碳钢热处理基本组织观察
碳钢的热处理操作、组织观察及硬度测定

680 677 680 682 690 695 700 700 700 700 700
835 835 796 760 750 721 743 - - - -
碳 素 工 具 钢
T7 T8 T10 T12 T13
回火时的加热、保温时间,应与回火温度结合起来考 虑。一般来说,低温回火时, 由于所得组织不稳定,内 应力消除不充分,为了稳定组织,消除内应力,使零件在 使用过程中性能与尺寸稳定,回火时间要长一些,一般不 少1.5~2小时。高温回火时间不宜过长,过长会使钢过分 软化,对有的钢种甚至造成严重的回火脆性,所以一般为 0.5~l小时。 3、冷却速度的影响 冷却是淬火的关键工序,一方面冷却速度耍大于临界 冷却速度,以保证得到马氏体,另一方面又希望冷却速度 不要太大,,以减小内应力,避免变形和开裂,为此,根 据c曲线考虑,淬火工件必须在过冷奥氏体最不稳定温度 范围(650~550℃)进行快冷,以超过临界冷却速度,而在 Ms(300~200℃)点以下,尽可能慢冷以减少内应力。为 保证淬火质量,应适当选用淬火介质和淬火方法。常用淬 火介质的特性见表6—2。
材料、材控专业
一、实验目的 1、了解碳钢的热处理操作; 2、研究加热温度、冷却速度、回火温度对 碳钢性能的影响; 3、观察热处理后钢的组织及其变化; 4、了解硬度计的原理,初步掌握洛氏硬度 计的使用。
二、概 述 (一)钢的热处理工艺 钢的热处理就是通过加热、保温和冷却三个步骤来 改变其内部组织,而获得所需性能的一种加工工艺。 普通热处理分为退火、正火、淬火和回火。 钢加热到一定温度保温后缓慢冷却(通常随炉冷却) 至500℃以下空冷叫退火,得到接近平衡态的组织。奥 氏体化的钢在空气中冷却叫正火,得到先共析钢铁素体 (或渗碳体)加伪珠光体。过冷奥氏体快冷(大于临界 冷速)叫淬火,得到马氏体组织。淬火钢再加热到A1 以下会发生回火转变,随回火温度的升高分别得到回火 马氏体,回火屈氏体和回火索氏体。
碳钢热处理后的组织和性能变化的分析实验

碳钢热处理后的组织和性能变化的分析实验一、实验目的1、观察和研究碳钢经不同形式热处理后其显微组织的特点。
2、了解热处理工艺对钢组织和性能的影响。
3、了解硬度测定的基本原理及应用范围。
4、了解洛氏硬度试验机的主要结构及操作方法。
5、掌握金属显微试样的制作过程,正确地制作所要观察的试件。
二、实验内容1、制作经热处理后的试样,完成打磨、刨光、浸蚀的所有制作步骤。
2、热处理后的试件进行硬度测试。
3、热处理后的试样进行组织观察分析和比较。
三、实验设备的使用和注意事项(一)硬度计的原理、使用和注意事项金属的硬度可以认为是金属材料表面在接触应力作用下的抵抗塑性变形的一种能力。
硬度测量能够验出金属材料软硬程度的数量概念。
由于在金属表面以下不同深处材料所承受的应力和所发生的变形程度不同,因而硬度值可以综合地反映压痕附近局部体积内金属的弹性、微量塑变抗力、塑变强化能力以及大量形变抗力。
硬度值越高,表明金属抵抗塑性变形能力越大,材料产生塑性变形就越困难。
另外,硬度与其它机械性能(如强度指标σb及塑性指标ψ和δ)之间有着一定的内在联系,所以从某种意义上说硬度的大小对于机械零件或工具的使用性能及寿命具有决定性意义。
硬度的试验方法很多,在机械工业中广泛采用压入法来测定硬度。
压入法硬度试验的主要特点是:(1)试验时应力状态最软(即最大切应力远远大于最大正应力),因而不论是塑性材料还是脆性材料均能发生塑性变形。
(2)金属的硬度与强度指标之间存在如下近似关系:σb=K·HB式中:σb——材料的抗拉强度值HB——布氏硬度值K——系数退火状态的碳钢K=0.34~0.36合金调质钢K=0.33~0.35有色金属合金K=0.33~0.53(3)硬度值对材料的耐磨性、疲劳强度等性能也有定性的参考价值,通常硬度高,这些性能也就好。
在机械零件设计图纸上对机械性能的技术要求,往往只标注硬度值,其原因就在于此。
(4)硬度测定后由于仅在金属表面局部体积内产生很小压痕,并不损坏零件,因而适合于成品检验。
碳钢热处理后组织观察_图文

45钢若加热到760C°,然后在水中冷却,这 种淬火称为不完全淬火。根据Fe-Fe3C相图可知, 在这个温度加热,部分铁素体未溶入奥氏体中,经 淬火后得到马氏体和铁素体组织。
4.碳钢淬火后的回火组织 淬火钢通常为马氏体和少量残余奥氏体组
织,经回火转变后,能够获得不同的组织。 低温回火获得回火马氏体,它是由含碳过
低碳钢淬火后的板条状马氏体。板条状马氏 体是由许多尺寸大致相同的细马氏体条平行排列 组成的马氏体,各束之间位向不同,且位向差较 大,一个奥氏体晶粒内可有几个马氏体束。板条 马氏体不仅具有较高的强度,同时还具有良好的 塑性和韧性。
含碳量大于1.0%的高碳钢过热淬火后, 得到针片状马氏体和残余奥氏体组织。针片 状马氏体在光学显微镜下,呈大小不一的针 状或片状,针片之间成一定角度。针片状马 氏体的硬度高,韧性差。在针片状马氏体之 间有奥氏体残存,即残余奥氏体(A’)。残 余奥氏体不易受硝酸酒精溶液的侵蚀,在显 微镜下呈白亮色,无固定形态。未经回火时 ,残余奥氏体与马氏体很难区别。都呈白亮 色,只有马氏体回火变暗以后,残余奥氏体 才能被辩认。
竹叶、针状 马氏体
闪电状马氏体 残余奥氏体
材 料: 1.3%C
状 态: 1100 °C水淬
组 织: 竹叶、针状、闪电状马氏体+残余奥氏体 放大倍数: 400X 侵蚀剂:3-4%硝酸酒精溶液
45钢正火400X
45钢860C°水淬 400X
45钢860C°油淬 400X
45钢860C°水淬400C°回火 400X
竹叶、针状马氏体+残余奥氏体
侵蚀剂 3-4%硝酸酒精溶液 3-4%硝酸酒精溶液 3-4%硝酸酒精溶液 3-4%硝酸酒精溶液
碳钢热处理后的显微组织观察与分析

碳钢热处理后的显微组织观察与分析实验目的实验说明实验内容实验方法指导实验报告要求思考题一:实验目的(1)观察和研究碳钢经不同形式热处理后显微组织的特点。
(2)了解热处理工艺对碳钢硬度的影响。
二:实验说明碳钢经热处理后的组织可以是接近平衡状态(如退火、正火)的组织,也可以是不平衡组织(如淬火组织)。
因此在研究热处理后的组织时,不但要用铁碳相图,还要用钢的C曲线来分析。
图1为共析碳钢的C曲线,图2为45钢连续冷却的CCT曲线。
图1 共析碳钢的c曲线图2 45钢的CCT曲线C曲线能说明在不同冷却条件下过冷奥氏体在不同温度范围内发生不同类型的转变过程及能得到哪些组织。
1.碳钢的退火和正火组织亚共析碳钢(如40、45钢等)一般采用完全退火,经退火后可得接近于平衡状态的组织,其组织形态特征已在实验l中加以分析和观察(图3)过共析碳素工具钢(如T10、T12钢等)则采用球化退火,T12钢经球化退火后,组织中的二次渗碳体和珠光体中的渗碳体都呈球状(或粒状),图中均匀分散的细小粒状组织就是粒状渗碳体。
2.钢的淬火组织含碳质量分数相当于亚共析成分的奥氏体淬火后得到马氏体。
马氏体组织为板条状或针状,20钢经淬火后将得到板条状马氏体。
在光学显微镜下,其形态呈现为一束束相互平行的细条状马氏体群。
在一个奥氏体晶粒内可有几束不同取向的马氏体群,每束条与条之间以小角度晶界分开,束与束之间具有较大的位向差,如图4所示。
图3 T12 钢球化退火组织图4 低碳马氏体组织45钢经正常淬火后将得到细针状马氏体和板条状马氏体的混合组织,如图5所示。
由于马氏体针非常细小,故在显微镜下不易分清。
45钢加热至860℃后油淬,得到的组织将是马氏体和部分托氏体(或混有少量的上贝氏体),如图6所示。
碳质量分数相当于共析成分的奥氏体等温淬火后得到贝氏体,如T8钢在550~350℃及350℃~ Ms温度范围内等温淬火,过冷奥氏体将分别转变为上贝氏体和下贝氏体。
钢的热处理及热处理后的显微组织观察实验报告

钢的热处理及热处理后的显微组织观察实验报告罗毅晗2014011673一、实验目的(1)熟悉钢的几种基本热处理操作:退火、正火、淬火、回火。
(2)了解加热温度、冷却速度、回火温度等主要因素对45钢热处理后性能(硬度)的影响。
(3)观察碳钢热处理后的显微组织。
二、概述钢的热处理就是利用钢在固态范围内的加热、保温和冷却,以改变其内部组织,从而获得所需要的物理、化学、机械和工艺性能的一种操作。
热处理的基本操作有退火、正火、淬火、回火等。
进行热处理时,加热温度、保温时间和冷却方式是最重要的三个基本工艺因素。
三、实验内容加热温度冷却方法回火温度洛氏硬度洛氏硬度洛氏硬度平均值860℃水冷﹨52.0 52.1 52.6 52.2 860℃油冷﹨20.2 23.4 19.1 20.9 860℃空冷﹨94.1 94.6 94.2 94.3 860℃炉冷﹨86.0 85.2 85.7 85.6 860℃水冷200℃51.9 52.0 52.1 52.0 860℃水冷400℃34.8 35.3 35.7 35.3 860℃水冷600℃20.3 21.5 19.6 20.5显微组织观察45钢860℃气冷索氏体+铁素体45钢860℃油冷马氏体+屈氏体45钢860℃水冷马氏体45钢 860℃水冷+600℃回火回火索氏体T12钢 760℃球化退火球化体T12钢 780℃水冷+200℃回火回火马氏体+二次渗碳体+残余奥氏体T12钢 1100℃水冷粗大马氏体+残余奥氏体四、实验分析1.火温度而言,淬火温度越高,硬度越高。
但是一旦达到过高温度会导致形成的马氏体,使得力学性能恶化。
2.火介质而言,硬度大小:空冷>炉冷>水冷>油冷。
3.火温度而言,回火温度越高,硬度越低。
图像:分析原因:①据铁碳相图,淬火温度升高,45钢(亚共析钢)中铁素体含量减少,珠光体含量提高,而珠光体硬度很高,铁素体硬度低,导致硬度提高。
②根据C曲线,对亚共析钢的连续冷却,空冷生成F+S,炉冷生成F+P,水冷产生M,油冷产生T+M。
实验三 常见钢铁材料的显微组织观察

6
图 3-14 铁素体+珠光体
图 3-15 珠光体+网状分布的铁素体
18CrNiMo 具有较高强度、韧性和淬透性,适宜制作具有一定强韧性的汽车变速箱齿轮
以及轴类,原材料组织铁素体以及珠光体,呈枝晶状分布,如图 3-17 所示;因该钢具有良
好的淬透件,淬火后已经完全渗透,基体全为低碳马氏体,如图 3-18 所示。
高速钢淬火组织:淬火加热温度一般为 1260~1280℃,高温加热的目的是使较多的碳
化物溶解于奥氏体中,淬火后马氏体中合金元素含量高,回火后钢的硬度高且耐磨性好。淬
火采用油冷或空冷,其显微组织为马氏体+未溶碳化物+残余奥氏体。马氏体呈隐针状,其
针形很难显示出来,但可看出明显的奥氏晶界及分布于晶粒内的未溶碳化物,淬火后的硬度
B.针状马氏体是含碳量较高的钢淬火后得到的组织。在光学显微镜下,它呈竹叶状或 针状,针与针之间成一定的角度。最先形成的马氏体较粗大,往往横穿整个奥氏体晶粒,将 奥氏体晶粒加以分割,使以后形成的马氏体针的大小受到限制。因此,针状马氏体的大小不 一。同时有些马氏体有一条中脊线,并在马氏体周围有残留奥氏体。针状马氏体的硬度高而 韧性差。
B.下贝氏体是在片状铁素体内部沉淀有碳化物的两相混合物组织。它比淬火马氏体易 受浸蚀,在显微镜下呈黑色针状(见图 3-6)。在电镜下可以见到,在片状铁素体基体中分 布有很细的碳化物片,它们大致与铁素体片的长轴成 55~60°的角度。
C.粒状贝氏体是最近十几年才被确认的组织。在低、中碳合金钢中,特别是连续冷却 时(如正火、热轧空冷或焊接热影响区)往往容易出现,在等温冷却时也可能形成。它的形
约为 HRC61~62,见图 3-26 所示。
高速钢淬火后需经三次回火,其组织为回火马氏体、少量残余奥氏体,大块白色颗粒
碳钢的热处理后组织观察

碳钢的热处理后组织观察碳钢是一种含碳量较高的合金钢,主要成分是铁和碳。
它具有优良的可加工性、强度和耐磨性。
碳钢经过热处理后,能够改变其组织和性能,使其满足不同应用的要求。
热处理是通过加热和冷却的方式,改变钢材的组织和性能。
碳钢的热处理包括退火、正火、淬火和回火等过程。
首先是碳钢的退火处理。
退火是将钢材加热到一定温度,然后在适当的条件下进行冷却,以达到使钢材组织中的晶粒细化和均匀化的目的。
退火后的碳钢,晶粒尺寸减小,晶界的清晰度增加,硬度下降,韧性提高。
退火处理可以消除应力、改变钢材的硬度和强度,提高其加工性能。
其次是碳钢的正火处理。
正火是将钢材加热到一定温度,然后冷却到室温。
正火处理可以提高碳钢的硬度和强度,改善其耐磨性和切削性能。
通过正火处理,碳钢的晶粒尺寸更加均匀,组织更加紧密,硬度更高。
接下来是碳钢的淬火处理。
淬火是将钢材加热到高温后迅速冷却至室温。
淬火处理使得碳钢组织变为马氏体组织,表面硬度极高,内部组织变脆,但具有较好的耐磨性。
淬火处理后的碳钢通常具有高硬度、高强度和较低的韧性,常用于制作刀具、弹簧和齿轮等。
最后是碳钢的回火处理。
回火是将经过淬火处理的钢材再次加热到一定温度,然后进行冷却。
回火处理可以改变淬火处理后的组织,消除淬火时引入的内应力,并提高碳钢的韧性和可靠性。
回火处理后的碳钢具有较好的韧性、耐磨性和抗冲击性,适用于制作机械零件和工具。
总之,碳钢经过热处理后,其组织和性能得到改善,能够满足不同应用的要求。
不同的热处理方法和工艺参数会导致不同的组织结构和性能。
因此,在实际应用中,根据具体要求选择适当的热处理方法,可以使碳钢发挥最佳性能。
碳钢热处理后的显微组织观察与分析

碳钢热处理后的显微组织观察与分析
一、研究背景
碳钢是一种广泛应用的材料,具有高强度、良好的塑性、耐腐蚀性,以及较低的成本等优点。
狭义的碳钢是指碳含量不高于2.06%的钢,一般指碳含量在0.25~2.06%之间的碳素低合金钢,简称碳钢。
碳钢的力学性能极大程度上受组织影响,因此,碳钢的热处理是提高其力学性能的关键手段。
二、热处理方法
碳钢在热处理过程中,主要是正火、回火、淬火和回火等,根据加工目的和钢种的不同,还有退火和淬拔,等等。
1.正火:正火是指把钢从室温升温到一定的温度(相当于细化、强化钢组织)后,室温或其他低温下的冷却过程。
将钢置于明火中加热,加热到一定温度(软化温度),停止着火,让钢自然冷却(细化钢组织)。
2.回火:回火是指将钢比正火温度高一点加热,然后用较低温度的流体(水、油等)冷却(增强钢组织)。
回火可以改善零件的机械性能,使其获得更高的屈服强度、抗拉强度和断裂伸长率等。
3.淬火:淬火是把钢加热到一定的高温,然后用水、油、空气等低温流体进行冷却,使钢获得更高的强度、延展性和硬度。
碳钢热处理后的显微组织观察实验报告

碳钢热处理后的显微组织观察实验报告实验目的:通过对碳钢进行热处理,观察不同处理条件下的显微组织变化,了解热处理对材料性能的影响。
实验原理:碳钢是将铁和碳混合熔炼得到的一种合金。
由于碳元素的含量不同,可以分为低碳钢、中碳钢、高碳钢等。
在碳含量小于0.8%的碳钢中,碳的形态为固溶态,一般认为石墨化碳是一种强化剂,但是当碳含量高于一定程度时,石墨化碳就会成为材料的弱化因素,须采取措施排除其中的碳化物(Fe3C)。
其主要手段是通过热处理,使碳元素达到在钢中最佳状态。
热处理是指将材料加热到一定温度,然后以一定的速率冷却,以改变其组织和性能的过程。
其中,淬火是一种快速冷却的热处理方法,可使钢材组织变硬化;回火是在淬火后加热,然后缓慢冷却的过程,可使钢材组织变柔韧。
实验步骤:1. 选择一块碳钢,清洗干净,并用锉刀在表面画两条直线,以便观察显微组织变化。
2. 将碳钢样品置于电炉中,加热到红色,保持5分钟。
3. 将样品迅速取出,浸入凉水中进行淬火,使其从高温状态快速冷却。
4. 对淬火后的样品进行显微组织观察和比较。
5. 将样品置于烘箱中回火,温度和时间由指导老师指定。
实验结果:经过淬火处理的碳钢样品在显微镜下可以看到整齐排列的马氏体组织,该组织具有较高的硬度和脆性,在撞击或载荷作用下容易产生裂纹或断裂。
经过回火处理后,样品显微镜下的组织发生了改变。
马氏体逐渐转化成铁素体,呈现出蓝色和灰色的颜色。
在较高的温度下回火处理后,钢的组织相对缓和,同时也具有一定的硬度和强度。
通过本实验,我们了解到热处理对钢材的影响,并通过不同条件下的显微组织观察和比较,得出了淬火和回火处理对碳钢组织和性能的影响。
淬火处理可以使钢的组织变硬,但脆性也增加;回火处理则可以提高钢的韧性和强度,并减少脆性。
在实际应用中,需要根据不同的需要选择合适的热处理工艺。
碳钢热处理后的基本组织观察

碳钢热处理后的基本组织观察碳钢热处理是一种重要的金属材料加工工艺,在工业应用中具有广泛的应用。
在热处理过程中,通过控制材料的加热、保温和冷却过程,可以改变碳钢的组织结构和性能,从而满足不同的工程要求。
碳钢热处理后的基本组织观察是研究碳钢热处理效果的重要手段之一、下面将从碳钢的基本组织和热处理方法两个方面来进行阐述。
碳钢的基本组织主要包括铁素体、珠光体、贝氏体和马氏体。
铁素体是碳钢的基本组织,它具有良好的延展性和韧性。
在热处理过程中,通过加热和保温,可以使铁素体逐渐转变为珠光体。
珠光体是一种具有较高硬度和强度的组织,同时具有一定的韧性。
贝氏体和马氏体是高碳钢和合金钢中常见的组织。
贝氏体具有良好的切削性能和一定的韧性,而马氏体则具有更高的硬度和强度,但韧性较低。
在碳钢热处理后,可以通过金相显微镜等观察工具对其基本组织进行观察和分析。
金相显微镜可以放大碳钢的组织结构,同时还可以使用染色剂来突出不同的组织成分。
观察时可以选择不同的放大倍数和不同的观察角度,以获取更全面和详细的信息。
对于碳钢的热处理方法,常见的有正火、淬火和回火等。
正火是将钢件加热到适当温度,然后保温一段时间,最后慢速冷却。
这种热处理方法主要用于提高碳钢的硬度和强度,但会降低其韧性。
淬火是将钢件迅速加热到适当温度,然后迅速冷却。
这种热处理方法会使碳钢形成马氏体组织,从而大大提高其硬度和强度,但韧性较低。
回火是在淬火后再加热钢件到适当温度,然后保温一段时间,最后慢速冷却。
这种热处理方法可以调整碳钢的硬度和韧性,使其达到理想的综合性能。
在实际的碳钢热处理过程中,为了达到理想的组织和性能,需要控制好以下几个因素:加热温度、保温时间和冷却速度。
加热温度是指将钢件加热到的最高温度,不同的钢种和要求的组织结构需要不同的加热温度。
保温时间是指保持钢件在加热温度下的时间,它与钢件的尺寸和组织转变的速率有关。
冷却速度是指钢件冷却的速率,它决定了组织结构的类型和形成的量。
06 金属材料热处理 实验六 碳钢及铸铁的平衡组织观察

实验碳钢及铸铁的平衡组织观察一、实验目的1、熟悉碳钢及铸铁在平衡状态下的显微特征;2、分析铁碳合金的平衡组织与含碳量的关系。
二、实验说明铁碳平衡相图示分析钢铁材料性能的基础,所谓平衡组织,是合金在极其缓慢冷却条件下得到的组织。
如图5-1所示。
图5-1 Fe- Fe3C平衡组织相图由Fe- Fe3C相图可以看出,铁碳合金的室温平衡组织是有两个基本相组成,即铁素体与渗碳体。
但对不同含碳量的合金,由于这两个基本相的相对数量、析出条件、形态、分布不同,因而呈现不同的显微组织特征。
其中渗碳体对合金性能影响很大。
在碳钢中,渗碳体一般可认为是一个强化相。
(一)碳合金室温下基本组织特征1、铁素体(F)碳在α-Fe中的间隙固溶体,体心立方晶格,平衡态下含碳量低于0.02%。
具有磁性及良好塑性,硬度低,经3-4%硝酸酒精侵蚀后,呈白色等轴晶粒,晶界呈黑色,亚共析钢时呈块状,当含碳量接近于共析成分时,则呈连续网状分布于珠光体周围。
2、渗碳体(Fe3C)具有复杂晶格结构的间隙化合物,平衡态下含碳量为6.69%,用3-4%硝酸酒精侵蚀后,呈亮白色,若用苦味酸钠溶液热侵后,呈黑褐色,由此可区分铁素体与渗碳体。
由于形成条件不同,渗碳体又可分为Fe3CⅠ(从液体中析出)、Fe3CⅡ(从奥氏体中析出)、Fe3CⅢ(从铁素体中析出)。
3、珠光体(P)铁素体与渗碳体组成的细密机械混合物,平衡态下其含碳量为0.77%。
在高倍(600×)显微镜下,可看到珠光体中片层相间的渗碳体和铁素体互相平行交替排列。
在中等(400×左右)放大倍数下,由于物镜的分辨率低于渗碳体层片厚度,渗碳体两侧边缘线无法分辨而合成一条黑线。
在放大倍数更低时(200×左右),铁素体与渗碳体的片层间距都不能分辨,珠光体呈暗黑一片。
4、低温莱氏体(Ld′)珠光体与渗碳体的机械混合物,在平衡状态下,含碳量为4.3%,。
其显微组织特征为渗碳体(包括共晶渗碳体和二次渗碳体)白色基体上分布着暗黑色的珠光体。
热处理后碳钢显微组织的观察与分析

热处理后碳钢显微组织的观察与分析热处理是一种通过控制材料的加热和冷却过程,改变其组织和性能的方法。
碳钢是一种含碳量较高的钢材,通过热处理可以得到不同的组织,从而改变其机械性能。
本文将对热处理后碳钢的显微组织进行观察与分析。
热处理过程中,碳钢首先需要进行加热,在足够高的温度下保温一段时间后,再进行冷却。
根据不同的加热温度和保温时间,可以得到不同的组织结构。
首先,我们来观察热处理前的碳钢显微组织。
通常来说,热处理前的碳钢具有粗大的珠光体组织。
珠光体是一种由铁和碳组成的混合物,呈珠状排列。
碳钢中的珠光体结构可以通过金相显微镜观察到,需要将样品进行切割、研磨和腐蚀处理。
在热处理过程中,最常用的方法是淬火和回火。
淬火是将加热到临界温度的材料骤冷至室温,目的是形成马氏体组织。
马氏体是一种类似于针状的组织结构,具有高硬度和脆性。
为了提高钢材的可塑性和耐磨性,常常进行回火处理。
回火是将淬火后的材料加热至较低的温度,再快速冷却。
回火过程中,马氏体逐渐转变为珠光体,从而使钢材具有更好的韧性。
通过金相显微镜观察热处理后的碳钢,可以看到不同的组织结构。
淬火后的碳钢主要由马氏体组成,呈针状结构。
马氏体是一种具有高硬度和脆性的结构,在一定条件下可以通过淬火获得。
回火后,马氏体会转变为珠光体,从而提高钢材的可塑性和韧性。
回火温度越高,珠光体的颗粒越大,机械性能会逐渐下降。
除了马氏体和珠光体外,热处理后的碳钢还可能出现一些其他的组织结构。
比如贝氏体是一种由针状晶体构成的结构,具有较高的硬度和韧性。
同时,还可能出现残余奥氏体、铁素体和非金属夹杂物等。
热处理后的碳钢的组织结构与加热温度、保温时间和冷却速率等因素密切相关。
在实际应用中,需要根据不同的要求选择合适的热处理工艺,以达到所需的组织和性能。
总结起来,热处理是一种通过控制材料的加热和冷却过程,改变其组织和性能的方法。
热处理后的碳钢主要由马氏体和珠光体组成,通过回火处理可以改善钢材的可塑性和韧性。
实验三碳钢热处理的显微组织观察及硬度测定

实验三碳钢热处理的显微组织观察及硬度测定实验⼆碳钢热处理的显微组织观察及硬度测定⼀、实验⽬的1. 观察碳钢经不同热处理后的基本组织;2. 熟悉碳钢⼏种典型热处理组织——F、P、Fe3C、M、T、S、M回⽕、T回⽕、S回⽕;3. 了解热处理⼯艺对碳钢性能(硬度)的影响;⼆、概述碳钢经退⽕、正⽕可得到平衡或接近平衡组织;经淬⽕得到的是⾮平衡组织。
因此,研究热处理后的组织时,不仅要参考铁碳相图,⽽且更主要的是参考钢的等温转变曲线(C曲线)。
铁碳相图能说明慢冷时合⾦的结晶过程和室温下的组织以及相的相对含量.C曲线则能说明⼀定成分的钢在不同冷却条件下所得到的组织。
C曲线适⽤于等温冷却条件;⽽CCT曲线(奥⽒体连续冷却曲线)适⽤于连续冷却条件。
在⼀定的程度上可⽤C曲线,也能够估计连续冷却时的组织变化。
1.共析钢等温冷却时的显微组织共析钢过冷奥⽒体在不同温度等温转变的组织及性能列于表1中。
2.共析钢连续冷却时的显微组织为了简便起见,不⽤CCT曲线.⽽⽤C曲线(图1)来分析。
例如共析钢奥⽒体,在慢冷时(相当于炉冷,见图1中的v1)应得到100%的珠光体;当冷却速度增⼤到v2(相当于空冷),得到的是较细珠光体,即索⽒体或屈⽒体;当冷却速度增⼤到v3(相当于油冷),得到的为屈⽒体和马⽒体;当冷却速度增⼤⾄v4、v5(相当于⽔冷),很⼤的过冷度使奥⽒体骤冷到马⽒体转变开始点(Ms)后.瞬时转变成马⽒体。
其中与C曲线⿐尖相切的冷却速度(v4)称为淬⽕的临界冷却速度。
3.亚共析钢和过共析钢连续冷却时的显微组织亚共析钢的C曲线与共析钢相⽐,只是在其上部多了⼀条铁素体先析出线,如图2所⽰。
当奥⽒体缓慢冷却时(相当于炉冷,如图2中v1),转变产物接近平衡组织,即珠光体和铁素体。
随着冷却速度的增⼤,即v3>v2>v1时,奥⽒体的过冷度逐渐增⼤,析出的铁素体越来越少,⽽珠光休的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。
碳钢的热处理及非平衡组织观察

碳钢的热处理及非平衡组织观察碳钢是指含有0.02%至2.11%碳的铁碳合金,是最常见的钢材之一、热处理是通过加热和冷却等工艺来改变材料的物理和力学性能的过程。
在碳钢的热处理中,常见的工艺包括退火、正火、淬火和回火等,各个工艺对应的非平衡组织观察也有所不同。
首先是退火工艺。
退火是将钢材加热到一定温度,然后缓慢冷却的过程。
通过退火处理,碳钢中的过饱和固溶体会形成晶粒,同时还能消除应力和负的显微组织。
在退火过程中,可以观察到一些非平衡组织。
例如,在较高温度下(通常在固溶体区域内),钢材中的过饱和固溶体形成的亚结构可以通过电子显微镜进行观察。
此外,通过退火处理,钢材中的非均匀位错分布和析出相等也可以被观察到。
其次是正火工艺。
正火是将钢材加热到一定温度,然后用适当速度冷却的过程。
正火处理在提高材料硬度和强度方面非常有效。
在正火过程中,可以观察到非平衡组织的形成。
例如,在冷却速率较高的情况下,钢材中会形成马氏体,在金相显微镜下可以观察到马氏体的形貌和分布。
此外,正火处理还可以导致一些晶体缺陷的形成,如晶界偏析、位错堆积等,这些缺陷可以通过电子显微镜和X射线衍射来观察。
然后是淬火工艺。
淬火是将钢材加热至临界温度以上,然后迅速冷却的过程。
淬火处理可以获得高硬度和高强度的钢材。
在淬火过程中,可以观察到许多非平衡组织。
例如,在冷却速率非常快的情况下,钢材中的奥氏体会发生相变,形成马氏体。
在金相显微镜下,可以观察到马氏体的形貌和分布,并通过衍射技术来分析其结构。
最后是回火工艺。
回火是将淬火后的钢材再次加热至较低温度,然后适当冷却的过程。
回火处理可以改善淬火后的钢材的韧性和稳定性。
在回火过程中,可以观察到一些非平衡组织的形成和变化。
例如,在回火温度较高的情况下,马氏体会开始分解,形成回火马氏体和残留奥氏体。
通过金相显微镜和衍射技术,可以观察到这些非平衡组织的形貌和分布,并进一步分析其对材料性能的影响。
综上所述,碳钢的热处理对材料的物理和力学性能具有显著的影响。
热处理后碳钢显微组织的观察和分析

热处理后碳钢显微组织的观察和分析
一、热处理后碳钢微观组织特征
热处理后的碳钢显微组织的形态,取决于处理工艺,以及处理过程中温度的变化对热处理后的金属组织产生的影响。
在不同的温度下,碳钢的形状和结构都有所不同。
经过热处理,碳钢的微观组织结构完全改变,形成长形的α-铁结晶,而且α-相和δ-相在晶粒中是杂合状态。
δ-相是一种大小不一的晶粒,其中有些晶粒具有碳的低温晶体,其他晶粒是碳的熔融晶体或乳白状熔融晶体。
1、在观察热处理后的碳钢显微组织时,可以看到宏观表面的肥厚和裂纹等痕迹。
此外,可以看到以及通过显微镜观察所分离的α-相和δ-相的晶粒。
通常,α—相晶粒的大小比δ—相的晶粒大,在显微图中可以看到α—相晶粒与δ—相晶粒的互相混合。
2、根据显微照片的结果,可以计算出α—相晶粒和δ—相晶粒的大小分布,以及晶粒之间的空间分布。
通过计算,可以获得α—相和δ—相晶粒的平均尺寸,以及晶粒尺寸的标准偏差。
此外,还可以检查α—相和δ—相晶粒的尺寸变化情况以及晶粒结构的变化情况。
三、总结
热处理后的碳钢显微组织特征,取决于处理工艺。
热处理后碳钢显微组织的观察与分析课件

观察和分析热处理后碳钢的 显微组织对于了解材料性能 、优化热处理工艺和实现材 料的高效利用具有重要意义 。
研究目的与意义
研究目的
通过对热处理后碳钢显微组织的观察和分析,探究热处理工艺对碳钢显微组织的影响规律,为优化热处理工艺和 提高材料性能提供理论依据。
研究意义
通过对碳钢热处理后显微组织的深入研究,有助于提高对碳钢材料性能的认识,优化热处理工艺,实现碳钢材料 的高效利用,对于工业和建筑领域的发展具有重要意义。
指材料在抵抗外部作用下,不发生屈服、断裂 等失效现象的能力。
硬度
指材料表面抵抗变形、划痕等机械作用的能力 。
关系
强度和硬度在碳钢的热处理过程中有密切的关系,通常硬度提高会伴随着强度 的增加。
韧性指标与显微组织的关系
韧性指标
衡量材料在冲击、震动等动载作用下,吸收能量并阻止断裂的能 力。
显微组织
指材料微观结构,如晶粒大小、相组成、微观缺陷等。
06
结论与展望
研究结论总结
01
热处理对碳钢显微组织有显著影 响。
02
经过热处理后,碳钢的晶粒尺寸 和微观结构都发生了变化。
热处理过程中的温度和时间是影 响碳钢显微组织的重要因素。
03
通过对比实验,发现采用不同的 热处理工艺会对碳钢的性能产生
不同的影响。
04
研究不足与展望
01 02 03 04
本次研究主要集中在热处理对碳钢显微组织的影响,尚未涉及碳钢性 能的长期稳定性问题。
02
热处理工艺对碳钢显微组 织的影响
加热温度对碳钢显微组织的影响
加热温度过高
01
导致晶粒长大、组织粗化、降低材料的力学性能
加热温度过低
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碳钢热处理基本组织观察
目的
1.认识碳钢经不同方式热处理后的典型显微组织特征;
2.了解热处理工艺对组织的影响。
一、相关知识
1.TTT曲线
2.碳钢的退火和正火
碳钢的退火组织也就是铁碳合金的平衡组织,以前的实验已经观察过。
亚共析钢的正火组织形式上很象退火组织,这是的珠光体层片较细,整体为灰黑色,理论上讲,铁素体的含量应比平衡状态略少,相差并不明显。
过共析钢一般进行球化退火,得到球化珠光体,正火仅用于消除二次渗碳体网,得到颗粒状的碳化物和细片状珠光体,紧接着进行球化退火。
3.碳钢的等温淬火组织
上贝氏体:在500-350℃的等温转变组织,铁素体片在原奥氏体晶界向内发展,成羽毛状,片间间断分布碳化物。
为了清楚看到这种组织,在生成部分上贝氏体后立即快速冷却,其它部分是马氏体。
上贝氏体:在320-250℃的等温转变组织,铁素体片在原奥氏体晶内成透镜
状,或象竹叶状。
片内部有非常细小分布碳化物,整体浸蚀后为暗灰色。
为了清楚看到这种组织,在生成部分贝氏体后立即快速冷却,其它部分是马氏体。
4.碳钢的淬火组织
小试样奥氏体化后水冷,可以全部淬透,得到马氏体和少量残余奥氏体。
低碳马氏体(板条马氏体):在光学显微镜下,板条马氏体为一束束相互平行的细长条状,在一个奥氏体晶粒内可有几束不同取向的马氏体群。
高碳马氏体(针状马氏体):在光学显微镜下,片状马氏体呈针状或竹业状,片间互不平行呈一定角度,其立体形态为双凸透镜状。
针的粗细决定于奥氏体晶粒的大小,通常其针细小,在光学显微镜下不能看清,称为隐针马氏体。
T10正常加热温度为760℃,若过热(温度820℃,为能了解其形态),就可看到其针状的形貌。
5.碳钢的回火组织
回火马氏体:形状同淬火态,但内部有碳化物,浸蚀后的颜色变暗。
回火曲氏体:原马氏体形态不可见,弥散的Fe3C析出,组织一般为灰暗色。
回火索氏体:在铁素体的基体上分布小颗粒状的渗碳体。
6.低碳钢渗碳后炉冷组织
920℃渗碳后,表层的含碳量接近Acm线,逐渐降低,到心部为原始的低碳(或纯铁),炉冷后得到平衡组织,从表到里,经过过共析(珠光体+网状渗碳体)、共析(珠光体)、亚共析(铁素体+珠光体)的逐渐过渡。
实用材料往往可直接淬火,或渗碳后空冷正火,表层部分的渗碳体为颗粒状。
二、实验内容
①.观察45钢的正火组织,铁素体+索氏体。
②.观察等温淬火组织,认识上、下贝氏体形貌特征。
③.观察淬火组织认识马氏体形态:20钢得到的板条马氏体,由45钢得到
的混合马氏体,T10钢过热淬火得到的粗大马氏体针。
④.正常淬火回火组织:T10钢正常淬火回火的组织为未溶颗粒状碳化物+
回火隐针马氏体。
⑤.调质:中碳钢淬火后高温回火得到的回火索氏体。
⑥.渗碳后炉冷组织:从组织了解渗碳后碳含量的大致分布。
三、实验报告要求
画出5个以上观察到的组织示意图,注明材料、热处理过程、所得到的组织。
几种典型组织图: 退火
贝氏体
马氏体
回火索氏体。