北京大学半导体专业课程

合集下载

半导体材料课程教学大纲

半导体材料课程教学大纲

半导体材料课程教学大纲一、课程说明(一)课程名称:半导体材料所属专业:微电子科学与工程课程性质:专业限选学分: 3(二)课程简介:本课程重点介绍第一代和第二代半导体材料硅、锗、砷化镓等的制备基本原理、制备工艺和材料特性,介绍第三代半导体材料氮化镓、碳化硅及其他半导体材料的性质及制备方法。

目标与任务:使学生掌握主要半导体材料的性质以及制备方法,了解半导体材料最新发展情况、为将来从事半导体材料科学、半导体器件制备等打下基础。

(三)先修课程要求:《固体物理学》、《半导体物理学》、《热力学统计物理》;本课程中介绍半导体材料性质方面需要《固体物理学》、《半导体物理学》中晶体结构、能带理论等章节作为基础。

同时介绍材料生长方面知识时需要《热力学统计物理》中关于自由能等方面的知识。

(四)教材:杨树人《半导体材料》主要参考书:褚君浩、张玉龙《半导体材料技术》陆大成《金属有机化合物气相外延基础及应用》二、课程内容与安排第一章半导体材料概述第一节半导体材料发展历程第二节半导体材料分类第三节半导体材料制备方法综述第二章硅和锗的制备第一节硅和锗的物理化学性质第二节高纯硅的制备第三节锗的富集与提纯第三章区熔提纯第一节分凝现象与分凝系数第二节区熔原理第三节锗的区熔提纯第四章晶体生长第一节晶体生长理论基础第二节熔体的晶体生长第三节硅、锗单晶生长第五章硅、锗晶体中的杂质和缺陷第一节硅、锗晶体中杂质的性质第二节硅、锗晶体的掺杂第三节硅、锗单晶的位错第四节硅单晶中的微缺陷第六章硅外延生长第一节硅的气相外延生长第二节硅外延生长的缺陷及电阻率控制第三节硅的异质外延第七章化合物半导体的外延生长第一节气相外延生长(VPE)第二节金属有机物化学气相外延生长(MOCVD)第三节分子束外延生长(MBE)第四节其他外延生长技术第八章化合物半导体材料(一):第二代半导体材料第一节 GaAs、InP等III-V族化合物半导体材料的特性第二节 GaAs单晶的制备及应用第三节 GaAs单晶中杂质控制及掺杂第四节 InP、GaP等的制备及应用第九章化合物半导体材料(二):第三代半导体材料第一节氮化物半导体材料特性及应用第二节氮化物半导体材料的外延生长第三节碳化硅材料的特性及应用第十章其他半导体材料第一节半导体金刚石的制备及应用第二节低维半导体材料及应用第三节有机半导体材料(一)教学方法与学时分配按照教材中的内容,通过板书和ppt进行讲解。

《半导体物理学》课程教学大纲

《半导体物理学》课程教学大纲

《半导体物理学》课程教案大纲一、课程说明(一)课程名称:《半导体物理学》所属专业:物理学(电子材料和器件工程方向)课程性质:专业课学分:学分(二)课程简介、目标与任务:《半导体物理学》是物理学专业(电子材料和器件工程方向)本科生的一门必修课程。

通过学习本课程,使学生掌握半导体物理学中的基本概念、基本理论和基本规律,培养学生分析和应用半导体各种物理效应解决实际问题的能力,同时为后继课程的学习奠定基础。

本课程的任务是从微观上解释发生在半导体中的宏观物理现象,研究并揭示微观机理;重点学习半导体中的电子状态及载流子的统计分布规律,学习半导体中载流子的输运理论及相关规律;学习载流子在输运过程中所发生的宏观物理现象;学习半导体的基本结构及其表面、界面问题。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接:本课程的先修课程包括热力学与统计物理学、量子力学和固体物理学,学生应掌握这些先修课程中必要的知识。

通过本课程的学习为后继《半导体器件》、《晶体管原理》等课程的学习奠定基础。

(四)教材与主要参考书:[]刘恩科,朱秉升,罗晋生. 半导体物理学(第版)[]. 北京:电子工业出版社. .[]黄昆,谢希德. 半导体物理学[]. 北京:科学出版社. .[]叶良修.半导体物理学(第版)[]. 上册. 北京:高等教育出版社. .[]. . , ( .), , , .二、课程内容与安排第一章半导体中的电子状态第一节半导体的晶格结构和结合性质第二节半导体中的电子状态和能带第三节半导体中电子的运动有效质量第四节本征半导体的导电机构空穴第五节回旋共振第六节硅和锗的能带结构第七节族化合物半导体的能带结构第八节族化合物半导体的能带结构第九节合金的能带第十节宽禁带半导体材料(一)教案方法与学时分配课堂讲授,大约学时。

限于学时,第节可不讲授,学生可自学。

(二)内容及基本要求本章将先修课程《固体物理学》中所学的晶体结构、单电子近似和能带的知识应用到半导体中,要求深入理解并重点掌握半导体中的电子状态(导带、价带、禁带及其宽度);掌握有效质量、空穴的概念以及硅和砷化镓的能带结构;了解回旋共振实验的目的、意义和原理。

北大物理学院课程

北大物理学院课程

22 PHY-1-5 核物理与粒子物理导论 11 PHY-1-5 12 PHY-1-5 辐射物理 13 PHY-1-5 现代电子测量与实验 21 PHY-1-5 快电子学及实验 22 PHY-1-5 核天体物理 23 PHY-1-6 加速器物理基础 11 PHY-1-6 等离子体和离子束物理 12 PHY-1-6 医学物理导论 21 PHY-2-2 01 PHY-2-2 群论 I 02 PHY-2-2 量子统计物理 03 PHY-2-2 量子场论 04 PHY-2-2 群论 II(李群李代数) 05 PHY-2-2 量子规范场论 06 4 4 春季 3 3 春季 4 4 秋季 4 4 秋季 3 3 秋季 量子力学 III(高等量子力 4 学) 4 秋季 3 3 秋季 3 3 春季 3 3 春季 3 3 秋季 3 3 秋季 4 3 春季 3 3 秋季 核物理与粒子物理专题实 4 验 2 春季 3 3 春季
至 PHY-0-811系列的低年级选修棵。第二层次包括 PHY-1-01x 系列的数学物理方法、 PHY-1-04x 和 PHY-1-05x 系列两种类型的物理专业基础课、PHY-1-06x 系列的近代物理实验 以及 PHY-1-1xy 系列的高年级基础性选修课。第三层次包括 PHY-1-2xy 至 PHY-1-6xy 系列 的物理专业性选修课、PHY-2-20x 和 PHY-2-30x 系列的研究生课以及 PHY-1-9xy 系列(正在 建设中)的交叉学科类选修课。 对于不同类型的培养目标,除总学分要求都是140外,物理学院采用不同的培养方案和 不同的学分要求。在所有类型中,(1)必修课高等数学 I、II、线性代数可由数学学院内容 相近的 A 类课程代替, (2)全院必修课中超出规定学分部分可作为选修课, (3)在专业选修课 中,物理基础类和物理专业类课程中超出规定学分部分可作为跨学科类课程。 (一) 、宽基础型 总学分:140学分,其中:

半导体材料专业

半导体材料专业

半导体材料专业半导体材料专业一、介绍半导体材料专业是电子信息工程类专业中的一个重要分支,主要研究半导体材料的性质、制备方法以及在电子器件中的应用。

随着现代电子技术的快速发展,半导体材料作为电子器件的核心材料之一,对于推动科技进步和社会发展起着重要作用。

半导体材料专业培养了大量的专门人才来满足行业需求。

二、专业课程1. 半导体物理学:介绍了半导体物理学的基本概念和原理,包括能带结构、载流子运动等内容。

通过学习这门课程,学生可以深入了解半导体材料的特性和行为。

2. 半导体器件与集成电路:介绍了常见的半导体器件和集成电路结构、工作原理以及制造工艺。

学生通过实验操作和设计项目,掌握了制造和测试这些器件所需的技能。

3. 半导体制备技术:介绍了常见的半导体制备方法,包括化学气相沉积、物理气相沉积、溅射、离子注入等。

学生通过实验操作,学习了这些方法的原理和应用。

4. 材料物理与化学:介绍了材料物理和化学的基本知识,包括晶体结构、材料性能测试方法等。

这门课程为学生提供了深入了解半导体材料的基础知识。

5. 半导体器件工艺:介绍了半导体器件制造过程中的工艺流程和技术要点,包括光刻、薄膜沉积、离子注入等。

学生通过实验操作,掌握了制造高质量半导体器件所需的技能。

三、就业方向1. 半导体芯片设计师:负责设计集成电路芯片的电路结构和功能模块,具备扎实的电子技术和半导体材料知识。

2. 半导体工艺工程师:负责制定半导体器件制造工艺流程,并优化工艺参数以提高产品质量和产能。

3. 半导体测试工程师:负责测试半导体器件性能,并分析测试结果以改进产品设计和制造过程。

4. 半导体研发人员:参与新型半导体材料的研发工作,提高材料性能和制备工艺。

5. 半导体应用工程师:负责将半导体器件应用于各种电子产品中,包括通信设备、计算机、消费电子等。

四、实践机会1. 实验室实习:学生可以在校内实验室进行半导体材料制备和器件测试的实习,锻炼实际操作能力。

北京大学物理学系研究生课程

北京大学物理学系研究生课程

物理学系研究生生课程课程号 00410240 课程名群论学分 3.0周学时 4.0 总学时 72.0 开课学期秋课程号 00410340 课程名高等量子力学学分 4.0周学时 4.0 总学时 72.0 开课学期秋课程号 00410440 课程名量子统计物理学分 3.0周学时 4.0 总学时 72.0 开课学期秋课程号 00410540 课程名固体理论学分 5.0周学时 6.0 总学时 108.0 开课学期春课程号 00410640 课程名量子场论学分 4.0周学时 4.0 总学时 72.0 开课学期春课程号 00410740 课程名光学理论学分 4.0周学时 4.0 总学时 72.0 开课学期秋课程号 00410840 课程名辐射和光场的量子理论学分 4.0 周学时 4.0 总学时 72.0 开课学期春课程号 00410940 课程名专业文献阅读学分 4.0周学时 3.0 总学时 54.0 开课学期秋课程号 00411050 课程名磁性量子理论学分 3.0周学时 3.0 总学时 54.0 开课学期不定课程号 00411150 课程名稀土金属间化合的磁性学分 3.0 周学时 3.0 总学时 54.0 开课学期秋课程号 00411250 课程名固体物理中的格林函数方法学分 3.0 周学时 3.0 总学时 54.0 开课学期春课程号 00411350 课程名超导微观理论学分 3.0周学时 3.0 总学时 54.0 开课学期春课程号 00411450 课程名薄膜物理学分 3.0周学时 3.0 总学时 54.0 开课学期秋课程号 00411550 课程名半导体异质结物理学分 2.0周学时 3.0 总学时 54.0 开课学期春课程号 00411650 课程名电子显微学学分 3.0 周学时 3.0 总学时 54.0 开课学期不定课程号 00411750 课程名固体结构学分 2.0 周学时 3.0 总学时 54.0 开课学期春课程号 00411850 课程名固体光谱学分 3.0 周学时 3.0 总学时 54.0 开课学期春课程号 00411950 课程名表面物理学分 3.0 周学时 3.0 总学时 54.0 开课学期春课程号 00412050 课程名半导体激光物理学分 3.0 周学时 3.0 总学时 54.0 开课学期春课程号 00412150 课程名粒子物理学分 4.0 周学时 4.0 总学时 72.0 开课学期春课程号 00412250 课程名量子规范场论学分 4.0 周学时 4.0 总学时 72.0 开课学期秋课程号 00412350 课程名李群和李代数学分 3.0 周学时 3.0 总学时 54.0 开课学期春课程号 00412450 课程名粒子理论专题学分 4.0 周学时 4.0 总学时 72.0 开课学期春课程号 00412550 课程名量子场论专题学分 4.0 周学时 4.0 总学时 72.0 开课学期秋课程号 00412650 课程名原子核理论学分 4.0 周学时 4.0 总学时 72.0 开课学期秋课程号 00412750 课程名核结构理论专题学分 3.0 周学时 3.0 总学时 54.0 开课学期春课程号 00412850 课程名核反应理论专题学分 3.0 周学时 3.0 总学时 54.0 开课学期春课程号 00412950 课程名凝聚态理论学分 4.0 周学时 4.0 总学时 72.0 开课学期春课程号 00413050 课程名凝聚态理论专题学分 3.0 周学时 3.0 总学时 54.0 开课学期秋课程号 00413150 课程名统计物理专题学分 3.0 周学时 3.0 总学时 54.0 开课学期春课程号 00413250 课程名等离子体物理学分 4.0 周学时 4.0 总学时 72.0 开课学期春课程号 00413350 课程名等离子体动力学学分 4.0 周学时 4.0 总学时 72.0 开课学期春课程号 00413450 课程名广义相对论学分 3.0 周学时 3.0 总学时 54.0 开课学期春课程号 00413550 课程名宇宙学学分 3.0周学时 3.0 总学时 54.0 开课学期秋课程号 00413650 课程名非线性物理专题学分 4.0 周学时 4.0 总学时 72.0 开课学期春课程号 00413750 课程名高等原子与分子光谱学分 4.0 周学时 4.0 总学时 72.0 开课学期春课程号 00413850 课程名非线性光学和光谱学学分 4.0 周学时 4.0 总学时 72.0 开课学期秋课程号 00413950 课程名半导体光电子学学分 4.0 周学时 4.0 总学时 72.0 开课学期秋课程号 00414050 课程名介质光波导理论学分 2.0 周学时 3.0 总学时 54.0 开课学期秋课程号 00414150 课程名量子光学专题学分 3.0 周学时 3.0 总学时 54.0 开课学期秋课程号 00414260 课程名磁共振理论学分 2.0 周学时 3.0 总学时 54.0 开课学期春课程号 00414360 课程名天体物理专题学分 3.0 周学时 3.0 总学时 54.0 开课学期春课程号 00414460 课程名数学物理专题学分 3.0 周学时 3.0 总学时 54.0 开课学期春课程号 00414560 课程名微分几何与拓扑学学分 4.0 周学时 3.0 总学时 72.0 开课学期秋课程号 00414660 课程名激光专题学分 2.0 周学时 3.0 总学时 54.0 开课学期春课程号 00414760 课程名激光物理学分 2.0 周学时 4.0 总学时 72.0 开课学期秋课程号 00414860 课程名激光实验学分 2.0 周学时 3.0 总学时 54.0 开课学期秋课程号 00414960 课程名教学实习学分 2.0 周学时 3.0 总学时 54.0 开课学期不定课程号 00415060 课程名计算模拟方法学分 1.0 周学时 3.0 总学时 54.0 开课学期秋课程号 00415160 课程名半导体缺陷学分 3.0 周学时 2.0 总学时 54.0 开课学期秋课程号 00415250 课程名固体物理前沿学分 2.0 周学时 3.0 总学时 54.0 开课学期秋课程号 00415360 课程名计算磁学学分 2.0 周学时 3.0 总学时 54.0 开课学期秋物理学系本科生课程课程号 00431110 课程名力学学分 4.0 周学时 4.0 总学时 68.0 开课学期秋课程号 00431120 课程名热学学分 3.0 周学时 3.0 总学时 51.0 开课学期春课程号 00431130 课程名电磁学学分 5.0 周学时 5.0 总学时 85.0 开课学期春课程号 00431140 课程名光学学分 4.0 周学时 4.0 总学时 68.0 开课学期秋课程号 00431150 课程名原子物理学学分 4.0 周学时 4.0 总学时 68.0 开课学期秋课程号 00431221 课程名物理学(B)(一) 学分 5.0 周学时 5.0 总学时 85.0 开课学期春课程号 00431222 课程名物理学( B ) (二) 学分 5.0 周学时 5.0 总学时 85.0 开课学期秋课程号 00431231 课程名物理学( C ) (一) 学分 4.0 周学时 4.0 总学时 68.0 开课学期春课程号 00431232 课程名物理学(C) (二) 学分 4.0 周学时 4.0 总学时 68.0 开课学期秋课程号 00431240 课程名物理学(D) 学分 6.0 周学时 6.0 总学时 102.0 开课学期春课程号 00431311 课程名普通物理实验(A) (一) 学分 2.0课程号 00431312 课程名普通物理实验(A) (二) 学分 2.0 周学时 4.0 总学时 68.0 开课学期秋课程号 00431313 课程名普通物理实验(A ) (三) 学分 2.0 周学时 4.0 总学时 68.0 开课学期春课程号 00431421 课程名普通物理实验(B)(一) 学分 2.0 周学时 4.0 总学时 68.0 开课学期秋课程号 00431422 课程名普通物理实验(B)(二) 学分 2.0 周学时 4.0 总学时 68.0 开课学期春课程号 00431431 课程名普通物理实验(C)(一) 学分 1.0 周学时 2.0 总学时 40.0 开课学期秋课程号 00431432 课程名普通物理实验(C)(二) 学分 1.0 周学时 3.0 总学时 28.0 开课学期春课程号 00432111 课程名数学物理方法(A)(一) 学分 3.0 周学时 3.0 总学时 51.0 开课学期秋课程号 00432112 课程名数学物理方法(A)(二) 学分 3.0 周学时 3.0 总学时 51.0 开课学期春课程号 00432120 课程名理论力学(A) 学分 4.0 周学时 4.0 总学时 68.0 开课学期春课程号 00432130 课程名热力学与统计物理(A) 学分 4.0 周学时 4.0 总学时 68.0 开课学期秋课程号 00432140 课程名电动力学 (A) 学分 4.0课程号 00432150 课程名量子力学 (A) 学分 4.0周学时 4.0 总学时 68.0 开课学期春课程号 00432210 课程名数学物理方法(B) 学分 4.0周学时 4.0 总学时 68.0 开课学期春课程号 00432220 课程名理论力学(B) 学分 2.0周学时 2.0 总学时 34.0 开课学期春课程号 00432230 课程名热力学与统计物理(B) 学分 3.0 周学时 3.0 总学时 51.0 开课学期秋课程号 00432240 课程名电动力学(B) 学分 3.0周学时 3.0 总学时 51.0 开课学期秋课程号 00432250 课程名量子力学(B) 学分 3.0周学时 3.0 总学时 51.0 开课学期春课程号 00432311 课程名近代物理实验(A)(一) 学分 3.0 周学时 4.0 总学时 68.0 开课学期春课程号 00432312 课程名近代物理实验(A)(二) 学分 3.0 周学时 4.0 总学时 68.0 开课学期秋课程号 00432410 课程名近代物理实验(B) 学分 3.0 周学时 4.0 总学时 68.0 开课学期春,? 课程号 00432510 课程名固体物理学学分 4.0 周学时 4.0 总学时 68.0 开课学期春课程号 00433210 课程名固体磁性学分 3.0周学时 3.0 总学时 51.0 开课学期秋课程号 00433220 课程名磁化理论学分 3.0 周学时 3.0 总学时 51.0 开课学期秋课程号 00433230 课程名磁性测量实验学分 3.0 周学时 4.0 总学时 68.0 开课学期秋课程号 00433310 课程名激光物理学学分 4.0 周学时 4.0 总学时 68.0 开课学期秋课程号 00433320 课程名激光物理实验学分 3.0 周学时 4.0 总学时 68.0 开课学期秋课程号 00433410 课程名半导体物理学学分 4.0 周学时 4.0 总学时 68.0 开课学期秋课程号 00433420 课程名半导体物理实验学学分 3.0 周学时 4.0 总学时 56.0 开课学期秋课程号 00433510 课程名低温物理学学分 2.0 周学时 2.0 总学时 34.0 开课学期秋课程号 00433520 课程名超导物理学学分 4.0 周学时 4.0 总学时 68.0 开课学期不定课程号 00433610 课程名固体结构学学分 4.0 周学时 4.0 总学时 68.0 开课学期秋课程号 00433620 课程名衍射物理学学分 4.0 周学时 4.0 总学时 68.0 开课学期秋课程号 00433630 课程名固体材料学学分 4.0 周学时 4.0 总学时 68.0 开课学期秋课程号 00434110 课程名原子核物理学学分 3.0 周学时 3.0 总学时 51.0 开课学期春。

北京大学各院系课程设置一览

北京大学各院系课程设置一览
※医学部课程仅包含在本部的课程内容。
※本一览表不包括政治课、军事理论课、英语课、文科计算机基础、辅修及双学位课程。
※本一览表不提供上课地点及主讲教师信息,请与相应院系教务联系。
001数学科学学院
/
一年级秋季学期
数学分析(I)(必)5.0
数学分析(I)习题(必)0.0
※实际上,多数专业必修课及专业选修课也没有年级限制。对应的年级是“培养方案”推荐的修该门课程的适当年级。
※不开设任何专业必修课的院系为研究生院或其他不招收本科生的部门,如马克思主义学院、武装部等。
※由于在某些院系下有不同专业方向,标注为必修课的课程可能并不对于所有学生均为必修(如外国语学院的各个语种分支)。相关信息请咨询相应院系教务。
标注(通)表示此课程为通选课,非本院系本科生可选修此类课程,并计入通选课所需总学分;通选课无年级限制;
标注(公)表示此课程为全校任选课(原称公共任选课),此类课程不与学位挂钩,公选课无年级限制。
标注(体)表示此课程为体育课,每名学生必须且仅能选修4.0学分体育课;男生必须选修“太极拳”,女生必须选修“健美操”。
密码学(限)3.0
空间剖分及其在计算几何学中的应用(限)2.0
统计计算(限)3.0
应用回归分析(限)3.0
理论计算机科学基础(限)3.0
非参数统计(限)3.0
风险理论(限)3.0
偏微分方程数值解(限)3.0
四年级春季学期
毕业论文(1)(必)6.0
毕业论文(2)(必)6.0
毕业论文(证券)讨论班(必)6.0
随机过程论(限)3.0
线性代数群(限)3.0
应用偏微分方程(限)3.0
低维流形II(限)3.0
偏微分方程选讲(限)3.0

半导体专业课程

半导体专业课程

半导体专业课程简介半导体专业课程是电子信息类专业中的一门重要课程,旨在培养学生对半导体理论、器件、工艺和应用的全面理解和深入研究。

在现代电子科技的飞速发展中,半导体技术被广泛应用于电子器件、光电子器件、集成电路等领域,因此对半导体专业的需求越来越大。

该课程从基础理论出发,通过讲解半导体的原理、材料、器件制造工艺等方面的知识,使学生能够掌握半导体材料、半导体器件的工作原理和性能以及半导体工艺的基本流程,为学生今后从事半导体相关的研究和应用工作打下扎实的基础。

课程内容1. 半导体材料•介绍半导体的基本概念和分类,包括晶体结构、能带论、禁带宽度等;•介绍常见的半导体材料,如硅、锗、砷化镓等,详细讲解它们的性质、结构以及在半导体器件中的应用。

2. pn结和二极管•介绍pn结的形成、性质和电学特性,包括载流子注入、扩散、漂移等过程;•讲解二极管的工作原理、伏安特性以及不同类型的二极管(正向导通二极管、反向封装二极管)。

3. 功能器件•介绍场效应管(MOSFET)和双极晶体管(BJT)的结构、工作原理和特性;•讲解功能器件的放大原理、工作方式和应用领域,以及如何选择合适的功能器件。

4. 光电子器件•介绍光电二极管、激光器、光电晶体管等光电子器件的原理和性能参数;•讲解光电子器件的制作工艺和常见故障分析方法。

5. 大规模集成电路•介绍集成电路的概念和分类,包括数字集成电路、模拟集成电路、混合集成电路等;•讲解集成电路的设计方法、制造工艺流程,以及常见的集成电路故障诊断和测试方法。

6. 封装与封装工艺•介绍封装的概念和分类,包括晶体管封装、集成电路封装等;•讲解封装工艺的基本要求和流程,以及封装对器件性能的影响。

7. 先进半导体工艺•介绍半导体器件制造的基本流程,包括光刻、薄膜沉积、离子注入等;•讲解先进工艺技术,如纳米半导体工艺、封装工艺的发展趋势和挑战。

教学方法•课堂教学:教师通过讲解理论知识、案例分析、示范实验等方式进行知识传授;•实验教学:组织学生进行半导体器件的制作、测试和分析,培养学生的实践能力;•学科竞赛:组织学生参加各类半导体设计和制作竞赛,提高学生的综合素质。

4《半导体工艺》课程教学大纲2016

4《半导体工艺》课程教学大纲2016

《半导体工艺技术》教学大纲(中文)一、课程名称(中英文)中文名称:半导体工艺技术英文名称:Semiconductor Manufacturing二、课程编码及性质课程编码:0800021课程性质:专业核心课,必修课三、学时与学分总学时:32学分:2.0四、先修课程大学物理,固体电子学基础,微电子学概论五、授课对象可供电子封装技术专业和材料科学与工程专业学生选修。

六、课程教学目的(对学生知识、能力、素质培养的贡献和作用)本课程是本专业的核心课程之一,其教学目的主要包括:1、了解集成电路工艺的发展历史和发展前沿,掌握行业方向和动态:2、掌握集成电路制造工艺及原理:3、掌握集成电路制造相关领域的新技术和新设备:4、培养工艺分析、设汁以及解决工艺问题和提髙产品质量的能力。

表1课程目标对毕业要求的支撐关系七、教学重点与难点:教学重点:重点要求学生掌握不同半导体工艺技术的原理和控制因素,通过这些工艺的组成来实现一定的器件结构。

教学难点:掌握器件结构和丄艺之间的关系,及其半导体工艺的组合应用。

八、教学方法与手段:教学方法:(1)采用现代化教学方法(含PPT演示,设备照片,影像资料等),阐述不同半导体工艺技术的原理和控制因素,保证主要教学内容的完成,这部分以课堂讲授为主;(2)适时安排课堂小测试和作业,使所学知识点能够融会贯通。

教学手段:(1)先介绍不同半导体工艺技术的原理和控制因素;(2)将器件与工艺结合起来,掌握一些器件的工艺实现方法。

(3)将器件性能与工艺、结构联系起来,初步了解器件的分析和设计思路。

九、教学内容与学时安排(1)总体安排教学内容与学时的总体安排,如表2所示。

(2)具体内容各章节的具体内容如下:1.半导体加工环境与衬底(4学时)了解半导体工业的发展历史,掌握微电子工艺对环境的基本要求:空气、水、气、化学试剂等。

掌握晶体生长技术(直拉法、区熔法),硅圆片制备及规格,晶体缺陷,硅中杂质。

2.热氧化(4学时)掌握SiCh结构及性质,硅的热氧化方程及其厚度计算方法,影响氧化速率的因素, 场氧化工艺,氧化缺陷,氧化工艺及设备。

半导体材料 课程

半导体材料 课程

半导体材料课程
半导体材料课程是电子工程、材料科学与工程等专业的一门重要课程,主要介绍半导体材料的基本原理、性质及应用。

以下是一个典型的半导体材料课程的内容概述:
1. 半导体基本概念:介绍半导体的定义、晶体结构、能带理论等基本概念。

2. 半导体材料制备技术:介绍半导体材料的制备方法,包括化学气相沉积、物理气相沉积、分子束外延等。

3. 半导体材料的物理性质:介绍半导体的电子结构、载流子的性质、能带结构等。

4. 掺杂和腐蚀:介绍半导体材料中的掺杂技术和腐蚀技术,包括离子注入、扩散、金属有机化学气相沉积等。

5. 半导体器件:介绍半导体材料在电子器件中的应用,包括二极管、晶体管、场效应管等。

6. 光电器件:介绍半导体材料在光电器件中的应用,包括发光二极管、激光器、太阳能电池等。

7. 半导体材料的性能测试与分析:介绍半导体材料的性能测试方法,包括电学测试、光学测试等。

8. 半导体材料的应用:介绍半导体材料在信息技术、能源技术、生物医学等领域的应用。

9. 半导体材料的发展趋势:介绍半导体材料的发展趋势,包括新型材料、纳米材料等。

通过学习半导体材料课程,学生可以掌握半导体材料的基本原理和性质,了解半导体器件的工作原理,掌握半导体材料的制备和测试方法,为从事电子工程、材料科学与工程等相关领域的研究和应用奠定基础。

《半导体物理与器件》课程教学大纲

《半导体物理与器件》课程教学大纲

《半导体物理与器件》课程教学大纲一、课程名称(中英文)中文名称:半导体物理与器件英文名称:Semiconductor Physics and Devices二、课程代码及性质专业选修课程三、学时与学分总学时:40学分:2.5四、先修课程《量子力学》、《统计物理》、《固体物理》、《电路原理》五、授课对象本课程面向功能材料专业学生开设六、课程教学目的(对学生知识、能力、素质培养的贡献和作用)本课程是功能材料专业的选修课之一,其教学目的包括:1、能够应用物理、化学基本原理,识别、表达、并通过文献研究分析复杂半导体物理与器件相关工程问题,获得有效结论。

2、掌握半导体物理与器件相关问题的特征,以及解决复杂工程问题的方法。

3、掌握文献检索、资料查询、现代网络搜索工具的使用方法;具备应用各类文献、信息及资料进行半导体物理与器件领域工程实践的能力。

4、了解半导体物理与器件的专业特征、学科前沿和发展趋势,正确认识本专业对于社会发展的重要性。

5、了解半导体物理与器件领域及其相关行业的国内外的技术现状,具有较强的业务沟通能力与竞争能力。

表1 课程目标对毕业要求的支撑关系七、教学重点与难点课程重点:(1)掌握能带理论以及从能带理论的角度分析半导体的导电机制;熟悉半导体中电子的状态及其运动规律;熟悉实际半导体中的杂质和缺陷的种类、性质及其作用;掌握并且会计算热平衡状态下载流子的浓度问题以及非平衡载流子的概念、产生及其随时间的演化规律(寿命问题);掌握载流子的几种输运机制。

(2)理解和熟悉PN结及其能带图;掌握PN结的电流-电压特性以及电容-电压特性;熟悉PN结的三种击穿机理;理解和掌握PN结二极管的工作原理。

(3)在对PN结二极管工作原理分析的基础上,学会将此分析进行合理的拓宽,即从单结/两端二极管发展到双结/三端晶体管;掌握双极型晶体管(BJT)的基本概念、符号的定义、工作原理的定性分析以及关键的关系表达式等。

(4)系统地了解和掌握MOSFET的基本工作原理与物理机制;掌握MOSFET器件的主要结构形式、工作特性和有关的物理概念;熟悉MOSFET的电容-电压特性、伏-安特性及其交流效应,并能掌握主要参数和特性的分析与计算方法;了解半导体器件制备的方法、过程及几个器件制备的实例。

《半导体材料与器件》课程教学大纲(本科)

《半导体材料与器件》课程教学大纲(本科)

《半导体材料与器件》课程教学大纲课程编号:课程名称:半导体材料与器件英文名称: Semiconductor materials and devices课程类型:专业课课程要求:选修学时/学分:32/2 (讲课学时:32 )适用专业:功能材料一、课程性质与任务半导体材料与器件是现代自动化、微电子学、计算机、通讯等设备仪器研制生产的基础材料及核心部件,具有专门的生产设备、工艺和方法,在现代各方面得到大量的研究和应用,半导体材料与器件是功能材料工程专业一门主要的专业方向课。

通过本课程的学习使学生掌握半导体材料与器件的基础理论、主要的生产技术、工艺原理和方法。

为今后从事相关工作奠定良好的基础。

二、课程与其他课程的联系本课程涉及功能材料的晶体结构和物理性能,应在《材料科学基础》《功能材料物理基础》和《材料物理化学》课程之后进行授课。

三、课程教学目标1.掌握半导体材料物理的基本理论,硅、信和化合物半导体材料结构和性能。

(支撑毕业能力要求1, 4, 5)2.了解和掌握常见半导体材料的结构与性能的关系,能够正确选择和使用半导体材料,能够提高和改善常见半导体材料的相关性能。

(支撑毕业能力要求1, 3, 4, 5, 7)3.掌握利用各种电子材料制备双极性晶体管、MOS场效应晶体管、结型场效应晶体管及金属-半导体场效应晶体管、功率MOS场效应晶体管、绝缘栅双极晶体管IGBT、LED和厚、薄膜集成电路的技术及生产工艺,能够对设计和实验结果进行综合分析。

(支撑毕业能力要求3, 4, 5, 12)4.能够使学生充分利用所学的半导体材料知识,在半导体和微电子材料领域研究、开发、生产高质量器件,为信息行业发展提供基础硬件支持,为国民经济服务。

(支撑毕业能力要求3, 4, 5, 7)四、教学内容、基本要求与学时分配五、其他教学环节(课外教学环节、要求、目标)无六、教学方法本课程以课堂理论教学为主,通过理论讲授、提问、讨论、演示等教学方法和手段让学生理解授课的基本内容,结合完成作业等教学手段和形式完成课程教学任务。

半导体集成电路课程教学大纲

半导体集成电路课程教学大纲

《半导体集成电路》课程教学大纲(包括《集成电路制造基础》和《集成电路原理及设计》两门课程)集成电路制造基础课程教学大纲课程名称:集成电路制造基础英文名称:The Foundation of Intergrate Circuit Fabrication课程类别:专业必修课总学时:32 学分:2适应对象:电子科学与技术本科学生一、课程性质、目的与任务:本课程为高等学校电子科学与技术专业本科生必修的一门工程技术专业课。

半导体科学是一门近几十年迅猛发展起来的重要新兴学科,是计算机、雷达、通讯、电子技术、自动化技术等信息科学的基础,而半导体工艺主要讨论集成电路的制造、加工技术以及制造中涉及的原材料的制备,是现今超大规模集成电路得以实现的技术基础,与现代信息科学有着密切的联系。

本课程的目的和任务:通过半导体工艺的学习,使学生掌握半导体集成电路制造技术的基本理论、基本知识、基本方法和技能,对半导体器件和半导体集成电路制造工艺及原理有一个较为完整和系统的概念,了解集成电路制造相关领域的新技术、新设备、新工艺,使学生具有一定工艺分析和设计以及解决工艺问题和提高产品质量的能力。

并为后续相关课程奠定必要的理论基础,为学生今后从事半导体集成电路的生产、制造和设计打下坚实基础。

二、教学基本要求:1、掌握硅的晶体结构特点,了解缺陷和非掺杂杂质的概念及对衬底材料的影响;了解晶体生长技术(直拉法、区熔法),在芯片加工环节中,对环境、水、气体、试剂等方面的要求;掌握硅圆片制备及规格,晶体缺陷,晶体定向、晶体研磨、抛光的概念、原理和方法及控制技术。

2、掌握SiO2结构及性质,硅的热氧化,影响氧化速率的因素,氧化缺陷,掩蔽扩散所需最小SiO2层厚度的估算;了解SiO2薄膜厚度的测量方法。

3、掌握杂质扩散机理,扩散系数和扩散方程,扩散杂质分布;了解常用扩散工艺及系统设备。

4、掌握离子注入原理、特点及应用;了解离子注入系统组成,浓度分布,注入损伤和退火。

半导体物理 课程简介

半导体物理 课程简介

《半导体物理》是电子科学与技术专业、微电子科学与工程专业的专业基础课程,也是“微电子学”、“集成电路设计与集成系统”专业的一门基础和核心主干课程。

该课程在综合运用学生已经学习的《固体物理》、《量子力学》等基础课程的相关知识的基础上,系统地介绍半导体中的电子状态、载流子的统计分布、半导体的导电性以及金半结、MIS结、异质结、半导体的光学性质、半导体的热电性质以及磁效应等内容。

通过学习这门课程,学生可以全面系统地掌握能带、载流子及其基本特性,建立半导体器件物理模型和特殊半导体器件物理模型,为后续半导体器件等专业课程的学习奠定较为扎实的基础。

同时,该课程在整个教学体系中起着十分重要的作用,为后续的专业知识学习和实践能力的培养提供基础。

《半导体物理》课程通常包括半导体的晶体结构与价键模型、半导体的电子结构、半导体中的载流子、半导体中载流子的定量统计描述等内容。

此外,课程还会涵盖半导体物质结构和能带结构、半导体载流子及其输运性质、非热平衡状态下的半导体、pn结、金属和半导体接触、半导体表面与MIS结构等主题。

这门课程对于理解现代电子工业的基础理论至关重要,因为电子工业中的许多关键组件,如手机、数码相机、计算机CPU和DRAM内存等,都是基于半导体物理学的原理设计和制造的。

有机半导体材料与器件课程教学大纲

有机半导体材料与器件课程教学大纲

《有机半导体材料与器件》课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;课程名称:(中文)有机半导体材料与器件;(英文)Organic semiconductor materials and devices 所属专业:物理学专业、微电子科学与工程专业及光信息科学与技术类专业课程性质:专业选修课程学分:3课时:54课时(二)课程简介、目标与任务;《有机半导体材料与器件》是一门新兴交叉和前沿学科,是将电子科学与有机材料科学紧密结合在一起的一门尖端学科。

它凭借着有机光电材料及半导体材料独特的分子特性、软物质行为和超分子结构,已成为继真空电子、固体电子、光电子之后的国际研究热点。

当前有机半导体材料与器件研究已经从基础研究走向产业化开发,并渗透到许多领域而迅猛发展,为人类文明与科学技术的进步做出日益突出的贡献。

本课程研究有机半导体材料及其光电子器件,讲解光电信息技术领域中有机半导体材料与器件所涉及的相关原理、技术及应用,是一门发展极为迅速、实践性很强的应用学科。

学习本课程的目标是掌握有机材料及器件的基本理论、器件原理,了解该领域的最新成就和应用前景,进一步拓宽专业口径,扩大知识面,为学生将来进入有机电子、信息科学领域打下基础。

课程根据专业的特点,重点掌握目前有机光电功能材料与器件基本工作原理及其技术、了解和掌握最新国际发展趋势,使学生获得对有机半导体光、电子器件分析和设计的基本能力,掌握分析和解决实际问题的方法与途径,重视理论与实践的结合,以便为进一步开展有机光、电子相关研究奠定基础。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;本课程涵盖多学科领域,其中主要的学科是半导体物理学、半导体材料学,同时还需要具备有机化学和半导体器件的基本知识,并且还要应用半导体平面工艺技术等,因此本课程需要先修的课程包括:半导体物理、有机化学、半导体材料、半导体器件及半导体工艺等。

(四)教材与主要参考书。

【教学大纲】半导体材料

【教学大纲】半导体材料

《半导体材料》教学大纲课程名称:半导体材料课程类别:选修课适用专业:材料化学考核方式:考查总学时、学分:32 学时、2学分一、课程教学目的《半导体材料》是化学与材料科学学院材料化学专业的一门选修课。

半导体科学发展的基础。

本课程主要介绍半导体晶体生长方面的基础理论知识,初步掌握单晶材料生长、制备方法以及常用的锗、硅、化合物半导体材料的基本性质。

通过本课程的学习,使学生掌握半导体材料的相关知识,从而对半导体材料的制备和性质有较全面的认识。

二、课程教学要求本课程的任务是使学生获得半导体晶体生长方面的基础理论知识,初步掌握单晶材料生长、制备方法以及常用的锗、硅、化合物半导体材料的基本性质等相关知识。

三、先修课程学生学习完《功能材料概论》、《材料物理导论》和《材料物理化学》以后开设本课程。

四、课程教学重、难点本课程的重点是掌握半导体晶体生长方面的基础理论知识,单晶材料生长、制备方法以及常用的锗、硅、化合物半导体材料的基本性质等相关知识。

本课程的难点是半导体材料的不同制备方法和过程,以及与所制备出来材料的性质之间的关系。

五、课程教学方法与教学手段教学方法:课程讲授中采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;增加讨论课,调动学生学习的主观能动性;讲课要联系实际并注重培养学生的创新能力。

教学手段:在教学中采用板书、电子教案及多媒体教学等相结合的教学手段,以确保全面、高质量地完成课程教学任务。

六、课程教学内容第一章半导体材料概述 ( 1学时)1.教学内容:(1)人类对半导体材料的使用和研究历史,(2)半导体材料的发展历史和基本特性和分类。

2.重、难点提示(1)教学重点:半导体材料的基本特性及其应用。

(2)教学难点:硅晶体的各向异性。

第二章硅和锗的化学制备(4学时)1.教学内容(1)硅和锗的基本晶体结构和物理化学性质。

(2)化学提纯制备高纯硅的三氯氢硅氢还原法和硅烷法。

(了解硅、锗的化学提纯)2.重、难点提示(1)教学重点:高纯硅的制备。

《现代半导体器件物理》课程介绍

《现代半导体器件物理》课程介绍

《现代半导体器件物理》课程介绍现代半导体器件物理是电子信息类专业中的一门重要课程,它深入解析了半导体器件的物理原理、结构及工作原理等方面的知识。

本文将从课程内容、学习方法与应用前景三个方面介绍现代半导体器件物理。

一、课程内容现代半导体器件物理主要包括以下几个方面的内容:1.半导体基础知识:介绍半导体材料的基本特性以及晶体结构、能带理论、载流子的产生与输运等相关知识,为后续学习奠定基础。

2. pn结与二极管:讲解pn结的形成原理、二极管的工作原理以及常见二极管的特性参数和应用。

3. 势垒结与MOSFET:介绍势垒结的形成原理、MOSFET的结构和工作原理,详细分析MOSFET的静态和动态特性。

4. 双极型晶体管:讲解双极型晶体管的结构、工作原理和特性,深入分析放大器和开关电路的设计与应用。

5. 光电器件:介绍光电二极管、光电导、光电晶体管等光电器件的结构、特性及应用。

二、学习方法学习现代半导体器件物理需要掌握一定的学习方法,以下几点可以帮助学生更好地掌握该课程:1.理论与实践结合:理论知识与实际案例相结合,通过实验操作加深对理论的理解和记忆。

2.多角度思考:通过分析不同角度的问题,培养学生的思维能力,拓宽学生的视野。

3.积极参与讨论:与同学一起探讨问题,互相交流,共同解决难题。

4.多做习题:通过大量的习题练习,加深对知识点的理解和记忆,提高解决问题的能力。

5.查阅相关文献:利用图书馆和互联网资源,查阅相关文献,了解最新的研究成果和应用案例。

三、应用前景现代半导体器件物理是电子信息领域的基础课程,其应用前景广阔。

随着信息技术的飞速发展,半导体器件在通信、计算机、消费电子等领域的应用越来越广泛。

1.通信领域:半导体器件在通信领域扮演着重要角色,如光纤通信、无线通信、卫星通信等,都离不开半导体器件的支持。

2.计算机领域:半导体器件是计算机的核心组成部分,如集成电路、处理器、存储器等,它们的性能和功能都与半导体器件的发展密切相关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章
>,试定性画出(1)设有两种半导体,在价带顶两者空穴的有效质量有以下关系:m m
12
-关系图。

两者的E k
(2)说明什么是直接禁带半导体,甚么是简接禁带半导体。

(3)说明为什么施主能级位于导带底以下,受主能级位于价带顶以上。

,相对介电常数为17,求
(4)InSb的电子有效质量为0.014m
1)类氢施主杂质的电离能
2)类氢施主上基态电子的轨道半径
3)若这些类氢施主均匀分布,在多大的浓度下相邻杂质的电子轨道才能发生交叠?(浓度定义为单位体积中的粒子数)
(5)对具有二重能级的施主,其两重能级的具体含义是什么?第一次电离是否能够以任何一个电离能发生?通常两次电离的电离能的相对大小如何?为甚么?
(6)硅中的金可有几种带电状态?。

相关文档
最新文档