金属键金属晶体优秀课件
2024版高中化学选修二金属键与金属晶体ppt课件
04
实验结束后需及时 清理实验现场,保 持实验室整洁卫生。
06
总结回顾与拓展延伸
Chapter
关键知识点总结回顾
金属键的概念与特点
金属原子通过自由电子形成的“电子海”相互 连接,具有导电性、导热性和延展性。
金属晶体的结构与性质
金属晶体中原子排列紧密,具有高度的对称性和各向 同性,物理性质如硬度、熔点等取决于金属键的强弱。
铝晶体
面心立方晶格,每个铝原 子与12个相邻原子形成金 属键。
钠晶体
体心立方晶格,每个钠原 子将最外层的一个电子贡 献给“电子海”,形成金 属键。
与其他类型晶体比较
与离子晶体比较
金属键无方向性、无饱和性,离子键 有方向性、有饱和性;金属晶体导电、 导热性好,离子晶体通常不导电。
与分子晶体比较
金属晶体中原子以紧密堆积方式排列, 分子晶体中分子间距离较大;金属晶 体熔点、沸点较高,分子晶体熔点、 沸点较低。
建筑领域
利用金属的强度和稳定性等性质,可以制作建筑结构材料,如钢筋、铝合金型材等。同时, 金属还可以用于制作建筑装饰材料,如铜雕、铁艺等。
电子行业
利用金属的导电性和导热性等性质,可以制作电子元器件和散热器件,如电路板、电子封装 材料等。此外,金属还可以用于制作电磁屏蔽材料和防静电材料等。
04
常见金属元素及其化合物性质 探讨
实验步骤
使用金相显微镜观察不同金属晶体的 显微结构,记录并比较其晶体结构特 点。
实验结果与讨论
分析不同金属晶体结构的异同点,探 讨金属键对晶体结构的影响及晶体结 构对金属性质的影响。
实验三:制备和表征合金材料
实验目的
金属键金属晶体课件(含多款)
金属键与金属晶体课件一、金属键概述金属键是金属元素之间的化学键,它是金属晶体的基本结构特征。
金属键不同于离子键和共价键,其特点在于电子的自由运动。
在金属晶体中,金属原子通过金属键相互连接,形成具有特定几何形状的晶体结构。
二、金属键的特性1.电子的自由运动:金属键中,金属原子的外层电子脱离原子核的束缚,形成自由电子。
这些自由电子在整个金属晶体中自由运动,为金属提供了良好的导电性和导热性。
2.金属键的强度:金属键的强度较大,金属晶体具有较高的熔点和沸点。
金属键还具有较好的延展性,使金属在外力作用下能够发生塑性变形。
3.金属键的饱和性:金属键具有饱和性,即一个金属原子所能提供的空位数量有限。
当金属原子之间的距离过远时,金属键将断裂,金属晶体将发生断裂。
4.金属键的方向性:金属键具有一定的方向性,使金属晶体具有特定的几何形状。
金属原子的排列方式决定了金属晶体的晶体结构。
三、金属晶体的结构1.金属晶体的类型:根据金属原子排列方式的不同,金属晶体可分为面心立方(FCC)、体心立方(BCC)和六方最密堆积(HCP)等类型。
2.金属晶体的晶面和晶向:金属晶体中的晶面和晶向是描述晶体结构的重要参数。
晶面指数(hkl)和晶向指数[uvw]分别表示晶面和晶向在晶体坐标系中的取向。
3.金属晶体的缺陷:金属晶体中的缺陷包括点缺陷、线缺陷和面缺陷。
这些缺陷对金属的物理和化学性质具有重要影响。
四、金属键的应用1.金属材料的制备:金属键是金属材料制备的基础。
通过控制金属原子之间的金属键,可以制备出具有不同性能的金属材料。
2.金属材料的性能优化:通过调控金属晶体中的缺陷,可以优化金属材料的性能,如提高强度、硬度、耐磨性等。
3.金属材料的表面处理:金属材料的表面处理技术,如电镀、喷涂等,基于金属键的作用原理,旨在提高材料的耐腐蚀性、装饰性和功能性。
4.金属基复合材料:金属基复合材料是将金属与其他材料(如陶瓷、塑料等)复合而成的新型材料。
金属键与金属晶体课件高二化学人教版选择性必修2
元素 熔点/℃ 沸点/℃
3Li(锂) 180.5 1347
11Na(钠) 97.72 883
19K(钾) 63.65 774
37Rb(铷) 38.89 688
55Cs(铯) 28.84 678.4
③合金的熔沸点比其各成分金属的熔沸点低,硬度比各成分大
金属键与金属晶体
01 金属键与金属晶体
4.电子气理论解释金属的物理性质 ➢ 金属光泽 由于金属内部原子以最紧密堆积状态排列,且存在自由电子,所以当光线 照射到金属表面时,自由电子可以吸收所有频率的光并很快放出,使金属 不透明且具有金属光泽。而金属在粉末状态时,晶格排列不规则,吸收可 见光后反射不出去,所以金属粉末常呈暗灰色或黑色。
4.电子气理论解释金属的物理性质
➢ 延展性 当金属受到外力作用时,晶体中的各原子层就会发生相对滑动,但 不会改变原来的排列方式,而且弥漫在金属原子间的电子气可以起 到类似轴承中滚珠之间润滑剂的作用,所以金属有良好的延展性。
外力
+ +++++ + + +++++ +++ ++ + +++ ++ +++++++ +
错位
金箔
金属键与金属晶体
4.电子气理论解释金属的物理性质 ➢ 导热性 自由电子在运动时与金属阳离子碰撞,引起两者能量的交换。当金属某部 分受热时,那个区域里的自由电子能量增加,运动速度加快,通过碰撞, 把能量传递给金属阳离子。自由电子与金属阳离子频繁碰撞,把能量从温 度高的部分传递到温度低的部分,从而使整块金属达到相同的温度。
选修三专题3《金属键金属晶体》ppt课件
电负性对金属键稳定性影响
01
电负性越大,金属原子间的电子云重叠程度越小, 金属键越稳定。
02
电负性的增加使得金属原子对外层电子的束缚力增 强,有利于形成稳定的金属键。
03
无方向性
金属键没有固定的方向,金属原子可以在空间任意排列。
无饱和性
金属原子可以不断吸收自由电子,形成更多的金属键。
强度与金属半径和电荷有关
金属半径越小,电荷越高,金属键越强。
金属晶体结构类型
简单立方结构
01
每个金属原子都与相邻的6个金属原子形成金属键,空间利用率
较低。
体心立方结构
02
晶胞中心有一个金属原子,8个顶角各有一个金属原子,空间利
能带理论的基本思想
将金属中的自由电子视为在周期性势场中运动的粒子,通过求解薛 定谔方程得到电子的能级分布。
能带的形成
由于金属原子实的周期性排列,电子的波函数相互交叠,形成连续 的能带。
能带理论对金属性质的解释
金属的导电性源于价带中的电子在外电场作用下可以定向移动形成 电流。
实验方法及结果分析
实验方法
04
常见金属晶体结构解析
Chapter
简单立方结构
01
结构特点
每个晶胞只含有一个原子,原子位 于晶胞的体心。
配位数
6。
03
02
原子堆积方式
简单立方堆积。
典型金属
钋(Po)。
04
面心立方结构
结构特点
每个晶胞含有4个原子, 原子位于晶胞的8个顶点 和6个面心。
金属键金属晶体 完整版课件
(2)密置层原子堆积排列有两种情况。在第一层(A层)上堆积第二层(B
层)时,B层原子的中心正好落在A层新形成的其中一类空隙的中心,
使两层紧密接触,在此基础上再堆积第三层(C层)时,一种堆积方式
是C层与A层相同,这样就形成了“ABABAB…六…”方堆积,称为_____
堆积;另一种堆积方式是C层原子的中心正好落在A层原子新形成的
解析 具有金属光泽、熔点较高的晶体不一定是金属晶体, 有些非金属晶体也具有此性质,但金属晶体固态时能导电, 而非金属晶体固态时不导电(石墨除外)。 答案 否 测试该晶体在固态时能否导电
【慎思4】 在金属晶体中,如果金属原子的价电子数越多,原子半径越
小,自由电子与金属阳离子间的作用力越大,金属的熔沸点越高。
( )。 A.镁的硬度大于铝 B.镁的熔、沸点低于钙 C.镁的硬度大于钾 D.钙的熔、沸点高于钾
解析 本题为信息给予题,主要考查学生的自学能力、思 维能力和原子结构知识。 根据题目所给予信息:镁和铝的电子层数相同。价电子 Al>Mg,原子半径:Al<Mg,Al的硬度大于镁;镁、钙电 子数相同,但半径Ca>Mg,金属键强弱Mg>Ca,所以B不 正确,用以上比较方法可推出:价电子数Mg>K;原子半 径:Mg<Na<K。所以金属键:Mg>K,硬度:Mg>K,所以 C正确。钙和钾元素位于同一周期,价电子数:Ca>K;原 子半径:K>Ca,金属键:Ca>K;熔点:Ca>K,所以D正确。 答案 AB
由此判断下列各组金属熔沸点高低顺序,其中正确的是
( )。
A.Mg>Al>Ca
B.Al>Na>Li
C.Al>Mg>Ca
D.Mg>Ba>Al
金属键金属晶体教学课件
02
金属键的强度和稳定性 取决于金属原子的半径 和电负性。
03
金属键的形成不受方向 原子,形成复杂的金 属晶体结构。
02
金属晶体的介
金属晶体的定 义
01
02
03
金属晶体
由金属原子或金属离子通 过金属键结合形成的晶体。
金属键
金属原子之间通过电子共 享形成的化学键。
金属晶体中金属键的实例
面心立方结构的铜和铝
铜和铝的原子在空间中按照面心立方的规律排列,形成具有高对 称性的晶体结构,其金属键表现出明显的方向性。
体心立方结构的铁和铬
铁和铬的原子按照体心立方的规律排列,其金属键强度较高,晶体 的硬度也较大。
六方密排结构的镁和钛
镁和钛的原子按照六方密排的规律排列,其晶体结构相对较为紧密, 金属键的强度也较高。
05
金属金属晶体的未来
新材料的研 发
高性能金属材料
01
研发具有优异力学性能、耐腐蚀性和高温稳定性的金属材料,
以满足航空航天、能源、化工等领域的需求。
金属基复合材料
02
通过在金属基体中添加增强相,如陶瓷颗粒或纤维,制备具有
优异综合性能的金属基复合材料。
多功能金属材料
03
开发具有磁、电、热、光等功能的金属材料,用于传感器、电
金属金属晶体教 件
• 金属键的介绍
• 金属键与金属晶体的关系 • 金属键金属晶体的应用 • 金属键金属晶体的未来发展
01
金属的介
金属键的定义
金属键
金属原子之间通过共享价电子形 成的化学键。
金属键的形成
金属原子通过移除部分外层电子成 为正离子,而留下的空位则吸引其 他金属原子的外层电子成为负离子, 从而形成金属键。
金属键金属晶体完整版课件
2.金属特性
特性
解释
在外电场作用下,自由电子在金属内部发生 导电性
____定__向__移__动_____,形成电流 通过__自__由__电__子_____的运动把能量从温度高 导热性
的区域传到温度低的区域
由于金属键无__方__向__性___,在外力作用下,金
延展性 属原子之间发生相对滑动时,各层金属原子
A.铁的熔点比生铁的熔点高 B.镁的熔、沸点低于钙 C.镁的硬度大于钾 D.钙的熔、沸点高于钾
【解析】 一般来说,合金的熔点比成分金属的熔点 低,A正确。r(Mg)<r(Ca)且Mg和Ca的价电子数相同,故熔 沸点:Mg>Ca,B不正确。r(Mg)<r(K)且价电子数: Mg>K,故硬度Mg>K,C正确。r(Ca)<r(K)且价电子数: Ca>K,故熔、沸点:Ca>K,D正确。
【解析】 A:Hg在常温下为液态。C:r(Ca)<r(K)且 价电子数Ca>K,所以金属键Ca>K,故熔、沸点Ca>K。 D:金属的导电性随温度升高而降低。
【答案】 B
晶胞中粒子数目的计算——均摊法
【问题导思】 ①如何分析金属晶体内部的原子在三维空间里呈周期 性有序排列? ②如何确定一个晶胞中含有的粒子数?
自由电子 键 面心立方和六方 性,有金属光泽
1.金属晶体中有阳离子,无阴离子。 2.主族金属元素原子单位体积内自由电子数多少,可 通过价电子数多少进行比较。
金属中的金属键越强,其硬度越大,熔、沸点 越高,且据研究表明,一般来说,金属原子半径越小,价 电子数越多,则金属键越强。由此判断下列说法错误的是 ()
之间仍保持__金__属__键_____的作用
1.(1)金属中的自由电子来源于金属原子中的哪部分电 子?
《金属键金属晶体》课件
电学性能表征方法及指标
电阻率测定
通过四探针法或双电桥法等测定金属晶体的电阻率,了解其导电 性能。
霍尔效应测试
利用霍尔效应测试仪对金属晶体进行霍尔效应测试,以获取载流子 类型、浓度和迁移率等信息。
介电常数与介电损耗测定
采用阻抗分析仪等仪器测定金属晶体的介电常数和介电损耗,了解 其绝缘性能和介电损耗特性。
激光熔化
利用激光束照射金属涂层 ,使其熔化并与基体形成 冶金结合。
多层堆积
通过多次喷射和熔化过程 ,逐层堆积出所需形状的 复杂零件。
先进连接技术实现材料复合
扩散连接
01
将两个待连接金属表面紧密接触,在高温下施加压力使原子相
互扩散形成连接。
钎焊连接
02
采用比母材熔点低的钎料,通过加热熔化钎料并润湿母材表面
金属原子在晶体中采取紧密堆积的方式排 列,使得原子间的空隙最小化,从而提高 了晶体的密度和稳定性。
等径圆球
配位数高
金属原子在晶体中可视为等径圆球,这使 得金属晶体具有各向同性的物理性质,如 导电性和导热性。
金属原子的配位数通常较高,这意味着每个 金属原子都与多个相邻原子形成金属键,从 而增强了晶体的稳定性和强度。
功能材料领域应用前景
电子电器
金属晶体具有良好的导电性和导热性,可用于制造电子电器产品 中的电极、导线、散热器等部件。
光学器件
金属晶体具有独特的光学性能,可用于制造反射镜、滤光片、偏振 片等光学器件。
生物医学
金属晶体可用于制造医疗器械、植入物等生物医学材料,具有良好 的生物相容性和耐腐蚀性。
新能源领域发展机遇
05
金属晶体应用领域及 发展趋势
结构材料领域应用现状
金属键金属晶体ppt课件.ppt
Na 3s1 186 108.4 97.5
Mg 3s2 160 146.4 650
Al 3s23p1 143.1 326.4
660
Cr 3d54s1 124.9 397.5 1900
金属的熔点、硬度与金属键的强弱有关,金属键的强弱 又可以用原子化热来衡量。
原子化热是指1mol金属固体完全气化成相互远离的 气态原子时吸收的能量。
⑷金属晶体结构具有金属光泽和颜色
• 由于自由电子可吸收所有频率的光,然 后很快释放出各种频率的光,因此绝大 多数金属具有银白色或钢灰色光泽。而 某些金属(如铜、金、铯、铅等)由于 较易吸收某些频率的光而呈现较为特殊 的颜色。
• 当金属成粉末状时,金属晶体的晶面取
向杂乱、晶格排列不规则,吸收可见光
后辐射不出去,所以成黑色。
a
ρ= m = 4 M/NA V 2 2 d3
解此类题的关键! 37
已知铜晶胞是面心立方晶胞,该晶胞的边长为 3.6210-10m,每一个铜原子的质量为1.0551025kg ,试回答下列问题:
(1)一个晶胞中“实际”拥有的铜原子数是多少?
(2)该晶胞的体积是多大?
(3)利用以上结果计算金属铜的密度。
2. 晶胞中微粒数个晶胞共享,处于体心的 金属原子全部属于该晶胞。 微粒数为:8×1/8 + 1 = 2 (2)面心立方:
在立方体顶点的微粒为8个晶胞共有,在面心的为2 个晶胞共有。 微粒数为:8×1/8 + 6×1/2 = 4 (3)六方棱柱:
在六方体顶点的微粒为6个晶胞共有,在面心的为2 个棱柱共有,在体内的微粒全属于该棱柱。 微粒数为:12×1/6 + 2×1/2 + 3 = 6
(1)欲计算一个晶胞的体积,除假定金原子是钢 性小球外,还应假定 各面对角线上。的三个球两两相切
金属键金属晶体课件-2024鲜版
晶体结构测定
相变研究
利用X射线衍射技术,可以研究金属 晶体在不同温度、压力条件下的相变 行为,深入了解金属键与晶体结构之 间的关系。
通过X射线衍射实验,可以测定金属 晶体的晶格常数、原子间距等结构参 数,进而揭示金属键的本质。
2024/3/28
23
电子显微镜在微观形貌观察中作用
1 2
高分辨率成像 电子显微镜利用电子束代替光束进行成像,具有 更高的分辨率,能够观察到金属晶体的微观形貌 和缺陷结构。
2024/3/28
关系总结
金属键是决定金属晶体结构和性质的关键因素。金属键的强度、 稳定性和特性直接影响金属晶体的结构稳定性、物理性质、化 学性质和力学性能。
意义
深入了解金属键与金属晶体的关系有助于理解金属的宏观性质 和行为,为材料科学、冶金工程等领域提供理论支持和实践指 导。此外,这种关系的研究还有助于开发新的金属材料和优化 现有材料的性能。
2024/3/28
20
新型金属功能材料发展趋势
2024/3/28
超导材料 超导材料是指在低温下电阻为零的材料,具有极高的导电 性能。超导材料在电力输送、磁悬浮列车等领域有潜在应 用前景。
形状记忆合金 形状记忆合金是一种具有形状记忆效应的金属材料,能够 在加热后恢复其原始形状。形状记忆合金在医疗器械、航 空航天等领域有广泛应用。
金属键金属晶体课件
2024/3/28
1
contents
目录
2024/3/28
• 金属键基本概念与特性 • 金属晶体结构与性质 • 金属键与金属晶体关系探讨 • 常见金属晶体材料介绍与应用 • 实验方法与技术手段在金属键、金属晶
体研究中应用 • 总结回顾与拓展延伸
2
人教版高中化学选修三3.3 金属晶体 实用配套课件优质课件PPT
体的空间占有率 =68%
体对角线长为c 面对角线长为b 棱线长为a 球半径为r
c2=b2+a2 b2=a2+a2 c=4r (4r)2=3a2
③六方最密堆积(镁型)Mg、Zn、Ti
12
6
3
A
54
B
A
B A
六方最密堆积的配位数 =12
,
六方最密堆积的晶胞
③金属的延展性
金属离子和自由电子间相互作用没有方向性, 在外力作用下各原子层就会发生相对滑动, 但不会改变原来的排列方式,而且弥漫在金 属原子间的电子气可以起到类似轴承中滚珠 之间润滑剂的作用
金属的延展性
++ + +++ + + ++ +
+++ ++ + + + ++
错位
+++ + ++ + + ++ ++++ +++ + +++ +
第三节 金属晶体
一、金属键
1、金属键
①定义
金属离子与自由电子之间强烈的相互作用
②本质 金属原子的价电子发生脱落, 形成金属阳离子和自由电子
电子气理论 无饱和性 自由电子被所有原子所共用 无方向性 从而把所有的金属原子维系在一起
2、金属晶体
金属离子与自由电子通过金属键结合 而成的晶体叫做金属晶体
构成金属晶体的粒子: 金属阳离子、自由电子 粒子间的作用力:金属键
高二化学选择性必修课件金属键金属晶体
PART 05
实验探究:观察和分析金 属键和金属晶体
实验目的和原理介绍
实验目的
通过观察和实验分析,了解金属键的形成和金属晶体的基本性质,探究金属键强 度与金属晶体性质之间的关系。
原理介绍
金属键是金属原子间通过共用自由电子形成的化学键,具有导电性、导热性和延 展性等特性。金属晶体是由金属原子通过金属键结合而成的晶体,其性质与金属 键的强度密切相关。
不同类型金属晶体中金属键作用差异
金属元素种类
不同种类的金属元素具有不同的 原子半径和电负性,因此形成的 金属键强度和性质也有所差异。
晶体结构类型
金属晶体存在多种结构类型,如 面心立方、体心立方等,不同结 构类型的金属晶体中金属键的排 列方式和密度不同,导致性质差
异。
合金与纯金属
合金是由两种或两种以上金属元 素组成的固体溶液,合金中的金 属键与纯金属中的金属键相比, 存在复杂的相互作用和影响因素
金属晶体的比较
不同金属晶体在导电性、导热性、延展性和可塑性等方面存在差异,这些差异与金属原子的电子构型、原子半径 和堆积方式等因素有关。例如,铜的导电性和延展性比铁好,这是因为铜的金属键比铁强,铜原子之间的相互作 用力更大。
PART 03
金属键与金属晶体关系探 讨
金属键对金属晶体性质影响
强度与硬度
XX
REPORTING
2023 WORK SUMMARY
高二化学选择性必修 课件金属键金属晶体
汇报人:XX
20XX-01-13
XX
目录
• 金属键基本概念与性质 • 金属晶体结构与类型 • 金属键与金属晶体关系探讨 • 金属键和金属晶体在化学反应中表现 • 实验探究:观察和分析金属键和金属晶体 • 知识拓展:新型金属材料发展趋势及应用前景
金属晶体课件ppt.ppt
石墨是层状结构的混合型晶体
石墨为层状结构,各层之间是范德华力结合,容 易滑动,所以石墨很软。
石墨的熔沸点为什么很高(高于金刚石)? 石墨各层均为平面网状结构,碳原子之
间存在很强的共价键(大π键),故熔沸点 很高。
石墨能导电的原因:
这是因为石墨晶体中存在自由电子,可以 在整个碳原子的平面上运动,但是电子不 能从一个平面跳跃到另一个平面,所以石 墨能导电,并且沿层的平行方向导电性强 。这也是晶体各向异性的表现。
4.金属晶体结构具有金属光泽和颜色
自由电子可吸收所有频率的光,然后很快释放 出各种频率的光,因此绝大多数金属具有银白 色或钢灰色光泽。 而某些金属(如铜、金、铯、铅等)由于较易 吸收某些频率的光而呈现较为特殊的颜色。
当金属成粉末状时,金属晶体的晶面取向杂乱、 晶格排列不规则,吸收可见光后辐射不出去, 所以成黑色。
一维空间 二维空间
堆积方式及性质小结
三维空间
堆积方式 晶胞类型
简单立 简单立方 方堆积
体心立方 体心立方 密堆积
六方最 密堆积
六方
面心立方 面心立方 最密堆积
空间利 用率
52%
68% 74%
74%
配位数
实例
6
Po
8
Na、K、Fe
12 Mg、Zn、Ti
12 Cu、Ag、Au
Eg:已知金属铜为面心立方晶体,如图所示,铜 的相对原子质量为63.54,密度为8.936g/cm3, 试求: (1)图中正方形边长a, (2)铜的金属半径r r
金属原子脱落来的价电子形成遍布整个晶体的 “电子气”,被所有原子所共用,从而把所有的原子维 系在一起。
5.影响:阳属离键子越所 强带 强电 ,荷 熔越 沸多 点、 高半 。径越小,金
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶体类型 导电时的状态
导电粒子
离子晶体
金属晶体
水溶液或 晶体状态
熔融状态下
自由移动的离子 自由电子
2、金属晶体结构与金属导热性的关系
【讨论2】金属为什么易导热? 自由电子在运动时经常与金属离子碰撞,
引起两者能量的交换。当金属某部分受热时, 那个区域里的自由电子能量增加,运动速度加 快,通过碰撞,把能量传给金属离子。
一.金属键
Hale Waihona Puke 1.定义:金属离子和自由电子之间的强烈的相互作用。 2.形成
成键微粒: 金属阳离子和自由电子 存 在: 金属单质和合金中
3.方向性: 无方向性
二、金属晶体的结构与金属性质的内在联系 1、金属晶体结构与金属导电性的关系
【讨论1】 金属为什么易导电?
在金属晶体中,存在着许多自由电子,这些自由 电子的运动是没有一定方向的,但在外加电场的条件 下自由电子就会发生定向运动,因而形成电流,所以 金属容易导电。不同的金属导电能力不同,导电性最 强的三中金属是:Ag、Cu、Al
3s2
3s23p1
3d54s1
原子半径/pm
186
160
143.1
124.9
原子化热/kJ·mol-1
108.4
146.4
326.4
397.5
熔点/℃
97.5
650
660
1900
金属的熔点、硬度与金属键的强弱有关,金属键的强弱 又可以用原子化热来衡量。原子化热是指1mol金属固体完 全气化成相互远离的气态原子时吸收的能量。
熔点最低的金属:汞(常温时成液态) 熔点最高的金属:钨(3410℃) 铁的熔点:1535 ℃
影响金属键强弱的因素
(1)金属元素的原子半径 (2)单位体积内自由电子的数目
一般而言:
金属元素的原子半径越小,单位体积内自由电子 数目越大,金属键越强,金属晶体的硬度越大,熔、 沸点越高。
如:同一周期金属原子半径越来越小,单位体积内
3. 金属的下列性质与金属键无关的是( C )
A. 金属不透明并具有金属光泽
自由电子数增加,故熔点越来越高,硬度越来越大; 同一主族金属原子半径越来越大,单位体积内自由电 子数减少,故熔点越来越低,硬度越来越小。
总结
▪ 金属键的概念 ▪ 运用金属键的知识解释金属的物
理性质的共性和个性 ▪ 影响金属键强弱的因素
练习
1.下列有关金属键的叙述错误的是 ( B )
A. 金属键没有方向性 B. 金属键是金属阳离子和自由电子之间存在的强烈
金属键金属晶体优秀课件
一、初步感知,引入新课
金属元素在周期表中的位置及原子结构特征
金属样品 Ti
已学过的金属知识 金属的分类
重金属:铜、铅、锌等 按密度分
轻金属:铝、镁等
4.5g/cm3
黑色金属:铁、铬、锰 冶金工业
有色金属:除铁、铬、锰以外的金属
按储量分 常见金属:铁、铝等 稀有金属:锆、钒、钼
金属的特点:
①常温下,单质都是固体,汞(Hg)除外; ②大多数金属呈银白色,有金属光泽,但 金(Au)—黄—色,铜(Cu)—红—色, 铋(Bi)—微—红 色,铅(Pb)—蓝—白 色。
归纳:金属还有哪些共同的物理性质?
金属的物理性质
具有金属光泽,能导电,导热,具有良 好的延展性,金属的这些共性是有金属 晶体中的化学键和金属原子的堆砌方式 所导致的
金属容易导热,是由于自由电子运动时与金 属离子碰撞把能量从温度高的部分传到温度低 的部分,从而使整块金属达到相同的温度。
3、金属晶体结构与金属延展性的关系
【讨论3】金属为什么具有较好的延展性? 原子晶体受外力作用时,原子间的位移必
然导致共价键的断裂,因而难以锻压成型, 无延展性。而金属晶体中由于金属离子与自 由电子间的相互作用没有方向性,各原子层 之间发生相对滑动以后,仍可保持这种相互 作用,因而即使在外力作用下,发生形变也 不易断裂。
金属的延展性
++ + +++ + + ++ +
+++ ++ + + + ++
位错
+++ + ++ + + ++ ++++ +++ + +++ +
自由电子
+ 金属离子
金属原子
相对滑动
金属键
【总结】金属晶体的结构与性质的关系
导电性
导热性
延展性
金属离子 自由电子在外加
和自由电 电场的作用下发
子
生定向移动
的静电吸引作用 C. 金属键中的电子属于整块金属 D. 金属的性质和金属固体的形成都与金属键有关 2.下列有关金属元素特性的叙述正确的是 ( B )
A. 金属原子只有还原性,金属离子只有氧化性 B. 金属元素在化合物中一定显正化合价 C. 金属元素在不同化合物中化合价均不相同 D. 金属元素的单质在常温下均为晶体
▪ 当金属成粉末状时,金属晶体的晶面取向 杂乱、晶格排列不规则,吸收可见光后辐 射不出去,所以成黑色。
P33有的金属软如蜡,有的金属软如钢;有 的金属熔点低,有的金属熔点高,为什么?
根据下表的数据,请你总结影响金属键的因素 部分金属的原子半径、原子化热和熔点
金属 原子外围电子排布
Na
Mg
Al
Cr
3s1
自由电子与金 晶体中各原子
属离子碰撞传 层相对滑动仍
递热量
保持相互作用
14
4、金属晶体结构具有金属光泽和颜色
▪ 由于自由电子可吸收所有频率的光,然后 很快释放出各种频率的光,因此绝大多数 金属具有银白色或钢灰色光泽。而某些金 属(如铜、金、铯、铅等)由于较易吸收 某些频率的光而呈现较为特殊的颜色。
三.金属晶体熔点变化规律
1、金属晶体熔点变化较大,
与金属晶体紧密堆积方式、金属阳离子与自由电子之间的金 属键的强弱有密切关系.
2、一般情况下,金属晶体熔点由金属键强弱决定:
金属阳离子半径越小,所带电荷越多,自由电子越多,
金属键越强,熔点就相应越高,硬度也越大.
如:K ﹤Na﹤ Mg ﹤Al Li﹥Na ﹥K ﹥ Rb ﹥ Cs
(1)导电性 (2)导热性 (3)延展性
二、认真探究,掌握规律
思考:金属为什么具有这些物理性质吗?
分析:通常情况下,金属原子的部分或全部外
围电子受原子核的束缚比较弱,在金属晶体内 部,它们可以从金属原子上“脱落”下来的价 电子,形成自由流动的电子。这些电子不是专 属于某几个特定的金属离子,是均匀分布于整 个晶体中。金属原子失去部分或全部外围电子 形成的金属离子与自由电子之间存在着强烈的 相互作用,化学上把这种金属离子与自由电子 之间强烈的相互作用称为金属键。