随机信号处理模实验报告
随机信号分析实验报告
随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experiment number = 49; %学号49 I = 8; %幅值为8 u = 1/number;Ex = I*0.5 + (-I)*0.5; N = 64; C0 = 1; %计数 p(1) = exp(-u);for m = 2:N k = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/222(){()()}(2)!m k mk m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X XC m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。
随机信号处理实验报告讲解
随机信号处理实验报告目录一、实验要求: (3)二、实验原理: (3)2.1 随机信号的分析方法 (3)2.2 随机过程的频谱 (3)2.3 随机过程的相关函数和功率谱 (4)(1)随机信号的相关函数: (4)(2)随机信号的功率谱 (4)三、实验步骤与分析 (5)3.1实验方案 (5)3.2实验步骤与分析 (5)任务一:(s1 变量)求噪声下正弦信号的振幅和频率 (5)任务二:(s1 变量)求噪声下正弦信号的相位 (8)任务三:(s1 变量)求信号自相关函数和功率谱 (11)任务四:(s变量)求噪声下信号的振幅和频率 (14)任务五:(s变量)求信号的自相关函数和功率谱 (17)3.3实验结果与误差分析 (19)(1)实验结果 (19)(2)结果验证 (19)(3)误差分析 (21)四、实验总结和感悟 (22)1、实验总结 (22)2、实验感悟 (23)五、附低通滤波器的Matlab程序 (23)一、实验要求:(学号末尾3,7)两个数据文件,第一个文件数据中只包含一个正弦波,通过MA TLAB 仿真计算信号频谱和功率谱来估计该信号的幅度,功率,频率和相位?对第二个文件数据估计其中正弦波的幅度,功率和频率?写出报告,包含理论分析,仿真程序及说明,误差精度分析等。
第一文件调用格式load FileDat01_1 s1,数据在变量s1中;第二文件调用格式load FileDat01_2 s ,数据在变量s 中。
二、实验原理:2.1 随机信号的分析方法在信号与系统中,我们把信号分为确知信号和随机信号。
其中随机信号无确定的变化规律,需要用统计特新进行分析。
这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。
随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。
但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。
随机信号实验报告(模板)(1)
随机信号实验报告学院通信工程学院专业信息工程班级 1401051班制作人文杰制作人晓鹏一、 摘要根据实验的要求与具体容,我们组做了一下分工,XXX 完成了本次的第一组实验即基于MATLAB 的信号通过线性系统与非线性系统的特性分析,具体容有(高斯白噪声n ,输入信号x ,通过线性与非线性系统的信号a,b,y1,y2的均值,均方值,方差,自相关函数,概率密度,功率谱密度以及频谱并把它们用波形表示出来),XXX 和XXX 两人合力完成了基于QUARTUS II 的2ASK 信号的产生及测试实验具体容有(XXX 负责M 序列发生器以及分频器,XXX 负责载波的产生以及开关函数和管脚配置),最后的示波器调试以及观察2ASK 信号的FFT 变换波形由我们组所有人一起完成的。
二、实验原理及要求实验一、信号通过线性系统与非线性系统的特性分析1、实验原理① 随机过程的均值(数学期望):均值表示集合平均值或数学期望值。
基于随机过程的各态历经性,可用时间间隔T 的幅值平均值表示,即:均值表达了信号变化的中心趋势,或称之为直流分量。
② 随机过程的均方值:信号x(t)的均方值,或称为平均功率,其表达式为:均方值表达了信号的强度,其正平方根值,又称为有效值,也是信号的平均能量的一种表达。
③ 随机信号的方差: 信号x(t)的方差定义为:描述了信号的静态量,方差反映了信号绕均值的波动程度。
在已知均值和均方值的前提下,方差就很容易求得了。
④随机信号的自相关函数信号的相关性是指客观事物变化量之间的相依关系。
对于平稳随机过程X(t)和Y(t)在两个不同时刻t和t+τ的起伏值的关联程度,可以用相关函数表示。
在离散情况下,信号x(n)和y(n)的相关函数定义为:τ,t=0,1,2,……N-1。
⑤随机过程的频谱:信号频谱分析是采用傅立叶变换将时域信号x(t)从另一个角度来了解信号的特征。
时域信号x(t)的傅氏变换为:⑥随机过程的功率谱密度:随机信号的功率普密度是随机信号的各个样本在单位频带的频谱分量消耗在一欧姆电阻上的平均功率的统计均值,是从频域描述随机信号的平均统计参量,表示X(t)的平均功率在频域上的分布。
随机信号分析实验报告(基于MATLAB语言)
随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。
2.实现随机序列的数字特征估计。
实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。
即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。
定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。
(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。
2011秋随机信号实验报告模板
实验一一、实验目的熟悉并练习使用Matlab 的函数,明确各个函数的功能说明和内部参数的意义二、实验内容和步骤实验代码:A = [1 2 3; 3 3 6; 4 6 8; 4 7 7];rand(3)randn(3)n3 = normrnd([1 2 3;4 5 6],0.1,2,3)mean(A)mean(A,2)var(A)%%%xcorr%%%%%ww = randn(1000,1);[c_ww,lags] = xcorr(ww,10,'coeff');figure(7);stem(lags,c_ww) %%%%%%%%%%%%%%%%%%%%%%%%% %常用的傅立叶变换是找到在嘈杂的域%信号下掩埋了信号的频率成分。
%考虑数据采样在1000赫兹。
现有一信号%由以下部分组成,50赫兹振幅%为0.7的正弦和120赫兹振幅为1的正弦%并且受到一些零均值的随机噪声的污染%%%%%%%%%%%%%%%%%%%%%%%%% Fs = 1000; % 采样频率T = 1/Fs; % 采样时间L = 1000; % 信号长度t = (0:L-1)*T; % 时间矢量% 50赫兹正弦波与120赫兹正弦波的和x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t); y = x + 2*randn(size(t)); % 正弦波加噪声figure(6);plot(Fs*t(1:50),y(1:50)) %画此信号的时域图title('Signal Corrupted with Zero-Mean Random Noise')xlabel('time (milliseconds)')%这在寻找原始信号的频率成分上是很难%确定的。
转换到频域,噪音信号Y%的傅立叶变换采取快速傅立叶变换%(FFT):NFFT = 2^nextpow2(L); %y长度L附近%的幂级数Y = fft(y,NFFT)/L;f = Fs/2*linspace(0,1,NFFT/2+1); % 单边拉普拉斯变换plot(f,2*abs(Y(1:NFFT/2+1))) %画单边频谱图title('Single-Sided Amplitude Spectrum of y(t)')xlabel('Frequency (Hz)')ylabel('|Y(f)|') %%%%%%%%%%%%%%%%%%%%%%%%% mu = [0:0.1:2];[y i] = max(normpdf(1.5,mu,1));MLE = mu(i) %%%%%%%%%%%%%%%%%%%%%%%%% p = normcdf([-1 1]);p(2) - p(1) %%%%%%%%%%%%%%%%%%%%%%%%% x = 0.1:0.1:0.6;y = unifpdf(x) %%%%%%%%%%%%%%%%%%%%%%%%% probability = unifcdf(0.75) %%%%%%%%%%%%%%%%%%%%%%%%% x = 0:0.1:3;p = raylpdf(x,1);figure(5);plot(x,p) %%%%%%%%%%%%%%%%%%%%%%%%% x = 0:0.1:3;p = raylcdf(x,1);figure(4);plot(x,p) %%%%%%%%%%%%%%%%%%%%%%%%% y = exppdf(5,1:5) %%%%%%%%%%%%%%%%%%%%%%%%% mu = 10:10:60;p = expcdf(log(2)*mu,mu) %%%%%%%%%%%%%%%%%%%%%%%%% n = 5;X = pascal(n)R = chol(X)X(n,n) = X(n,n)-1 %%%%%%%%%%%%%%%%%%%%%%%%% x = [randn(30,1); 5+randn(30,1)];[f,xi] = ksdensity(x);figure(3);plot(xi,f); %%%%%%%%%%%%%%%%%%%%%%%%% x = -2.9:0.1:2.9;y = randn(10000,1);hist(y,x) %%%%%%%%%%%%%%%%%%%%%%%%% %求y=x*log(1+x)在[0 1]上的定积分,积分%变量为系统默认syms x;S=x.*log(1+x) Y=int(S,x,0,1) %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%% 2 %%%%%% %%%%%%%%%%%%%%%%%%%%%%%%% %(1)产生数学期望为0,方差为1 的高斯随机变量SIGMA=sqrt(1);n2 = normrnd(0,SIGMA,[2 5]) %两行五列数学期望为0,方差为1 的高斯随机变量%产生数学期望为5,方差为10 的高斯随机变量SIGMA=sqrt(10);n2 = normrnd(5,SIGMA,[2 5])%利用计算机求上述随机变量的100个样本的数学期望和方差n1 = normrnd(0,1,[1 100]);SIGMA=sqrt(10);n2 = normrnd(5,SIGMA,[1 100]);M1 = mean(n1)M2 = mean(n2)V1 = var(n1)V2 = var(n2) %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%% 3 %%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%% %产生自由度为2,数学期望为2,方差为 4 的具有中心2χ分布的随机变量SIGMA=sqrt(2);n1 = normrnd(2,SIGMA);n2 = normrnd(2,SIGMA);y=(n1).^2+(n2).^2%产生自由度为2,数学期望为4,方差为12 的具有中心2χ分布的随机变量SIGMA=sqrt(12);n1 = normrnd(4,SIGMA);n2 = normrnd(4,SIGMA);y=(n1).^2+(n2).^2%利用计算机求上述随机变量的100个样本的数学期望和方差,并与理论值比较SIGMA=sqrt(2);n1 = normrnd(2,SIGMA,[1 100]);n2 = normrnd(2,SIGMA,[1 100]);y=(n1).^2+(n2).^2M1 = mean(y)V1 = var(y)SIGMA=sqrt(12);n1 = normrnd(2,SIGMA,[1 100]);n2 = normrnd(2,SIGMA,[1 100]);y=(n1).^2+(n2).^2M1 = mean(y)V1 = var(y) %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%% 4 %%%%%% %%%%%%%%%%%%%%%%%%%%%%%%% %利用Matlab 现有pdf 和cdf 函数,画出均值为零、方差为4 的%高斯随机变量的概率密度曲线和概率分布曲线x=-10:0.1:10;Y1 = normpdf(x,0,2);Y2=normcdf(x,0,2);figure(1);plot(x,Y1)figure(2);plot(x,Y2) %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%% 5 %%%%%% %%%%%%%%%%%%%%%%%%%%%%%%% %产生长度为1000 数学期望为5,方差为10 的高斯随机序列,%并根据该序列值画出其概率密度曲线。
随机信号处理实验报告
随机信号处理实验报告院系名称学生姓名学号指导教师目录一、实验要求: (3)二、实验原理: (3)2.1 随机信号的分析方法 (3)2.2 随机过程的频谱 (3)2.3 随机过程的相关函数和功率谱 (4)(1)随机信号的相关函数: (4)(2)随机信号的功率谱 (4)三、实验步骤与分析 (5)3.1实验方案 (5)3.2实验步骤与分析 (5)任务一:(s1 变量)求噪声下正弦信号的振幅和频率 (5)任务二:(s1 变量)求噪声下正弦信号的相位 (8)任务三:(s1 变量)求信号自相关函数和功率谱 (11)任务四:(s变量)求噪声下信号的振幅和频率 (14)任务五:(s变量)求信号的自相关函数和功率谱 (17)3.3实验结果与误差分析 (19)(1)实验结果 (19)(2)结果验证 (19)(3)误差分析 (21)四、实验总结和感悟 (22)1、实验总结 (22)2、实验感悟 (23)五、附低通滤波器的Matlab程序 (23)一、实验要求:(学号末尾3,7)两个数据文件,第一个文件数据中只包含一个正弦波,通过MA TLAB 仿真计算信号频谱和功率谱来估计该信号的幅度,功率,频率和相位?对第二个文件数据估计其中正弦波的幅度,功率和频率?写出报告,包含理论分析,仿真程序及说明,误差精度分析等。
第一文件调用格式load FileDat01_1 s1,数据在变量s1中;第二文件调用格式load FileDat01_2 s ,数据在变量s 中。
二、实验原理:2.1 随机信号的分析方法在信号与系统中,我们把信号分为确知信号和随机信号。
其中随机信号无确定的变化规律,需要用统计特新进行分析。
这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。
随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。
但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。
随机信号分析实验报告
随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experimentnumber = 49; %学号49I = 8; %幅值为8u = 1/number;Ex = I*0.5 + (-I)*0.5;N = 64;C0 = 1; %计数p(1) = exp(-u);for m = 2:Nk = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/2220(){()()}(2)!m k m k m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X X C m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。
随机信号分析实验报告
随机信号分析实验报告目录随机信号分析 (1)实验报告 (1)理想白噪声和带限白噪声的产生与测试 (2)一、摘要 (2)二、实验的背景与目的 (2)背景: (2)实验目的: (2)三、实验原理 (3)四、实验的设计与结果 (4)实验设计: (4)实验结果: (5)五、实验结论 (12)六、参考文献 (13)七、附件 (13)1理想白噪声和带限白噪声的产生与测试一、摘要本文通过利用MATLAB软件仿真来对理想白噪声和带限白噪声进行研究。
理想白噪声通过低通滤波器和带通滤波器分别得到低通带限白噪声和帯通带限白噪声。
在仿真的过程中我们利用MATLAB工具箱中自带的一些函数来对理想白噪声和带限白噪声的均值、均方值、方差、功率谱密度、自相关函数、频谱以及概率密度进行研究,对对它们进行比较分析并讨论其物理意义。
关键词:理想白噪声带限白噪声均值均方值方差功率谱密度自相关函数、频谱以及概率密度二、实验的背景与目的背景:在词典中噪声有两种定义:定义1:干扰人们休息、学习和工作的声音,引起人的心理和生理变化。
定义2:不同频率、不同强度无规则地组合在一起的声音。
如电噪声、机械噪声,可引伸为任何不希望有的干扰。
第一种定义是人们在日常生活中可以感知的,从感性上很容易理解。
而第二种定义则相对抽象一些,大部分应用于机械工程当中。
在这一学期的好几门课程中我们都从不同的方面接触到噪声,如何的利用噪声,把噪声的危害减到最小是一个很热门的话题。
为了加深对噪声的认识与了解,为后面的学习与工作做准备,我们对噪声进行了一些研究与测试。
实验目的:了解理想白噪声和带限白噪声的基本概念并能够区分它们,掌握用MATLAB 或c/c++软件仿真和分析理想白噪声和带限白噪声的方法,掌握理想白噪声和带限白噪声的性质。
三、实验原理所谓白噪声是指它的概率统计特性服从某种分布而它的功率谱密度又是均匀的。
确切的说,白噪声只是一种理想化的模型,因为实际的噪声功率谱密度不可能具有无限宽的带宽,否则它的平均功率将是无限大,是物理上不可实现的。
北京理工大学随机信号分析实验报告
北京理工大学随机信号分析实验报告本科实验报告实验名称:随机信号分析实验实验一随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。
2、实现随机序列的数字特征估计。
二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。
实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:)(m od ,110N ky y y n n -=Ny x n n /=序列{}nx 为产生的(0,1)均匀分布随机数。
下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7510≈⨯;2、(IBM 随机数发生器)3116N 2,k 23,==+周期8510≈⨯;3、(ran0)315N 21,k 7,=-=周期9210≈⨯;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。
定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -=由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。
2、MATLAB 中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。
南京理工大学随机信号处理实验报告
题目:雷达线性调频信号的脉冲压缩处理线性调频脉冲信号,时宽10us,带宽40MHz,对该信号进行匹配滤波后,即脉压处理,处理增益为多少,脉压后的脉冲宽度为多少?用图说明脉压后的脉冲宽度,内差点看4dB带宽,以该带宽说明距离分辨率与带宽的对应关系。
1.程序为:T=10e-6;B=112e6;Rmin=8500;Rmax=11500;R=[9000,10000,10020];RCS=[1 1 1 ];C=3e8;K=B/T;Rwid=Rmax-Rmin;Twid=2*Rwid/C;Fs=10*B;Ts=1/Fs;Nwid=ceil(Twid/Ts);t=linspace(2*Rmin/C,2*Rmax/C,Nwid); M=length(R);td=ones(M,1)*t-2*R'/C*ones(1,Nwid);Srt1=RCS*(exp(1i*pi*K*td.^2).*(abs(td)<T/2));Srt=Srt1;Nchirp=ceil(T/Ts);Nfft=2^nextpow2(Nwid+Nwid-1); Srw=fft(Srt,Nfft);Srw1=fft(Srt1,Nfft);t0=linspace(-T/2,T/2,Nchirp);St=exp(1i*pi*K*t0.^2);Sw=fft(St,Nfft);Sot=fftshift(ifft(Srw.*conj(Sw)));Sot1=fftshift(ifft(Srw1.*conj(Sw)));N0=Nfft/2-Nchirp/2;Z=abs(Sot(N0:N0+Nwid-1));Z=Z/max(Z);Z=20*log10(Z+1e-6);figuresubplot(211)plot(t*1e6,real(Srt));axis tight;xlabel('us');ylabel('幅度')title(['线性信号压缩前']);subplot(212)plot(t*C/2,Z)xlabel('Range in meters');ylabel('幅度 ')title(['线性信号压缩后']);选取0.9*10^4HZ 的一个脉冲进行放大分析(调整Y 轴与X 轴的范围)58606264666870727476us幅度线性调频信号压缩前0.850.90.9511.05 1.1 1.15x 104-150-100-5050Range in meters 幅度 线性调频信号压缩后选取主瓣调整:大致可以看出压缩后的带宽为0.1hz理论上分析处理增益为:D=10*10e -6*112*10e6=1120D=112/B1=1120.B1=0.1HZ2.分辩率。
北理工随机信号分析实验报告
本科实验报告实验名称:随机信号分析实验实验一 随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。
2、实现随机序列的数字特征估计。
二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。
实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:)(m od ,110N ky y y n n -=N y x n n /=序列{}n x 为产生的(0,1)均匀分布随机数。
下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7510≈⨯;2、(IBM 随机数发生器)3116N 2,k 23,==+周期8510≈⨯; 3、(ran0)315N 21,k 7,=-=周期9210≈⨯;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。
定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -=由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。
2、MATLAB 中产生随机序列的函数(1)(0,1)均匀分布的随机序列 函数:rand 用法:x = rand(m,n)功能:产生m ×n 的均匀分布随机数矩阵。
(2)正态分布的随机序列 函数:randn 用法:x = randn(m,n)功能:产生m ×n 的标准正态分布随机数矩阵。
随机信号处理实验报告二
实验二 随机信号处理的工程编程实现030841103 钱进红一、实验目的1、熟悉各种随机信号分析及处理方法。
2、掌握运用MATLAB 中的统计工具包和信号处理工具包绘制概率密度的方法 二、实验原理 1平滑滤波平滑滤波可以与中值滤波结合使用,对应的线性平滑器可以仅仅用低阶的低通滤波器(如果采用高阶的系统,则将抹掉信号中应该保存的不连续性)。
2、IIR 数字滤波器设计原理利用双线性变换设计IIR 滤波器(只介绍巴特沃斯数字滤波器的设计),首先要设计出满足指标要求的模拟滤波器的传递函数)(s H a ,然后由)(s H a 通过双线性变换可得所要设计的IIR 滤波器的系统函数)(z H 。
3、协方差设两个随机变量X 和Y ,定义: 为X 和Y 的协方差。
其相关函数为:)()(),cov(Y D X D Y X rxy=由此可见协方差的相关性与X 和Y 是密切相关的,表征两个函数变化的相似性4、互相关互相关函数定义为:如果X (t )与Y (t )是相互独立的,则一定是不相关的。
反之则不一定成立。
它是两个随机过程联合统计特性中重要的数字特征。
5、频率响应反映仪器对频率动态反应的重要参数。
时间序列经过滤波处理后,原来序列中各种频率振动的振幅会受到削弱。
各种频率振动过滤前后振幅之比值称为频率响应。
它反映输出信号随输入信号的频率变化而变化的情况。
6、白噪声的检测与分析白噪声信号是一个均值为零的随机过程,任一时刻是均值为零的随机变量。
而服从高斯分布的白噪声即称为高斯白噪声。
三、实验内容基于matlab 的随机语音信号的平滑滤波、IIR 高通/低通/带通/带阻滤波、概率密度、互相关、最大似然估计、产生白噪声并求其平均功率谱密度及自相关、求混合噪声自相关及平均功率谱密度。
四、实验结果及分析 1.平滑滤波由图知,经过平滑滤波后,原始信号的峰值变化减小了,信号的频谱变得平滑了很多。
说明平滑滤波对信号具有很好的平滑效果。
随机信号模块实验报告(一)
随机信号实验报告(一)学号: 姓名:熟悉Matlab 的随机信号处理相关命令(一)一、实验目的:1、掌握随机信号的简单分析方法。
2、熟悉语音信号的简单变换的分析方法及其编程 。
二、实验原理:1、声音的录入与读取在matlb 中实现对语音信号的读取可以用wavread 函数,如b=wavread('211.wav');括号中为语音信号的存储路径。
还可用sound 函数对录入的声音信号进行发声;用plot 函数把声音信号图谱绘制下来。
这是对声音信号的最基本处理。
2、时域与频域的简单分析语音信号是个随机信号,在matlab 中对随机信号可以有以下分析。
如概率密度分布,如果F X (x,t )对x 的一阶导数存在,则定义xt x F t x f X x ∂∂=),(),( 为随机过程X (t )的一维概率密度。
3、相关性与功率谱自相关估计,同一序列在不同时刻的取值之间的相关程度,自相关函数和功率谱密度函数是一对傅里叶变换。
互相关估计则是两个函数在同一时刻的不同取值之间的相关程度。
互相关函数是两个随机过程联合统计特性中重要的数字特征,它的定义为dxdy t t y x xyft Y t X E t t R xyXY ),,,()]()([),(212121⎰⎰∞∞-∞∞-==在频域要先对信号进行傅里叶变换,然后分析其频谱特性、相位等三、实验内容:对语音信号的读取,此为时域波形这是一个随机信号,横轴为时间t ,范围在0~350000 s 纵轴为声音幅度,范围在-0.25~0.25。
波形是关于x 轴对称的。
此图没有定义范围,是把录入的语音信号全程显示出来。
语音信号的相位分布进行了4096点傅里叶变换,横轴为采样点数,纵轴为信号在此点的相位。
范围集中于-3~3之间。
变换采样点数不一样,波形就会不一样。
概率密度分布直方图信号的概率密度类似正态分布,定义了-3~3之间的概率密度,密度最大在0附近可达450。
3.随机过程的模拟与特征估计-随机信号分析实验报告
3.随机过程的模拟与特征估计-随机信号分析实验报告计算机与信息⼯程学院验证性实验报告⼀、实验⽬的1、了解随机过程特征估计的基本概念和⽅法2、学会运⽤MATLAB 软件产⽣各种随机过程3、学会对随机过程的特征进⾏估计4、通过实验了解不同估计⽅法所估计出来的结果之间的差异⼆、实验仪器或设备1、⼀台计算机2、MATLAB r2013a三、实验原理1、⾼斯⽩噪声的产⽣:利⽤MATLAB 函数randn 产⽣2、⾃相关函数的估计:MATLAB ⾃带的函数:xcorr||11?()()()||N m xn R m x n m x n N m --==+-∑ (3.1) 3、功率谱的估计:MATLAB ⾃带的函数为pyulear先估计⾃相关函数?()xR m ,再利⽤维纳-⾟钦定理,功率谱为⾃相关函数的傅⽴叶变换:1(1)()()N jm x x m N G R m e ωω+-=--=∑(3.2)4、均值的估计:MATLAB ⾃带的函数为mean111()N x n mx n N-==∑ (3.3)5、⽅差的估计:MATLAB ⾃带的函数为var12211??[()]N xxn x n mNσ-==-∑ (3.4)6、AR(1)模型的理论⾃相关函数和理论功率谱对于AR(1)模型()(1)()X n aX n W n =-+ (3.5)⾃相关函数22()1mX a R m aσ=-,0m ≥ (3.6)功率谱为22()(1)X j G aeωσω-=- (3.7)四、实验内容(1)按如下模型产⽣⼀组随机序列()(1)()x n ax n w n =-+,其中()w n 为均值为1,⽅差为4的正态分布⽩噪声序列。
1、产⽣并画出a=0.8和a=0.2的x(n)的波形;2、估计x(n)的均值和⽅差;3、估计x(n)的⾃相关函数。
(2)设有AR(1)模型,()0.8(1)()X n X n W n =--+,1、W(n)是零均值正态⽩噪声,⽅差为4。
随机信号分析实验报告范文
随机信号分析实验报告范文HaarrbbiinnIInnttiittuutteeooffTTeecchhnnoollooggyy实验报告告课程名称:院系:电子与信息工程学院班级:姓名:学号:指导教师:实验时间:实验一、各种分布随机数得产生(一)实验原理1、、均匀分布随机数得产生原理产生伪随机数得一种实用方法就是同余法,它利用同余运算递推产生伪随机数序列.最简单得方法就是加同余法为了保证产生得伪随机数能在[0,1]内均匀分布,需要M为正整数,此外常数c与初值y0亦为正整数。
加同余法虽然简单,但产生得伪随机数效果不好。
另一种同余法为乘同余法,它需要两次乘法才能产生一个[0,1]上均匀分布得随机数ﻩﻩﻩ式中,a为正整数。
用加法与乘法完成递推运算得称为混合同余法,即ﻩﻩﻩ用混合同余法产生得伪随机数具有较好得特性,一些程序库中都有成熟得程序供选择。
常用得计算语言如Baic、C与Matlab都有产生均匀分布随机数得函数可以调用,只就是用各种编程语言对应得函数产生得均匀分布随机数得范围不同,有得函数可能还需要提供种子或初始化。
Matlab提供得函数rand()可以产生一个在[0,1]区间分布得随机数,rand(2,4)则可以产生一个在[0,1]区间分布得随机数矩阵,矩阵为2行4列。
Matlab提供得另一个产生随机数得函数就是random(’unif’,a,b,N,M),unif表示均匀分布,a与b就是均匀分布区间得上下界,N与M分别就是矩阵得行与列。
2、、随机变量得仿真根据随机变量函数变换得原理,如果能将两个分布之间得函数关系用显式表达,那么就可以利用一种分布得随机变量通过变换得到另一种分布得随机变量。
若X就是分布函数为F(某)得随机变量,且分布函数F(某)为严格单调升函数,令Y=F(某),则Y必为在[0,1]上均匀分布得随机变量.反之,若Y就是在[0,1]上均匀分布得随机变量,那么即就是分布函数为F某(某)得随机变量。
随机信号分析报告实验:随机过程通过线性系统地分析报告
实验三 随机过程通过线性系统的分析实验目的1. 理解和分析白噪声通过线性系统后输出的特性。
2. 学习和掌握随机过程通过线性系统后的特性,验证随机过程的正态化问题。
实验原理1.白噪声通过线性系统设连续线性系统的传递函数为)(ωH 或)(s H ,输入白噪声的功率谱密度为2)(0N S X =ω,那么系统输出的功率谱密度为2)()(02N H S Y ⋅=ωω (3.1) 输出自相关函数为⎰∞∞-=ωωπτωτd e H N R j Y 20)(4)( (3.2)输出相关系数为)0()()(Y Y Y R R ττγ=(3.3) 输出相关时间为⎰∞=00)(ττγτd Y (3.4)输出平均功率为[]⎰∞=202)(2)(ωωπd H N t Y E (3.5)上述式子表明,若输入端是具有均匀谱的白噪声,则输出端随机信号的功率谱主要由系统的幅频特性)(ωH 决定,不再是常数。
2.等效噪声带宽在实际中,常常用一个理想系统等效代替实际系统的)(ωH ,因此引入了等效噪声带宽的概念,他被定义为理想系统的带宽。
等效的原则是,理想系统与实际系统在同一白噪声的激励下,两个系统的输出平均功率相等,理想系统的增益等于实际系统的最大增益。
实际系统的等效噪声带宽为⎰∞=∆022max)()(1ωωωωd H H e (3.6)或⎰∞∞--=∆j j e ds s H s H H j )()()(212maxωω (3.7)3.线性系统输出端随机过程的概率分布 (1)正态随机过程通过线性系统若线性系统输入为正态过程,则该系统输出仍为正态过程。
(2)随机过程的正态化随机过程的正态化指的是,非正态随机过程通过线性系统后变换为正态过程。
任意分布的白噪声通过线性系统后输出是服从正态分布的;宽带噪声通过窄带系统,输出近似服从正态分布。
实验内容设白噪声通过图3.1所示的RC 电路,分析输出的统计特性。
图3.1 RC 电路(1)试推导系统输出的功率谱密度、相关函数、相关时间和系统的等效噪声带宽。
随机信号分析与处理实验报告
随机信号分析与处理实验题目:对音频信号的随机处理班级:0312412姓名:肖文洲学号:031241217指导老师:钱楷时间:2014年11月25日实验目的:1、学会利用MATLAB模拟产生各类随机序列。
2、熟悉和掌握随机信号数字特征估计的基本方法。
3、熟悉掌握MATLAB的函数及函数调用、使用方法。
4、学会在MATLAB中创建GUI文件。
实验内容:1、选用任意一个音频信号作为实验对象,进行各种操作并画出信号和波形。
2、操作类型:(1)、概率密度;(2)、希尔伯特变换;(3)、误差函数;(4)、randn;(5)、原始信号频谱;(6)、axis;(7)、原始信号;(8)、normpdf;(9)、unifpdf;(10)、unifcdf;(11)、raylpdf;(12)、raylcdf;(13)、exppdf;(14)、截取声音信号的频谱;(15)、expcdf;(16)、periodogram;(17)、weibrnd;(18)、rand;(19)、自相关函数;(20)、截取信号的均方值。
实验步骤:1、打开MATLAB软件,然后输入guide创建一个GUI文件。
2、在已经创建好的GUI文件里面穿件所需要的.fig面板(以学号姓名格式命名)。
入下图所示:图为已经创建好的.fig面板3、右击“概率密度”,查看回调,然后点击“callback”.在相应的位置输入程序。
然后点击运行,出现下图:4、依次对后续操作方式进行类似的操作。
5、当完成所有按键的“callback”后,出现的均为上图。
实验程序:function varargout = xiaowenzhou(varargin)% XIAOWENZHOU M-file for xiaowenzhou.fig% XIAOWENZHOU, by itself, creates a new XIAOWENZHOU or raises the existing% singleton*.%% H = XIAOWENZHOU returns the handle to a new XIAOWENZHOU or the handle to% the existing singleton*.%% XIAOWENZHOU('CALLBACK',hObject,eventData,handles,...) calls the local% function named CALLBACK in XIAOWENZHOU.M with the given input arguments.%% XIAOWENZHOU('Property','Value',...) creates a new XIAOWENZHOU or raises the% existing singleton*. Starting from the left, property value pairs are% applied to the GUI before xiaowenzhou_OpeningFunction gets called. An% unrecognized property name or invalid value makes property application% stop. All inputs are passed to xiaowenzhou_OpeningFcn via varargin.%% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one% instance to run (singleton)".%% See also: GUIDE, GUIDATA, GUIHANDLES% Edit the above text to modify the response to help xiaowenzhou% Last Modified by GUIDE v2.5 02-Dec-2014 23:14:41% Begin initialization code - DO NOT EDITgui_Singleton = 1;gui_State = struct('gui_Name', mfilename, ...'gui_Singleton', gui_Singleton, ...'gui_OpeningFcn', @xiaowenzhou_OpeningFcn, ...'gui_OutputFcn', @xiaowenzhou_OutputFcn, ...'gui_LayoutFcn', [] , ...'gui_Callback', []);if nargin && ischar(varargin{1})gui_State.gui_Callback = str2func(varargin{1});endif nargout[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});elsegui_mainfcn(gui_State, varargin{:});end% End initialization code - DO NOT EDIT% --- Executes just before xiaowenzhou is made visible.function xiaowenzhou_OpeningFcn(hObject, eventdata, handles, varargin)% This function has no output args, see OutputFcn.% hObject handle to figure% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% varargin command line arguments to xiaowenzhou (see VARARGIN)% Choose default command line output for xiaowenzhouhandles.output = hObject;% Update handles structureguidata(hObject, handles);% UIWAIT makes xiaowenzhou wait for user response (see UIRESUME)% uiwait(handles.figure1);% --- Outputs from this function are returned to the command line. function varargout = xiaowenzhou_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT);% hObject handle to figure% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Get default command line output from handles structurevarargout{1} = handles.output;% --- Executes on button press in pushbutton1.function pushbutton1_Callback(hObject, eventdata, handles)[y,Fs,bits]=wavread('Íõ·Æ.wav');y=y(1:5000);N=length(y);i=1:N;[f,i]=ksdensity(y);plot(i,f);grid;xlabel('x');ylabel('f(x)');axis();title('¸ÅÂÊÃܶÈ');% hObject handle to pushbutton1 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton2.function pushbutton2_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=x(20000:40000);y=hilbert(x);y=real(y);plot(x);% hObject handle to pushbutton2 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton3.function pushbutton3_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=randn(500,1);plot(x);% hObject handle to pushbutton3 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton4.function pushbutton4_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');y=erf(x);plot(y);% hObject handle to pushbutton4 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton5.function pushbutton5_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');plot(x);axis([0 5000 -0.01 0.01]);% hObject handle to pushbutton5 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton6.x=wavread('Íõ·Æ.wav');x=x(20000:40000);plot(x);% hObject handle to pushbutton6 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton7.function pushbutton7_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=-6:0.01:7;y=normpdf(x,1,2);plot(y);% hObject handle to pushbutton7 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton8.function pushbutton8_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.1:5;y=unifpdf(x,1,30);plot(y);% hObject handle to pushbutton8 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton9.function pushbutton9_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.1:5;y=unifcdf(x,1,5);plot(y);% hObject handle to pushbutton9 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton10.x=wavread('Íõ·Æ.wav');x=0:0.1:3;y=raylpdf(x,2);plot(y);% hObject handle to pushbutton10 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton11.function pushbutton11_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.1:3;y=raylcdf(x,10);plot(y);% hObject handle to pushbutton11 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton12.function pushbutton12_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.01:5;y=exppdf(x,1);plot(y);% hObject handle to pushbutton12 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton13.function pushbutton13_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.01:5;y=expcdf(x,1);plot(y);% hObject handle to pushbutton13 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton14.[y,Fs,bits]=wavread('Íõ·Æ.wav');y1=y(1:1000);t=0:1/Fs:1;y1=periodogram(y1,[],1000,Fs);plot(y1);% hObject handle to pushbutton14 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton15.function pushbutton15_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.01:5;x=weibrnd(1,1.5,100,1);plot(x);% hObject handle to pushbutton15 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton16.function pushbutton16_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=rand(200,1);plot(x);% hObject handle to pushbutton16 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton17.function pushbutton17_Callback(hObject, eventdata, handles)[x,Fs,bits]=wavread ('Íõ·Æ.wav');x=x (:,1);X=fft (x,4096);magX=abs (X);angX=angle (X);plot (X); title ('Ô-ʼÐźÅƵÆ×');% hObject handle to pushbutton17 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton18.function pushbutton18_Callback(hObject, eventdata, handles)[y,Fs,bits]=wavread('Íõ·Æ.wav');y=y(500:1000);h=[ones(1,20) zeros(1,20)];y2=conv(h,y);stem(y2,'.');grid;title('½ØÈ¡ÉùÒôÐźŵľí»ý');% hObject handle to pushbutton18 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton19.function pushbutton19_Callback(hObject, eventdata, handles)[y,Fs,bits]=wavread('Íõ·Æ.wav');y=y(1:5000);R=xcorr(y);plot(R);grid;title('×ÔÏà¹Øº¯Êý');% hObject handle to pushbutton19 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton20.function pushbutton20_Callback(hObject, eventdata, handles)[y,Fs,bits]=wavread('Íõ·Æ.wav');y=y(1:1000);n=length(y);x=randn(50,n);square=zeros(1,50);for i=1:50for j=1:1000square(i)=square(i)+x(i,j).^2;endsquare(i)=square(i)/1000;endRMS=sum(square)/30;plot(square);grid;title('½ØÈ¡ÉùÒôÐźŵľù·½Öµ');% hObject handle to pushbutton20 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% --- Executes during object creation, after setting all properties. function pushbutton1_CreateFcn(hObject, eventdata, handles)% hObject handle to pushbutton1 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles empty - handles not created until after all CreateFcns called 实验结果:(1)概率密度(2)希尔伯特变换(3)randn(4)误差函数(5)axis(6)原始信号(7)normpdfd(8)unifpdf(9)unifcdf(10)raylpdf(11)raylcdf(12)exppdf(13)截取声音信号的卷积(14)expcdf(15)periodogram(16)weibrnd(17)rand(18)原始信号频谱(19)自相关函数(20)截取信号的均方值实验总结:随机信号分析与处理是研究随机信号的特点及其处理方法的专业基础课,是目标检测、估计、滤波等信号处理理论的基础。
随机信号分析报告实验:随机过程的模拟与数字特征
实验二 随机过程的模拟与数字特征实验目的1. 学习利用MATLAB 模拟产生随机过程的方法。
2. 熟悉和掌握特征估计的基本方法及其MATLAB 实现。
实验原理1.正态分布白噪声序列的产生MATLAB 提供了许多产生各种分布白噪声序列的函数,其中产生正态分布白噪声序列的函数为randn 。
函数:randn用法:x = randn(m,n)功能:产生m ×n 的标准正态分布随机数矩阵。
如果要产生服从),(2σμN 分布的随机序列,则可以由标准正态随机序列产生。
如果)1,0(~N X ,则),(~σμσμN X +。
2.相关函数估计MATLAB 提供了函数xcorr 用于自相关函数的估计。
函数:xcorr用法:c = xcorr(x,y)c = xcorr(x)c = xcorr(x,y,'opition') c = xcorr(x,'opition')功能:xcorr(x,y)计算)(n X 与)(n Y 的互相关,xcorr(x)计算)(n X 的自相关。
option 选项可以设定为: 'biased' 有偏估计。
'unbiased' 无偏估计。
'coeff' m = 0时的相关函数值归一化为1。
'none' 不做归一化处理。
3.功率谱估计对于平稳随机序列)(n X ,如果它的相关函数满足∞<∑+∞-∞=m Xm R)( (2.1)那么它的功率谱定义为自相关函数)(m R X 的傅里叶变换:∑+∞-∞=-=m jm XX e m RS ωω)()( (2.2)功率谱表示随机信号频域的统计特性,有着重要的物理意义。
我们实际所能得到的随机信号的长度总是有限的,用有限长度的信号所得的功率谱只是真实功率谱的估计,称为谱估计或谱分析。
功率谱估计的方法有很多种,这里我们介绍基于傅里叶分析的两种通用谱估计方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机信号分析与处理实验报告院系:信息工程学院专业:电子信息科学与技术姓名: 方静学号:030941209指导老师:廖红华实验一 熟悉MATLAB 的随机信号处理相关命令一、实验目的1、利用Matlab 对随机熟悉各种随机信号函数的用法2、掌握随机信号的简单分析方法 二、实验原理 1、语音的录入与打开在MATLAB 中,wavread 函数用于读取语音信号,采样值放在向量y 中,sf 表示采样频率(Hz),bits 表示采样位数。
[N1 N2]表示读取从N1点到N2点的值。
2、语音信号的频域分析FFT 即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。
在Matlab 信号处理工具箱中,语音信号的频域分析就是对信号进行傅里叶变换后的分析。
4、方差定义22)]}()({[t t m t X E X X -=)(δ为随机过程的方差。
方差通常也记为DX (t ) ,随机过程的方差也是时间 t 的函数, 由方差的定义可以看出,方差是非负函数。
5、自相关与互相关自相关和互相关分别表示的是两个时间序列之间和同一个时间序列在任意两个不同时刻的取值之间的相关程度,即互相关函数是描述随机信号x(t),y(t)在任意两个不同时刻t1,t2的取值之间的相关程度,自相关函数是描述随机信号x(t)在任意两个不同时刻t1,t2的取值之间的相关程度。
互相关函数给出了在频域内两个信号是否相关的一个判断指标,把两测点之间信号的互谱与各自的自谱联系了起来。
它能用来确定输出信号有多大程度来自输入信号,对修正测量中接入噪声源而产生的误差非常有效.事实上,在图象处理中,自相关和互相关函数的定义如下:设原函数是f(t),则自相关函数定义为R(u)=f(t)*f(-t),其中*表示卷积;设两个函数分别是f(t)和g(t),则互相关函数定义为R(u)=f(t)*g(-t),它反映的是两个函数在不同的相对位置上互相匹配的程度。
6. 短时过零率与短时能量语音一般分为无声段,清音段和浊音段。
由于语音信号是一个非平稳过程,不能用处理平稳信号的信号处理技术对其进行分析处理。
但由于语音信号本身的特点,在10-30ms 的短时间范围内,其特性可以看作是一个准稳态过程,具有短时性,因此采用短时能量和过零率来对语音进行端点检测是可行的。
信号的短时能量定义为:设语音波形时域信号为x(t),加窗分帧处理后得到第n 帧语音信号为xn(m),则定义的短时能量函数如下:)()()(x m n x m w m n +=,10-≤≤N m ,,0)(),1(~0,1)(=-==n w N m m wm 为其他值,其中n=0,1T,2T……并且N 为帧长,T 为帧移长度。
短时过零率表示一帧语音中语音信号的波形穿过横轴的零电平的次数,他可以用来区分清音和浊音,因为语音信号中高音段有高的过零率,低音段有低的过零率,短时能量大的地方过零率小,短时能量小的地方过零率大。
过零率可以反映信号的频谱特性。
当离散时间信号相邻两个样点的正负号相异时,我们称之为“过零”,即此时信号的时间波形穿过了零电平的横轴。
统计单位时间内样点值改变符号的次数具可以得到平均过零率。
定义短时平均过零率:sgn[[]sgn[(1)]()n m Z x m xm w nm ∞=-∞=---∑其中[]sgn 为符号函数,{1,()01,()0sgn ()x n x n x n ≥-=,在矩形窗条件下,可以简化为11sgn[()sgn[(1)]2nn m n N Z x m x m N=-+=--∑短时平均过零率的应用:1)区别清音和浊音。
例如,清音的过零率高,浊音的过零率低。
此外,清音和浊音的两种过零分布都与高斯分布曲线比较吻合。
2)从背景噪声中找出语音信号。
语音处理领域中的一个基本问题是,如何将一串连续的语音信号进行适当的分割,以确定每个单词语音的信号,亦即找出每个单词的开始和终止位置。
3)在孤立词的语音识别中,可利用能量和过零作为有话无话的鉴别。
7 .倒谱分析语音信号的倒谱是对语音信号的短时振幅谱的对数傅里叶反变换,它具有近似地分离并提取出红色包络信息和细微结构信息的特点。
实验分析: 1. 原始信号在分析过程中,语音信号有一段干扰,取中间一段有用信号:2. 原始信号的频域分析:频域相角:频域幅值:语音信号的频域分析就是对语音信号波形进行傅里叶变换得到其在频域内的幅值和相角。
从原始信号的频率幅值图中可以看出,在[0,15]和[90,100]两个区间内,信号频率幅值比较大,而在其他区间内,信号频率幅值变化较小。
高斯白噪声加噪在信号处理中经常需要把噪声叠加到信号上去在MATLAB中可以用randn产生均值为0方差为1的正态分布白噪声,本例中采用高斯白噪声加噪,则加噪前信号的波形和加噪后信号的波形进行比较如图所示:在加噪采样点为15点后,语音信号加噪后在频率,相角上都有所改变,在周期点上幅值都有所改变。
4,加噪信号的分析:加噪后信号的幅值和频率的变化如图所示:语音信号加噪后信号的幅值和相位在一定程度上都有所改变,幅值的大小与所取的点有关,所取的点数越多,幅值就不一样。
5.自相关函数:自相关函数是描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。
从图中可以看出自相关函数在时间上具有相互对称性,输入信号和输出信号有好的相关性。
6.互相关函数:他表示同一个时间序列在任意两个不同时刻的取值之间的相关程度,互相关函数是描述随机信号x(t),y(t)在任意两个不同时刻t1,t2的取值之间的相关程度;互相关函数给出了在频域内两个信号是否相关的一个判断指标,把两测点之间信号的互谱与各自的自谱联系了起来。
它能用来确定输出信号有多大程度来自输入信号,对修正测量中接入噪声源而产生的误差非常有效。
7.方差:也叫做自协方差函数,指的是在空间随机场Z(x)中,点x和x+h处两个随机变量z(x)和在z(x+h)的二阶混合中心距。
如图所示:由图可知在一定频率范围内,信号是对称的。
实验过程中取点数越大时,得到的方差曲线越平滑,越接近于一个常数。
而且无论每次取的点数为多少,方差都是基本上为正数。
8.语音信号的短时能量;下图给出了矩形窗和hamming窗长的短时能量函数,我们发现:在用短时能量反映语音信号的幅度变化时,不同的窗函数以及相应的窗的长短均有影响。
hamming窗的效果比矩形窗略好。
但是,窗的长短影响起决定性作用。
窗过大(N 很大),等效于很窄的低通滤波器,不能反映幅度En的变化;窗过小(N 很小),短时能量随时间急剧变化,不能得到平滑的能量函数。
在11.025kHz左右的采样频率下,N 选为100~200比较合适。
效果如下图所示:N=100时N=32时9.短时平均过零率:短时过零率可以粗略估计语音的频谱特性。
由语音的产生模型可知,发浊音时,声带振动,尽管声道有多个共振峰,但由于声门波引起了频谱的高频衰落,因此浊音能量集中于3KZ以下。
而清音由于声带不振动,声道的某些部位阻塞气流产生类白噪声,多数能量集中在较高频率上。
高频率对应着高过零率,低频率对应着低过零率,那么过零率与语音的清浊音就存在着对应关系。
上图为某一语音在矩形窗条件下求得的短时能量和短时平均过零率。
分析可知:清音的短时能量较低,过零率高,浊音的短时能量较高,过零率低。
清音的过零率为0.5左右,浊音的过零率为0.1左右,两者分布之间有相互交叠的区域,所以单纯依赖于平均过零率来准确判断清浊音是不可能的,在实际应用中往往是采用语音的多个特征参数进行综合判决。
10.复倒谱和倒谱加矩形窗时的倒谱和复倒谱:加汉明窗时的倒谱和副倒谱:从图中可以看出,在150Hz处,语音信号的倒谱和复倒谱存在一个峰值,由浊音信号的倒谱中存在着峰值,它的出现位置等于该语音段的基音周期,而清音的倒谱中则不存在峰值,可以得出:我的语音信号是浊音,且语音段的基音周期为150Hz。
还可以看出语音信号的倒谱在150Hz处对称,说明倒谱具有对称性。
还可以看出,加矩形窗的倒谱和复倒谱的能量变化趋势比加汉明窗的倒谱和复倒谱的能量变化趋势要明显些,也就是加汉明窗的倒谱和复倒谱波形要平滑些,这说明:加矩形窗更能表示其真实波形。
四、实验心得:本次试验分析了语音信号的在频域以及在时域的一些特性,通过分析语音信号的数字特征以及对语音信号的处理与分析,对语音信号在工程上的应用实现有了一些初步认识,在实验过程中,对随机信号分析的一些函数了解得更加深刻,此次实验有非常好的实际操作性,它让我在做的过程中对随机信号的一些处理方法有了深一步的认识。
实验二 随机信号处理的工程编程实现一、实验目的1、掌握各种滤波器的设计方法和运用以及中值滤波和平滑滤波的用途。
2、掌握运用MATLAB 中的统计工具包和信号处理工具包绘制概率密度的方法 一:实验原理:1. 希尔伯特变换及性质在数学与信号处理的领域中,一个实数值函数)(t s 的希尔伯特转换(Hilbert transform)在此标示H ——是将信号)(t s 与)/(1t π做卷积,以得到)(^t s 。
因此,希尔伯特转换结果)(^t s 可以被解读为输入是)(t s 的线性非时变系统(linear time invariant system)的输出,而此一系统的脉冲响应)/(1t π。
2. 均值随机变量X 的均值也称为数学期望,它定义为dxx xf X E ⎰+∞∞-=)()(。
对于离散型随机变量,假定随机变量X 有N 个可能取值,各个取值的概率为)(i i x X p p == 则均值定义为iNi i p x X E ∑==1)(上式表明,离散型随机变量的均值等于随机变量的取值乘以取值的概率之和,如果取值是等概率的,那么均值就是取值的算术平均值,如果取值不是等概率的,那么均值就是概率加权和,所以,均值也称为统计平均值。
3. .功率谱估计随机信号的功率谱密度用来描述信号的能量特征随频率的变化关系。
功率谱密度简称为功率谱,是自相关函数的傅里叶变换。
对功率谱密度的估计又称功率谱估计。
平稳随机信号x(t)的(自)功率谱Sxx(ω)定义为式中rxx(τ)为平稳随机信号的自相关函数。
对于离散情况,功率谱表示为式中T为离散随机信号的抽样间隔时间。
当利用随机信号的 N 个抽样值来计算其自相关估值时,即可得到功率谱估计为可见,随机信号的功率谱与自相关函数互为傅里叶变换的关系,这两个函数分别从频率域和时间域来表征随机信号的基本特征。
按上式计算功率谱估值,其运算量往往很大,通常采用快速傅里叶变换算法,以减少运算次数。
计算信号功率谱的方法可以分为两类:一为线性估计方法,有自相关估计、自协方差法及周期图法等。