1302芯片
ds1302时钟芯片介绍
ds1302时钟芯片介绍
DS1302是由美国公司Maxim Integrated(原先Dallas Semiconductor)生产的一种时钟芯片。
它是用于计时和日期记录的低功耗时钟芯片,可以广泛应用于计算机、家用电器、电子设备和工业控制等领域。
DS1302采用SPI接口与微控制器进行通信,采用电池供电,具有低功耗特性。
它内部包含了时钟计数器、时钟发生器、RAM和控制逻辑等核心部件。
DS1302具有精确的时钟计数器,可以提供准确的时间和日期记录。
它采用32.768kHz的晶体振荡器作为时钟源,可以提供精确至秒级别的计时功能。
同时,它还具有256字节的RAM 用于存储用户数据和设置参数。
DS1302支持BCD码和二进制码两种时间格式,并可以进行自动切换。
除此之外,它还具有闹钟功能,可以设置多个闹钟,同时支持中断输出,可通过外部中断引脚触发。
DS1302有一套完善的控制指令集,通过SPI接口与微控制器进行通信。
微控制器可以通过发送指令来读取和写入时钟和RAM中的数据。
此外,它还具有写保护功能,可以设置只读或只写模式,保护计时和日期数据的安全性。
DS1302具有多种封装形式,如DIP、SOIC和TSSOP等,方便不同应用场景的安装和布局。
此外,它还具有宽工作温度范围和抗辐射等特性,适应各种恶劣环境下的工作。
总结起来,DS1302是一种集计时、日期记录和闹钟功能于一体的低功耗时钟芯片。
它准确可靠、功能丰富、易于使用,可广泛应用于各种电子设备和工业控制系统中。
DS1302中文手册
DS1302中文手册DS1302 是一款高性能、低功耗的实时时钟芯片,被广泛应用于各种需要准确计时的电子设备中。
一、DS1302 的基本特性1、实时时钟功能能够精确记录年、月、日、时、分、秒等时间信息。
2、低功耗设计在电池供电的情况下,仍能保持长时间的计时准确性。
3、数据存储具备 31 字节的非易失性静态 RAM,可用于存储一些关键数据。
4、简单的接口通过串行接口与微控制器进行通信,易于集成到系统中。
二、DS1302 的引脚功能1、 Vcc1 和 Vcc2Vcc1 是主电源引脚,Vcc2 是备用电源引脚。
当主电源正常供电时,芯片使用 Vcc1 供电;当主电源断电时,自动切换到 Vcc2(通常为电池)以保持时钟运行。
2、 GND接地引脚。
3、 CLK时钟输入引脚,用于同步数据传输。
4、 I/O数据输入/输出引脚。
5、 RST复位引脚,高电平有效。
三、DS1302 的通信协议DS1302 采用串行通信方式,通信数据以字节为单位进行传输。
1、起始位在每个字节传输开始时,RST 引脚被置为高电平,启动通信过程。
2、控制字节首先发送一个控制字节,用于指定后续操作是读操作还是写操作,以及要操作的寄存器地址。
3、数据字节根据控制字节的指示,接着传输数据字节。
4、停止位在传输完一个字节的数据后,将 RST 引脚置为低电平,结束本次通信。
四、DS1302 的寄存器1、时钟/日历寄存器包括年、月、日、时、分、秒等寄存器,用于存储时间信息。
2、控制寄存器用于设置时钟的工作模式,如是否开启振荡器、是否进行写保护等。
3、充电寄存器用于控制备用电源的充电特性。
4、 31 字节的 RAM 寄存器用于用户自定义数据存储。
五、DS1302 的初始化与设置在使用 DS1302 之前,需要进行初始化设置,包括设置初始时间、开启振荡器、关闭写保护等操作。
1、写入初始时间通过串行通信将准确的初始时间写入到相应的时钟/日历寄存器中。
2、开启振荡器将控制寄存器的相应位设置为 1,使振荡器开始工作。
旌芯半导体科技(上海)有限公司 GN1302涓流充电计时芯片产品说明书
电源地 输入。CE信号在读写时必须保持高电平,此管脚内部有一个40kΩ (典型值) 的下拉电阻连接到地。 输入/推挽输出。I/O 管脚是三线接口的双向数据管脚,此管脚内部有一个 40kΩ (典型值)的下拉电阻连接到地。 输入。SCLK 用来同步串行接口上的数据动作,此管脚内部有一个40kΩ (典 型值)的下拉电阻连接到地。 低功率工作在单电源和电池工作系统和低功率备用电池,在使用涓流充电 的系统中,这个管脚连接到可再充能量源。 UL认证在使用锂电池时确保避 免反向充电电流。
RAM
静态RAM在RAM地址空间内是以 31 x 8字节连续编址的。
贸试验区层 话34125778
旌芯半导体科技(上海)有限公司
GN1302
RAM脉冲串模式
RAM 命令字节定义了脉冲串模式操作,此模式下,31 RAM寄存器可以从地址0的位0开始连续读写(见表3)。
寄存器摘要
表3显示了寄存器数据格式摘要。
晶振选择
一个 32.768kHz 晶振可以通过管脚2和3(X1,X2)直接连接到GN1302。为提高走时精确度,需在晶振 端外置一组10pF-33pF负载补偿电容,具体容值由应用布局及晶振决定。
图4 数据传输摘要
表3 寄存器地址/定义 RTC
贸试验区层 话34125778
时钟脉冲串 RAM
旌芯半导体科技(上海)有限公司
图3 地址/命令字
贸试验区层 话34125778
旌芯半导体科技(上海)有限公司
GN1302
ds1302的工作原理
ds1302的工作原理
DS1302是一款实时时钟芯片,它的工作原理基于振荡器和分频器的结合。
DS1302内置有一个32.768kHz的振荡器,它通过晶体的振荡来提供一个稳定的频率信号。
该频率信号被分频器分频为1Hz 的时间基准脉冲。
在工作时,DS1302通过上电复位电路初始化其内部寄存器。
然后,DS1302使用锁存器将振荡器输出的1Hz脉冲锁存到内部计数寄存器中。
计数寄存器以BCD(二进制编码十进制)的形式存储当前时间,包括年、月、日、小时、分钟和秒。
DS1302还具有一个写保护功能,可通过设置相应的控制寄存器位来使其处于只读模式,防止误操作或恶意更改。
为了确保数据的可靠性,DS1302将计数寄存器中的数据存储在内部的SRAM(静态随机存取存储器)中,并在断电时自动切换到备用电池供电模式,以保持数据的持久存储。
当外部电源重新接入时,DS1302会从SRAM中恢复数据,并通过锁存器将其重新加载到计数寄存器中。
除了主要的时钟功能外,DS1302还提供了定时器功能,可以设置定时器的触发时间和触发动作。
总的来说,DS1302的工作原理是通过内置的振荡器和分频器产生稳定的时钟脉冲,将时间数据以BCD格式存储在计数寄
存器中,并通过写保护和备用电池供电功能确保数据的可靠性和持久性。
时钟芯片DS1302中文资料
时钟芯片DS1302中文资料概述DS1302 是DALLAS 公司推出的涓流充电时钟芯片,内含有一个实时时钟/日历和31 字节静态RAM,通过简单的串行接口与单片机进行通信实时时钟/日历电路.提供秒分时日日期.月年的信息,每月的天数和闰年的天数可自动调整时钟操作可通过AM/PM 指示决定采用24 或12 小时格式.DS1302 与单片机之间能简单地采用同步串行的方式进行通信,仅需用到三个口线:1 RES 复位,2 I/O 数据线,3 SCLK串行时钟.时钟/RAM 的读/写数据以一个字节或多达31 个字节的字符组方式通信.DS1302 工作时功耗很低,保持数据和时钟信息时功率小于1mW.DS1302 是由DS1202 改进而来,增加了以下的特性.双电源管脚用于主电源和备份电源供应Vcc1,为可编程涓流充电电源附加七个字节存储器.它广泛应用于电话传真便携式仪器以及电池供电的仪器仪表等产品领域.下面将主要的性能指标作一综合:实时时钟具有能计算2100 年之前的秒分时日日期星期月年的能力还有闰年调整的能力;31 8 位暂存数据存储RAM;串行I/O 口方式使得管脚数量最少;宽范围工作电压2.0 5.5V;工作电流2.0V 时,小于300nA;读/写时钟或RAM 数据时有两种传送方式单字节传送和多字节传送字符组方式;8 脚DIP 封装或可选的8 脚SOIC 封装根据表面装配;简单3 线接口;与TTL 兼容Vcc=5V;可选工业级温度范围-40 +85;与DS1202 兼容;在DS1202 基础上增加的特性;对Vcc1 有可选的涓流充电能力;双电源管用于主电源和备份电源供应;备份电源管脚可由电池或大容量电容输入;附加的7 字节暂存存储器;1 DS1302 的基本组成和工作原理DS1302 的引脚功能排列及描述如下图所示.ds1302引脚图管脚描述X1 X2 32.768KHz 晶振管脚GND 地RST 复位脚I/O 数据输入/输出引脚SCLK 串行时钟Vcc1,Vcc2 电源供电管脚DS1302 串行时钟芯片8 脚DIPDS1302S 串行时钟芯片8 脚SOIC 200milDS1302Z 串行时钟芯片8 脚SOIC 150mil2. DS1302 内部寄存器CH: 时钟停止位存器2 的第7 位12/24 小时标志CH=0 振荡器工作允许bit7=1,12 小时模式CH=1 振荡器停止bit7=0,24 小时模式WP: 写保护位寄存器2 的第5 位:AM/PM 定义WP=0 寄存器数据能够写入AP=1 下午模式WP=1 寄存器数据不能写入AP=0 上午模式TCS: 涓流充电选择DS: 二极管选择位TCS=1010 使能涓流充电DS=01 选择一个二极管TCS=其它禁止涓流充电DS=10 选择两个二极管DS=00 或11, 即使TCS=1010, 充电功能也被禁止RS位电阻典型位00没有没有01R12KΩ10R24KΩ11R38KΩ时钟:DS1302 与微控制器的接口软件及功能应用举例下面首先给出基本的接口软件然后举例说明各种功能的应用1 写保护寄存器操作当写保护寄存器的最高位为0 时允许数据写入寄存器写保护寄存器可以通过命令字节8E,8F 来规定禁止写入/读出写保护位不能在多字节传送模式下写入Write_Enable:MOV Command,#8Eh ;命令字节为8EMOV ByteCnt,#1 ;单字节传送模式MOV R0,#XmtDat 数据地址覆给R0MOV XmtDat,#00h 数据内容为0 写入允许ACALL Send_Byte 用写入数据子程序RET 返回调用本子程序处当写保护寄存器的最高位为1 时禁止数据写入寄存器Write_Disable:MOV Command,#8Eh ;命令字节为8EMOV ByteCnt,#1 ;单字节传送模式MOV R0,#XmtDat 数据地址覆给R0MOV XmtDat,#80h 数据内容为80h 禁止写入ACALL Send_Byte 调用写入数据子程序RET 返回调用本子程序处以上程序调用了基本数据发送(Send_Byte)模块及一些内存单元定义, 其源程序清单在附录中给出下面的程序亦使用了这个模块2 时钟停止位操作当把秒寄存器的第7 位时钟停止位设置为0 时起动时钟开始Osc_Enable:MOV Command,#80h ; 命令字节为80MOV ByteCnt,#1 ; 单字节传送模式MOV 0,#XmtDat 数据地址覆给R0MOV XmtDat,#00h 数据内容为0 振荡器工作允许ACALL Send_Byte 调用写入数据子程序RET 返回调用本子程序处当把秒寄存器的第7 位时钟停止位设置为1 时时钟振荡器停止HT1380 进入低功耗方式Osc_Disable:MOV Command,#80h ;命令字节为80MOV ByteCnt,#1 ;单字节传送模式MOV R0,#XmtDat 数据地址覆给R0MOV XmtDat,#80h 数据内容为80h 振荡器停止ACALL Send_Byte 调用写入数据子程序RET 返回调用本子程序处3. 多字节传送方式当命令字节为BE 或BF 时DS1302 工作在多字节传送模式8 个时钟/日历寄存器从寄存器0 地址开始连续读写从0 位开始的数据当命令字节为FE 或FF 时DS1302 工作在多字节RAM 传送模式31 个RAM 寄存器从0 地址开始连续读写从0 位开始的数据例如写入00 年6 月21 日星期三13 时59 分59 秒程序设置如下Write_Multiplebyte:MOV Command,#0BEh ;命令字节为BEhMOV ByteCnt,#8 ;多字节写入模式此模块为8 个MOV R0,#XmtDat 数据地址覆给R0MOV XmtDat,#59h 秒单元内容为59hMOV XmtDat+1,#59h 分单元内容为59hMOV XmtDat+2,#13h 时单元内容为13hMOV XmtDat+3,#21h 日期单元内容为21hMOV XmtDat+4,#06h 月单元内容为06hMOV XmtDat+5,#03h 星期单元内容为03hMOV XmtDat+6,#0 年单元内容为00hMOV XmtDat+7,#0 写保护单元内容为00hACALL Send_Byte 调用写入数据子程序RET 返回调用本子程序处读出寄存器0-7 的内容程序设置如下Read_Multiplebyte:MOV Command,#0BFh 命令字节为BFhMOV ByteCnt,#8 ; 多字节读出模式此模块为8 个MOV R1,#RcvDat 数据地址覆给R1ACALL Receive_Byte 调用读出数据子程序RET 返回调用本子程序处以上程序调用了基本数据接收(Receive_Byte)模块及一些内存单元定义, 其源程序清单在附录中给出下面的程序亦使用了这个模块4. 单字节传送方式例如写入8 时12 小时模式程序设置如下Write_Singlebyte:MOV Command,#84h ; 命令字节为84hMOV ByteCnt,#1 ; 单字节传送模式MOV R0,#XmtDat 数据地址覆给R0MOV XmtDat,#88h 数据内容为88hACALL Send_Byte 调用写入数据子程序RET 返回调用本子程序处上面所列出的程序模块Write_Enable Write_Disable Osc_Enable Osc_Disable 与单字节写入模块Write_Singlebyte 的程序架构完全相同仅只是几个入口参数不同本文是为了强调功能使用的不同才将其分为不同模块另外,与涓流充电相关的设定也是单字节操作方式,这里就不再单独列出,用户在使用中可灵活简略.下面模块举例说明如何单字节读出小时单元的内容.Read_Singlebyte:MOV Command,#85h ; 命令字节为85hMOV ByteCnt,#1 ; 单字节传送模式MOV R1,#RcvDat 数据地址覆给R1ACALL Receive_Byte 调用读出数据子程序RET 返回调用本子程序处DS1302 应用电路原理图P87LPC764 单片机选取内部振荡及内部复位电路附录数据发送与接收模块源程序清单; CPU 工作频率最大不超过20MHz;; P87LPC762/4 主控器发送接受数据程序; 说明本程序是利用Philips 公司的P87LPC764 单片机任何具有51 内核或其它合适的单片机都可在此作为主控器的普通I/O 口(如P1.2/P1.3/P1.4)实现总线的功能对总线上的器件本程序采用DS1302进行读写操作命令字节在Command 传送字节数在ByteCnt 中所发送的数据在XmtDat 中所接收的数据在RcvDat 中;;P87LPC762/4 主控器总线发送接受数据程序头文件;内存数据定义BitCnt data 30h ; 数据位计数器ByteCnt data 31h ; 数据字节计数器Command data 32h ; 命令字节地址RcvDat DA TA 40H ; 接收数据缓冲区XmtDat DATA 50H ; 发送数据缓冲区;端口位定义IO_DA TA bit P1.3 ; 数据传送总线SCLK bit P1.4 ; 时钟控制总线RST bit P1.2 ; 复位总线;;发送数据程序;名称:Send_Byte;描述:发送ByteCnt 个字节给被控器DS1302;命令字节地址在Command 中;所发送数据的字节数在ByteCnt 中发送的数据在XmtDat 缓冲区中;Send_Byte:CLR RST ;复位引脚为低电平所有数据传送终止NOPCLR SCLK 清时钟总线NOPSETB RST ;复位引脚为高电平逻辑控制有效NOPMOV A,Command 准备发送命令字节MOV BitCnt,#08h 传送位数为8S_Byte0:RRC A 将最低位传送给进位位CMOV IO_DA TA,C 位传送至数据总线NOPSETB SCLK 时钟上升沿发送数据有效NOPCLR SCLK 清时钟总线DJNZ BitCnt,S_Byte0 位传送未完毕则继续NOPS_Byte1: 准备发送数据MOV A,@R0 传送数据过程与传送命令相同MOV BitCnt,#08hS_Byte2:RRC AMOV IO_DATA,CNOPSETB SCLKNOPCLR SCLKDJNZ BitCnt,S_Byte2INC R0 发送数据的内存地址加1 DJNZ ByteCnt,S_Byte1 字节传送未完毕则继续NOPCLR RST 逻辑操作完毕清RSTRET;接收数据程序;;名称:Receive_Byte;描述:从被控器DS1302 接收ByteCnt 个字节数据;命令字节地址在Command 中;所接收数据的字节数在ByteCnt 中接收的数据在RcvDat 缓冲区中Receive_Byte:CLR RST ;复位引脚为低电平所有数据传送终止NOPCLR SCLK 清时钟总线NOPSETB RST ;复位引脚为高电平逻辑控制有效MOV A,Command 准备发送命令字节MOV BitCnt,#08h 传送位数为8R_Byte0:RRC A 将最低位传送给进位位CMOV IO_DA TA,C 位传送至数据总线NOPSETB SCLK 时钟上升沿发送数据有效NOPCLR SCLK 清时钟总线DJNZ BitCnt,R_Byte0 位传送未完毕则继续NOPR_Byte1: 准备接收数据CLR A 清类加器CLR C 清进位位CMOV BitCnt,#08h 接收位数为8R_Byte2:NOPMOV C,IO_DATA 数据总线上的数据传送给CRRC A 从最低位接收数据SETB SCLK 时钟总线置高NOPCLR SCLK 时钟下降沿接收数据有效DJNZ BitCnt,R_Byte2 位接收未完毕则继续MOV @R1,A 接收到的完整数据字节放入接收内存缓冲区INC R1 接收数据的内存地址加1DJNZ ByteCnt,R_Byte1 字节接收未完毕则继续NOPCLR RST 逻辑操作完毕清RSTRETEND直流参数表:主要电参数表:交流参数表:电容配置表:本文来自: 原文网址:/info/commonIC/0083003.html。
实时时钟电路DS1302芯片的原理及应用
实时时钟电路DS1302芯片的原理及应用DS1302是一种实时时钟(RTC)电路芯片,由Dallas Semiconductor (现被Maxim Integrated收购)设计和制造。
它提供了一个准确的时间和日期计时功能,适用于许多应用,例如电子设备、仪器仪表、通讯设备和计算机系统等。
DS1302芯片的原理如下:1.时钟发生器:DS1302芯片内部集成了一个时钟发生器电路,它使用外部XTAL晶体和一个频率分频器来产生准确的时钟信号。
晶体的频率通常为32.768kHz,这是由于此频率具有较好的稳定性。
2.电源管理:DS1302芯片可以使用3V到5.5V的电源供电。
它内部具有电源管理电路,可以自动切换到低功耗模式以延长电池寿命。
3.时间计数器:DS1302芯片内部包含一个时间计数器,用于计算并保存当前时间、日期和星期。
它采用24小时制,并提供了BCD编码的小时、分钟、秒、日、月和年信息。
4.控制和数据接口:DS1302芯片使用串行接口与外部器件进行通信,如微控制器或外部检测电路。
控制和数据信息通过三根线SCLK(串行时钟)、I/O(串行数据输入/输出)和CE(片选)进行传输。
5.电源备份:为了确保即使在电源中断的情况下仍能保持时间数据,DS1302芯片通过附带的外部电池来提供电源备份功能。
当主电源中断时,芯片会自动切换到电池供电模式,并将时间数据存储在内部RAM中。
DS1302芯片的应用包括但不限于以下几个方面:1.时钟和日历显示:DS1302芯片可以直接连接到LCD显示屏、LED显示器或数码管等设备,用于显示当前时间和日期。
2.定时控制:DS1302芯片可以用作定时器或闹钟,在特定的时间触发一些事件。
例如,可以使用它作为控制家庭设备的定时开关。
3.数据记录:由于DS1302芯片具有时间计数功能,它可以用于记录事件的时间戳,如数据采集、操作记录或系统状态记录。
4.电源失效保护:DS1302芯片的电源备份功能可确保即使在电源中断的情况下,时间数据也能被保存,以避免系统重新启动后时间重置的问题。
ds1302芯片
ds1302芯片DS1302芯片是一种实时时钟(RTC)芯片,由Maxim集成电路公司生产。
它是一款非常强大和广泛应用的芯片,具有可靠的性能和低功耗。
本文将对DS1302芯片进行详细介绍。
首先,DS1302芯片主要用于系统中对时间进行实时监控和记录。
它可以精确地记录年、月、日、小时、分钟和秒,并且可以显示星期几。
可以使用8位的数据总线进行通信,方便地与其他设备进行连接。
其次,DS1302芯片具有非常低的功耗。
在正常工作模式下,它只需要2.0V至5.5V的供电电压,并且可以使用电池备份供电,以防止停电时数据丢失。
在备份供电模式下,芯片的功耗非常低,仅为0.2μA。
此外,DS1302芯片具有时钟校正功能。
它可以通过外部的32.768kHz晶体振荡器来校准内部时钟,以确保精准的时间记录。
这样可以减少时间误差,使得芯片的性能更加可靠。
同时,DS1302芯片还具有多种功能。
它支持两种不同的数据格式:BCD(二进制编码十进制)和二进制。
可以根据系统的需求选择不同的格式。
此外,芯片还具有写保护功能,可以防止未经授权的数据修改。
此外,DS1302芯片还具有温度传感器。
它可以测量环境温度,并将结果以数字形式传回主控制器。
这对于需要监控环境温度的应用非常有用。
最后,DS1302芯片可广泛应用于各种电子设备中。
例如,它可以用于电子钟、计时器、温控系统、数据记录器等。
其性能可靠,并具有广泛的兼容性。
总之,DS1302芯片是一款非常强大和广泛应用的实时时钟芯片。
它具有高度精确的时间记录功能、低功耗、时钟校正功能、多种数据格式支持、写保护功能和温度传感器等特点。
通过DS1302芯片,可以为各种电子设备提供准确、可靠的时间显示和记录功能。
ds1302工作原理
ds1302工作原理DS1302是一款常用的实时时钟芯片,它具有精准的时间计数和存储功能,广泛应用于各种电子设备中。
本文将介绍DS1302的工作原理,帮助大家更好地理解这款芯片的工作方式。
DS1302芯片主要由时钟计数部分、RAM部分、控制逻辑部分和串行接口部分组成。
它采用了静态存储器和CMOS技术,具有低功耗、高稳定性和高精度的特点。
在DS1302中,时钟计数部分用于实时计数和存储时间,RAM部分用于存储控制寄存器和时钟/日历信息,控制逻辑部分用于控制整个芯片的工作,串行接口部分用于与微处理器进行通信。
DS1302的工作原理主要分为时钟计数和数据存储两个部分。
在时钟计数部分,DS1302通过外接的晶体振荡器产生稳定的时钟信号,并通过分频器将时钟信号分频为1Hz的脉冲信号,然后将脉冲信号送入计数器进行计数。
计数器将计数结果存储在时钟/日历寄存器中,以实现对时间的精准计数。
在数据存储部分,DS1302将时钟/日历信息存储在RAM中,并通过控制逻辑部分实现对RAM的读写操作,从而实现对时间和日期信息的存储和更新。
在实际应用中,DS1302通常与微处理器或单片机相结合,通过串行接口进行通信。
微处理器可以通过串行接口向DS1302发送读写命令和数据,从而实现对DS1302的配置和控制。
DS1302可以通过串行接口向微处理器发送当前的时间和日期信息,从而实现对时间的显示和记录。
总的来说,DS1302的工作原理是通过时钟计数和数据存储实现对时间和日期的精准计数和存储。
它具有精准、稳定、低功耗的特点,广泛应用于各种电子设备中。
通过了解DS1302的工作原理,可以更好地应用和设计相关的电子设备,从而提高设备的性能和稳定性。
希望本文能够帮助大家更好地理解DS1302的工作原理,为相关电子设备的设计和应用提供参考和帮助。
感谢大家的阅读!。
DS1302芯片资料
DS1302 是DALLAS 公司推出的涓流充电时钟芯片,内含有一个实时时钟/日历和31 字节静态RAM,通过简单的串行接口与单片机进行通信实时时钟/日历电路.提供秒分时日日期.月年的信息,每月的天数和闰年的天数可自动调整时钟操作可通过AM/PM 指示决定采用24 或12 小时格式.DS1302 与单片机之间能简单地采用同步串行的方式进行通信,仅需用到三个口线:1 RES 复位,2 I/O 数据线,3 SCLK串行时钟.时钟/RAM 的读/写数据以一个字节或多达31 个字节的字符组方式通信.DS1302 工作时功耗很低,保持数据和时钟信息时功率小于1mW.DS1302 是由DS1202 改进而来,增加了以下的特性.双电源管脚用于主电源和备份电源供应Vcc1,为可编程涓流充电电源附加七个字节存储器.它广泛应用于电话传真便携式仪器以及电池供电的仪器仪表等产品领域.下面将主要的性能指标作一综合:实时时钟具有能计算2100 年之前的秒分时日日期星期月年的能力还有闰年调整的能力;31 8 位暂存数据存储RAM;串行I/O 口方式使得管脚数量最少;宽范围工作电压2.0 5.5V;工作电流2.0V 时,小于300nA;读/写时钟或RAM 数据时有两种传送方式单字节传送和多字节传送字符组方式;8 脚DIP 封装或可选的8 脚SOIC 封装根据表面装配;简单3 线接口;与TTL 兼容Vcc=5V;可选工业级温度范围-40 +85;与DS1202 兼容;在DS1202 基础上增加的特性;对Vcc1 有可选的涓流充电能力;双电源管用于主电源和备份电源供应;备份电源管脚可由电池或大容量电容输入;附加的7 字节暂存存储器;1 DS1302 的基本组成和工作原理DS1302 的引脚功能排列及描述如下图所示.ds1302引脚图管脚描述X1 X2 32.768KHz 晶振管脚GND 地RST 复位脚I/O 数据输入/输出引脚SCLK 串行时钟Vcc1,Vcc2 电源供电管脚DS1302 串行时钟芯片8 脚DIPDS1302S 串行时钟芯片8 脚SOIC 200milDS1302Z 串行时钟芯片8 脚SOIC 150mil2. DS1302 内部寄存器CH: 时钟停止位存器2 的第7 位12/24 小时标志CH=0 振荡器工作允许bit7=1,12 小时模式CH=1 振荡器停止 bit7=0,24 小时模式WP: 写保护位寄存器2 的第5 位:AM/PM 定义WP=0 寄存器数据能够写入 AP=1 下午模式WP=1 寄存器数据不能写入AP=0 上午模式TCS: 涓流充电选择 DS: 二极管选择位TCS=1010 使能涓流充电 DS=01 选择一个二极管TCS=其它禁止涓流充电DS=10 选择两个二极管时钟:DS1302 与微控制器的接口软件及功能应用举例下面首先给出基本的接口软件然后举例说明各种功能的应用1 写保护寄存器操作当写保护寄存器的最高位为0 时允许数据写入寄存器写保护寄存器可以通过命令字节8E,8F 来规定禁止写入/读出写保护位不能在多字节传送模式下写入Write_Enable:MOV Command,#8Eh ;命令字节为8EMOV ByteCnt,#1 ;单字节传送模式MOV R0,#XmtDat 数据地址覆给R0MOV XmtDat,#00h 数据内容为0 写入允许ACALL Send_Byte 用写入数据子程序RET 返回调用本子程序处当写保护寄存器的最高位为1 时禁止数据写入寄存器Write_Disable:MOV Command,#8Eh ;命令字节为8EMOV ByteCnt,#1 ;单字节传送模式MOV R0,#XmtDat 数据地址覆给R0MOV XmtDat,#80h 数据内容为80h 禁止写入ACALL Send_Byte 调用写入数据子程序RET返回调用本子程序处以上程序调用了基本数据发送(Send_Byte)模块及一些内存单元定义, 其源程序清单在附录中给出下面的程序亦使用了这个模块2 时钟停止位操作当把秒寄存器的第7 位时钟停止位设置为0 时起动时钟开始Osc_Enable:MOV Command,#80h ; 命令字节为80MOV ByteCnt,#1 ; 单字节传送模式MOV 0,#XmtDat 数据地址覆给R0 MOV XmtDat,#00h 数据内容为0 振荡器工作允许ACALL Send_Byte 调用写入数据子程序RET返回调用本子程序处当把秒寄存器的第7 位时钟停止位设置为1 时时钟振荡器停止HT1380 进入低功耗方式Osc_Disable:MOV Command,#80h ;命令字节为80MOV ByteCnt,#1 ;单字节传送模式MOV R0,#XmtDat 数据地址覆给R0MOV XmtDat,#80h 数据内容为80h 振荡器停止ACALL Send_Byte 调用写入数据子程序RET返回调用本子程序处3. 多字节传送方式当命令字节为BE 或BF 时DS1302 工作在多字节传送模式8 个时钟/日历寄存器从寄存器0 地址开始连续读写从0 位开始的数据当命令字节为FE 或FF 时DS1302 工作在多字节RAM 传送模式31 个RAM 寄存器从0 地址开始连续读写从0 位开始的数据例如写入00 年6 月21 日星期三13 时59 分59 秒程序设置如下Write_Multiplebyte:MOV Command,#0BEh ;命令字节为BEhMOV ByteCnt,#8 ;多字节写入模式此模块为8 个MOV R0,#XmtDat 数据地址覆给R0MOV XmtDat,#59h 秒单元内容为59hMOV XmtDat+1,#59h 分单元内容为59hMOV XmtDat+2,#13h 时单元内容为13hMOV XmtDat+3,#21h 日期单元内容为21hMOV XmtDat+4,#06h 月单元内容为06hMOV XmtDat+5,#03h 星期单元内容为03hMOV XmtDat+6,#0 年单元内容为00h MOV XmtDat+7,#0 写保护单元内容为00hACALL Send_Byte 调用写入数据子程序RET返回调用本子程序处读出寄存器0-7 的内容程序设置如下Read_Multiplebyte:MOV Command,#0BFh 命令字节为BFhMOV ByteCnt,#8 ; 多字节读出模式此模块为8 个MOV R1,#RcvDat 数据地址覆给R1ACALL Receive_Byte 调用读出数据子程序RET返回调用本子程序处以上程序调用了基本数据接收(Receive_Byte)模块及一些内存单元定义, 其源程序清单在附录中给出下面的程序亦使用了这个模块4. 单字节传送方式例如写入8 时12 小时模式程序设置如下Write_Singlebyte:MOV Command,#84h ; 命令字节为84hMOV ByteCnt,#1 ; 单字节传送模式MOV R0,#XmtDat 数据地址覆给R0 MOV XmtDat,#88h 数据内容为88h ACALL Send_Byte 调用写入数据子程序RET返回调用本子程序处上面所列出的程序模块Write_Enable Write_Disable Osc_Enable Osc_Disable 与单字节写入模块Write_Singlebyte 的程序架构完全相同仅只是几个入口参数不同本文是为了强调功能使用的不同才将其分为不同模块另外,与涓流充电相关的设定也是单字节操作方式,这里就不再单独列出,用户在使用中可灵活简略.下面模块举例说明如何单字节读出小时单元的内容.Read_Singlebyte:MOV Command,#85h ; 命令字节为85h MOV ByteCnt,#1 ; 单字节传送模式MOV R1,#RcvDat 数据地址覆给R1ACALL Receive_Byte 调用读出数据子程序RET返回调用本子程序处DS1302 应用电路原理图P87LPC764 单片机选取内部振荡及内部复位电路附录数据发送与接收模块源程序清单; CPU 工作频率最大不超过20MHz;; P87LPC762/4 主控器发送接受数据程序; 说明本程序是利用Philips 公司的P87LPC764 单片机任何具有51 内核或其它合适的单片机都可在此作为主控器的普通I/O 口(如P1.2/P1.3/P1.4)实现总线的功能对总线上的器件本程序采用DS1302进行读写操作命令字节在Command 传送字节数在ByteCnt 中所发送的数据在XmtDat 中所接收的数据在RcvDat 中;;P87LPC762/4 主控器总线发送接受数据程序头文件;内存数据定义BitCnt data 30h ; 数据位计数器ByteCnt data 31h ; 数据字节计数器Command data 32h ; 命令字节地址RcvDat DATA 40H ; 接收数据缓冲区XmtDat DATA 50H ; 发送数据缓冲区;端口位定义IO_DATA bit P1.3 ; 数据传送总线SCLK bit P1.4 ; 时钟控制总线RST bit P1.2 ; 复位总线;;发送数据程序;名称:Send_Byte;描述:发送ByteCnt 个字节给被控器DS1302;命令字节地址在Command 中;所发送数据的字节数在ByteCnt 中发送的数据在XmtDat 缓冲区中;Send_Byte:CLR RST ;复位引脚为低电平所有数据传送终止NOPCLR SCLK 清时钟总线NOPSETB RST ;复位引脚为高电平逻辑控制有效NOPMOV A,Command 准备发送命令字节MOV BitCnt,#08h 传送位数为8S_Byte0:RRC A 将最低位传送给进位位CMOV IO_DATA,C 位传送至数据总线NOPSETB SCLK 时钟上升沿发送数据有效NOPCLR SCLK 清时钟总线DJNZ BitCnt,S_Byte0 位传送未完毕则继续NOPS_Byte1:准备发送数据MOV A,@R0 传送数据过程与传送命令相同MOV BitCnt,#08hS_Byte2:RRC AMOV IO_DATA,CNOPSETB SCLKNOPCLR SCLKDJNZ BitCnt,S_Byte2INC R0发送数据的内存地址加1DJNZ ByteCnt,S_Byte1 字节传送未完毕则继续NOPCLR RST逻辑操作完毕清RSTRET;接收数据程序;;名称:Receive_Byte;描述:从被控器DS1302 接收ByteCnt 个字节数据;命令字节地址在Command 中;所接收数据的字节数在ByteCnt 中接收的数据在RcvDat 缓冲区中Receive_Byte:CLR RST;复位引脚为低电平所有数据传送终止NOPCLR SCLK 清时钟总线NOPSETB RST ;复位引脚为高电平逻辑控制有效MOV A,Command 准备发送命令字节MOV BitCnt,#08h 传送位数为8R_Byte0:RRC A将最低位传送给进位位CMOV IO_DATA,C 位传送至数据总线NOPSETB SCLK 时钟上升沿发送数据有效NOPCLR SCLK 清时钟总线DJNZ BitCnt,R_Byte0 位传送未完毕则继续NOPR_Byte1: 准备接收数据CLR A清类加器CLR C清进位位CMOV BitCnt,#08h 接收位数为8R_Byte2:NOPMOV C,IO_DATA 数据总线上的数据传送给C RRC A从最低位接收数据SETB SCLK 时钟总线置高NOPCLR SCLK 时钟下降沿接收数据有效DJNZ BitCnt,R_Byte2 位接收未完毕则继续MOV @R1,A 接收到的完整数据字节放入接收内存缓冲区INC R1 接收数据的内存地址加1DJNZ ByteCnt,R_Byte1 字节接收未完毕则继续NOPCLR RST 逻辑操作完毕清RSTRETEND直流参数表:主要电参数表:交流参数表:电容配置表:。
1302芯片
1302芯片1302芯片是一款微处理器芯片,由台湾公司联发科技(MediaTek)研发和制造。
该芯片采用先进的28纳米制程工艺,集成了ARM Cortex-A7处理器和ARM Mali-400 MP图形处理器,以实现高性能和低能耗的平衡。
下面将以1000字介绍1302芯片的主要特点和技术细节。
首先,1302芯片采用了ARM Cortex-A7处理器架构,该架构是一种低功耗、高度可扩展的处理器设计。
Cortex-A7处理器具有独特的big.LITTLE技术,可以与更高性能的Cortex-A15处理器相结合,实现大幅提升系统性能和功耗效率。
这种异构多核处理器设计可以根据实际需求自动调整使用的核心数量和频率,以平衡性能和能耗。
其次,1302芯片还集成了ARM Mali-400 MP图形处理器,为用户提供流畅的游戏和高清视频播放体验。
Mali-400 MP采用了高效的渲染引擎和灵活的着色架构,支持OpenGL ES 2.0和OpenVG 1.1等多种图形标准,可以处理复杂的3D图形和多媒体内容。
此外,1302芯片还支持多种高速接口和通信标准,包括USB 2.0、HDMI、SDIO和MMC等。
这些接口可以快速连接外部设备,如摄像头、显示器和存储卡等。
此外,1302芯片还支持无线通信标准,如WiFi、蓝牙和GPS等,可以实现无线连接和位置服务功能。
在能耗管理方面,1302芯片采用了先进的功耗优化技术,包括动态电压频率调整(DVFS)和智能功耗管理(ISP)等。
DVFS技术可以根据负载情况调整处理器的工作频率和电压,以实现最佳的能耗和性能平衡。
ISP技术可以对图像和视频进行实时处理和优化,以降低功耗和提升用户体验。
最后,1302芯片还具有安全性和可扩展性。
它提供了硬件级别的安全功能,包括高级加密标准(AES)、数据完整性校验(CRC)和随机数生成器等。
这些安全功能可以保护用户数据的机密性和完整性。
此外,1302芯片还支持软件升级和扩展存储,以适应不断变化的应用需求。
SX1302大电流升压芯片参数应用
SX1302大电流升压芯片参数应用首先,我们来了解一下SX1302的主要参数。
SX1302是一款大电流输入升压芯片,可以提供高达3.6A的电流输出。
它采用了高效的升压转换技术,可以将输入电压从3.3V提升到5V。
SX1302还具有输入电压范围广、低电流波动等特点,适用于各种电子设备的电源管理。
SX1302具有多种保护功能,包括输出短路保护、过温保护、欠压保护等。
这些保护功能可以有效保护电子设备不受短路、过热等问题影响,提高了设备的可靠性。
另外,SX1302还支持软启动功能,可以减少开关机时的电流冲击,延长设备的使用寿命。
SX1302的应用非常广泛。
首先,它可以用于手机、平板电脑等移动设备的电源管理。
移动设备对电源管理要求严格,需要稳定的电压输出和高效的电流转换。
SX1302的高电流输出和多重保护功能满足了移动设备的需求。
此外,SX1302还可以应用于家用电器、工业设备等领域。
对于家用电器来说,稳定的电压输出和高效的电流转换是确保设备正常运行的关键。
SX1302可以提供稳定的电压输出,保证电器设备的正常使用。
对于工业设备来说,SX1302的多重保护功能可以提供额外的安全保障,防止设备因电流过大或短路等问题受损。
另外,SX1302还可以应用于充电器、电池管理系统等领域。
充电器需要提供适当的电流输出,以确保设备的快速充电和安全使用。
SX1302的高电流输出和保护功能可以满足充电器的需求。
电池管理系统可以利用SX1302的低电流波动特点,提供稳定的电源输出,确保电池系统的正常工作。
除了以上应用,SX1302还可以用于无线通信设备、LED照明等领域。
在无线通信设备中,SX1302可以为射频模块提供稳定的电压输出,确保通信的可靠性。
对于LED照明来说,SX1302可以提供恒流驱动,确保LED 的亮度稳定,延长LED的使用寿命。
综上所述,SX1302是一款应用广泛的大电流升压芯片。
它不仅具有高电流输出和多重保护功能,还适用于多种电子设备的电源管理。
实时时钟电路DS1302芯片的原理及应用
实时时钟电路DS1302芯片的原理及应用DS1302芯片是一种低功耗的实时时钟(RTC)电路。
它包含了一个真正的时钟/日历芯片和31个静态RAM存储单元,用于存储时钟和日期信息。
DS1302芯片的工作电压范围为2.0V至5.5V,并且具有极低的功耗,非常适合于移动电子设备和电池供电的应用。
DS1302芯片的原理如下:1.时钟发生器:DS1302芯片内部具有一个实时时钟发生器,它通过晶振和电容电路生成稳定的振荡信号,用于计时。
2.时钟/计时电路:DS1302芯片内部的时钟/计时电路可以精确地计算并保持当前的时间和日期。
它具有秒、分钟、小时、日期、月份、星期和年份等不同的计时单元。
3.RAM存储单元:DS1302芯片包含31个静态RAM存储单元,用于存储时钟和日期信息。
这些存储单元可以通过SPI接口进行读写操作,并且在断电情况下也能够保持数据。
4.控制接口:DS1302芯片通过3线接口与微控制器通信,包括一个时钟线、一个数据线和一个使能线。
这种接口使得与微控制器的通信非常简单,并且能够高效地读写时钟和日期信息以及控制芯片的其他功能。
DS1302芯片的应用如下:1.实时时钟:DS1302芯片可以用作电子设备中的实时时钟。
例如,它可以用于计算机、嵌入式系统、电子游戏等设备中,以提供准确的时间和日期信息。
2.定时器:DS1302芯片的计时功能可以用于设计各种定时器应用。
例如,它可以用于计时器、倒计时器、定时开关等应用中,以实现定时功能。
3.时钟显示:DS1302芯片可以与显示模块结合使用,用于显示当前的时间和日期。
例如,它可以用于数字钟、计时器、时钟频率计等应用中。
4.能量管理:由于DS1302芯片具有低功耗特性,因此它可以用于电池供电的设备中,以实现节能的能量管理策略。
例如,它可以用于手持设备、无线传感器网络等应用中,以延长电池寿命。
综上所述,DS1302芯片是一种低功耗的实时时钟电路,具有精确计时、可靠存储和简单接口等优点,适用于计时、显示和能量管理等各种应用中。
DS1302时钟芯片
第十四讲时钟芯片DS1302DS1302 是DALLAS 公司推出的涓流充电时钟芯片,内含有一个实时时钟/日历和31 字节静态RAM ,通过简单的串行接口与单片机进行通信。
实时时钟/日历电路提供秒、分、时、日、周、月、年的信息,每月的天数和闰年的天数可自动调整。
时钟操作可通过AM/PM 指示决定采用24 或12 小时格式。
DS1302 与单片机之间能简单地采用同步串行的方式进行通信,仅需用到三个口线:(1)RES 复位(2)I/O 数据线(3)SCLK 串行时钟。
时钟/RAM 的读/写数据以一个字节或多达31个字节的字符组方式通信。
DS1302 工作时功耗很低保持数据和时钟信息时功率小于1mW。
DS1302由DS1202改进而来增加了以下的特性:双电源管脚用于主电源和备份电源供应,Vcc1为可编程涓流充电电源,附加七个字节存储器。
它广泛应用于电话、传真、便携式仪器以及电池供电的仪器仪表等产品领域下面。
将主要的性能指标作一综合:★实时时钟具有能计算2100 年之前的秒、分、时、日、星期、月、年的能力,还有闰年调整的能力★ 31 8位暂存数据存储RAM★串行I/O口方式使得管脚数量最少★宽范围工作电压2.0 5.5V★工作电流2.0V时,小于300nA★读/写时钟或RAM 数据时有两种传送方式单字节传送和多字节传送字符组方式★ 8 脚DIP封装或可选的8脚SOIC封装根据表面装配★简单3线接口★与TTL兼容Vcc=5V★可选工业级温度范围-40---+85★双电源管用于主电源和备份电源供应以上是DS1302的一些全面的预览,以下为DS1302管脚图:1)VCC2:主用电源引脚2)X1、X2:DS1302外部晶振引脚3)GND:地4)RST:复位引脚5)I/O:串行数据引脚,数据输出或者输入都从这个引脚6)SCLK:串行时钟引脚7)VCC1:备用电源1)VCC 为主电源接5V,CX10 为滤波电容2)2、外接32.768K 的晶振3)3、 5、6、7 脚分别与控制器相联,注意外部4.7K 上拉电阻4)4、备用电源脚,注意是3.3V,DS1302 要求备用电源电压稍微低于主用电源下面讲讲DS1302 的具体操作。
DS1302涓流充电时钟芯片--毕业论文外文文献翻译毕业论文
DS1302涓流充电时钟芯片一、特性1、实时时钟,可对秒、分、时、日、周、月以及带闰年补偿的年进行计数,有效期2100年;2、用于高速数据暂存的31×8 RAM;3、最少引脚数的串行I/O;4、2.0-5.5V满度工作范围;5、2.5V时耗电小于300nA;6、用于时钟或RAM数据读/写的单字节或多字节(脉冲方式)数据传送;7、8引脚DIP或可选的用于表面安装的8引脚SOIC封装;8、简单的3线接口;9、TTL兼容(VCC=5V);10、可选的工业温度范围-40℃至+85℃;11、与DS1202兼容。
二、引脚排列DS1302引脚封装图如下图1所示图1 DS1302引脚封装图三、引脚说明①X1,X2:32.768kHz晶振引脚;②GND:接地;③RST:复位;④I/O:数据输入/输出;⑤SCLK:串行时钟;⑥VCC1,VCC2:电源引脚。
四、说明DS1302慢速充电时钟芯片包括实时时钟/日历和31字节的静态RAM。
它经过一个简单的串行接口与微处理器通信。
实时时钟/日历提供秒、分、时、日、周、月和年等信息。
对于小于31天的月,月末的日期自动进行调整,还包括了闰年校正的功能。
时钟的运行可以采用24小时或带AM(上午)/PM(下午)的12小时格式。
使用同步串行通信,简化了DS1302与微处理器的通信。
与时钟/RAM通信仅需三根线:(1)RST(复位)、(2)I/O(数据线)、和(3)SCLK (串行时钟)。
数据可以以每次一个字节或多达31字节的多字节形式传送至时钟/RAM或从其中送出。
DS1302设计成能在非常低的功耗下工作,消耗小于1微瓦的功率便能保存数据和时钟信息。
DS1302是DS1202的升级产品,除了DS1202基本的慢速充电功能外,DS1302具有的其它特点包括:用于主电源和备份电源的双电源引脚,可编程的VCC1慢速充电器以及7个附加字节的高速暂存存储器(scratchpad memory)。
时钟芯片ds1302
时钟芯片ds1302
时钟芯片DS1302是一种具有实时时钟(RTC)功能的集成电路。
该芯片由Maxim Integrated公司生产,广泛用于各种电子
设备中,包括计算机、电视、仪表盘等。
DS1302的主要特性如下:
1. 时钟功能:DS1302可以提供准确的时间和日期信息,并能
够自动调整闰年。
2. 电源管理:芯片内部集成了电源管理电路,可以有效地管理电池的使用,以延长电池寿命。
3. 低功耗:DS1302在运行时非常省电,可通过外部电池供电,在断电时仍能维持时钟运行。
4. 串行接口:芯片通过串行接口与主控制器(如微处理器或单片机)进行通信,方便集成到各种系统中。
5. 多种时间格式:DS1302支持24小时制和12小时制的时间
显示,可以根据需要选择合适的格式。
6. 报警功能:芯片内置了报警功能,可在特定的时间点触发外部中断,用于提醒用户进行相关操作。
7. 温度补偿:DS1302能够通过内部温度传感器进行温度补偿,以提高时钟的准确性。
总的来说,DS1302是一款功能强大且易于使用的时钟芯片,
可以在各种电子设备中提供准确的时间和日期信息。
它的特点包括低功耗、实时时钟功能、串行接口以及报警功能等,非常适合用于需要精准时间计算和管理的应用。
DS1302中文资料
DS1302中文资料DS1302是一款低功耗的串行实时时钟芯片,广泛用于各种电子设备中,例如电子表、温度计、计时器等。
该芯片具有高准确度、稳定性和低功耗的特点,功能强大,使用简便。
以下是DS1302芯片的详细中文资料及使用说明。
1.特性:-时钟/日历功能:提供秒、分、时、日期、月份和年份的精确计时和日期记录功能。
-31个可编程的时间/日期寄存器:用于存储时钟和日期信息。
-控制根据电源情况自动选择电池或外部电源。
-8字节RAM用于存储额外的用户信息。
-提供电池低电压检测功能。
-通过3线串行接口与微控制器通讯。
-工作电流小于1.5μA。
2.引脚功能:-VCC:电源正极,3.3V至5V的电源供应。
-GND:地。
-RST:复位引脚,用于启动或复位芯片。
-CLK:时钟引脚,与外部晶振连接。
-DAT:数据引脚,与外部时钟连接。
-VBAT:备用电池引脚,用于提供备用电源。
3.时钟和日历操作:-初始化时钟芯片:首先将RST引脚置为高电平,然后将时钟和日期信息写入相应寄存器。
-读取时钟和日期信息:向相应寄存器发送读取指令,然后从DAT引脚读取数据。
-设置闹钟:将闹钟时间和日期写入相应寄存器,设置闹钟标志位。
-清除闹钟标志位:将闹钟标志位清零,重置闹钟状态。
-自动切换电源:设置使能位,将芯片自动切换为外部电源或电池供电。
4.通信协议:-DS1302使用3线串行接口与微控制器通讯,包括时钟(CLK)、数据(DAT)和复位(RST)引脚。
-通信数据以字节为单位,高位在前,低位在后。
-时钟和数据引脚都是双向引脚,需要使用上拉电阻来保证电平的稳定。
-通信基于时钟的脉冲信号,每个时钟周期有四个时钟脉冲。
5.典型应用:-电子表:DS1302提供精确的时钟和日期计时功能,可用于制作各种类型的电子表。
-温度计:结合温度传感器,可以通过DS1302记录和显示温度信息。
-计时器:通过设置定时器和闹钟功能,可以实现计时和提醒功能。
6.注意事项:-正确连接电源和地引脚,确保电源电压在允许范围内。
ds1302时钟芯片
ds1302时钟芯片DS1302时钟芯片是一种集成电路,用于实现实时时钟和日历功能。
它采用了低功耗设计,能够通过电池供电来保持时钟和日期的准确性。
下面将介绍DS1302时钟芯片的工作原理、特点、应用领域以及一些常见问题。
DS1302时钟芯片的工作原理是基于内部由31个静态单元组成的RAM,用于存储秒、分、时、日、月、星期、年等信息。
芯片内部还有一个温度传感器,可以实时监测环境温度。
DS1302还具有时钟使能和充电控制功能,可以使用独立的外部晶体振荡器。
DS1302的特点之一是低功耗设计。
它使用电池供电,平均电流消耗非常低,典型的工作电流为1.5μA。
这使得DS1302非常适合于那些需要长时间运行的应用,如计时器、时钟、日历等。
此外,DS1302还具有灵活的时钟输出选项,可以选择性地输出时钟信号,以适应不同的应用需求。
它还支持串行接口通信,可以通过单个数据线与微控制器、单片机等外部设备进行通信。
DS1302广泛应用于各种电子设备中,如电子钟、电子测量仪器、电子秤等。
它的低功耗设计和可靠性使其成为许多嵌入式系统的首选选择。
此外,DS1302还可以与其他外设配合使用,如液晶显示屏、按键、蜂鸣器等,实现更加复杂的功能。
DS1302时钟芯片常见问题解答:1. DS1302支持哪些时钟格式?DS1302支持24小时制和12小时制两种时钟格式,可以根据应用需求进行设置。
2. DS1302的温度传感器精度如何?DS1302的温度传感器精度为±3℃,可以满足大部分应用的需求。
3. DS1302的电池寿命是多久?DS1302使用CR2032型电池供电,寿命通常为3-5年。
寿命取决于电池的质量和使用环境。
4. DS1302如何与微控制器通信?DS1302支持串行接口通信,使用单个数据线与外部设备通信。
通信协议简单,易于掌握。
总结:DS1302时钟芯片是一种低功耗实时时钟芯片,具有灵活的时钟输出选项、温度传感器和充电控制功能。
DS1302中文资料
DS1302中文资料DS1302是一款数字时钟芯片,具有时钟/日历芯片的功能。
它采用3线串行接口与主控器连接,可提供同步的时钟输出、电池供电的实时时钟、完整的日历功能以及一系列的控制和管理功能。
它广泛应用于各种电子设备和系统中。
1.低功耗:DS1302在备份供电模式下工作时的功耗非常低,可使电池的使用寿命更长。
2.时钟功能:DS1302能够提供年、月、日、小时、分钟和秒的时钟信息,精确到秒。
它还可以设置闹钟功能,方便用户设定定时提醒。
3.电压监测:DS1302可以监测电池电压,当电池电压低于一些阈值时,会产生中断信号,以便提醒用户更换电池。
4.温度监测:DS1302内置温度传感器,可以监测环境温度,并提供相应的温度值。
5.数据存储:DS1302具有非易失性存储器,可以保存时钟和日历信息,即使在断电情况下也能保持数据稳定。
使用DS1302的步骤如下:1.硬件连接:将DS1302芯片与主控器连接。
DS1302需要连接VCC(3.3V或5V电源)、GND(地)以及主控器的数据线(DIO)、时钟线(SCLK)和复位线(RST)。
2.时钟设置:在正常工作模式下,向DS1302写入相应的年、月、日、小时、分钟和秒的数据,即可设置时钟。
DS1302支持24小时制和12小时制,可以根据需要选择。
3.读取时钟:通过读取DS1302的相应寄存器,可以获取当前的时钟信息。
可以先读取秒寄存器,再读取分、时、日、月和年的寄存器,以获得完整的时钟信息。
5.闹钟设置:DS1302支持设置闹钟功能。
通过读取和写入相应的寄存器,可以设置闹钟的小时和分钟,并可以选择是否启用闹钟功能。
6.温度监测:DS1302可以读取内置温度传感器的数值,并将其转换为摄氏温度。
通过读取相应的寄存器,可以获取当前的温度值。
7.电压监测:DS1302可以监测电池电压,并在电池电压低于设定阈值时产生中断信号。
通过读取相应的寄存器,可以获取当前的电池电压值。
HYM1302中文资料
1
RAM/CLK
A4
A3
A2
A1
A0
读/写
图 2 地址/命令字节 2、复位和时钟控制
通过把 RST 输入驱动至高电平来启动所有的数据传送。RST 输入有两种功能。首先,RST 接通控制逻 辑,允许地址命令序列送入移位寄存器。其次,RST 可以中止数据传送。数据输入时,在时钟的上升沿数 据必须有效,而数据位在时钟的下降沿输出。如果 RST 输入为低电平,那么所有的数据传送中止,且 I/O 引脚变为高阻。数据传送在图 3 中说明。上电时,在 VCC 大于或等于 2.5V 之前,RST 必须为逻辑 0,此外 , 当把 RST 驱动至逻辑 1 的状态时,SCLK 必须为逻辑 0。 3、数据输入
■ 复费率电度表、IC 卡水表、IC 卡煤气表 ■ 传真机
概述 HYM1302 可慢速充电实时时钟芯片包含实时时钟/日历和 31 字节的非易失性静态 RAM。它经过一个简
单的串行接口与微处理器通信。实时时钟/日历可对秒,分,时,日,周,月,和年进行计数,对于小于 31 天的月,月末的日期自动进行调整,还具有闰年校正的功能。时钟可以采用 24 小时格式或带 A M(上午)/PM (下午)的 12 小 时格 式。31 字节的 RAM 可以用来临时保存一些重要数据。使用同步串行通信,简化了 HYM1302 与微处理器的通信。与时钟/RAM 通信仅需 3 根 线 :( 1)RST( 复 位 ),( 2)I/O(数据线)和(3)SCLK(串 行时钟)。数据可以以每次一个字节的单字节形式或多达 31 字节的多字节形式传输。HYM1302 能在非常低 的功耗下工作,消耗小于 1µW 的功率便能保存数据和时钟信息。
当指定写时钟/日历的多字节方式时,如果写保护位设置为高电平,那么没有数据会传到 8 个时钟/日 历寄存器(包括控制寄存器)中的任一个。在多字节方式下,慢速充电器时不可访问的。 12、RAM
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#include <reg52.h>#include <intrins.h>#define uchar unsigned char#define uint unsigned intsbit SCL = P3^6; //定义时钟信号接口sbit IO = P3^4; //定义数据信号接口sbit RST = P3^5; //定义复位信号接口sbit ACC0 = ACC^0; //ACC寄存器的最低位sbit ACC7 = ACC^7; //ACC寄存器的最高位uchar ds1,ds2,time;uchar curttime[7];//数码管显示字符表uchar code table[] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};//初始化时间表uchar code InitTime[] = {0x01,0x20,0x02,0x16,0x10,0x06,0x10, };//段选表uchar code tabwcon[] ={0x07,0x06,0x05,0x04,0x03,0x02,0x01,0x00};//读取时间的地址表uchar code read_time_address[7]={0x81,0x83,0x85,0x87,0x89,0x8b,0x8d};//写入时间的地址表code uchar write_rtc_address[7]={0x80,0x82,0x84,0x86,0x88,0x8a,0x8c};//数码管显示延时函数void delay(uint z){uint x,y;for(x=z;x>0;x--){for(y=190;y>0;y--);{}}}//发送一个字节void SendByte(uchar date){uchar i;ACC = date; //将date变量存入ACC中for (i = 8; i >0; i--){IO = ACC0;SCL = 1; //时钟信号线拉高发送一位数据SCL = 0; //发送完一位数据后拉低时钟线ACC = ACC>>1; //将ACC的D1位移到D0位准备发送}}//接收一个字节uchar AccByte(void){uchar i;for (i = 8; i >0; i--){ACC = ACC>>1; //向右一位准备接受总线上的数据ACC7 = IO; //从总线上接收数据并存到ACC7中SCL = 1; //从总线上接收到一位数据SCL = 0; //接收完一位数据后拉低时钟线}return (ACC); //返回接收到的数据 ACC}//写一个字节注意与读一个字节的区别void WriteByte(uchar add, uchar date){RST = 0; SCL = 0; RST = 1; //初始化开启丛机内部定时器电路SendByte(add); //发送将写入数据的地址SendByte(date); //向预定地址写入数据 //拉高时钟线为下一次读取的初始化SCL = 1; RST = 0; //屏蔽任何输入输出释放总线}//读一个字节注意与发一个字节的区别uchar ReadByte(uchar add){uchar date;RST = 0; SCL = 0; RST = 1; //初始化开启丛机内部定时器电路SendByte(add); //发送将读数据的地址date = AccByte(); //将接收到的数据赋予rdate //拉高时钟线为下一次读取的初始化SCL = 1; RST = 0; //屏蔽任何输入输出return (date); //返回读到的数据}//时钟寄存器多字节写/*void BurstW1302T(uchar *p) //P寄存器地址指针{uint i;WriteByte(0X8e,0x00); //写保护控制命令 WP = 0(开启写命令)写操作RST = 0; SCL = 0; RST = 1; //初始化SendByte(0xbe); //时钟多字节写命令(时钟突发访问)// 向地址逐一发送数据for (i = 0; i < 8; i++){SendByte(*p);p++;}SCL = 1; //拉高时钟线为下一次读取的初始化RST = 0; //主机释放总线}//时钟寄存器多字节读读数据的时候不用写保护控制命令void BurstR1302T(uchar *p){uint i;RST = 0; SCL = 0; RST = 1; //初始化SendByte(0xbf); //时钟多字节读命令(时钟突发访问)for (i = 0; i < 8; i++){*p = AccByte(); //接收数据并将其存到P指针所指向的地址p++;}SCL = 1; RST = 0; //同上}//RAM寄存器多字节写(道理同时钟数据多字节读写一样)void BurstW1302R(uchar *p){uint i;WriteByte(0X8e,0x00);RST = 0; SCL = 0; RST = 1;SendByte(0xfe); //寄存器突发访问(写)for (i = 0; i < 32; i++){SendByte(*p);p++;}SCL = 1; RST = 0;}//RAM寄存器多字节读(道理同时钟数据多字节读写一样)void BurstR1302R(uchar *p){uint i;RST = 0; SCL = 0; RST = 1;SendByte(0xff); //寄存器突发访问(读)for (i = 0; i < 32; i++){*p = AccByte();p++;}SCL = 1; RST = 0;} *///设置初始化时间注意区分于多字节写的不同void TimeSet(uchar *p){uchar i;uchar add = 0x80; //写入数据的初始地址WriteByte(0x8e,0x00); //写保护控制 WP=0,允许写入数据for (i = 0; i < 7; i++){WriteByte(add,*p);p++;add += 2;}WriteByte(0x8e,0x80); //写保护控制 WP=1,禁止写入数据}//读取时间并将其存到数组中void GetTime(uchar curttime[]){uchar i;uchar add = 0x81; //读取数据的初始地址 for (i = 0; i < 8; i++){curttime[i] = ReadByte(add); //在此地址读数据并存入数组中 add += 2;}}//每隔5秒轮流显示时间和日期void display(){uchar i,j;//显示时间if (time <= 100){for (i = 0; i < 4; i++){if(j == 8) { j = 0; }ds1 = curttime[i]&0x0f;ds2 = (curttime[i]&0xf0)>>4;P2 = tabwcon[j];P0 = table[ds1];j++;delay(1);P2 = tabwcon[j];P0 = table[ds2];j++;delay(1);}}//显示日期else if(time>=100 && time<=200){for (i = 4; i < 7; i++){if(j == 6) { j = 0; }ds1 = curttime[i]&0x0f;ds2 = (curttime[i]&0xf0)>>4;P2 = tabwcon[j];P0 = table[ds1];j++;delay(1);P2 = tabwcon[j];P0 = table[ds2];j++;delay(1);}}else time = 0; //清零}void init(){TMOD = 0x01; //设置定时器0工作方式TH0 = (65536-50000)/265;TL0 = (65536-50000)%265;IE = 0x82;TR0 = 1;}void main(){init();TimeSet(InitTime);while(1){GetTime(curttime);display();}}void timer() interrupt 1{TH0 = (65536-50000)/265;TL0 = (65536-50000)%265;time++;}。