2021年沪教版六年级数学下册《画角的和差倍》优质公开课课件.ppt
沪教小学数学六年级下册《7.5画角的和、差、倍》word精品教案 (2)
![沪教小学数学六年级下册《7.5画角的和、差、倍》word精品教案 (2)](https://img.taocdn.com/s3/m/aeaf8b19a98271fe900ef912.png)
7.5(2) 画角的和、差、倍(第二课时)教学目标1. 理解角平分线的概念,掌握用量角器画角平分线的方法,体验类比的数学思想.2. 初步体会角平分线的几何符号表示方法,感知几何符号语言的简洁性,初步感知因果关系形式的几何说理方法.3.会用尺规作出已知角的平分线,探究用尺规法作出45度、90度等特殊角的方法,初步会用几何作图的基本语言写出作法.教学重点1. 理解角平分线的概念,掌握角平分线的画法,.2. 会用尺规作出已知角的平分线以及正确完整地写出作法.教学难点:1. 完整规范地写出用尺规方法作出角平分线的作法.2. 探究用尺规画出30度、45度、60度等特殊角的方法.教学设计流程教学过程 一.情景引入:思考:问题1. 什么是线段的中点?问题2:如果C 是线段AB 的中点,那么AB=__AC ,BC=___AB课堂小结创设情景提出问题引发思考 角平分线的定义及几何表示方法 实践操作 观察归纳 实践操作 画角平分线实验操作:用纸片作材料任意剪一个角,折叠这张纸片,使角的两边叠合在一起,再展开摊平.思考:中间的折痕我们把它称作什么?如果把角的两边无限延伸,那么这条折痕是直线、线段还是射线?如何给角平分线下定义?二.学习新课.1.角平分线:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.(教师板书)2.角平分线的几何表示:如果OC是∠AOB的平分线,那么也可以说成1∠AOB 或∠是OC平分∠AOB,就有下列等式:∠AOC=∠BOC=2AOB=2∠AOC=2∠BOC. D C三.例题分析:例题1:如图,∠AOD=80°, B∠COD=30°,OB是∠AOC的平分线,那么∠AOC=()°,O A∠AOB=()°.说明:此题让学生应用角平分线的性质解决一些简单的角的度数计算问题,可以让学生模仿说理几何的要求,简单写出解题过程,体验几何学习的重点是说清理由,而不是只要一个结果.3:用量角器画已知角的平分线:例题:如图,已知∠ABC,画出它的角平分线.说明:教师与学生一起回忆线段中点的画法,此例题让学生自己思考,教师在学生讨论、交流的基础上,与学生一起归纳出完整、规范的画法.重点指出画图过程的先后顺序,画什么,写什么,特别提出在∠ABC的内部画射线BM,否则在∠ABC的外部也可以画出∠ABM=24度,反复让学生体验数学学习中应该具有严谨的学习态度.4.角平分线的尺规画法:已知∠ABC,求作的平分线.5.思考并操作:如何用尺规作出90度直角以及45度角?说明:教师可以安排学生先进行思考,提出解决问题的方法;一般学生难以想出解决问题的方法,教师可以先作出角平分线,然后可以再请学生比较与线段中点作法的异同.同时在书写作法时,截取线段时要明确在什么已知射线(或直线、线段)上,还可以回忆截取线段就是以顶点为圆心,以适当长度为半径作弧,与角的两边交于两点,体验同圆半径相等的性质;作弧必须要交待以什么点为圆心,半径长是多大,强调两弧在角的内部相交,让学生体验几何作图的严谨性.最后教师还可以通过把∠ABC转换成一个平角,学生容易看出作线段中点的过程,其实也作出了平角的平分线;在此基础上学生不难想出作45度交的方法.6.操作与理解:如图,(1)分别作出∠A、∠B的平分线,并作出它们的交点O;(2)如果∠A的平分线与BD相交于E点,通过测量,判断△ABE 的形状.A CB D说明:本题着重让学生熟练角平分线的尺规作法,以及尝试作法的书写,在学生相互交流的基础上归纳出较为规范的作法.另外此图形中,故意假定AC与BD平行,是在练习7.4第4题的基础上增加了一个问题,教师可以将AC饶A点进行旋转,让学生观察△ABE形状的变化,为今后学习平行线、等腰三角形、轴对称等数学知识留下一些印象.四.课堂小结:今天我们学习到了什么?你感兴趣的是什么?五.布置作业:习题7.5说明:本节课中通过与线段中点学习过程的比较,相类比地进行新知识的学习,能够让学生比较地学习数学,进而体验类比思想经常用于数学学习过程中,有利于学生对新旧知识的理解与掌握.另外,本节课要重视学生的动手操作,让学生能够得到充分的体验,进而加深对作法的理解,为今后尺规作图打下扎实的基础.。
上海市松江区六年级数学下册7.2画线段的和、差、倍精选教学PPT课件沪教版五四制
![上海市松江区六年级数学下册7.2画线段的和、差、倍精选教学PPT课件沪教版五四制](https://img.taocdn.com/s3/m/8aa76f18453610661ed9f4b9.png)
已知线段a,那么2a、3a…na 表示什么含义呢?
分别表示a的的2倍、3倍…及a的n倍 例题2:已知线段a、b,作一条线段,
使它等于2a-b.
a
①画射线OP;
b
②在射线OP上顺次截取
OA=AB=a;
③在线段BO上截取BC=b.
练一练: 书91/3
线段OC就是所要画的线段
填空
OC
OC
OA
AB
OA
OD
DB
你有什么办法,能在AB上找 一点C,使点C把线段AB分成
相等的两条线段?
A
C
B
1、度量法;
2、折叠法;
3、尺规法.
将一条线段分成两条相等线段 的点叫做这条线段的中点.
已知线段AB,画出它的中点C. 解: ①用刻度尺量出AB=6cm;
②在线段AB上截取AC=3cm;
CB 1 AB 2
AB=2CB.
已知:如图,点C是线段AB的中点, D是线段BC的中点, 则
A
C DB
AC=(CB)=
1 2
( AB
)
CD=(DB
)=
1(
2
CB)
= 1(
4
AB
)
练一练: 书90/2
AB=2( AC ) =2( CB) =4( CD) =4(DB )
AD=(
3
)BD=(
1
1 2
敞开一直紧握的手掌,爱情,翻一翻身,化成了一只鸟儿,立在自己的肩头,向着雨后的阳光,向着草地的那一头,向着逐渐靠近的彩虹,啁啾而歌。 温暖,是一种贴心的感觉,渐渐的弥漫。微笑,是一种明亮的色彩,慢慢的展开。 兴奋,是一种揪心的疼爱,缓缓的溢出。激动,是一种苦苦的等待,盈盈的走来。
2021年沪教版六年级数学下册《画角的和差倍》优质公开课课件
![2021年沪教版六年级数学下册《画角的和差倍》优质公开课课件](https://img.taocdn.com/s3/m/a51e68e13968011ca2009107.png)
B C
解 ∵∠AOB=∠1+∠2,
∠1=(3x-2)°,∠2=(x+8)°,
2
∠AOB=62°
1
∴(3x-2)+(x+8)=62
O
小结
A
解得 x =14
∠1=40°,∠2=22°
本题是将几何问题转化为用代数方程来解决.
自主小结
1.角平分线
从一个角的顶点引出一条射线,把这个角分成两 个相等的角,这条射线叫做这个角的平分线.
解 ⑴∵ ∠AOC =∠1+∠2, ∠1=m°,∠2=n°
∴∠AOC =m° +n° , 同理 ∠BOD = m°+n°.
⑵∵∠AOC = m°+n° ,
∠BOD = m°+n° , ∴∠AOC=∠BOD.
练一练
已知:如图,已知∠AOB=62°, ∠1=(3x-2)°,∠2=(x+8)°. 求:∠1、∠2的度数.
例1 如图,已知∠AOB,画出它的角平分线.
B
方法二
尺规作法
E
O
D
C
解 ⑴以∠AOB的顶点为圆心,以取
定的长a为半径,作弧分别交∠AOB
A 的两边于点D、E;
1
⑵ 的同分别一以长点度D为、半点径E作为弧圆,心两,弧以交大于于∠2DAEOB
的内的一点C;
⑶作射线OC. 射线OC就是所求作的∠AOB的平分线.
二、新授画角的和、差、倍
例题1:如图,已知∠α、∠β,画一个角, 使它(1)等于∠α+∠β.
β α
二、新授画角的和、差、倍
例题1:如图,已知∠α、∠β,画一个角, 使它(1)等于∠α+∠β.
解:①用量角器画出∠ABC= ∠α;
上海市松江区六年级数学下册7.2画线段的和、差、倍ppt课件沪教版五四制
![上海市松江区六年级数学下册7.2画线段的和、差、倍ppt课件沪教版五四制](https://img.taocdn.com/s3/m/e8d7dfa0b9d528ea81c779c5.png)
AC AB+BC=____; BC ;AC-BC=__. AB AC-AB=____
A
B
C
两条线段可以相加(减),它们的和 (差)也是一条线段,它们的长度等 于两条线段长度的和(差).
AC=CB 1 AC AB, 2 AB=2AC,
1 CB AB 2
AB=2CB.
已知:如图,点C是线段AB的中点, D是线段BC的中点, 则
1 练一练: AC=(CB )= ( AB ) 2 书90/2 1 1 CD=(DB )= ( CB) = ( AB ) 4 2
A
C
D
B
AB=2( AC ) =2( CB) =4( CD) =4( DB )
1 3 AD=( 3 )BD=( 1 )BC=( )AB. 2 4
1、不要做刺猬,能不与人结仇就不与人结仇,谁也不跟谁一辈子,有些事情没必要记在心上。 2、相遇总是猝不及防,而离别多是蓄谋已久,总有一些人会慢慢淡出你的生活,你要学会接受而不是怀念。 3、其实每个人都很清楚自己想要什么,但并不是谁都有勇气表达出来。渐渐才知道,心口如一,是一种何等的强大! 4、有些路看起来很近,可是走下去却很远的,缺少耐心的人永远走不到头。人生,一半是现实,一半是梦想。 5、没什么好抱怨的,今天的每一步,都是在为之前的每一次选择买单。每做一件事,都要想一想,日后打脸的时候疼不疼。 6、过去的事情就让它过去,一定要放下。学会狠心,学会独立,学会微笑,学会丢弃不值得的感情。 7、成功不是让周围的人都羡慕你,称赞你,而是让周围的人都需要你,离不开你。 8、生活本来很不易,不必事事渴求别人的理解和认同,静静的过自己的生活。心若不动,风又奈何。你若不伤,岁月无恙。 9、与其等着别人来爱你,不如自己努力爱自己,对自己好点,因为一辈子不长,对身边的人好点,因为下辈子不一定能够遇见。 10、你迷茫的原因往往只有一个,那就是在本该拼命去努力的年纪,想得太多,做得太少。 11、有一些人的出现,就是来给我们开眼的。所以,你一定要禁得起假话,受得住敷衍,忍得住欺骗,忘得了承诺,放得下一切。 12、不要像个落难者,告诉别人你的不幸。逢人只说三分话,不可全抛一片心。 13、人生的路,靠的是自己一步步去走,真正能保护你的,是你自己的选择。而真正能伤害你的,也是一样,自己的选择。 14、不要那么敏感,也不要那么心软,太敏感和太心软的人,肯定过得不快乐,别人随便的一句话,你都要胡思乱想一整天。 15、不要轻易去依赖一个人,它会成为你的习惯,当分别来临,你失去的不是某个人,而是你精神的支柱;无论何时何地,都要学会独立行走 ,它会让你走得更坦然些。 16、在不违背原则的情况下,对别人要宽容,能帮就帮,千万不要把人逼绝了,给人留条后路,懂得从内心欣赏别人,虽然这很多时候很难 。 17、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭 18、不要太高估自己在集体中的力量,因为当你选择离开时,就会发现即使没有你,太阳照常升起。 19、时间不仅让你看透别人,也让你认清自己。很多时候,就是在跌跌拌拌中,我们学会了生活。 20、命运要你成长的时候,总会安排一些让你不顺心的人或事刺激你。 21、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 22、成长是一场和自己的比赛,不要担心别人会做得比你好,你只需要每天都做得比前一天好就可以了。 23、你没那么多观众,别那么累。做一个简单的人,踏实而务实。不沉溺幻想,更不庸人自扰。 24、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给 时间来定夺。 25、你心里最崇拜谁,不必变成那个人,而是用那个人的精神和方法,去变成你自己。 26、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡 慕那些总能撞大运的人,你必须很努力,才能遇上好运气。 27、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的 生命才真正开始。 28、每个人身上都有惰性和消极情绪,成功的人都是懂得管理自己的情绪和克服自己的惰性,并像太阳一样照亮身边的人,激励身边的人。
2021年沪教版六年级数学下册《角的概念与表示》优质课课件
![2021年沪教版六年级数学下册《角的概念与表示》优质课课件](https://img.taocdn.com/s3/m/b9343d2f700abb68a882fb0f.png)
P地
7.3 角的概念与表示 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。
2021/2/62021/2/6Saturday, February 06, 2021 10、人的志向通常和他们的能力成正比例。2021/2/62021/2/62021/2/62/6/2021 1:37:47 AM 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/2/62021/2/62021/2/6Feb-216-Feb-21 12、越是无能的人,越喜欢挑剔别人的错儿。2021/2/62021/2/62021/2/6Saturday, February 06, 2021 13、志不立,天下无可成之事。2021/2/62021/2/62021/2/62021/2/62/6/2021
北A
D
30°
西 30°
东
48°O 45°
B C南
OA方向为北偏东30°
OB方向为南偏东45° 东南方向
OC方向为南偏西42° OD方向为北偏西60°
东北方向 西北方向 西南方向
北偏东45° 北偏西45°
南偏西45°
例3、在某一张地图上有M、N、P三地,但地图被墨迹污 染,M地的具体位置看不清楚。现在知道M地在N地的南 偏西40°,在P地的北偏东70°,请在地图上确定M地的 位置。
定义1、角是具有公共端点的两条射线组成的图形。
终止位置的那条射线
角的顶点 角的边
边
终边
顶点 边
始边
初始位置的那条射线
定义2、角是由一条射线绕着它的端点旋转到另一个位 置所成的图形。
角的始边转动到角的终边所经过的平面部分,叫 做角的内部,简称角内。通常角的内部用不带箭头或 带箭头的弧线表示。
沪教版六年级下7.5_画角的和、差、倍(1)教案
![沪教版六年级下7.5_画角的和、差、倍(1)教案](https://img.taocdn.com/s3/m/fb698621f242336c1eb95e91.png)
7.5 (1) 画角的和、差、倍(第一课时)教学目标1.理解角的和、差的意义及性质,会用数学式子表示角的和、差,掌握用量角器画角的和、差、倍的方法,体会类比的思想方法.2.探究用一副三角尺画出特殊角的特征(15°角的整数倍角),提高动手实践能力,初步养成分类讨论的习惯,初步感知书写画法的过程.教学重点1.理解角的和、差的意义及性质,会用数学式子表示角的和、差,会用量角器画角的和、差.2.会用一副三角尺画特殊角.教学难点:1.完整规范地书写画法.2.探究用一副三角尺画特殊角的特征.教学设计流程:教学过程一.情景引入思考:线段可以相加减,角可以相加减吗?操作:如何用圆规(作为角的模型)来演示一下,怎样表示两个角相加及相减?说明:在学生操作基础上引出角的(和差)的意义及性质.这样设计,主要让学生体验数学知识中存在许多的类比性,知识之间有着极为相似的地方,有利于学生理解新知识,同时也适当复习旧知识.另外让学生合作操作,既让每个学生动能够得到实践体会,也能够增强他们的协作意识.二.学习新课:角的和、差的意义和性质.(板书)两个角可以相加(或相减),它们的和(或差)也是一个角,它的度数等于这两个角的度数的和(或差).例题1:如图,图中共有多少个角? A B它们之间有什么等量关系? O C此题由学生思考回答,并上黑板写出三个等量关系式. 例题2:如图,已知∠α、∠β,用量角器画一个角,使它(1)等于∠α+∠β;(2)等于2∠α- 说明: 然后每个学生自己再画出两个大小不相等的角,用量角器画出它们的和及差;学生一般会有两种方法,一种用量角器量出∠α、∠β的度数,计算出它们度数的和、差,再用量角器画出等于它们度数和、差的角;另一种用量角器在∠β外画出∠α,再请学生讨论如何书写画图的过程.教师在学生描述的基础上逐渐进行补充,特别在画出一个角后,要重点强调3个要素不能少一个,即以B 为顶点,以射线BC为一边,在∠ABC的外部画出∠CBD=∠β,最后要回答哪个角就是所要画的角.强调数学解题的完整性、严密性、规范性,体验学习数学需要有严谨的科学态度.而2∠α-∠β则让学生独立完成.三.练习与巩固1.如图,已知∠AOB=62°, B∠1=(3x-2)°,∠2=(x+8)°求∠1、∠2的度数说明:此题在理解角的和、差的意义上,通过建立方程来求出最后的结果,让学生体验方程法是解决实际问题的一种常用的数学方法.2.如图,已知∠AOB=∠COD=m°, D C∠BOC=n°(1)用m、n的代数式分别表示∠AOC、∠BOD的大小; B(2)比较∠AOC和∠BOD的大小. O A四.应用与探究思考:用一幅(两块)三角尺可以画出怎样的特殊角?这些角具有什么特殊性?说明:教师要敢于放手,让学生自己去尝试解决问题的方法,也培养他们的动手操作的能力,让每个同学在纸上画出所有能够画出的特殊角,然后进行相互交流,探讨,然后请学生在投影仪上展示他们的画图(从角的个数少的逐渐到个数多的),让学生说出为什么少画了,当时有没有按规律进行两个角相加或相减(学生往往是杂乱无章的把两个角相加或相减,这里指出学生思考问题缺乏规律性、系统性的结症所在),最后让学生总结这些角的特殊性,提高他们的探究规律和概括归纳的能力.例题3:小明从点A出发向南偏东30°方向走了3m到点B,小林从点A出发向北偏东20°方向走了6m到点C.那么∠BAC等于多少度?并画出相应的图形,确定出A、B、C三点的位置(用1cm表示3m).并从图上求出B点到C点的实际距离.说明:此例题同样由学生先独立思考,再画出图形,并得出结论.这样可以帮助学生将本章的知识贯穿起来,完善知识结构的,又会用新知识解决一些简单的实际问题,让学生体验数学与生活紧密相关.四.课堂小结今天我们学习到了什么知识?你感受最深的是什么?五.布置作业:习题 7.57.5(2) 画角的和、差、倍(第二课时)教学目标1.理解角平分线的概念,掌握用量角器画角平分线的方法,体验类比的数学思想.2.初步体会角平分线的几何符号表示方法,感知几何符号语言的简洁性,初步感知因果关系形式的几何说理方法.3.会用尺规作出已知角的平分线,探究用尺规法作出45度、90度等特殊角的方法,初步会用几何作图的基本语言写出作法.教学重点1. 理解角平分线的概念,掌握角平分线的画法,.2. 会用尺规作出已知角的平分线以及正确完整地写出作法. 教学难点:1. 完整规范地写出用尺规方法作出角平分线的作法.2. 探究用尺规画出30度、45度、60度等特殊角的方法. 教学设计流程教学过程一.情景引入:思考:问题1. 什么是线段的中点? 问题2:如果C 是线段AB 的中点,那么AB=__AC ,BC=___AB实验操作:用纸片作材料任意剪一个角,折叠这张纸片,使角的两边叠合在一起,再展开摊平.思考:中间的折痕我们把它称作什么?如果把角的两边无限延伸,那么这条折痕是直线、线段还是射线?如何给角平分线下定义?二.学习新课.1.角平分线:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.(教师板书)2.角平分线的几何表示:如果OC是∠AOB的平分线,那么也可以1∠AOB 说成是OC平分∠AOB,就有下列等式:∠AOC=∠BOC=2或∠AOB=2∠AOC=2∠BOC. D C三.例题分析:例题1:如图,∠AOD=80°, B∠COD=30°,OB是∠AOC的平分线,那么∠AOC=()°,O A∠AOB=()°.说明:此题让学生应用角平分线的性质解决一些简单的角的度数计算问题,可以让学生模仿说理几何的要求,简单写出解题过程,体验几何学习的重点是说清理由,而不是只要一个结果.3:用量角器画已知角的平分线:例题:如图,已知∠ABC,画出它的角平分线.说明:教师与学生一起回忆线段中点的画法,此例题让学生自己思考,教师在学生讨论、交流的基础上,与学生一起归纳出完整、规范的画法.重点指出画图过程的先后顺序,画什么,写什么,特别提出在∠ABC的内部画射线BM,否则在∠ABC的外部也可以画出∠ABM=24度,反复让学生体验数学学习中应该具有严谨的学习态度.4.角平分线的尺规画法:已知∠ABC,求作的平分线.5.思考并操作:如何用尺规作出90度直角以及45度角?说明:教师可以安排学生先进行思考,提出解决问题的方法;一般学生难以想出解决问题的方法,教师可以先作出角平分线,然后可以再请学生比较与线段中点作法的异同.同时在书写作法时,截取线段时要明确在什么已知射线(或直线、线段)上,还可以回忆截取线段就是以顶点为圆心,以适当长度为半径作弧,与角的两边交于两点,体验同圆半径相等的性质;作弧必须要交待以什么点为圆心,半径长是多大,强调两弧在角的内部相交,让学生体验几何作图的严谨性.最后教师还可以通过把∠ABC转换成一个平角,学生容易看出作线段中点的过程,其实也作出了平角的平分线;在此基础上学生不难想出作45度交的方法.6.操作与理解:如图,(1)分别作出∠A、∠B的平分线,并作出它们的交点O;(2)如果∠A的平分线与BD相交于E点,通过测量,判断△ABE的形状.A CB D说明:本题着重让学生熟练角平分线的尺规作法,以及尝试作法的书写,在学生相互交流的基础上归纳出较为规范的作法.另外此图形中,故意假定AC与BD平行,是在练习7.4第4题的基础上增加了一个问题,教师可以将AC饶A点进行旋转,让学生观察△ABE形状的变化,为今后学习平行线、等腰三角形、轴对称等数学知识留下一些印象.四.课堂小结:今天我们学习到了什么?你感兴趣的是什么?五.布置作业:习题7.5说明:本节课中通过与线段中点学习过程的比较,相类比地进行新知识的学习,能够让学生比较地学习数学,进而体验类比思想经常用于数学学习过程中,有利于学生对新旧知识的理解与掌握.另外,本节课要重视学生的动手操作,让学生能够得到充分的体验,进而加深对作法的理解,为今后尺规作图打下扎实的基础.。
【新】沪教版六年级数学下册《画角的和、差、倍 》优质课课件 (2).ppt
![【新】沪教版六年级数学下册《画角的和、差、倍 》优质课课件 (2).ppt](https://img.taocdn.com/s3/m/a28ad451eefdc8d377ee3216.png)
B
方法二
尺规作法
E
O
D
C
解 ⑴以∠AOB的顶点为圆心,以取
定的长a为半径,作弧分别交∠AOB
A 的两边于点D、E;
1
⑵ 的同分别一以长点度D为、半点径E作为弧圆,心两,弧以交大于于∠2DAEOB
的内的一点C;
⑶作射线OC. 射线OC就是所求作的∠AOB的平分线.
例2 如图,已知∠1=∠3=m°,∠2=n°. (1)用含m、n的式子分别表示∠AOC、∠BOD的大小; (2)比较∠AOC和∠BOD的大小.
2
O
A
=
1
×
50°
2
=25°
思考 怎样画出一个角的角平分线呢?
例1 如图,已知∠AOB,画出它的角平分线.
B
方法一
用量角器画
M
解 ⑴用量角器量得∠AOB =48°;
O
A
⑵在∠AOB的内部画射线
OM,使∠AOM =24°.
射线OM就是所要画的∠AOB的平分线.
思考 怎样画出一个角的角平分线呢?
例1 如图,已知∠AOB,画出它的角平分线.
。2020年12月15日星期二2020/12/152020/12/152020/12/15
▪ 15、会当凌绝顶,一览众山小。2020年12月2020/12/152020/12/152020/12/1512/15/2020
▪ 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2020/12/152020/12/15December 15, 2020
B C
解 ∵∠AOB=∠1+∠2,
∠1=(3x-2)°,∠2=(x+8)°,
2
∠AOB=62°
沪教小学数学六年级下册《7.5画角的和、差、倍》word精品教案 (1)
![沪教小学数学六年级下册《7.5画角的和、差、倍》word精品教案 (1)](https://img.taocdn.com/s3/m/2aa7410fa32d7375a41780c5.png)
7.5 (1) 画角的和、差、倍(第一课时)教学目标1. 理解角的和、差的意义及性质,会用数学式子表示角的和、差,掌握用量角器画角的和、差、倍的方法,体会类比的思想方法.2. 探究用一副三角尺画出特殊角的特征(15°角的整数倍角),提高动手实践能力,初步养成分类讨论的习惯,初步感知书写画法的过程. 教学重点1.理解角的和、差的意义及性质,会用数学式子表示角的和、差,会用量角器画角的和、差.2.会用一副三角尺画特殊角.教学难点:1. 完整规范地书写画法.2. 探究用一副三角尺画特殊角的特征.教学设计流程:教学过程 一.情景引入思考:线段可以相加减,角可以相加减吗?操作:如何用圆规(作为角的模型)来演示一下,怎样表示两个角相加及相减?课堂小结 创设情景提出问题引发思考 角的和、 差的意义、性质 实践操作 观察归纳 理解巩固 书写画法 创设情景 提出问题 引发探究用三角尺画特殊角归纳总结说明:在学生操作基础上引出角的(和差)的意义及性质.这样设计,主要让学生体验数学知识中存在许多的类比性,知识之间有着极为相似的地方,有利于学生理解新知识,同时也适当复习旧知识.另外让学生合作操作,既让每个学生动能够得到实践体会,也能够增强他们的协作意识.二.学习新课:角的和、差的意义和性质.(板书)两个角可以相加(或相减),它们的和(或差)也是一个角,它的度数等于这两个角的度数的和(或差).例题1:如图,图中共有多少个角? A B它们之间有什么等量关系? O C此题由学生思考回答,并上黑板写出三个等量关系式. 例题2:如图,已知∠α、∠β,用量角器画一个角,使它(1)等于∠α+∠β;(2)等于2∠α-∠β.说明: 此题让学生说出解题思路, 然后每个学生自己再画出两个大小不相等的角,用量角器画出它们的和及差;学生一般会有两种方法,一种用量角器量出∠α、∠β的度数,计算出它们度数的和、差,再用量角器画出等于它们度数和、差的角;另一种用量角器在∠β外画出∠α,再请学生讨论如何书写画图的过程.教师在学生描述的基础上逐渐进行补充,特别在画出一个角后,要重点强调3个要素不能少一个,即以B 为顶点,以射线BC 为一边,在∠ABC 的外部画出∠CBD=∠β,最后要回答哪个角就是所要画的角.强调数学解题的完整性、严密性、规范性,体验学习数学需要有严谨的科学态度.而2∠α-∠β则让学生独立完成.三.练习与巩固βα1.如图,已知∠AOB=62°, B∠1=(3x-2)°,∠2=(x+8)°. C 求∠1、∠2的度数. O A说明:此题在理解角的和、差的意义上,通过建立方程来求出最后的结果,让学生体验方程法是解决实际问题的一种常用的数学方法.2.如图,已知∠AOB=∠COD=m °, D C∠BOC=n °(1)用m 、n 的代数式分别表示∠AOC 、∠BOD 的大小; B(2)比较∠AOC 和∠BOD 的大小. O A四.应用与探究思考:用一幅(两块)三角尺可以画出怎样的特殊角?这些角具有什么特殊性?说明:教师要敢于放手,让学生自己去尝试解决问题的方法,也培养他们的动手操作的能力,让每个同学在纸上画出所有能够画出的特殊角,然后进行相互交流,探讨,然后请学生在投影仪上展示他们的画图(从角的个数少的逐渐到个数多的),让学生说出为什么少画了,当时有没有按规律进行两个角相加或相减(学生往往是杂乱无章的把两个角相加或相减,这里指出学生思考问题缺乏规律性、系统性的结症所在),最后让学生总结这些角的特殊性,提高他们的探究规律和概括归纳的能力.例题3: 小明从点A 出发向南偏东30°方向走了3m 到点B ,小林从点A 出发向北偏东20°方向走了6m 到点C .那么∠BAC 等于多少度?并画出相应的图形,确定出A 、B 、C 三点的位置(用1cm 表示3m).并从图上求出B 点到C 点的实际距离.21说明:此例题同样由学生先独立思考,再画出图形,并得出结论.这样可以帮助学生将本章的知识贯穿起来,完善知识结构的,又会用新知识解决一些简单的实际问题,让学生体验数学与生活紧密相关.四.课堂小结今天我们学习到了什么知识?你感受最深的是什么?五.布置作业:习题 7.5。
2020--2021学年沪教版(上海)数学六年级第二学期7.5画角的和、差、倍教案
![2020--2021学年沪教版(上海)数学六年级第二学期7.5画角的和、差、倍教案](https://img.taocdn.com/s3/m/729ab3e483c4bb4cf6ecd109.png)
《7.5 画角的和、差、倍》在学习本单元之前,学生已经对线段和角有了初步的认识,能区分线段、射线和直线,掌握了角的分类。
本单元就是进一步探究有关线段和角的知识,能比较线段的大小及画线段的和、差、倍,能比较角的大小,掌握角的和、差、倍的画法,并认识余角和补角。
本课的教学内容是使学生掌握角的和、差、倍的意义,会用数学等式表示角的和、差、倍的关系,并会画角的和、差、倍。
【知识与能力目标】1.理解角的和、差、倍的意义,会用数学等式表示角的和、差、倍的关系2.会画角的和、差、倍3.理解角平分线的意义,会作已知角的角平分线。
【过程与方法目标】在探究角平分线的画法的过程中,培养学生初步的空间观念和空间想象能力。
【情感态度价值观目标】使学生初步建立空间观念,培养学生用数学进行交流、合作探究和创新的意识,感受数学与现实生活的密切联系,激发学生学习数学的兴趣。
【教学重点】用尺规作图法准确作角的和、差、倍以及角平分线。
【教学难点】用尺规作图法准确作角的和、差、倍以及角平分线。
多媒体课件。
◆教材分析◆教学目标◆教学重难点◆◆课前准备◆一、探究新知问题:线段可以相加减,角可以相加减吗?问题:射线OC在∠AOB的内部,图中有几个角?它们之间有什么等量关系?答:图中有∠AOC、∠COB、∠AOB共3个角,它们有如下的等量关系:∠AOC+∠COB=∠AOB,∠AOB-∠AOC=∠COB,∠AOB-∠COB=∠AOC。
结论:两个角可以相加(或相减),它们的和(或差)也是一个角,且它的度数等于这两个角的度数的和(或差)。
教师播放课件,探究例1.例1 如图,已知∠1、∠2,画一个角,使它等于∠1+∠2。
解:(1)用量角器画出∠ABC=∠1;(2)以点B为顶点,射线BC为一边,在∠ABC的外部用量角器画∠CBD=∠2.∠ABD就是所要画的角。
小结:作已知两个角的和(差)的步骤:(1)作一个角等于∠1;(2)以∠1的一边为始边,∠1的顶点为顶点,在∠1的外(内)部作一个角等于∠2。
【新】沪教版六年级数学下册《角的概念与表示》优质课 课件.ppt
![【新】沪教版六年级数学下册《角的概念与表示》优质课 课件.ppt](https://img.taocdn.com/s3/m/72d4609bcf84b9d529ea7a98.png)
谈一谈:本节课你有何收获?
1. 角的两种定义; 2. 角的三种表示方法; 3. 方位角;
作业布置: 作业本,课本作业题
再见
▪ 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/1/112021/1/11Monday, January 11, 2021
角用“∠”表示,读做“角”。角
的表示方法有下面几种:
A
(1) 用三个大写字母表示:B
C
如:∠ABC(顶点字母写在中间)
(2) 用角的顶点字母表示: 如:∠B(只有一个角时)B
A D
C
这里能用∠ B表示角吗?
A
(3) 用一个数字表示:
D
2
如:∠1、∠2
B1 C
(4)也可用一个希腊字母表示: A
如:∠a、∠ β
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
7.3 角的概念与表示
角的定义: B
终边
边
顶点
O边
顶点
始边
A
1、角是由两条有公共端点的射线所组成的图形。
2022年沪教版六年级数学下册《画角的和、差、倍 》优课件
![2022年沪教版六年级数学下册《画角的和、差、倍 》优课件](https://img.taocdn.com/s3/m/4eb2b8ed80c758f5f61fb7360b4c2e3f5727253e.png)
You made my day!
我们,还在路上……
经过折叠,折痕所在的射线将一个角分成了两个相等的角. 角平分线
学习新知
角平分线: 从一个角的顶点引出一条射线,把这个 角分成两个相等的角,这条射线叫做这 个角的平分线.
B
因为 OC是∠AOB的平分线,
C
(也可以说OC平分∠AOB )
所以 ∠AOC=∠BOC,
O
A
∠AOC= 1∠AOB 2
1 ∠BOC= 2∠AOB
∠AOB=2∠AOC, ∠AOB=2∠BOC.
练一练
如图,∠AOD=80°,∠COD=30°, OB是∠AOC的平分线, 那么∠AOC=( 50)°, ∠AOB=( 25 )°.
分析 ∠AOC= ∠AOD—∠COD
D C
= 80°— 30° = 50°
B 因为OB是∠AOC的平分线,
所以∠AOB= 1 ∠AOC
B
因为 OC是∠AOB的平分线,
C
1
所以∠AOC=∠BOC= ∠AOB,
O
A
2
或∠AOB=2∠AOC=2∠BOC.
2.作已知角的平分线
3.用数学语言来表述简单的几何说理.
4.感受化归和方程的数学思想.
▪1、书籍是朋友,虽然没有热情,但是非常忠实。2022年2月14日星期一2022/2/142022/2/142022/2/14 ▪2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年2月2022/2/142022/2/142022/2/142/14/2022 ▪3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/2/142022/2/14February 14, 2022 ▪4、享受阅读快乐,提高生活质量。2022/2/142022/2/142022/2/142022/2/14
2022年沪教版六年级数学下册《画角的和、差、倍 》优质课课件
![2022年沪教版六年级数学下册《画角的和、差、倍 》优质课课件](https://img.taocdn.com/s3/m/6b213e5fe55c3b3567ec102de2bd960590c6d935.png)
B
方法二
尺规作法
E
O
D
C
解 ⑴以∠AOB的顶点为圆心,以取
定的长a为半径,作弧分别交∠AOB
A 的两边于点D、E;
1
⑵ 的同分别一以长点度D为、半点径E作为弧圆,心两,弧以交大于于∠2DAEOB
的内的一点C;
⑶作射线OC. 射线OC就是所求作的∠AOB的平分线.
例2 如图,已知∠1=∠3=m°,∠2=n°. (1)用含m、n的式子分别表示∠AOC、∠BOD的大小; (2)比较∠AOC和∠BOD的大小.
∠AOB=2∠AOC, ∠AOB=2∠BOC.
练一练
如图,∠AOD=80°,∠COD=30°, OB是∠AOC的平分线, 那么∠AOC=( 50)°, ∠AOB=( 25 )°.
分析 ∠AOC= ∠AOD—∠COD
D C
= 80°— 30° = 50°
B 因为OB是∠AOC的平分线,
所以∠AOB= 1 ∠AOC
B C
解 ∵∠AOB=∠1பைடு நூலகம்∠2,
∠1=(3x-2)°,∠2=(x+8)°,
2
∠AOB=62°
1
∴(3x-2)+(x+8)=62
O
小结
A
解得 x =14
∠1=40°,∠2=22°
本题是将几何问题转化为用代数方程来解决.
自主小结
1.角平分线
从一个角的顶点引出一条射线,把这个角分成两 个相等的角,这条射线叫做这个角的平分线.
解 ⑴∵ ∠AOC =∠1+∠2, ∠1=m°,∠2=n°
∴∠AOC =m° +n° , 同理 ∠BOD = m°+n°.
⑵∵∠AOC = m°+n° ,
六年级数学下册7.5《画角的和、差、倍》教案沪教版五
![六年级数学下册7.5《画角的和、差、倍》教案沪教版五](https://img.taocdn.com/s3/m/0ebe7b1f04a1b0717ed5dd31.png)
7。
5 画角的和、差、倍一、教学目标1.理解角的和、差、倍的意义,会用数学等式表示角的和、差、倍的关系2.会画角的和、差、倍3.理解角平分线的意义,会作已知角的角平分线二、教学重、难点用尺规作图法准确作角的和、差、倍以及角平分线三、教学过程1、预习反馈:提问预导中不会的2、新课引入:(1)思考:线段可以相加减,角可以相加减吗?得出结论:两个角和(或差)也是一个角,且其度数等于两个角的度数的和(或差)(2)操作:用一副(两块)三角尺可以画出哪些度数的角?(展示7种不同的拼法,并引导学生观察出作角的和差倍时都是以一角的顶点为顶点,一边为始边不同的是,作角的差时在已知角内部作终边,和和倍时在外部作)3、例题讲解:例1:如图,已知∠1、 ∠2,画一个角,使它等于∠1+∠2归纳:作已知两个角的和(差)的步骤:(1)作一个角等于∠1;(2)以∠1的一边为始边, ∠1的顶点为顶点,在∠1的外(内)部作一个角等于∠2 作角的倍数参考角的和作法4、操作探究:用纸片作材料任意剪一个角,折叠这张纸片,使角的两边叠合在一起,再展开摊平,可以看到什么?()A O E A O B ∠=∠+()A O C A O D ∠=∠-角平分线定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
5、例题讲解:例2 如图,已知∠AOB,画出它的角平分线6、练习巩固:例3 如图,已知∠1=∠3=m°,∠2=n°.(1)用含m、n的式子分别表示∠AOC、∠BOD的大小;(2)比较∠AOC和∠BOD的大小7、课堂小结:(1)理解角和、差、倍的意义,会作角的和、差、倍(2)理解角平分线的意义,会作角平分线8、当堂测验:αβ。
7-5(1)画角的和、差、倍21—22学年沪教版(上海)六年级第二学期
![7-5(1)画角的和、差、倍21—22学年沪教版(上海)六年级第二学期](https://img.taocdn.com/s3/m/c2f0449d970590c69ec3d5bbfd0a79563c1ed4af.png)
操作: 用纸片作材料任意剪一个角,折叠这张纸片,使 角的两边叠合在一起,再展开摊平,可以看到什么?
经过折叠,折痕所在的射线将一个角分成了两个相等的角. 角平分线
学习新知
角平分线: 从一个角的顶点引出一条射线,把这个 角分成两个相等的角,这条射线叫做这 个角的平分线.
B
因为 OC是∠AOB的平分线,
15度;
二、新授画角的和、差、倍
例题1:如图,已知∠α、∠β,画一个角, 使它等于∠α+∠β.
α β
二、新授画角的和、差、倍
例题1:如图,已知∠α、∠β,画一个角, 使它等于∠α+∠β.
D
C
β
α
B
A
解:①用量角器画出∠ABC= ∠α;
②以点B为顶点,射线BC为一边, 在∠ ABC的外部用量角器画∠CBD = ∠β 。
∠ABD就是所要画的角.
二、新授画角的和、差、倍
例题2:如图,已知∠α、∠β,画一个角,使 它 等于∠α-∠β
D
C
β
α
B
A
C
β α
B
解:①用量角器画出∠ABC= ∠α; ②以点B为顶点,射线BC为一边, 在∠ ABC的 外内部部 用量角器画 ∠CBD= ∠β 。
∠ABD就是所要画的角. D
A
试一试:如果要画一个角等于2∠α-∠β呢?
2.作已知角的平分线
3.用数学语言来表述简单的几何说理.
C
(也可以说OC平分∠AOB )
所以 ∠AOC=∠BOC,
O
A ∠AOC= ∠AOB ∠BOC= ∠AOB
∠AOB=2∠AOC, ∠AOB=2∠BOC.
练一练
如图,∠AOD=80°,∠COD=30°,
2021年沪教版六年级数学下册《角的概念与表示》.ppt课件
![2021年沪教版六年级数学下册《角的概念与表示》.ppt课件](https://img.taocdn.com/s3/m/a019e41489eb172dec63b703.png)
房顶的角
吊 扇 扇 叶 的 夹 角
剪刀的角
画一画:画一个角 说一说:角是由什么图形组成?
具有公共端点的两条射线组成的图形叫做角。 角的顶点 角的边
边 顶点
试一试:
1、判断下列哪些图形是角?
( ) ( ) (× ) ( × ) ( ) (×)
角是由一条射线绕着它的端点旋转到另一个位置Байду номын сангаас 成的图形。
O
角可以用表示顶点的字母表示。 B
记作:∠O。
D
C
如果以点O为顶点的角有多个,那
B 么其中任何一个角必须用三个大
写英文字母表示,而不能记作∠O。
O
A
观察有几个以点O为顶点的角?
D
C
在角的内部标上一个小写的
希腊字母,如α、β、γ;
B
O
记作:∠α、∠β、∠γ、
A
D
C
在角的内部标上一个数字,
32 1
O
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
▪ 10、人的志向通常和他们的能力成正比例。2021/2/62021/2/62021/2/62/6/2021 1:35:54 AM ▪ 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/2/62021/2/62021/2/6Feb-216-Feb-21 ▪ 12、越是无能的人,越喜欢挑剔别人的错儿。2021/2/62021/2/62021/2/6Saturday, February 06, 2021 ▪ 13、志不立,天下无可成之事。2021/2/62021/2/62021/2/62021/2/62/6/2021
2021年沪教版六年级数学下册《角的大小比较》优质课课件
![2021年沪教版六年级数学下册《角的大小比较》优质课课件](https://img.taocdn.com/s3/m/30948bc26c175f0e7cd137e9.png)
(3)看角的另一边落在量角器的什么刻度线上. (读数)
书P98
1、角的大小比较
1、目测法
2、度量法 (对中、对边、读数)
3、叠合法 (两“合”一“同”)
例如:已知∠AOB,移动∠DEF,
D
A (D)
(1)使顶点O与顶点E重合,
(2)使边EF与边OB叠合, E
(3)使ED与OA在OB的同侧.
F O(E) B(F)
▪ 10、人的志向通常和他们的能力成正比例。2021/2/62021/2/62021/2/62/6/2021 1:36:06 AM ▪ 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/2/62021/2/62021/2/6Feb-216-Feb-21 ▪ 12、越是无能的人,越喜欢挑剔别人的错儿。2021/2/62021/2/62021/2/6Saturday, February 06, 2021 ▪ 13、志不立,天下无可成之事。2021/2/62021/2/62021/2/62021/2/62/6/2021
这时ED对于∠AOB而言,有几种可能的位置关系? (请填写课本P96—表格)
2、画一个角等于已知角
1.度量法
例题1 已知∠α,用量角器画∠AOB,使∠AOB=∠α.
解
(1)量出∠α=??°;
(2)画出 ∠AOB=??°.
A
O
47练 习:用量角器画40°的角
B
∠AOB就是所要画的角.
2、画一个角等于已知角
2、画一个角等于已知角
练习2 已知∠ABC,用直尺和圆规画∠COD=∠ABC .
A
C
E
F
解 1、作射线OC;
2、以∠B的顶点为圆心,以B 任意长a为半径
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B C
解 ∵∠AOB=∠1+∠2,
∠1=(3x-2)°,∠2=(x+8)°,
2
∠AOB=62°
1
∴(3x-2)+(x+8)=62
O
小结
A
解得 x =14
∠1=40°,∠2=22°
本题是将几何问题转化为用代数方程来解决.
自主小结
1.角平分线
从一个角的顶点引出一条射线,把这个角分成两 个相等的角,这条射线叫做这个角的平分线.
二、新授画角的和、差、倍
例题1:如图,已知∠α、∠β,画一个角, 使它(1)等于∠α+∠β.
β α
二、新授画角的和、差、倍
例题1:如图,已知∠α、∠β,画一个角, 使它(1)等于∠α+∠β.
解:①用量角器画出∠ABC= ∠α;
②以点B为顶点,射线BC为一边,
DBβCA
在∠ ABC的外部用量角器画∠CBD = ∠β 。
B
因为 OC是∠AOB的平分线,
C
1
所以∠AOC=∠BOC= ∠AOB,
O
A
2
或∠AOB=2∠AOC=2∠BOC.
2.作已知角的平分线
3.用数学语言来表述简单的几何说理.
4.感受化归和方程的数学思想.
▪ 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/1/92021/1/9Saturday, January 09, 2021
回顾 A
M
线段中点将这条 线段分成相等的
两部分.
B
已知点M是线段AB的1中点, 那么AM=__M__B__=___2__AB, AB=__2__AM=__2_MB.
思考
角是否也有将其分成相等两部分的图形呢?
操作: 用纸片作材料任意剪一个角,折叠这张纸片,使 角的两边叠合在一起,再展开摊平,可以看到什么?
经过折叠,折痕所在的射线将一个角分成了两个相等的角. 角平分线
学习新知
角平分线: 从一个角的顶点引出一条射线,把这个 角分成两个相等的角,这条射线叫做这 个角的平分线.
B
因为 OC是∠AOB的平分线,
C
(也可以说OC平分∠AOB )
所以 ∠AOC=∠BOC,
O
A
∠AOC= 1∠AOB 2
1 ∠BOC= 2∠AOB
α
∠ABD就是所要画的角.
二、新授画角的和、差、倍
例题1:如图,已知∠α、∠β,画一个角, 使它(1)等于∠α+∠β.(2)等于∠α-∠β
DBβCA
α
C
β α
B
解:①用量角器画出∠ABC= ∠α; ②以点B为顶点,射线BC为一边, 在∠ ABC的 外内部部 用量角器画 ∠CBD= ∠β 。
∠ABD就是所要画的角. D
练一练
如图,∠AOD=80°,∠COD=30°, OB是∠AOC的平分线, 那么∠AOC=( 50)°, ∠AOB=( 25 )°.
分析 ∠AOC= ∠AOD—∠COD
D C
= 80°— 30° = 50°
B 因为OB是∠AOC的平分线,
所以∠AOB= 1 ∠AOC
2
O
A
=
1
×
50°
2
=25°
例2 如图,已知∠1=∠3=m°,∠2=n°. (1)用含m、n的式子分别表示∠AOC、∠BOD的大小; (2)比较∠AOC和∠BOD的大小.
▪ 10、人的志向通常和他们的能力成正比例。2021/1/92021/1/92021/1/91/9/2021 8:25:04 PM ▪ 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/1/92021/1/92021/1/9Jan-219-Jan-21 ▪ 12、越是无能的人,越喜欢挑剔别人的错儿。2021/1/92021/1/92021/1/9Saturday, January 09, 2021 ▪ 13、志不立,天下无可成之事。2021/1/92021/1/92021/1/92021/1/91/9/2021
7.5 画角的和、差、倍
一、回顾线段和差倍的画法和意义
两条线段的和(或差)也是一条线段;
其长度等于这两条线段的长度的和(或差)。
a
b
c
o
A
B
p
线段OB就是所要画的线段a+b 画2a-b+c
B
A
p
线段OB就是所要画的线段a-b
二、新授画角的和、差、倍
用一副(两块)三角尺可以画出哪些度数的角?
45度,30度,60度,90度; 75度,105度,135度,120度,150度; 15度;
A
试一试:如果要画一个角等于2∠α-∠β呢?
练习:
如图,已知∠1、 ∠2, ∠3 ,画一 个角,使它等于2∠1- ∠2 + ∠3 .
2
3
1
三、角的和、差、倍意义的简单应用
根据图形,填空。
(1)∠ABC= + (2)∠ADC-∠ADB=_______ (3)∠BDE+ =∠BDC
B
A D
E
C
问题引入
∠AOB=2∠AOC, ∠AOB=2∠BOC.
思考 怎样画出一个角的角平分线呢?
例1 如图,已知∠AOB,画出它的角平分线.
B
方法一
用量角器画
M
解 ⑴用量角器量得∠AOB =48°;
O
A
⑵在∠AOB的内部画射线
OM,使∠AOM =24°.
射线OM就是所要画的∠AOB的平分线.
思考 怎样画出一个角的角平分线呢?
解 ⑴∵ ∠AOC =∠1+∠2, ∠1=m°,∠2=n°
∴∠AOC =m° +n° , 同理 ∠BOD = m°+n°.
⑵∵∠AOC = m°+n° ,
∠BOD = m°+n° , ∴∠AOC=∠BOD.
练一练
已知:如图,已知∠AOB=62°, ∠1=(3x-2)°,∠2=(x+8)°. 求:∠1、∠2的度数.
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
例1 如图,已知∠AOB,画出它的角平分线.
B
方法二
尺规作法
E
O
D
C
解 ⑴以∠AOB的顶点为圆心,以取
定的长a为半径,作弧分别交∠AOB
A 的两边于点D、E;
1
⑵ 的同分别一以长点度D为、半点径E作为弧圆,心两,弧以交大于于∠2DAEOB
的内的一点C;
⑶作射线OC. 射线OC就是所求作的∠AOB的平分线.