最新人教版八年级数学下册全册教案.pdf
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
义务教育课程标准人教版数学教案
九年级下册
科任老师
二次根式
16.1 二次根式(1)
一、学习目标
1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a
二、学习重点、难点
重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程
(一)复习引入:
(1)已知x 2 = a ,那么a 是x 的______; x 是a 的________, 记为______,
a 一定是_______数。
(2)4的算术平方根为2
,用式子表示为 =__________;
正数a 的算术平方根为_______,0的算术平方根为_______;
式子)0(0≥≥a a 的意义是 。
(二)提出问题
1、式子a 表示什么意义?
2、什么叫做二次根式?
3、式子)0(0≥≥a a 的意义是什么?
4、)0()(2≥=a a a 的意义是什么?
5、如何确定一个二次根式有无意义?
(三)自主学习
自学课本第2页例前的内容,完成下面的问题:
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?
3,16−,34)0(3≥a a ,12+x
2、计算 :
(1) 2)4( (2) (3)2)5.0( (4)2)3
1( 2
)3(4
根据计算结果,你能得出结论: ,其中0≥a , )0()(2≥=a a a 的意义是 。
3、当a 为正数时指a 的 ,而0的算术平方根是 ,负
数 ,只有非负数a 才有算术平方根。所以,在二次根式
中,字母a 必须满足 ,
才有意义。
(三)合作探究 1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习 : x 取何值时,下列各二次根式有意义?
①43−x 223x + ③ 2、(133a a −−有意义,则a 的值为___________.
(2 在实数范围内有意义,则x 为( )。
A.正数
B.负数
C.非负数
D.非正数
(四)展示反馈 (学生归纳总结)
1.非负数a 的算术平方根a (a ≥0)叫做二次根式.
二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a 必须是非负数。
2.式子)0(≥a a 的取值是非负数。
(五)精讲点拨
1、二次根式的基本性质(a )2=a 成立的条件是a ≥0,利用这个性质可以求二次根式的平方,如(5)2=5;也可以把一个非负数写成一个数的平方形式,如5=(5)2.
2、讨论二次根式的被开方数中字母的取值,实际上是解所含字母的不等式。
(五)拓展延伸
________
)(2=a x
−−21x −
1、(1)在式子x
x +−121中,x 的取值范围是____________. (2)已知42−x +y x +2=0,则x-y = _____________.
(3)已知y =x −3+23−−x ,则x y = _____________。
2、由公式)0()(2≥=a a a ,我们可以得到公式a=2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
(1)把下列非负数写成一个数的平方的形式:
5 0.35
(2)在实数范围内因式分解
72−x 4a 2-11
(六)达标测试
A 组
(一)填空题: 1、 =________; 2、 在实数范围内因式分解:
(1)x 2-9= x 2 - ( )2= (x+ ____
)(x-____)
(2) x 2 - 3 = x 2 - ( ) 2 = (x+ _____) (x- _____)
(二)选择题:
1、计算
( ) A. 169 B.-13 C±13 D.13
2的值不能确定
3、下列计算中,不正确的是 ( )。
A. 3= 2)3( B 0.5=2)5.0(
C .2)3.0(=0.3
D 2)75(=35
B 组
253⎪⎪⎭⎫ ⎝⎛的值为2)13(−0,x =则为( )
(一)选择题:
1、下列各式中,正确的是( )。
A. = B C D
2、 如果等式2)(x −= x 成立,那么x 为( )。
A x ≤0; B.x=0 ; C.x<0; D.x ≥0
(二)填空题:
1、 若20a −+=,则 2a b −= 。
2、分解因式:
X 4 - 4X 2 + 4= ________.
3、当x= 时,代数式
其最小值是 。
二次根式(2)
一、学习目标
1、掌握二次根式的基本性质:a a =2
2、能利用上述性质对二次根式进行化简.
二、学习重点、难点
重点:二次根式的性质a a =2.
难点:综合运用性质a a =2进行化简和计算。
三、学习过程
(一)复习引入:
(1)什么是二次根式,它有哪些性质?
(2有意义,则x 。 (3)在实数范围内因式分解:
x 2-6= x 2 - ( )2= (x+ ____)(x-____)
(二)提出问题
1、式子a a =2表示什么意义?
4
949+=+4994⨯=⨯2424−=−653625=