材料力学:第二章 轴向拉伸和压缩
材料力学(机械类)第二章 轴向拉伸与压缩
二
章
拉伸压缩与剪切
1
பைடு நூலகம்
§2-1
轴向拉伸与压缩的概念和实例
轴向拉伸——轴力作用下,杆件伸长 (简称拉伸) 轴向压缩——轴力作用下,杆件缩短 (简称压缩)
2
拉、压的特点:
1.两端受力——沿轴线,大小相等,方向相反 2. 变形—— 沿轴线
3
§2-2 轴向拉伸或压缩时横截面上的内力和应力
1 、横截面上的内力
A3
2
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
40
目录
例 2—5 截面积为 76.36mm² 的钢索绕过无摩擦的定滑轮 F=20kN,求刚索的应力和 C点的垂直位移。 (刚索的 E =177GPa,设横梁ABCD为刚梁)
16
§2-4
材料在拉伸时的力学性能
材料的力学性能是指材料在外力的作用下表现出的变 形和破坏等方面的特性。
现在要研究材料的整个力学性能(应力 —— 应变):
从受力很小
破坏
理论上——用简单描述复杂
工程上——为(材料组成的)构件当好医生
17
一、 低碳钢拉伸时的力学性能 (含碳量<0.3%的碳素钢)
力均匀分布于横截面上,σ等于常量。于是有:
N d A d A A
A A
得应力:
N A
F
FN
σ
10
例题2-2
A 1
45°
C
2
5 材料力学第二章 轴向拉伸和压缩
16锰钢
合金钢 铸铁 混凝土 石灰岩 木材(顺纹)
196-216
186-216 59-162 15-35 41 10-12
0.25-0.30
0.25-0.30 0.23-0.27 0.16-0.18 0.16-0.34
橡胶
0.0078
0.47
25
材料力学
§2-5
轴向拉伸时材料的机械性能
一、试验条件及试验仪器
P BC段:N 2 3 P
1
3P + P
AB段:N
3
2 P
+
–
12
2P
三、横截面上的应力
问题提出: P P (一)应力的概念 P P
度量横截面 上分布内力 的集度
1.定义:作用在单位面积上的内力值。 2.应力的单位是: Pa KPa MPa GPa
3.应力:a:垂直截面的应力--正应力σ 拉应力为正,压应力为负。
※E为弹性模量,是衡量材料抵抗弹 性变形能力的一个指标。“EA”称 为杆的抗拉压刚度。
l E Sl S E E l l EA A
胡克定律:
=Eε
23
四、横向变形
d d 1 d 0
泊松比(或横向变形系数)
d d 1 d 0 相对变形: ' d0 d0
e
DE段:颈缩阶段。
• 材料的分类:根据试件断裂时的残余相对变形率将材料分类: 延伸率(δ )>5% 塑性变形:低碳钢,铜,塑料,纤维。 延伸率(δ )<5% 脆性变形:混凝土,石块,玻璃钢,陶瓷, 玻璃,铸铁。 • 冷作硬化:材料经过屈服而进入强化阶段后卸载,再加载时,弹 性极限明显增加,弹性范围明显扩大,承载能力增大的现象。 • 强度指标:对塑性材料,在拉断之前在残余变形0.2 %(产生 0.2%塑性应变)时对应的应力为这种材料的名义屈服应力,用 0.2表示 ,即此类材料的失效应力。 锰钢、镍钢、铜等 • 脆性材料拉伸的机械性能特点: 1.断裂残余相对变形率δ <5% 0.2 or s max b 2.弹性变形基本延伸到破坏 3.拉伸强度极限比塑性材料小的多 4.b是脆性材料唯一的强度指标
材料力学课件第二章 轴向拉伸和压缩
2.3 材料在拉伸和压缩时的力学性能
解: 量得a点的应力、应变分别 为230MPa、0.003
E=σa/εa=76.7GPa 比例极限σp=σa=230MPa 当应力增加到σ=350MPa时,对应b点,量得正应变值
ε = 0. 0075 过b点作直线段的平行线交于ε坐标轴,量得 此时的塑性应变和弹性应变
εp=0. 0030 εe= 0 . 0075-0.003=0.0045
内力:变形固体在受到外力作用 时,变形固体内部各相邻部分之 间的相互作用力的改变量。
①②③ 切加求 一内平 刀力衡
应力:是内力分布集度,即 单位面积上的内力
p=dF/dA
F
F
FX = 0
金属材料拉伸时的力学性能
低碳钢(C≤0.3%)
Ⅰ 弹性阶段σe σP=Eε
Ⅱ 屈服阶段 屈服强度σs 、(σ0.2)
FN FN<0
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(1)外载荷不能沿其作用线移动。
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(2)截面不能切在外载荷作用点处,要离开或 稍微离开作用点。
1
2
11
22
f 30 f 20
60kN
Ⅲ 强化阶段 抗压强度 (强度极限)σb
Ⅳ 局部颈缩阶段
例1
一根材料为Q235钢的拉伸试样,其直径d=10mm,工作段 长度l=100mm。当试验机上荷载读数达到F=10kN 时,量 得工作段的伸长为Δ l=0.0607mm ,直径的缩小为 Δd=0.0017mm 。试求此时试样横截面上的正应力σ,并求出 材料的弹性模量E。已知Q235钢的比例极限为σ p =200MPa。
材料力学第2章轴向拉伸与压缩
图2.5
(2)物理关系
根据物理学知识,当变形为弹性变形时,变形和力成正比。因为各“纤维” 的正应变ε 相同,而各“纤维”的线应变只能由正应力ζ 引起,故可推知横
截面上各点处的正应力相同,即在横截面上,各点处的正应力ζ 为均匀分布
,如图2.6所示。
图2.6
(3)静力学关系 由静力学求合力的方法,可得
α
和沿斜截面的切应力
,如图2.8(d)所示,即得
从式(2.4)可以看出,ζ
α
和α 都是α 的函数。所以斜截面的方位不同,截 , 即横截面上的正应力是所有截
面上的应力也就不同。当α =0时,
面上正应力中的最大值。当α =45°时,α 达到最大值,且
可见,在与杆件轴线成45°的斜截面上,切应力为最大值,最大切应力在数 值上等于最大正应力的1/2。 关于切应力的符号,规定如下:截面外法线顺时针转90°后,其方向和切应 力相同时,该切应力为正值,如图2.9(a)所示;逆时针转90°后,其方向和 切应力相同时,该切应力为负值,如图2.9(b)所示。
同理,可求得BC段内任一横截面上的轴力(见图2.4(d))为
在求CD段内任一横截面上的轴力时,由于截开后右段杆比左段杆受力简单, 所以宜取右段杆为研究对象(见图2.4(e)),通过平衡方程可求得
结果为负,说明N3的实际方向与假设方向相反。 同理,DE段内任一横截面上的轴力为
依据前述绘制轴力图的规则,所作的轴力图如图2.4(f)所示。显然,最大轴 力发生在BC段内,其值为50 kN。
由此可得杆的横截面上任一点处正应力的计算公式为
对于承受轴向压缩的杆,式(2.3)同样适用。但值得注意的是:细长杆受压
时容易被压弯,属于稳定性问题,将在第11章中讨论,式(2.3)适用于压杆 未被压弯的情况。关于正应力的符号,与轴力相同,即拉应力为正,压应力
材料力学《第二章》轴向拉伸与压缩
c'
杆受压时同样分析,可得同样结果。 由式可知: 1. FN s ,A s; 2. s 与FN符号相同,拉应力为正,压应力为负。
说明:所得结果经实验证明是准确的,因此平面假设符合实际 情况。
上海交通大学
注意: 1. 公式仅适用于轴向拉压情况; 2. 公式不适用于外力作用区域附近部分。
在外力作用区域附近,s 并不均布,而是由外力的作用情况而定。
k
F
将 pa 沿斜截面的垂直方向和平行 F 方向分解:
k
pa
pa
s0 s a pa cosa (1 + cos 2a ) 2 s0 t a pa sin a s 0 cosa sin a sin 2a 2
F
a k sa
a
可知:sa 、ta的大小和方向随 a 的改变而改变。
ta
pa
上海交通大学
得 FN4 = F4 = 10 kN (拉)
A F1 FN
1
B F2
2
C
3
D F4
FN1 = 5 kN 5 kN + B
1
F3 FN2 = –15 kN
2
FN3 = 10 kN 10 kN + C D x
3
A
三、 轴力图 –15 kN
在杆件中间部分有外力作用时,杆件不同段上的轴力不同。 可用轴力图来形象地表示轴力随横截面位置的变化情况。 横轴 x:杆横截面位置;纵轴 FN:杆横截面上的轴力。 正值轴力 (拉)绘在横轴 上方,负值轴力 (压)绘在横轴下方。
变形特点:杆件产生沿轴线方向的伸长或缩短,同时伴随横 向尺寸的变化(减小或增大)。
轴向拉伸:两端受拉力作用,杆的变形是轴向伸长,横向减小。
材料力学 第2章轴向拉伸与压缩
A
FN128.3kN FN220kN
1
(2)计算各杆件的应力。
C
45°
2
B
s AB
FN 1 A1
28.3103
202
M
Pa90MPa
4
F
FN 1
F N 2 45°
y
Bx
s BC
FN 2 A2
21052103MPa89MPa
F
§2.4 材料在拉伸和压缩时的力学性能
22
5 圣维南原理
s FN A
(2-1)
(1)问题的提出
公式(2-1)的适用范围表明:公式不适用于集中力作
用点附近的区域。因为作用点附近横截面上的应力分布是非
均匀的。随着加载方式的不同。这点附近的应力分布方式就
会发生变化。 理论和实践研究表明:
不同的加力方式,只对力作
用点附近区域的应力分布有
显著影响,而在距力作用点
力学性能:指材料从开始受力至断裂的全部过程中,所表 现出的有关变形和破坏的特性和规律。
材料力学性能一般由试验测定,以数据的形式表达。 一、试验条件及试验仪器 1、试验条件:常温(20℃);静载(缓慢地加载);
2、标准试件:常用d=10mm,l=100 mm的试件
d
l
l =10d 或 l = 5d
36
b点是弹性阶段的最高点.
σe—
oa段为直线段,材料满足 胡克定律
sE
sp
E
se sp
s
f ab
Etana s
O
f′h
反映材料抵抗弹
性变形的能力.
40
材料力学--轴向拉伸和压缩
2、轴力图的作法:以平行于杆轴线的横坐标(称为基
线)表示横截面的位置;以垂直于杆轴线方向的纵坐
标表示相应横截面上的轴力值,绘制各横截面上的轴 FN
力变化曲线。
x
§2-2 轴力、轴力图
三、轴力图
FN
3、轴力图的作图步骤:
x
①先画基线(横坐标x轴),基线‖轴线;
②画纵坐标,正、负轴力各绘在基线的一侧;
③标注正负号、各控制截面处 、单位及图形名称。
FN
4、作轴力图的注意事项: ①基线一定平行于杆的轴线,轴力图与原图上下截面对齐; ②正负分绘两侧, “拉在上,压在下”,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④整个轴力图比例一致。
50kN 50kN 50kN
第二章 轴向拉伸和压缩
第二章
轴向拉伸和压缩
第二章 轴向拉伸和压缩
§2 — 1 概述
§2 — 2 轴力 轴力图
目
§2 — 3 拉(压)杆截面上的应力
§2 — 4 拉(压)杆的变形 胡克定律 泊松比
录
§2 — 5 材料在拉伸与压缩时的力学性质
§2 — 6 拉(压)杆的强度计算
§2 — 7 拉(压)杆超静定问题
FN
作轴力图的注意事项: ①多力作用时要分段求解,一律先假定为正方向,优先考虑直接法; ②基线‖轴线,正负分绘两侧, “拉在上,压在下”,比例一致,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④阴影线一定垂直于基线,阴影线可画可不画。
§ 2-3拉(压)杆截面上的应力
§2 — 8 连接件的实用计算
§2-1 概述 §2-1 概述
——轴向拉伸或压缩,简称为拉伸或压缩,是最简单也是做基本的变形。
材料力学第2章
2-2截面,即BC段:
BC
FN 2 30 103 N 100MPa 6 2 A2 300 10 m
FN 4 20 103 N 100MPa 6 2 A3 200 10 m
(压应力)
3-3截面,即DE段:
DE
(压应力)
23
材料力学
出版社
科技分社
2.3.3 拉压杆斜截面上的应力
4
材料力学
出版社
科技分社
由上可知苹果把中的内力和外力(重力)是有关 系的,它随外力作用而产生,是由于外力的作用而 引起的“附加内力”,有别于物体中微观粒子间的 作用力,这就是材料力学中的内力。 2.2.2 轴力、截面法、轴力图 当直杆轴向拉伸或压缩时,所产生的内力是沿杆 件轴线的,故称为轴力。由于内力是受力物体内相邻 部分的相互作用力,可用截面法来分析内力 。
32
材料力学
出版社
科技分社
例题 2.5
解: 由于杆的轴力FN沿杆长是变化的,材料有两种 ,截面为变截面,所以在运用式(2-10)计算 杆长度改变量时,应按FN 、E、A的变化情况, 分别计算每段长度的改变量,最后的代数和即 为杆纵向总变形量Δl 。
先画出杆的轴力图, 见(b)图。各段的纵向 伸长或缩短量分别为:
5
材料力学
出版社
科技分社
截面法的基本步骤如下:
1)截开: 2)代替: 3)平衡:
F
x
0 : FN F 0, FN F
轴力的正负号规定: a.拉杆的变形是沿纵向伸长, 其轴力规定为正,称为拉力; b.压杆的变形是沿纵向缩短,其轴力规定为负,称 为压力。
6
材料力学
出版社
科技分社
为了表示轴力随横截面位臵而变化的情况,可选 取一定的比例,用平行于杆轴线的坐标表示横截面 的位臵,用垂直于杆轴线的坐标表示横截面上轴力 的数值,从而绘出表示轴力与截面位臵关系的图线 ,称为轴力图。习惯上将正值的轴力画在坐标轴的 上侧,负值的轴力画在下侧。轴力图上可以确定最 大轴力的数值及其所在横截面的位臵。
材料力学第二章-轴向拉伸与压缩
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n
材料力学第二章 轴向拉伸和压缩
2、计算各杆轴向变形
C
l 2 =1m a =170mm
B'
B2
F
l1 0.48mm
3、由变形的几何条件确定B点的位移 分别以A为圆心,AB1为半径,C为圆 心,CB1为半径画弧,相较于B’点,
B"
小变形条件,可以用切线代替弧线。
材料力学
第2章 轴向拉伸和压缩
FN FN ( x)
轴力方程
即为轴力图。
即:FN随x的变化规律
以x为横坐标,以FN为纵坐标,绘制FN F( )的关系图线, N x
FN
正的轴力画在x轴的上侧,负的画在下侧.
x
材料力学
第2章 轴向拉伸和压缩
例题1
等值杆受力如图所示,试作其轴力图
F =25kN F 4=55kN 4 1=40kN F
纵向线 即: 原长相同
变形相同
横截面上各点的纵向线应变相等
c
拉压杆变形几何方程.
反映了截面上各点变形之间的几何关系.
材料力学
第2章 轴向拉伸和压缩
§2-2 横截面上的正应力 应力分布规律 找变形规律 研究思路: 试验观察 综合几何方面、物理方面、静力学方面推导应力计算公式
一、几何方面
F
a' b'
材料力学
第2章 轴向拉伸和压缩
第二章 轴向拉伸和压缩
材料力学
第2章 轴向拉伸和压缩
• • • • • •
本章主要内容 轴力及轴力图 横截面上的应力 拉压杆的变形、胡克定律 强度计算 材料的力学性质
材料力学
第2章 轴向拉伸和压缩
§2-1 概述 一、工程实际中的轴向拉压杆
材料力学第2章+轴向拉伸与压缩
第二章 轴向拉伸和压缩
§2-3应力·拉(压)杆内的应力
1. 应力的概念
若考察受力杆截面上M点处
应力:指受力杆件某一横 截面上一点处的内力集度 (内力分布的密集程度)
应力,可在M点周围取一很
小面积ΔA,设 ΔA面积上分 布内力的合力为ΔF,则 ΔA
上内力平均集度为:
F M A
26
Pm = F/A
Pm即A上的平均应力
第二章 轴向拉伸和压缩
若将力F由自内端A至杆B点处(图d),则其AB段内任一横 截面上的轴力都将等于零(图e).而BC段内任一横截面n-n上的 轴力仍等于F(图f),保持不变。
FN = 0
14
§2-2内力·截面法·轴力及轴力图 2.截面法、轴力
第二章 轴向拉伸和压缩
原因:这是因为集中力F由自由端A移至B点 后,改变了杆件AB段的变形。而并不改变BC 段的变形
第二步、绘制轴力图
第二章 轴向拉伸和压缩
FN kN
10
FN图kN
25
_
x
10
20
第二章 轴向拉伸和压缩
§2-2内力·截面法·轴力及轴力图
例2.2
30kN
A
30kN
作图示杆件的轴力图,并指出| FN |max
1
2
90kN
60kN
1
B
2
解:1、计算杆件各段的轴力。
C
AB 段
1
2
x FN1
FN2
1
2
60kN
第二章 轴向拉伸和压缩
§2-2内力·截面法·轴力及轴力图 2.截面法、轴力
注意:静力学中的力(或力偶)的可移性原理,在用截面法 求内力的过程中是有限制的。如图a所示拉杆在自由端A承 受集中力F,由截面法可得,杆任一横截面m—m或n—n” 上的轴力FN、均等于F(图b,c)。
材料力学轴向拉伸与压缩
第二章 轴向拉伸与压缩 2.2 杆旳变形
F
1.纵向变形 (1)纵向变形 (2) 纵向应变
b h
l l1
Δl l1 l
Δl
l
h1
F
b1
第二章 轴向拉伸与压缩
b
F
h
l l1
2.横向变形
h1
F
b1
(1)横向变形 (2)横向应变 3.泊松比
b b1 b
b1 b Δb
bb
A d 2 FN 4 [ ]
由此可得链环旳圆钢直径为
d
4F [ ]
4 12.5 103 3.14 45106
m=18.8mm
第二章 轴向拉伸与压缩
[例6]如图a所示,构造涉及钢杆1和铜杆2,A、B、C处为铰链连接。 在节点A悬挂一种G=20kN旳重物。钢杆AB旳横截面面A1=75 mm2, 铜杆旳横截面面积为A2=150 mm2 。材料旳许用应力分别为 ,
GB/T 228-2023 金属材料室温拉伸试验措施
原则拉伸试样:
标距: 试样工作段旳原始长度
要求标距: l 10 d 或者
l 5d
第二章 轴向拉伸与压缩
试验设备 (1)微机控制电子万能
试验机 (2)游标卡尺
第二章 轴向拉伸与压缩
试验设备
液压式
电子式
第二章 轴向拉伸与压缩
拉伸试验
第二章 轴向拉伸与压缩
第二章 轴向拉伸与压缩
应力非均布区 应力均布区 应力非均布区
圣维南原理
力作用于杆端旳分 布方式,只影响杆端 局部范围旳应力分布, 影响区约距杆端 1~2 倍杆旳横向尺寸。
端镶入底座,横向变形 受阻,杆应力非均匀分布。
材料力学 第02章 轴向拉伸和压缩及连接件的强度计算
弹屈 性服 阶阶 段段
强 化 阶 段
颈 缩 阶 段
33/113
2.3 材料在拉伸或压缩时的力学性能 2.3.1 低碳钢Q235拉伸时的力学性能-弹性阶段
Oa段应力与应变成正比
s Ee
s
b a
弹性模量E是直线Oa的斜率 Q235 E≈200GPa
直线部分的最高点a所对应的应力称为 比例极限,sp Oa段材料处于线弹性阶段
(2) 杆AB段上与杆轴线夹45°角(逆时针方向)斜截面上的正应力 和切应力。
A 1 300 mm B 500 kN 300 mm 2 C 3 300 kN 400 mm
26/113
D
200 kN
2.2 拉压杆截面上的内力和应力 【例2-3】解
A 1 300 mm B 500 kN 300 mm 2 C
内力相同,
但是常识告诉我们,
F F
直径细的拉杆更容易破坏。
求得各个截面上的轴力后,并不能直接判断杆件是否具有足 够的强度。必须用横截面上的应力来度量杆件的受力程度。 用横截面上的应力来度量杆件的受力程度。
18/113
2.2 拉压杆截面上的内力和应力 2.2.2 1 拉压杆横截面上的应力
a
F
c
c' d'
F4
D
FN4
F
x
0 FN4 F4 0
FN4 20 kN 拉
16/113
同一位置处左右侧截面上的内力分量具有相同的正负号
2.2 拉压杆截面上的内力和应力 【例】解
1
FR A F1
F1=40kN,F2=55kN,F3=25kN,F4=20kN
2
F2 B
材料力学第五版第二章 1
第二章 轴向拉伸和压缩
例 一等直杆受力情况如(a)图所示。试作杆的轴力图。
解:1.先求约束力。
由平衡方程
∑F
x
=0
得:FRA = 20KN
第二章 轴向拉伸和压缩
2. 计算各段的轴力。 AB段: 得 BC段: 得 CD段: 得
∑F
x
=0
FN1 = FRA = 20KN
∑F
x
=0
FN 2 = −30KN
第二章 轴向拉伸和压缩
斜截面上的正应力:
σα = pα cosα = σ cos α
2
斜截面的切应力:
τα = pα sin α = σ cosα sin α =
σ
2
sin 2α
α正负的规定:以 x 轴为起点,逆时针转向者为正,反之为负。
第二章 轴向拉伸和压缩
α = 0o 时
σα = σα max = σ τα = 0
∑F
x
=0
− FN 3 = 40KN
第二章 轴向拉伸和压缩
3.绘制轴力图
第二章 轴向拉伸和压缩
应力﹒ §2-3 应力﹒拉(压)杆内的应力 通常情况下,受力构件不同截面上内力是不相同的, 通常情况下,受力构件不同截面上内力是不相同的, 就是在同一截面各个点上内力也是不相同的。例如, 就是在同一截面各个点上内力也是不相同的。例如,图中 吊架横梁各个横截面上的内力是不相同的; 吊架横梁各个横截面上的内力是不相同的;就 是过 A 、B 两点的同一个截面上,各点的内力 两点的同一个截面上, 大小也不相同, 两点上的内力最大。 大小也不相同, A 、B 两点上的内力最大。 可见,在研究构件强度时, 可见,在研究构件强度时,对构件内各 个点受力情况十分关心,要引入应力这个概 个点受力情况十分关心,要引入应力这个概 应力 念。
材料力学 第2章
第二章杆件的内力分析第一节杆件拉伸或压缩的内力一、轴向拉伸或压缩的概念轴向拉伸或压缩:由一对大小相等、方向相反、作用线与杆件轴线重合的外力作用下引起的,沿杆件长度发生的伸长或缩短。
二、工程实例三、轴力轴力图1、轴力与杆轴线重合的内力合力。
轴力符号:拉伸为正,压缩为负。
∑=0X0122=-+F F N kNF F N 242212-=-=-= ∑=0X34=-N FkNF N143==任一截面上的轴力等于该截面一侧轴向载荷的代数和,轴向载荷矢量离开该截面者取正,指向该截面者取负。
2、轴力图正对杆的下方,以杆的左端为坐标原点,取平行于杆轴线的直线为x 轴,并称为基线,垂直于x 轴的N 轴为纵坐标。
正值绘在基线的上方,负值绘在基线的下方,最后在图上标上各截面轴力的大小。
注意:轴力图与基线形成一闭合曲线。
轴力图必须与杆件对齐。
在轴向集中力作用的截面上,轴力图将发生突变,其突变的绝对值等于轴向集中力的大小,而突变方向:集中力箭头向左时向上突变,集中力箭头向右时向下突变(图是从左向右画)。
例2-10第二节剪切的内力一、剪切的概念剪切:由一对相距很近、大小相等、方向相反的横向外力引起的横截面沿外力作用方向发生的相对错动。
剪切面或受剪面 m-m二、工程实例三、剪力第三节杆件扭转的内力一、扭转的概念扭转:由一对大小相等、方向相反、作用面都垂直于杆轴的力偶引起的杆的任意两个横截面绕杆轴线的相对转动。
ϕ:扭转角;γ:剪切角二、工程实例三、扭矩某一截面上的扭矩等于其一侧各外力偶矩的代数和。
外力偶矩矢量指向该截面的取负,离开该截面的取正。
四、 扭矩图在外力偶作用的截面上,扭矩图将发生突变,其突变的的绝对值等于该外力偶矩的大小,而突变方向:外力偶矩矢量方向向左的向上突变,向右则向下突变。
外力偶矩的计算公式:)(9550m N nP Mk ⋅=注意:kP 单位为kw ;n 单位为min r ;M 单位为m N ⋅第四节 梁弯曲时的内力一、 弯曲 变形的基本概念弯曲变形:由一对大小相等、方向相反,位于杆的纵向平面内的力偶引起的,杆件的轴线由直线变为曲线。
材力第2章:轴向拉伸与压缩
F
F
F
F
拉杆
压杆
§2-2 轴力及轴力图 1.内力的概念
构件因反抗外力引起的变形,而在其内部各质点间引起的相 互之间的作用力,称为内力。 显然,外力越大,变形越大,因而内力也越大,但内力不可 能无止境地随外力的增大而增大,总有个限度,一旦超过了 这个限度,材料将发生破坏。因此,材料力学中,首先研究 内力的计算,然后研究内力的限度,最后进行强度计算。
B
α α
FN1
α α
FN2
FN 2 cos + FN 1 cos - F = 0
FN 2 = FN 1 = F 2 cos Fl
A
A
F
l1 = l2 =
l2
FN 2l EA
=
=
2 EA cos
Fl
A = AA =
A l 1
=
A
l2 cos
2EA cos
2
= FN A ,
=
l l
=
E
又称为单轴应力状态下的胡克定律,不仅适用于轴向拉(压)杆,可以更普遍 地用于所有的单轴应力状态。
= E 表明在材料的线弹性范围内,正应力与线应变呈正比关系。
例题 试求图示杆 AC 的轴向变形△ l 。
FN 1
B
F1
F2
C
FN 2
C
F2
分段求解:
0
90 = 0
0
90 = 0
0
在平行于杆轴线的截面上σ、τ均为零。
• 作业: P41 • •
2-1(2)(3) 2-3 2-6
§2-5 拉、压杆的变形
杆件在轴向拉压时:
材料力学第2章 轴向拉伸和压缩
(b),由静力平衡条件:
∑X = 0
N AB + N BC cos30 = 0
…(1) NBC …(2) NAB 30
y
Y =0 ∑ N BC sin 30 - P = 0
B P
x
(b)
由(2)式可得
N BC
P 2 = = = 4kN (拉) sin 30 0.5
将NBC的值代入(1),可得
6
40 106 Pa 40 MPa
杆端加载方式对正应力分布的影响
圣维南原理:若用与外力系静力等效的合力代替原力 系,则这种代替对构件内应力与应变的影响只限于原 力系作用区域附近很小的范围内。
对于杆件, 此范围相 当于横向 尺寸的 1~1.5倍。
圣维南原理:“ 力作用于杆端方式
不同,只会使与杆端距离不大于杆 的横向尺寸的范围内受影响。”
用径向截面将薄壁圆环截开,取其上半部分为分离 体,如图b所示。分布力的合力为
d FR ( pb d )sin pbd 0 2
π
FR pba 由SFy=0,得 FN 2 2
径向截面上的拉应力为
FN 1 pbd pd ( 2 10 Pa)(0.2 m) s ( ) A bd 2 2d 2(5 10-3 m)
符号规定:
正号轴力-- N的方向与截面外法线方向一致。
负号轴力-- N的方向与截面外法线方向相反。
也即:拉伸为正、压缩为负。
3.轴力图 例1:一直杆受力如图所示。试求各段中横截面上的 轴力。
6kN
A
I I I I
II B 10kN II
III D C 4kN 8kN III
6kN
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N AB A
N AB 2bh
5.32 10 5 2 2590106
118
.2106 Pa
118
.2MPa
120MPa
斜杆强度足够
26
例题
D=350mm,p=1MPa。螺栓 [σ]=40MPa, 求螺栓直径。
解: 油缸盖受到的力 F π D2 p
4
pD
每个螺栓承受轴力为总压力的1/6
即螺栓的轴力为 N F π D2 p
在截开面上相应的内力(力或力偶)代替。 ③平衡:对留下的部分建立平衡方程,根据其上的已知外力来
计算杆在截开面上的未知内力(此时截开面上的内力 对所留部分而言是外力)。
8
例如: 截面法求N。
P
A
P
截开:
P
A P
简图
代替:
P
N A
平衡: X 0 N P 0 P N
2. 轴力——轴向拉压杆的内力,用N 表示。
P P
3
二、
工 程 实 例
4
5
6
§1–2 内力 ·截面法 ·轴力及轴力图
一、内力 指由外力作用所引起的、物体内相邻部分之间分布内
力系的合成(附加内力)。
7
二、截面法 ·轴力 内力的计算是分析构件强度、刚度、稳定性等问题的
基础。求内力的一般方法是截面法。
1. 截面法的基本步骤: ① 截开:在所求内力的截面处,假想地用截面将杆件一分为二。 ②代替:任取一部分,其弃去部分对留下部分的作用,用作用
遇到向左的P, 轴力N 增量为正;
遇到向右的P ,单位轴力N 增量为负。
N(x) P() P()
8kN
5kN
3kN
5kN
+
N图
–
3kN 14
[例2] 图示杆长为L,受均匀分布力 q 作用,方向如图,试画出 杆的轴力图。
q
L q
Nx x
解:距左侧x 截面的内力N(x)为:
x
N (x) 0 qdx qx
§1–1 轴向拉压的概念及实例
一、概念 轴向拉压的外力特点:外力的合力作用线与杆的轴线重合。 轴向拉压的变形特点:杆的变形主要是轴向伸缩,伴随横向 缩扩。 轴向拉伸:杆的变形是轴向伸长,横向缩短。 轴向压缩:杆的变形是轴向缩短,横向变粗。
2
力学模型如图
P
轴向拉伸,对应的力称为拉力。
P
轴向压缩,对应的力称为压力。
max max(NA((xx)))
其中:[]--许用应力, max--危险点的最大工作应力。
依强度准则可进行三种强度计算:
①校核强度:
max
②设计截面尺寸:
Am in
Nmax
[ ]
③许可载荷: Nmax A ; P f ( Ni )
25
F 例题 已知: F=1000kN,b=25mm,h=90mm,
变形前
ab cd
受载后 P
a´
b´
c´
d´
P
平面假设:原为平面的横截面在变形后仍为平面。
纵向纤维变形相同。
19
均匀材料、均匀变形,内力当然均匀分布。
2. 拉伸应力:
P
N
N
A
轴力引起的正应力 —— : 在横截面上均布。
3. 危险截面及最大工作应力: 危险截面:内力最大的面,截面尺寸最小的面。
危险点:应力最大的点。
6 24
根据强度条件
max
N A
得
A
N
即
d 2
4
D2 p
24
螺栓的直径为
d
D2 p
6
0.352 106 6 40106
N (x)max qL
N
O x
qL
15
§1–3 截面上的应力及强度条件
问题提出:
P
P
P
P
1. 内力大小不能衡量构件强度的大小。 2. 强度:①内力在截面分布集度应力;
②材料承受荷载的能力。
一、应力的概念 1. 定义:由外力引起的内力集度。
16
工程构件,大多数情形下,内力并非均匀分布,集度的定 义不仅准确而且重要,因为“破坏”或“失效”往往从内力集 度最大处开始。
max max( NA((xx)))
20
4. 公式的应用条件: 直杆、杆的截面无突变、截面到载荷作用点有一定 的距离。
5. Saint-Venant原理: 离开载荷作用处一定距离,应力分布与大小不受外载荷作
用方式的影响。 6. 应力集中(Stress Concentration): 在截面尺寸突变处,应力急剧变大。
OA
BC
D
PA
PB
PC
PD
同理,求得AB、
N2
BC
D
BC、CD段内力分 别为:
PB
PC
PD
N3
C
D
N2= –3P N3= 5P
PC
PD
N4
D
N4= P
PD
12
轴力图如右图
OA
BC
D
PA
PB
PC
PD
N
2P +
–
3P
5P
+
P
x
轴力图的特点:突变值 = 集中载荷
13
轴力(图)的简便求法: 左左为正(右右为正)
α=200 ,斜杆由两矩形截面杆叠合而成,
〔σ〕=11、研究节点A的平衡。
B
Cy
X 0 NAB NAC
F F
Y 0 得 F 2NAB cos 0
A
NAB
x
N AC
N AB
F
2 cos
1000103 2 cos 20
5.32105 N
2、强度校核
[例1] 图示杆的A、B、C、D点分别作用着大小为5P、8P、4P、 P 的力,方向如图,试画出杆的轴力图。
OA
BC
D
PA
PB
PC
PD
N1
A
BC
D
PA
PB
PC
PD
解: 求OA段内力N1:设置截面如图
X 0 N1 PA PB PC PD 0
N1 5P 8P 4P P 0 N1 2P 11
21
Saint-Venant原理与应力集中示意图
变形示意图: P
a
b
c
P
(红色实线为变形前的线,红色虚线为红色实线变形后的形状。) 应力分布示意图:
P
22
23
24
7. 强度设计准则(Strength Design): 保证构件不发生强度破坏并有一定安全余量的条件准则。
max
Nmax A
9
3. 轴力的正负规定:
N
N
N 与外法线同向,为正轴力(拉力)
N与外法线反向,为负轴力(压力)
N
N
三、 轴力图—— N (x) 的图象表示。
意 ①反映出轴力与截面位置变化关系,较直观;
义 ②确定出最大轴力的数值 N
及其所在横截面的位置,
P
即确定危险截面位置,为
+
强度计算提供依据。
N>0 N<0
x
10
2. 应力的表示:
①平均应力:
P
M
pM
ΔP ΔA
A
②全应力(总应力):
pM
lim
Δ A0
Δ Δ
P A
dP dA
17
③全应力分解为:
垂直于截面的应力称为“正应力” (Normal Stress);
p
M
位于截面内的应力称为“剪应力”(Shearing Stress)。
18
二、拉(压)杆横截面上的应力 1. 变形规律试验及平面假设: