如表所示,试对此项指导的结果进行评价 (见数据文件data7-2)。
SPSS统计分析-07选修
7.1.2 配对设计的Wilcoxon检验SPSS中的实现
1)录入数据文件格式(频数表格形式)如下:
SPSS统计分析-07选修
2)操作如下:
单击Analyze/Nonparametric Tests/TwoRelated-Samples菜单,打开2个相关样本非参 数检验的对话框,选项如下图。
u
t i 为相同秩次的个数。
SPSS统计分析-07选修
相关文档
最新文档