六年级上册数学必背知识点
小学数学六年级上册40个重要知识点归纳
1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零。
3.分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数:找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/1。
9.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
六年级上册必背知识点
六年级上册必背知识点小学六年级是小学阶段的重要时期,为了更好地应对学习和考试,掌握一些必背的知识点是非常关键的。
以下是为大家整理的六年级上册的必背知识点。
一、数学1、分数乘法分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。
能约分的要先约分,再计算。
2、位置与方向用方向和距离来确定物体的位置。
描述方向时,一般先说与观测点夹角较小的方向。
3、分数除法除以一个数(0 除外),等于乘这个数的倒数。
解决“已知一个数的几分之几是多少,求这个数”的问题,用除法计算。
4、比两个数相除又叫做两个数的比。
比的前项除以后项所得的商,叫做比值。
比的基本性质:比的前项和后项同时乘或除以相同的数(0 除外),比值不变。
5、圆圆的周长:C =2πr 或 C =πd (其中 C 表示周长,r 表示半径,d表示直径,π通常取值 314)圆的面积:S =πr²6、百分数表示一个数是另一个数的百分之几的数叫做百分数,也叫百分率或百分比。
百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
二、语文1、古诗词(唐·孟浩然)移舟泊烟渚,日暮客愁新。
野旷天低树,江清月近人。
(宋·苏轼)黑云翻墨未遮山,白雨跳珠乱入船。
卷地风来忽吹散,望湖楼下水如天。
(宋·辛弃疾)明月别枝惊鹊,清风半夜鸣蝉。
稻花香里说丰年,听取蛙声一片。
七八个星天外,两三点雨山前。
旧时茅店社林边,路转溪桥忽见。
2、文言文伯牙鼓琴,锺子期听之。
方鼓琴而志在太山,锺子期曰:“善哉乎鼓琴,巍巍乎若太山。
”少选之间而志在流水,锺子期又曰:“善哉乎鼓琴,汤汤乎若流水。
”锺子期死,伯牙破琴绝弦,终身不复鼓琴,以为世无足复为鼓琴者。
3、日积月累芭蕉不展丁香结,同向春风各自愁。
——李商隐殷勤解却丁香结,纵放繁枝散诞春。
——陆龟蒙霜树尽空枝,肠断丁香结。
——冯延巳4、课文重点段落中描写草原景色的段落。
六年级上册数学全部知识点
六年级上册数学全部知识点一、分数1、理解分数概念:分数是由分子和分母组成,分子是分开的,分母是分子所在的总数,表示两个整数之间的比重;特征:分子与分母之间的比值;作用:用分数可以表示出一个数介于两个整数之间的任何数;2、运算(1)相同分母分数的加减法相同分数的加减法:将分子加减即可。
(2)不同分母分数的加减不同分数的加减法:先将分母统一,然后将分子加减即可。
(3)分数的乘除运算将两个分数相乘:将分子和分母分别相乘即可;将两个分数相除:将分子和分母交换再相乘即可。
三、根式1、根式的定义根式又称亚分式、立方根式,是表示平方根(或立方根)的一种式子。
是包含开方符号的一种数学运算表达式,它是一种特殊的正分式或正亚分式。
2、根式的展开展开根式:乘方法;联立根式:开根号法;3、根式的乘除运算二次方根式的乘法:将乘方的同类项相乘;三次方根式的乘法:将系数相乘,连分数乘积的分子、分母乘积;二次方根式的除法:把被除式减去除数,得出商;三次方根式的除法:把被除式分为分子和分母,把除数分为分子和分母,再分别将这两个分子和两个分母相乘,得到商;四、几何成比例1、定义几何成比例是指在一个相同的几何图形内,测量出的条形(或弧形)长或圆的半径之间,呈现出等比例。
2、求出成比例比求出比例比:将所测量出的两个数分别除以其中最小的一个数,得出两个数之间的比例比;3、判断几何图形是否成比例判断几何图形是否成比例:将该图形内测量出的长度和半径分别除以其中最小的一个,若所得到的两个数之间的比例比相同,即可判断该图形成比例;五、统计与概率1、统计统计是指收集与分析文字、表格或图表中的数字信息,以便准确地反映其情况。
它包括:(1)收集与分析数据;(2)求出变量的均值、方差、离差等;(3)使用中心弦图、直方图、折线图等工具绘制出数据的分布情况;(4)根据数据判断变量的特征;(5)利用函数描述数据的变化规律。
2、概率概率:指在多次实验中,当发生某一事件时的可能性大小。
六年级数学上册知识点总结
第一单元圆圆概念总结1.圆的定义:平面上的一种曲线图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O表示。
它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d表示。
6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2r r =1 2 d用文字表示为:半径=直径÷2 直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母π表示。
圆周率是一个无限不循环小数。
在计算时,取π≈3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C=πd 或C=2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。
13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。
圆的面积公式:S=πr²。
14.圆的面积公式:S=πr²或者S=π(d÷2)²或者S=π(C÷π÷2)²15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
17.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。
人教版六年级数学上册必背的基础知识点!
人教版六年级数学上册必背的基础知识点!展开全文第一单元分数乘法(一)分数乘法意义1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <><>一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
六年级数学上册必背知识点
六年级数学上册必背知识点
六年级数学上册必背知识点包括:
1. 分数乘法:掌握分数乘法的计算方法,理解分数乘法的意义,能够熟练进行分数乘法运算。
2. 位置与方向:了解方向和位置的概念,掌握如何描述物体的位置和方向,能够在实际生活中应用这些知识。
3. 分数除法:理解分数除法的意义,掌握分数除法的计算方法,能够熟练进行分数除法运算。
4. 比:了解比的概念,掌握如何求比值和化简比,能够在实际生活中应用这些知识。
5. 圆:了解圆的基本性质,掌握圆的周长和面积的计算方法,能够在实际生活中应用这些知识。
6. 百分数:理解百分数的概念,掌握百分数的计算方法,能够在实际生活中应用这些知识。
7. 扇形统计图:了解扇形统计图的特点和作用,掌握如何绘制扇形统计图,能够在实际生活中应用这些知识。
8. 鸡兔同笼问题:了解鸡兔同笼问题的特点和解决方法,能够在实际生活中应用这些知识。
9. 负数:理解负数的概念和性质,掌握负数的计算方法,能够在实际生活中应用这些知识。
10. 圆柱与圆锥:了解圆柱和圆锥的基本性质和计算方法,能够在实际生活中应用这些知识。
以上是六年级数学上册必背知识点,希望能够帮助到您。
小学六年级上册数学知识点总结归纳(绝对经典)
小学六年级上册数学知识点总结归纳第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。
用括号把代表列和行的数字或字母括起来,再用逗号隔开。
例如:(7,9)表示第七列第九行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。
如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。
如:(3,6)和(1,6)都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
六年级数学上册重要知识点归纳
1/5六年级数学上册重要知识点归纳1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3 是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/1。
9.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4,所以0.25 的倒数4,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
2/513.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
六年级上册数学知识点整理
六年级上册数学知识点整理第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
8第二张有理数及其运算A、正数与负数通常用来表示具有相反意义的量。
B、0 既不是正数也不是负数。
0 是正负数的分界。
C、有理数:整数和分数,统称有理数.即所有可以写成分数形式的数(包括正整数、零、负整数、正分数、负分数) (注意:所有的有限小数和无限循环小数都可以化为分数。
)D 数轴。
包含三要素,直线(方向),原点,单位长度(数)。
任意一个有理数,都可以用数轴上的一点表示,但第二章有理数及其运算知识点A、正数与负数通常用来表示具有相反意义的量。
B、0 既不是正数也不是负数。
0 是正负数的分界。
C、有理数:整数和分数,统称有理数.即所有可以写成分数形式的数(包括正整数、零、负整数、正分数、负分数) (注意:所有的有限小数和无限循环小数都可以化为分数。
六年级上册数学知识点大全
六年级上册数学知识点大全1500字六年级上册数学知识点大全:一、整数运算1.正整数和负整数的概念及表示方法;2.整数的比较与排序;3.整数的加法、减法、乘法和除法运算;4.整数的乘方运算;5.整数的混合运算。
二、分数运算1.分数的概念及表示方法;2.分数的比较与排序;3.分数的加法、减法、乘法和除法运算;4.分数的混合运算。
三、小数运算1.小数的概念及表示方法;2.小数的比较与排序;3.小数的加法、减法、乘法和除法运算;4.小数的混合运算。
四、不等关系及解不等式1.不等关系的概念及符号表示;2.解一元一次不等式;3.解包含绝对值的不等式。
五、算式的变形与等式的解1.算式的相等关系;2.算式的变形与等式的解。
六、数与代数式1.数、代数(变量)和代数式的概念;2.代数式的数值计算和变量计算;3.图形与代数式的关系。
七、几何图形1.平面图形的基本性质;2.平行线、垂直线、相交线的判定;3.平面图形的分类与分析;4.几何图形的投影。
八、图形的轴对称和中心对称1.轴对称图形的性质与判定;2.中心对称图形的性质与判定;3.两种对称关系的联系与区别。
九、运算律和运算法则1.加法和乘法的运算律;2.数的运算律;3.运算法则的应用。
十、数量关系1.相等关系的图象表示;2.比例关系的概念及图象表示;3.百分数的概念及图象表示。
十一、统计与概率1.统计图表的读取和制作;2.统计数据的分析和应用;3.概率的理解和计算;4.概率问题的应用分析。
以上就是六年级上册数学的全部知识点,掌握了这些知识点,学生就能够在数学学习中得心应手,顺利完成各种题目的解答和应用。
数学六年级上册必考知识点
数学六年级上册必考知识点在数学学科中,数学常常被认为是一门需要不断掌握基础知识并建立逻辑思维的学科。
在六年级的数学学习中,有一些必考的知识点非常重要,下面将为大家详细介绍这些知识点。
1. 整数运算整数是六年级数学中的重点内容之一。
学生需要熟练掌握整数的概念及运算法则,包括整数的加法、减法、乘法和除法。
需要注意的是,在整数的除法中,要特别注意0作为除数的情况。
2. 分数的加减分数的加减是一个较为复杂的知识点,但也是必考内容。
学生需要理解分数的概念,掌握分数的加法和减法运算法则。
此外,还需要能够将分数化简为最简形式,并能够将带分数转化为假分数或相反操作。
3. 小数的运算小数是六年级数学中的另一个重要内容。
学生需要熟练掌握小数的加法、减法、乘法和除法运算法则,并能够运用到实际问题中。
在小数的除法运算中,同样要注意0作为除数的情况。
4. 算式计算在六年级数学中,会出现一些带有计算符号的算式,如加减乘除混合运算、括号运算等。
学生需要通过对这些算式的计算,培养他们的运算能力和推理能力。
同时,还需要注意运算的顺序和运算法则,避免出现错误。
5. 数量关系数量关系是六年级数学中的重要考点之一。
学生需要通过观察、比较和计算等方式,探索和描述事物之间的数量关系。
这包括数列的规律、面积和体积的计算等内容。
学生还需要学会运用逻辑思维,解决相应的问题。
6. 图形与几何图形与几何是数学中的一项重要内容,也是六年级必考的知识点。
学生需要熟练掌握基本的几何图形,如:矩形、正方形、三角形等的特征和性质,并能够进行简单的计算。
同时,还需了解图形的坐标和对称等概念。
7. 数据的处理六年级数学中的数据处理也是必考的知识点。
学生需要通过观察、统计和分析等方式,处理和描述数据的变化和关系。
这包括了图表的读取、单位的换算、平均数的计算等内容。
学生需要掌握相应的方法和技巧,提高数据分析能力。
通过掌握以上六年级上册必考知识点,学生将能够更好地理解数学概念,并能够灵活运用于解决实际问题中。
六年级数学上册第一单元的必背知识点
六年级数学上册第一单元的必背知识点一、数与代数1. 分数与小数分数的意义与读写:理解分数的产生和意义,能正确读写分数。
分数与除法的关系:明确分数可以表示两个数的相除关系,理解分数与除法之间的内在联系。
小数与分数的互化:掌握小数化分数和分数化小数的方法,能熟练进行互化。
分数的基本性质:理解分子、分母同时乘或除以同一个不为0的数,分数的大小不变。
约分与通分:掌握约分和通分的方法,理解约分和通分的实际意义。
2. 分数加减法同分母分数加减法:理解同分母分数加减法的算理,掌握算法,能正确进行计算。
异分母分数加减法:理解异分母分数加减法需要先通分的道理,掌握异分母分数加减法的计算方法,并能正确进行计算。
二、比与比例比的意义:理解比的意义,掌握比的读写方法,能正确写出比,并会根据比的意义求比值。
比的基本性质:理解比的基本性质,即比的前项和后项同时乘或除以同一个不为0的数,比值不变。
比例的意义和基本性质:理解比例的意义,掌握比例的基本性质,即两内项之积等于两外项之积。
解比例:掌握解比例的方法,能根据比例的基本性质,解出比例中的未知数。
三、解决实际问题分数、百分数应用题:能运用分数、百分数的知识解决一些简单的实际问题,如求一个数的几分之几或百分之几是多少,求一个数是另一个数的几分之几或百分之几等。
比例尺应用题:理解比例尺的意义,掌握比例尺的应用,能根据比例尺计算图上距离或实际距离。
四、探索规律探索数与形之间的规律:通过观察、分析、比较等数学活动,探索数与形之间的规律,培养学生的观察能力和逻辑思维能力。
五、其他知识点负数:部分教材可能会在这一单元引入负数的概念,理解负数的意义,掌握负数与正数、0的关系,以及负数在数轴上的表示。
方程初步:部分教材可能会简单介绍一元一次方程的概念和解法,为后续学习打下基础。
请注意,以上知识点仅为参考,具体内容还需根据你所使用的教材版本和地区来确定。
在学习过程中,建议结合教材、教辅和老师的讲解,全面理解和掌握这些知识点。
六年级数学上册知识点总结(6篇)
六年级数学上册知识点总结比的意义1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
例如15:10=15÷10=(比值通常用分数表示,也可以用小数或整数表示)前项比号后项比值3、比可以表示两个相同量的关系,即倍数关系。
也可以表示两个不同量的比,得到一个新量。
例:路程÷速度=时间。
4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、比和除法、分数的联系:比前项比号“:”后项比值除法被除数除号“÷”除数商7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
六年级数学上册知识点总结(二)比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:①用比的前项和后项同时除以它们的最大公因数。
③两个小数的比:向右移动小数点的位置,先化成整数比再化简。
(2)用求比值的方法。
注意:最后结果要写成比的形式。
如:15∶10=15÷10==3∶25.按比例分配:把一个数量按照一定的比来进行分配。
这种方法通常叫做按比例分配。
如:已知两个量之比为,则设这两个量分别为。
六年级数学上册知识点
六年级数学上册知识点
一、数的概念
1、数的概念:数是用来表示物体数量的符号。
2、整数:正整数、负整数和零。
3、有理数:分数、小数和百分数。
4、数的运算:加、减、乘、除、拆分、因式分解、求和、求积、求余数等。
二、图形
1、平面图形:三角形、矩形、正方形、梯形、菱形、圆形、
椭圆形等。
2、立体图形:正方体、长方体、圆柱体、球体等。
3、图形的属性:边、角、面等。
三、几何
1、几何概念:点、线、面、体等。
2、几何图形:直角坐标系、平行四边形、正多边形、圆、椭
圆等。
3、几何关系:平行、垂直、相交、等边、等腰、等角、等比、等量等。
四、数列
1、数列的概念:数列是由一组有限数构成的有序集合。
2、等差数列:等差数列是每一项与它的前一项之差都相等的
数列。
3、等比数列:等比数列是每一项与它的前一项之比都相等的
数列。
4、数列的性质:等差数列的性质、等比数列的性质、等比数
列的前n项和、数列的通项公式等。
五、概率
1、概率的概念:概率是表示事件发生的可能性的量度。
2、概率的计算:概率的计算方法,包括概率的定义法、概率
的计数法和概率的比例法。
3、概率的公式:概率的乘法公式、加法公式、贝叶斯公式等。
六年级上册数学重点知识点
六年级上册数学重点知识点文字像精灵,只要你用好它,它就会产生让你意想不到的效果。
所以无论我们说话还是作文,都要运用好文字。
只要你能准确灵活的用好它,它就会让你的语言焕发出活力和光彩。
下面,店铺为大家分享六年级上册数学重点知识点,希望对大家有所帮助!六年级上册数学重点知识点篇1一、位置在学习位置时用数对确定点的位置,起初确定一点位置是根据规定和约定。
由于在平面直角坐标系中,先画X轴,而X轴上的坐标表示列。
先用小括号将两个数括起来,再用逗号将两个数隔开。
括号里面的数由左至右为列数和行数。
列数与行数必须是具体的数,而不能用字母如(X,5)表示,它表述一条横线,(5,Y)它表示一条竖线,都不能确定一个点。
如:数对(3,2)表示第三列,第二行二、分数乘法分数乘法意义:1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。
2、分数乘分数是求一个数的几分之几是多少。
分数乘法的算法:1、分数与整数相乘,分子与整数相乘的积做分子,分母不变。
2、分数与分数相乘,用分子相乘的积做分子,分母相乘的积做分母。
分数的化简:分子、分母同时除以它们的最大公因数。
关于分数乘法的计算:可在乘的过程中约分,也可将积的分子分母约分,提倡在计算过程中约分,这样简便。
约分的书写格式:把两个可以约分的数先划去,分别在它们的上下方写出约分后的数。
分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。
倒数的意义:乘积为1的两个数互为倒数。
特别强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
求倒数的方法:1、求分数的倒数是交换分子分母的位置。
2、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。
1的倒数是它本身。
因为1*1=10没有倒数。
三、分数除法分数除法是分数乘法的逆运算,就是已知两个数的积与其中一个因数,求另一个因数的运算。
除以一个数是乘这个数的倒数,除以几就是乘这个数的几分之一。
人教版六年级上册数学全册重点知识点归纳
人教版数学六年级上册重点知识点归纳第一单元知识点一、分数、百分数应用题解题公式单位“1” 已知:单位“1” × 对应分率= 对应数量求单位“1”或单位“1”未知:对应数量÷ 对应分率= 单位“1”1、求一个数是另一个数的几分之几(或百分之几)公式:一个数÷ 另一个数= 一个数是另一个数的几分之几(百分之几)2、求一个数比另一个数多几分之几(或百分之几)公式:多的数量÷单位“1” = 一个数比另一个数多几分之几(百分之几)3、求一个数比另一个数少几分之几(或百分之几)公式:少的数量÷单位“1” = 一个数比另一个数少几分之几(百分之几)二、熟练掌握:百分数和分数、小数的互化,熟练背诵:2/1= 0.5 = 50% 4/1= 0.25=25% 4/3= 0.75 = 75%5/1= 0.2 = 20% 5/2= 0.4 = 40% 5/3= 0.6 = 60%5/4= 0.8 = 80% 8/1=0.125=12.5% 8/3=0.375=37.5%8/5=0.625=62.5% 8/7=0.875=87.5% 10/1=0.1=10%20/1=0.05=5% 25/1=0.04=4% 50/1=0.02=2%100/1=0.01=1%第二单元知识点1、什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
数对的作用:确定一个点的位置。
经度和纬度就是这个原理。
2、确定物体位置的方法:(1)先找观测点;(2)再定方向(看方向夹角的度数);(3)最后确定距离(看比例尺)。
在平面图上标出物体位置的方法:先用量角器确定方向,再以选定的单位长度为基准用直尺来确定图上距离,最后找出物体的具体位置,标上名称。
位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
六年级数学上册主要知识点整理
小学六年级上册数学重要知识点第一单元:位置与方向用数对表示位置 如:第三列第二行 表示为(3,2)。
一般情况下先列后行表示为(第几列,第几行)第二单元:分数乘法1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
(几个几是多少) (如:75×4表示4个75是多少,也可以表示75的4倍是多少。
) 2、一个数乘分数的意义就是求这个数的几分之几是多少。
(谁的几分之几是多少) (如:6×43表示6的43是多少;65×52表示65的52是多少。
) 3、分数乘法的计算法则:分子相乘的积作分子,分母相乘的积作分母。
(能约分的先约分) 4、一个数乘以比1小的数,积就小于这个数。
(如: 5×21﹤ 5 ); 一个数乘以1,积等于这个数。
(如: 54×1 ﹦ 54);一个数乘以大于1的数,积就大于这个数。
(如: 53×45 ﹥ 53)。
5、倒数 意义:乘积是1的两个数,互为倒数。
(1的倒数是1,0没有倒数)法则:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
第三单元:分数除法1、分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。
2、分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
3、一个数除以真分数,商大于这个数。
( 如: 4÷21﹥ 4 ); 一个数除以大于1的假分数,商小于这个数。
( 如: 3÷23﹤ 3 )。
4、两个数相除又叫做两个数的比。
在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
比值通常用分数表示,也可以用小数或整数表示。
根据分数与除法的关系,两个数的比也可以写成分数形式。
(如:3:2也可以写成23,仍读作“3比2”)如: 2 : 3 = 2 ÷ 3 =36、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
小学六年级上册数学必考知识点总结(必备4篇)
小学六年级上册数学必考知识点总结(必备4篇)小学六年级上册数学必考知识点总结第1篇分数乘法知识点(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b<1时,c一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级上册数学必背知识点
一、有关圆的计算公式
1、已知圆的直径,求圆的半径:r=d÷2 ;
已知圆的周长,求圆的半径:r=C÷3.14÷2
2、已知圆的半径,求圆直径:d=2r ;
已知圆的周长,求圆的直径:d=C÷3.14
3、已知圆的半径,求圆的周长:C=2πr;
已知圆的直径,求圆的周长: C=πd
=πr+d
4、已知圆的半径,求半圆的周长:C
半圆
=πd÷2+d
已知圆的直径,求半圆的周长:C
半圆
5、已知圆的半径,求圆的面积:S=πr²(半径未知,先求半径)
6、圆环的面积:S
=大圆面积-小圆面积(先求大圆的半径和小圆的半径)圆环
7、其他平面图形的面积公式
(1)平行四边形面积=底×高
(2)三角形面积=底×高÷2
(3)梯形面积=(上底+下底)×高÷2
(4)长方形面积=长×宽
(5)正方形面积=边长×边长
二、有关百分数和分数的问题
1、求一个数是另一个数的百分之几,用除法:前面的数÷后面的数=百分之几
2、求百分率:什么率的数量÷总数量=什么率。
3、求一个数的百分之几是多少,用乘法:单位“1”的量×对应的百分数
4、已知一个数的百分之几是多少,求这个数。
用除法
部分量÷部分量所对应的百分数=单位“1”的量。