上海民办兰生复旦中学数学有理数综合测试卷(word含答案)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学有理数解答题压轴题精选(难)

1.同学们都知道表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离,试探索:

(1)求 ________.

(2)找出所有符合条件的整数,使得.满足条件的所有整数值有________

(3)由以上探索,猜想对于任何有理数x,是否有最大值或最小值?如果有最大值或最小值是多少?有最________(填“最大”或“最小”)值是________.

【答案】(1)7

(2)-3,-2,-1,0,1,2;

(3)最小;3

【解析】【解答】(1)原式=|5+2|=7.

故答案为: 7;(2)令x+3=0或x-2=0时,则x=-3或x=2.

当x<-3时,- (x+3) - (x-2) =5 ,

-x-3-x+2=5,解得x=-3(范围内不成立)

当-3≤x≤2时,(x+3) - (x-2) = 5,

x+3-x+1=4,0x=0,x为任意数,

则整数x=-3,-2,-1, 0,1,

当x>2时,(x+3) + (x-2) = 5,

x=2(范围内不成立) .

综上所述,符合条件的整数x有: -3, -2, -1, 0,1,2.

故答案为:-3,-2,-1,0,1,2;(3) 由(2) 的探索猜想,对于任何有理数x,有最小值为3,

令x-3=0或x-6=0时,则x=3,x=6

当x<3时,-(x-3)-(x-6)=-2x+3﹥3

当3≤x≤6时,x-3-(x-6)=3,

当x>6时,x-3+x-6=2x-9>3

∴对于任何有理数x,有最小值为3

【分析】(1)直接去括号,再按照去绝对值的方法去掉绝对值就可以了;(2)要求x的整数值可以进行分段计算,令x+3=0或x-2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.

2.如图,数轴的单位长度为1,点,,,是数轴上的四个点,其中点,表示的数是互为相反数.

(1)请在数轴上确定原点“O”的位置,并用点表示;

(2)点表示的数是________,点表示的数是________,,两点间的距离是________;

(3)将点先向右移动4个单位长度,再向左移动2个单位长度到达点,点表示的数是________,在数轴上距离点3个单位长度的点表示的数是________.

【答案】(1)解:距离A点和B点的距离相等的点即AB的中点,点 .如图所示,点即为所求.

(2);5;9

(3);或1

【解析】【解答】解:(2)点表示的数是,点表示的数是5,所以,两点间的距离是 .

故答案为9.

( 3 )如图,将点先向右移动4个单位长度是0,再向左移动2个单位长度到达点,

得点表示的数是 .

到点距离3个单位长度的点表示的数是-2-3= 或-2+3=1.

故答案为,或1.

【分析】(1)由点A和点B表示的数互为相反数,因此原点到点A和点B的距离相等,可得到原点的位置。

(2)先再数轴上标出数,可得到点M和点N表示的数,再求出点M,N之间的距离。(3)利用数轴上点的平移规律:左减右加,可得到点C表示的数,与点C距离3个单位长度表示的数为-2±3,计算可求解。

3.阅读下面的材料:

如图1,在数轴上A点衰示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB﹣b﹣a.

请用上面的知识解答下面的问题:

如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B 点,然后向右移动7cm到达C点,用1个单位长度表示1cm.

(1)请你在数轴上表示出A.B.C三点的位置:

(2)点C到点人的距离CA=________cm;若数轴上有一点D,且AD=4,则点D表示的数为________;

(3)若将点A向右移动xcm,则移动后的点表示的数为________;(用代数式表示)(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,

试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.

【答案】(1)解:如图所示:

(2)5;﹣5或3

(3)﹣1+x

(4)解:CA﹣AB的值不会随着t的变化而变化,理由如下:

根据题意得:CA=(4+4t)﹣(﹣1+t)=5+3t,AB=(﹣1+t)﹣(﹣3﹣2t)=2+3t,

∴CA﹣AB=(5+3t)﹣(2+3t)=3,

∴CA﹣AB的值不会随着t的变化而变化

【解析】【解答】(2)CA=4﹣(﹣1)=4+1=5(cm);

设D表示的数为a,

∵AD=4,

∴|﹣1﹣a|=4,

解得:a=﹣5或3,

∴点D表示的数为﹣5或3;

故答案为5,﹣5或3;

( 3 )将点A向右移动xcm,则移动后的点表示的数为﹣1+x;

故答案为﹣1+x;

【分析】(1)根据题意容易画出图形;(2)由题意容易得出CA的长度;设D表示的数为a,由绝对值的意义容易得出结果;(3)将点A向右移动xcm,则移动后的点表示的数为-1+x;(4)表示出CA和AB,再相减即可得出结论.

4.列方程解应用题

如图,在数轴上的点A表示,点B表示5,若有两只电子蜗牛甲、乙分别从A、B两点同时出发,保持匀速运动,甲的平均速度为2单位长度秒,乙的平均速度为1单位长度秒请问:

(1)两只蜗牛相向而行,经过________秒相遇,此时对应点上的数是________.

(2)两只蜗牛都向正方向而行,经过多少秒后蜗牛甲能追上蜗牛乙?

【答案】(1)3;2

相关文档
最新文档