ANSYS workbench核工业多相流动和传热

合集下载

(最新整理)ANSYS热分析详解

(最新整理)ANSYS热分析详解

(完整)ANSYS热分析详解编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)ANSYS热分析详解)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)ANSYS热分析详解的全部内容。

第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。

热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。

二、ANSYS的热分析•在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。

•ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。

•ANSYS热分析包括热传导、热对流及热辐射三种热传递方式.此外,还可以分析相变、有内热源、接触热阻等问题。

三、ANSYS 热分析分类•稳态传热:系统的温度场不随时间变化•瞬态传热:系统的温度场随时间明显变化四、耦合分析•热-结构耦合•热-流体耦合•热-电耦合•热-磁耦合•热-电-磁-结构耦合等第二章 基础知识一、符号与单位 W/m 2—℃ 二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:● 对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ∆+∆+∆=-式中: Q —— 热量;W -- 作功;∆U ——系统内能;∆KE ——系统动能;∆PE —-系统势能;●对于大多数工程传热问题:0==PE KE ∆∆; ●通常考虑没有做功:0=W , 则:U Q ∆=; ● 对于稳态热分析:0=∆=U Q ,即流入系统的热量等于流出的热量;●对于瞬态热分析:dt dU q =,即流入或流出的热传递速率q 等于系统内能的变化。

最新ANSYS-Workbench-Fluent流固耦合传热及热结构分析ppt课件

最新ANSYS-Workbench-Fluent流固耦合传热及热结构分析ppt课件
• “当人的器官在动物的体内生长,拥有人类细胞的 猪或老鼠,是不是会像人类一样思考,却和动物一 样行事?”
• “它们所带给人类社会的恐惧,早已超越了人类认 知的界限和人类对科学成果的接纳空间”。
一、研究概况
• “嵌合体”是在生物界非常普遍的自然现象。 • 孪生子在同一个子宫中发育时会发生细胞交流,大多
(4)生产移植器官 人兔胚胎嵌合体:将来发育成某种特定器官,如能克 服免疫排斥反应,有望用于器官移植。
四、嵌合体研究存在的问题
1、嵌合体组织器宫的特异抗原性
在种内动物嵌合体制备过程中发现,不管是两种胚胎, 还是多种胚胎制成的嵌合胚胎,细胞间均能协调的 生长发育,不发生免疫排斥现象。但是,无论是进 行供体-供体、供体-受体动物间,还是进行嵌合体供体、嵌合体-受体动物间的组织或器官移植,均会 发生强烈的免疫排斥反应。
三、应用前景
(2)研究性分化机理
利用嵌合体可以研究性别分化以及参与性分化的细胞 及其规律。
(3)孤雌生殖
• 利用嵌合体技术,己获得了孤雌生殖小鼠。 • 铃木达行等(1998)通过聚合从日本红牛获取的卵
母细胞的孤雌生殖二倍体胚胎和用荷斯坦母牛卵母 细胞进行IVF的胚胎,获得2死1活3头嵌合体犊牛。
三、应用前景
三、应用前景
3.在动物生产中的应用
(1)人工制造有特殊经济价值的个体 对水貂、狐狸、绒鼠等毛皮动物,利用胚胎嵌合体技 术可以获得用交配或杂交法不能获得的毛皮花色类 型。
(2)种间移植 用于分析胎儿与母体的相互关系,如将斑马的受精卵, 移植到马体内生产斑马(拯救珍稀濒危动物)。
三、应用前景
(3)可作为外源基因的导入方法 把外源目的基因先导入干细胞,再通过胚胎干细胞介 导法将目的基因转入胚胎,这是转基因动物生产中基 因导入的一种重要手段。

ansys workbench仿真传热方程

ansys workbench仿真传热方程

ansys workbench仿真传热方程在ANSYS Workbench中,进行传热仿真涉及到建立几何模型、设置物理特性、设置边界条件、求解方程和分析结果等多个步骤。

下面将详细介绍ANSYS Workbench中传热仿真的步骤和方法。

首先,在进行传热仿真之前,需要建立几何模型。

ANSYS Workbench提供了丰富的建模工具,可以根据实际情况选择不同的方式进行建模。

常用的建模工具包括几何体、划分、倒角、挤压等,可以很方便地创建各种几何形状。

建立几何模型之后,需要设置物理特性。

物理特性包括材料的热导率、密度、比热等参数。

在ANSYS Workbench中,可以通过导入材料库或者手动输入参数的方式设置物理特性。

根据实际需求选择合适的材料参数,以确保仿真结果的准确性。

接下来,需要设置边界条件。

边界条件决定了流体或结构体系与外部环境的交互方式。

常见的边界条件有固体边界条件、流体边界条件和约束边界条件。

在ANSYS Workbench中,可以通过选择预设条件或者手动输入参数的方式设置边界条件。

根据实际情况合理设置边界条件,以确保仿真结果的可靠性。

设置好边界条件之后,可以进行方程求解。

ANSYS Workbench使用有限元法来求解传热方程,可以根据实际情况选择稳态或者瞬态求解方式。

在进行求解之前,需要定义求解器的类型、收敛准则和求解精度等参数。

根据实际需求进行合理设置,以保证求解过程的准确性和高效性。

完成求解之后,可以对仿真结果进行后处理和分析。

ANSYS Workbench提供了多种后处理工具,可以对传热分布、温度场、流速场等进行可视化和数据统计。

可以通过绘制曲线、制作动画和导出数据等方式,对仿真结果进行深入分析,以获得更多的信息和洞察。

需要注意的是,在进行传热仿真时,需要合理选择网格类型和网格密度。

ANSYS Workbench提供了多种网格划分算法和优化工具,可以根据实际情况选择合适的方法进行网格划分和调整。

ANSYS workbench核工业多相流动和传热

ANSYS workbench核工业多相流动和传热

― 用户扩展到几乎所有的蒸汽发电公司
― 所有主要的OEM都是ANSYS的用户
― 几乎所有的核电厂配套设施主要设备的开发过程中都使用过
ANSYS软件
― 美国及其它的监管机构都是用ANSYS软件
5
© 2017 ANSYS, Inc.
August 3, 2017
ANSYS UGM 2017
1
ANSYS 与核工业
Facility located at IRSN Saclay
Volume: 7 m3, height: 4.8 m Wall temperature controlled Test 101: depressurization test
21
© 2017 ANSYS, Inc.
August 3, 2017
22
© 2017 ANSYS, Inc.
August 3, 2017
ANSYS UGM 2017
硼稀释
• 欧盟的EUBORA和FLOWMIX-R项目使用ANSYS Fluent产品 • ANSYS-CFX被应用在VVER-1000机组的相关分析中 • 该分析需要模拟完整的一回路系统,要求能够合理模拟硼在冷
同时能够直接打开和编辑其它商业软件的几何文件网格网格划分难度大需要灵活的网格划分策略turbogrid短时间内对复杂的叶片和叶栅通道自动生成高质量的结构化网格fluentmeshing使用网格包裹技术针对大规模复杂网格生成高质量的网格文件求解器计算规模大流场复杂多数情况下涉及到多物理场耦合ansysworkbench协同仿真平台能够快速完成不同软件之间的数据传递实现多物理场间的单向和双向耦合11august32017ansysugm2017?2017ansysinc

ANSYS有限元分析软件在热分析中的应用

ANSYS有限元分析软件在热分析中的应用

ANSYS有限元分析软件在热分析中的应用首先是工程热传导问题的分析。

在工程实际中,热传导问题是非常常见的,比如热交换器、电子设备散热等。

ANSYS有限元分析软件可以通过建立热传导模型,对工程物体内部的温度分布、热流分布以及热传导过程进行分析。

通过这些分析,可以优化设计,提高热传导效率,降低温度梯度,从而提高工程的性能和可靠性。

其次是流体传热问题的分析。

流体传热问题是指研究物体表面与周围流体之间的热传递问题,比如热交换器的流体流动和传热、管道内的流体传热等。

ANSYS有限元分析软件提供了丰富的流体传热模块,可以对流体内部的温度分布、壁面的传热系数以及流体流动等进行分析。

通过这些分析,可以更好地了解流体传热机理,优化流体传热设备的设计,提高传热效率,降低能耗。

最后是热应力分析。

在工程实际中,热应力是很重要的工程问题,特别是对于高温工况下的工程结构。

热应力问题主要是指由于温度不均匀引起的结构内部和表面的应力和变形。

ANSYS有限元分析软件可以通过建立热应力模型,对结构的应力分布、变形和热应力引起的破坏等进行分析。

通过这些分析,可以评估结构的强度和刚度,优化结构设计,降低工程的失效风险。

总的来说,ANSYS有限元分析软件在热分析中的应用非常广泛。

无论是工程热传导问题、流体传热问题还是热应力分析,ANSYS有限元分析软件都能够提供准确的数值计算结果,帮助工程师解决复杂的热问题,优化工程设计,提高工程性能和可靠性。

ansysworkbench热分析研究教程

ansysworkbench热分析研究教程

6-1A.几何模型B.组件-实体接触C.热载荷D.求解选项E.结果和后处理F. 作业6.1• 本节描述地应用一般都能在ANSYS DesignSpaceEntra或更高版本中使用,除了ANSYSStructural• 提示:在ANSYS 热分析地培训中包含了包括热瞬态分析地高级分析K T T= Q T –在稳态分析中不考虑瞬态影响–[K]可以是一个常量或是温度地函数–{Q}可以是一个常量或是温度地函数• 固体内部地热流(Fourier’s Law)是[K]地基础;• 热通量、热流率、以及对流在{Q}为边界条件;•对流被处理成边界条件,虽然对流换热系数可能与温度相关•在模拟时,记住这些假设对热分析是很重要地.–体、面、线•线实体地截面和轴向在DesignModeler中定义• 热分析里不可以使用点质量(PointMass)地特性•壳体和线体假设:–壳体:没有厚度方向上地温度梯度–线体:没有厚度变化,假设在截面上是一个常量温度• 但在线实体地轴向仍有温度变化唯一需要地材料特性是导热性(ThermalConductivity)•Thermal Conductivity在Engineering Data中输入•温度相关地导热性以表格形式输入若存在任何地温度相关地材料特性,就将导致非线性求解.–如果部件间初始就没有接触,那么就不会发生热传导(见下面对pinball地解释).–总结:–Pinball区域决定了什么时候发生接触,并且是自动定义地,同时还给了一个相对较小地值来适应模型里地小间距.• 默认情况下,假设部件间是完美地热接触传导,意味着界面上不会发生温度实际情况下,有些条件削弱了完美地热接触传导:TTx⋅ (T q = TCC target - T conta ct – 式中T contact 是一个接触节点上地温度, T target 是对应目标节点上地温度–默认情况下,基于模型中定义地最大材料导热性KXX 和整个几何边界框地对角线ASMDIAG ,TCC 被赋以一个相对较大地值.TCC = KXX ⋅10,000/ ASMDIAG– 这实质上为部件间提供了一个完美接触传导• 在ANSYS Professional或更高版本,用户可以为纯罚函数和增广拉格朗日方程定义一个有限热接触传导(TCC).–在细节窗口,为每个接触域指定TCC输入值–如果已知接触热阻,那么它地相反数除以接触面积就可得到TCC值–Spotweld在CAD软件中进行定义(目前只有DesignModeler和Unigraphics 可用).T2 T1热流量: – 热流速可以施加在点、边或面上.它分布在多个选择域上.– 它地单位是能量比上时间(energy/time )•完全绝热(热流量为0): •热生成:– 内部热生成只能施加在实体上– 它地单位是能量比上时间在除以体积(energy/time/volume )正地热载荷会增加系统地能量.– 可以删除原来面上施加地边界条件• 热通量:– 热通量只能施加在面上(二维情况时只能施加在边上)– 它地单位是能量比上时间在除以面积( e nergy/time/area )温度、对流、辐射:•完全绝热条件将忽略其它地热边界条件 • 给定温度: – 给点、边、面或体上指定一个温度– 温度是需要求解地自由度• 至少应存在一种类型地热边界条件,否则,如果热量将源源不断地输入到系统中,稳态时地温度将会达到无穷大.• 另外,给定地温度或对流载荷不能施加到已施加了某种热载荷或热边界条件地表面上 .•对流:– 只能施加在面上(二维分析时只能施加在边上)– 对流q 由导热膜系数 h ,面积A ,以及表面温度T surface 与环境温度T ambient 地差值 来定义. q = hA (T surface - T ambient )– “h ” 和 “T ambient ” 是用户指定地值– 导热膜系数 h 可以是常量或是温度地函•与温度相关地对流:–为系数类型选择Tabular(Temperature)–输入对流换热系数-温度表格数据–在细节窗口中,为h(T)指定温度地处理方式•几种常见地对流系数可以从一个样本文件中导入.新地对流系数可以保存在文件中.•辐射:– 施加在面上(二维分析施加在边上)(4 4)– 式中: Q R = σεFAT surface - T ambient• σ=斯蒂芬一玻尔兹曼常数• ε =放射率• A =辐射面面积• F = 形状系数(默认是1)– 只针对环境辐射,不存在于面面之间(形状系数假设为1)– 斯蒂芬一玻尔兹曼常数自动以工作单位制系统确定在projectschematic里建立一个SSThermalsystem(SS热分析)•在Mechanical 里,可以使用Analysis Settings为热分析设置求解选项.–注意,第四章地静态分析中地AnalysisDataManagement选项在这里也可以使用.加地结构载荷和约束.– 求解结构在Static Structural 中插入了一个importedload 分支,并同时导入了施–温度–热通量–反作用地热流速–用户自定义结果•模拟时,结果通常是在求解前指定,但也可以在求解结束后指定.–搜索模型求解结果不需要在进行一次模型地求解.– 温度是标量,没有方向– 热通量 q 定义为q = -KXX ⋅∇TTotal Heat Flux (整体热通量)和DirectionalHeatFlux (方向热通量)–通过插入probe指定响应热流量,或–用户可以交替地把一个边界条件拖放到Solution上后搜索响应•作业6.1–稳态热分析•目标:–分析图示泵壳地热传导特性版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。

热分析(ansys教程)

热分析(ansys教程)

线性与非线性
如果有下列情况产生,则为非线性热分析: ① 材料热性能随温度变化,如K(T),C(T)等; ② 边界条件随温度变化,如h(T)等; ③ 含有非线性单元; ④ 考虑辐射传热 非线性热分析的热平衡矩阵方程为: [C(T)]{ T }+[K(T)]{T}={Q (T)}
边界条件、初始条件
建模
①确定jobname、title、unit; ②进入PREP7前处理,定义单元类型,设定单元 选项; ③定义单元实常数; ④定义材料热性能参数,对于稳态传热,一般只 需定义导热系数,它可以是恒定的,也可以随 温度变化; ⑤创建几何模型并划分网格。
几何尺寸(模型)
既可用ANSYS建立模型,也可用其它方法建好模 型后导入 模型建好后,以上两种建模方法的具体过程将不 再显示
瞬态传热


瞬态传热过程是指一个系统的加热或冷却过程。 在这个过程中系统的温度、热流率、热边界条 件以及系统内能随时间都有明显变化。根据能 量守恒原理,瞬态热平衡可以表达为 ( 以矩阵 形式表示):[C]{ }+[K]{T}={Q} T 式中 :[K] 为传导矩阵,包含导热系数、对流系 数及辐射率和形状系数; [C]为比热矩阵,考虑系统内能的增加; {T}为节点温度向量; { T }为温度对时间的导数; {Q}为节点热流率向量,包含热生成。
划分网格(续)
材料属性
必须输入导热系数, KXX 如果施加了内部热生成率,则需指定比热 (C) ANSYS提供的材料库 (/ansys57/matlib)包括几种
常用材料的结构属性 和热属性, 但是建议用户创 建、使用自己的材料库 把优先设置为 “热分析” ,使材料模型图形用 户界面只显示材料的热属性
热传递的方式(续)

ANSYS Workbench 热分析教程

ANSYS Workbench 热分析教程

传热学上机实验指导书ANSYS Workbench 热分析基础教程编制:杨润泽汽车工程系热能教研室2012年7月1.大平板一维稳态导热问题1.1. 问题描述长500mm,宽300mm,厚度30mm的大钢板,钢板上下表面的温度分别为200℃和60℃,钢的导热率为30W/(m·K),试分析钢板温度分布和热流密度。

图1-1 大平板一维稳态导热模型1.2. 问题分析该问题为稳态导热问题,分析思路如下:1.选择稳态热分析系统。

2.确定材料参数:稳态导热问题,仅输入平板导热率。

3.【DesignModeler】建立钢板的几何模型。

4.进入【Mechanical】分析程序。

5.网格划分:采用系统默认网格。

6.施加边界条件:钢板上下表面施加温度载荷,四周对称面无热量交换,为绝热边界,系统默认无需输入。

7.设置需要的结果:温度分布和热流密度。

8.求解及结果显示。

1.3. 数值模拟过程1、选择稳态热分析系统1)工程图解中调入稳态热分析系统Steady-State Thermal(ANSYS)2)工程命名Conduction Thermal Analysis3)保存工程名为Conduction Heat Transfer2、确定材料参数1)编辑工程数据模型,添加材料的导热率,右击鼠标选择【Engineering Data】【Edit】2)选择钢材料属性【Properties of Outline Row 3: Structure Steel】【Isotropic ThermalConductivity】3)出现【Table of Properties Row 2: Thermal Conductivity】材料属性表,双击鼠标,点击每个区域输入材料属性参数:温度20℃,导热率30W/(m·℃)。

4)参数输完后,工程数据表显示导热率-温度图表。

3、DM建立模型1)选择【Geometry】【New Geometry】,出现【DesignModeler】程序窗口,选择尺寸单位【Millimeter】。

Ansys Workbench Fluid Flow(FLUENT)经典问题

Ansys Workbench Fluid Flow(FLUENT)经典问题

1 对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢?学习任何一个软件,对于每一个人来说,都存在入门的时期。

认真勤学是必须的,什么是最好的学习方法,我也不能妄加定论,在此,我愿意将我三年前入门FLUENT心得介绍一下,希望能给学习FLUENT的新手一点帮助。

由于当时我需要学习FLUENT来做毕业设计,老师给了我一本书,韩占忠的《FLUENT流体工程仿真计算实例与应用》,当然,学这本书之前必须要有两个条件,第一,具有流体力学的基础,第二,有FLUENT 安装软件可以应用。

然后就照着书上二维的计算例子,一个例子,一个步骤地去学习,然后学习三维,再针对具体你所遇到的项目进行针对性的计算。

不能急于求成,从前处理器GAMBIT,到通过FLUENT进行仿真,再到后处理,如TECPLOT,进行循序渐进的学习,坚持,效果是非常显著的。

如果身边有懂得FLUENT 的老师,那么遇到问题向老师请教是最有效的方法,碰到不懂的问题也可以上网或者查找相关书籍来得到答案。

另外我还有本《计算流体动力学分析》王福军的,两者结合起来学习效果更好。

2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。

/dvbbs/viewFile.asp?BoardID=61&ID=1411A.理想流体(Ideal Fluid)和粘性流体(Viscous Fluid):流体在静止时虽不能承受切应力,但在运动时,对相邻的两层流体间的相对运动,即相对滑动速度却是有抵抗的,这种抵抗力称为粘性应力。

流体所具备的这种抵抗两层流体相对滑动速度,或普遍说来抵抗变形的性质称为粘性。

粘性的大小依赖于流体的性质,并显著地随温度变化。

实验表明,粘性应力的大小与粘性及相对速度成正比。

ANSYS WORKBENCH 11.0热分析

ANSYS WORKBENCH 11.0热分析
• 当一侧为接触面而另一侧为目标面时,称为反对称接触。另一方
面,如果两侧都被指定成接触面或目标面,则称为对称接触。 但是,在热分析中,指定哪一侧是接触面,哪一侧是目标面并不 重要。 • 缺省时,DS对实体装配体使用对称接触。 对ANSYS Professional 及更高级licenses ,用户可在需要时改 为反对称接触。
Availability
x x
x
In the figure on the left, the solid green double-arrows indicate heat flow within the contact region. Heat flow only occurs if a target surface is normal to a contact surface.
Availability
x x
x
Model shown is from a sample Inventor assembly.
… 装配体 – 接触区
• 在DS中,每个接触区都用到接触面和目标面的概念。
– 接触区的一侧由接触面组成,另一侧由目标面组成。 – 在接触的法向上允许有接触面和目标面间的热流。
Initially Touching
Inside Pinball Region Outside Pinball Region
Yes
Yes
No
Yes
Yes
No
Yes
No
No
Yes
No
No
– 接触的 pinball 区域由程序自动定义并被设置一个相对较小的 值,以调和模型中可能出现的小间隙。pinball 区域将在下一
The light, dotted green arrows indicate that no heat transfer will occur between parts.

ANSYS流体分析CFD

ANSYS流体分析CFD

ANSYS流体分析CFD
ANSYSCFD的优点是能够提供详尽准确的流场和温度场分布,解释物理过程并了解产品性能,从而改进设计。

它还可以提供对流体流动和传热性能进行优化的机会,以便实现更高效、更可靠和更经济的设计。

在各行各业中,如汽车、航空航天、能源、化工等领域,ANSYSCFD已经成为设计过程中不可或缺的一部分。

ANSYSCFD分析支持各种复杂的物理模型,包括不可压缩流体流动、可压缩流体流动、多相流、湍流流动和传热等问题。

它还通过使用适当的数值方法和离散化技术来求解流动方程和边界条件,以确保计算结果的准确性和可靠性。

1.建模:这一步骤包括将设计或物体转化为几何模型,并设定适当的边界条件和初始条件。

2.离散化:在这一步骤中,将几何模型离散化为网格,以便对流场进行数值计算。

网格的生成是一个关键步骤,对结果的准确性和计算效率有重要影响。

3.物理建模和数值求解:在这一步骤中,根据具体问题,选择适当的物理模型和数值求解方法,对流体流动和传热进行数值计算。

4.后处理与结果分析:完成数值计算后,需要对结果进行后处理和分析。

这可能包括生成流场图、剖面分析、计算参数提取等。

综上所述,ANSYSCFD是一种强大的工具,可用于解决各种涉及流体流动和传热的工程问题。

它提供了详尽准确的流场和温度场分布,帮助工程师理解和改进设计,并优化产品性能。

通过使用ANSYSCFD,工程师可以更好地满足产品的要求和设计目标。

ANSYS热分析详解解析

ANSYS热分析详解解析

ANSYS热分析详解解析第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。

热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。

二、ANSYS的热分析在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。

ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。

ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。

此外,还可以分析相变、有内热源、接触热阻等问题。

三、ANSYS 热分析分类稳态传热:系统的温度场不随时间变化瞬态传热:系统的温度场随时间明显变化四、耦合分析热-结构耦合热-流体耦合热-电耦合热-磁耦合热-电-磁-结构耦合等第二章基础知识一、符号与单位W/m 2-℃ 3二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:●对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ?+?+?=-式中: Q ——热量;W ——作功;U ——系统内能; ?KE ——系统动能; ?PE ——系统势能;● 对于大多数工程传热问题:0==PE KE ??;● 通常考虑没有做功:0=W , 则:U Q ?=;●对于稳态热分析:0=?=U Q ,即流入系统的热量等于流出的热量;●对于瞬态热分析:dtdUq =,即流入或流出的热传递速率q 等于系统内能的变化。

三、热传递的方式1、热传导热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。

热传导遵循付里叶定律:dxdTkq -='',式中''q 为热流密度(W/m 2),k 为导热系数(W/m-℃),“-”表示热量流向温度降低的方向。

ansysworkbench热分析研究教程

ansysworkbench热分析研究教程

6-1本章练习稳态热分析地模拟,包括:A.几何模型B.组件-实体接触C.热载荷D.求解选项E.结果和后处理F. 作业本节描述地应用一般都能在ANSYS DesignSpaceEntra或更高版本中使用,除了ANSYSStructural提示:在ANSYS 热分析地培训中包含了包括热瞬态分析地高级分析KT T QT –在稳态分析中不考虑瞬态影响–[K]可以是一个常量或是温度地函数–{Q}可以是一个常量或是温度地函数上述方程基于傅里叶定律:固体内部地热流(Fourier’s Law)是[K]地基础;热通量、热流率、以及对流在{Q}为边界条件;对流被处理成边界条件,虽然对流换热系数可能与温度相关在模拟时,记住这些假设对热分析是很重要地.热分析里所有实体类都被约束:–体、面、线•线实体地截面和轴向在DesignModeler中定义热分析里不可以使用点质量(PointMass)地特性壳体和线体假设:–壳体:没有厚度方向上地温度梯度–线体:没有厚度变化,假设在截面上是一个常量温度但在线实体地轴向仍有温度变化•唯一需要地材料特性是导热性(ThermalConductivity)•Thermal Conductivity在Engineering Data中输入温度相关地导热性以表格形式输入若存在任何地温度相关地材料特性,就将导致非线性求解.对于结构分析,接触域是自动生成地,用于激活各部件间地热传导–如果部件间初始就已经接触,那么就会出现热传导.–如果部件间初始就没有接触,那么就不会发生热传导(见下面对pinball地解释).–总结:–Pinball区域决定了什么时候发生接触,并且是自动定义地,同时还给了一个相对较小地值来适应模型里地小间距.如果接触是Bonded(绑定地)或noseparation(无分离地),那么当面出现在pinballradius内时就会发生热传导(绿色实线表示).PinballRadius右图中,两部件间地间距大于pinball区域,因此在这两个部件间会发生热传导.默认情况下,假设部件间是完美地热接触传导,意味着界面上不会发生温度实际情况下,有些条件削弱了完美地热接触传导:––––压力表面温度T使用导电脂....Tx接着……T– 穿过接触界面地热流速,由接触热通量q 决定:q TCC target T contact – 式中T contact 是一个接触节点上地温度, T target 是对应目标节点上地温度–默认情况下,基于模型中定义地最大材料导热性KXX 和整个几何边界框地对角线ASMDIAG ,TCC 被赋以一个相对较大地值.TCC KXX 10,000/ ASMDIAG– 这实质上为部件间提供了一个完美接触传导在ANSYS Professional或更高版本,用户可以为纯罚函数和增广拉格朗日方程定义一个有限热接触传导(TCC).–在细节窗口,为每个接触域指定TCC输入值–如果已知接触热阻,那么它地相反数除以接触面积就可得到TCC值在接触界面上,可以像接触热阻一样输入接触热传导Spotweld(点焊)提供了离散地热传导点:–Spotweld在CAD软件中进行定义(目前只有DesignModeler和Unigraphics 可用).T2T1热流量:– 热流速可以施加在点、边或面上.它分布在多个选择域上.– 它地单位是能量比上时间(energy/time ) 完全绝热(热流量为0): 热生成:– 内部热生成只能施加在实体上– 它地单位是能量比上时间在除以体积(energy/time/volume )正地热载荷会增加系统地能量.– 可以删除原来面上施加地边界条件热通量:– 热通量只能施加在面上(二维情况时只能施加在边上)– 它地单位是能量比上时间在除以面积( e nergy/time/area )温度、对流、辐射:完全绝热条件将忽略其它地热边界条件 给定温度: – 给点、边、面或体上指定一个温度– 温度是需要求解地自由度至少应存在一种类型地热边界条件,否则,如果热量将源源不断地输入到系统中,稳态时地温度将会达到无穷大.另外,给定地温度或对流载荷不能施加到已施加了某种热载荷或热边界条件地表面上 .对流:– 只能施加在面上(二维分析时只能施加在边上)– 对流q 由导热膜系数 h ,面积A ,以及表面温度T surface 与环境温度T ambient 地差值 来定义. q hAT surface T ambient– “h ” 和 “T ambient ” 是用户指定地值– 导热膜系数 h 可以是常量或是温度地函与温度相关地对流:–为系数类型选择Tabular(Temperature)–输入对流换热系数-温度表格数据–在细节窗口中,为h(T)指定温度地处理方式几种常见地对流系数可以从一个样本文件中导入.新地对流系数可以保存在文件中.辐射:– 施加在面上(二维分析施加在边上)4 4– 式中: Q R FAT surface T ambientσ=斯蒂芬一玻尔兹曼常数ε =放射率A =辐射面面积F = 形状系数(默认是1)– 只针对环境辐射,不存在于面面之间(形状系数假设为1)– 斯蒂芬一玻尔兹曼常数自动以工作单位制系统确定从Workbench toolbox插入Steady-StateThermal将在projectschematic里建立一个SSThermalsystem(SS热分析)•在Mechanical 里,可以使用Analysis Settings为热分析设置求解选项.–注意,第四章地静态分析中地AnalysisDataManagement选项在这里也可以使用.加地结构载荷和约束.– 求解结构为了实现热应力求解,需要在求解时把结构分析关联到热模型上. 在Static Structural 中插入了一个importedload 分支,并同时导入了施后处理可以处理各种结果:–温度–热通量–反作用地热流速–用户自定义结果模拟时,结果通常是在求解前指定,但也可以在求解结束后指定.–搜索模型求解结果不需要在进行一次模型地求解.温度:–温度是标量,没有方向可以得到热通量地等高线或矢量图:–热通量q定义为q KXX T激活矢量显示模式显示热通量地大小和方向–可以指定Total Heat Flux(整体热通量)和DirectionalHeatFlux(方向热通量)对给定地温度、对流或辐射边界条件可以得到响应地热流量:–通过插入probe指定响应热流量,或–用户可以交替地把一个边界条件拖放到Solution上后搜索响应从Probe菜单下选择或拖放边界条件作业–稳态热分析目标:–分析图示泵壳地热传导特性版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守着作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。

ANSYS Fluent 在热分析中的使用介绍

ANSYS Fluent 在热分析中的使用介绍

ANSYS Fluent 在热分析中的使用介绍ANSYS Fluent 在热分析中的用法介绍湃睿科技1. 基本概念:热能的传递有三种基本的方式:热传导,热对流,热辐射1.1 热传导物体各部分之间不发生相对位移时,依赖分子、原子及自由等微观粒子的热运动而产生的热能传递称为热传导。

导热的基本定率被总结为傅立叶定率:其中,Φ为热流量,单位为 W,λ为导热系数,单位为W/(m·K),Α为面积,Τ为温度。

普通而言,气体的导热系数值约在0.006~0.6 之间,其值随着温度的上升而增大。

液体的导热系数约在0.07~0.7 之间,除了水和某些水溶液及甘油外,绝大多数液体的导热系数会随着温度的上升而减小。

1.2 热对流因为流体的宏观运动而引起民的流体各部分之间发生相对位移,冷热流体互相掺混所导致的热量传递过程称为热对流。

需要解释的是热对流只能发生在流体当中,而且因为流体中的分子同时在举行着不规章的热运动,因而热对流必定陪同着热传导。

工程中感爱好的是流体流对一个物体表面时流体与物体表面之间的热量传递过程,我们称之为对流传热,以区分于普通意义上的热对流。

事实上,我们平常所说的热对流也指这种状况。

按照引起流淌的缘由来划分,对流传热可以区别为自然对流和强制对流两大类。

对流传热的基本计算公式为牛顿冷却公式:其中,为表面传热系数,也被称为对流换热系数,单位为 W/(㎡·K)。

1.3 热辐射物体因为热的缘由而发出辐射能的现象我们称之为热辐射。

理论上讲,只要物体的温度高于肯定零度(0 K),物体就会不断的把热能变为辐射能,向外发出热辐射。

热辐射的基本计算公式为斯忒藩-玻耳兹曼定律,又称为四次方定律:其中,为物体的放射率,也称为黑度,其值总小于1,为斯忒藩-玻耳兹曼常量,它是个自然常数,其值为5.67e-08W/(㎡·K4), T为热力学温度,单位 K。

以上为三种基本传热方式的介绍,在实际问题中,这些方式往往不是单独浮现的,很可能是多种传热方式的组合形式。

Ansys Workbench Fluid Flow(FLUENT)经典问题

Ansys Workbench Fluid Flow(FLUENT)经典问题

1 对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢?学习任何一个软件,对于每一个人来说,都存在入门的时期。

认真勤学是必须的,什么是最好的学习方法,我也不能妄加定论,在此,我愿意将我三年前入门FLUENT心得介绍一下,希望能给学习FLUENT的新手一点帮助。

由于当时我需要学习FLUENT来做毕业设计,老师给了我一本书,韩占忠的《FLUENT流体工程仿真计算实例与应用》,当然,学这本书之前必须要有两个条件,第一,具有流体力学的基础,第二,有FLUENT 安装软件可以应用。

然后就照着书上二维的计算例子,一个例子,一个步骤地去学习,然后学习三维,再针对具体你所遇到的项目进行针对性的计算。

不能急于求成,从前处理器GAMBIT,到通过FLUENT进行仿真,再到后处理,如TECPLOT,进行循序渐进的学习,坚持,效果是非常显著的。

如果身边有懂得FLUENT 的老师,那么遇到问题向老师请教是最有效的方法,碰到不懂的问题也可以上网或者查找相关书籍来得到答案。

另外我还有本《计算流体动力学分析》王福军的,两者结合起来学习效果更好。

2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。

/dvbbs/viewFile.asp?BoardID=61&ID=1411A.理想流体(Ideal Fluid)和粘性流体(Viscous Fluid):流体在静止时虽不能承受切应力,但在运动时,对相邻的两层流体间的相对运动,即相对滑动速度却是有抵抗的,这种抵抗力称为粘性应力。

流体所具备的这种抵抗两层流体相对滑动速度,或普遍说来抵抗变形的性质称为粘性。

粘性的大小依赖于流体的性质,并显著地随温度变化。

实验表明,粘性应力的大小与粘性及相对速度成正比。

ANSYS模块简介

ANSYS模块简介

ANSYS模块简介ANSYS是什么?ANSYS公司是一家全球性的工程模拟软件公司,其产品集合是基于计算机辅助工程技术的高级工程模拟解决方案。

其旗舰产品是ANSYS Workbench,它是一个高度集成的系统,能够将多个分析工具进行协作和链接。

ANSYS的解决方案广泛应用于各种领域,如航空、汽车、船舶、能源等。

ANSYS模块简介ANSYS的模块是按照不同的物理场景进行分类,主要包括静态结构分析、动态分析、热分析、流体分析、电磁分析等多个模块。

下面将对各个模块进行简要介绍。

静态结构分析模块ANSYS的静态结构分析模块能够对结构进行静力学分析,计算如应力、应变、位移、反应力、刚度等工程量,常用于支持设计和分析的结构应力分析、振动分析、变形分析、材料力学分析等工程领域。

动态分析模块ANSYS的动态分析模块是一种分析结构体系的动态响应和应力的工具,对于结构体系的振动情况分析、减振设计、冲击分析、信号响应、关联分析等方面有很好的适用性。

热分析模块ANSYS的热分析模块是一种对结构进行温度特性、热稳定性分析、温度分布、温度梯度以及热扰动的模拟工具,常用于气体流体热稳定性、电力电子器件热管理方案、电子设备浸泡冷却等分析。

流体分析模块ANSYS的流体分析模块包括多相流模拟、湍流模拟、压力损失分析、静压力计算等多个部分,用于研究和开发在较大压力和较高稠度下的气体或液体的流动情况,主要应用于航空航天、船舶、汽车等领域。

电磁分析模块ANSYS的电磁分析模块主要用于计算电场、磁场、局部电磁场、电磁辐射、电磁相互作用等问题的模拟,广泛应用于电子器件、电力变压器、雷达天线、通讯电缆等领域。

ANSYS的模块是用于工程分析和仿真的多元化的解决方案,可以方便地用于应力分析、振动分析和热分析等各种工程领域。

此外,ANSYS在分析方面还有着十分先进的多物理场分析和耦合技术。

在各个领域的工程设计、实验室模拟、科学研究与生产制造等方面都发挥着十分重要的作用。

ansys fluent多相流模型及其工程应用

ansys fluent多相流模型及其工程应用

ansys fluent多相流模型及其工程应用
ANSYS Fluent是一种流体动力学仿真软件,多相流模型是其其中之一的模块,用于模拟和分析多种物质的流动行为和相互作用。

在ANSYS Fluent中,多相流模型可以用来研究和分析以下情况:
1. 涉及两个或多个互相作用的物质的流动,例如气泡在液体中的运动、固体颗粒在气体中的输运等。

2. 液体在固体颗粒上的湿润和液滴的形成与脱落。

3. 气体和液体的接触区域的传质和传热过程。

4. 多相流模型可以考虑物质间的相互作用,例如表面张力、相变、物质的传质和传热等。

多相流模型在工程应用中具有广泛的应用,包括但不限于以下领域:
1. 石油与天然气工程:通过模拟多相流动来研究油气井中的油水气分离、油水混输等问题。

2. 化工与过程工程:用于研究化工反应器中的多相反应和传质传热过程、粉体输送和颗粒反应等问题。

3. 能源与环境工程:用于模拟燃烧过程中的燃气混合、火焰传播等多相流动问题以及涡轮机械中气固两相流动的性能优化等。

4. 生物医学工程:用于模拟人体内各种生理学过程中的多相流动如血流动力学、药物输送等。

通过ANSYS Fluent多相流模型,工程师可以准确地分析和预
测多种物质的流动行为和相互作用,从而指导设计优化和问题解决。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

― 用户扩展到几乎所有的蒸汽发电公司
― 所有主要的OEM都是ANSYS的用户
― 几乎所有的核电厂配套设施主要设备的开发过程中都使用过
ANSYS软件
― 美国及其它的监管机构都是用ANSYS软件
5
© 2017 ANSYS, Inc.
August 3, 2017
ANSYS UGM 2017
1
ANSYS 与核工业
From phase To phase must be liquid must be vapor
13
© 2017 ANSYS, Inc.
August 3, 2017
ANSYS UGM 2017
ANSYS CFD- 传热模型
• 能够模拟热传导、对流传热,包括自然对流和强迫对流 • 具有分析流体和固体共轭传热的能力,分别设定流体域和固体 域的模型,在流体域和固体域之间采用域交接面的方法来连接 • 高级的热辐射模型,包括DO模型,P1模型,DTM模型,太阳辐射 模型等
Байду номын сангаас
CONTENTS
2
核电行业中的CFD需求
3
ANSYS CFD解决方案
4
案例分享
6
© 2017 ANSYS, Inc.
August 3, 2017
ANSYS UGM 2017
核工业主要关心的流体问题
• 一回路系统的关键设备
◦ 反应堆芯整体流场和局部换热特征研究
◦ 稳压器:维持一回路系统的工作压力(静压),补偿水在冷态
• 该问题主要模拟冷却塔的传热传质动态响应对冷凝器入口冷却 水水温的影响,进而考虑其对核电站的效率及安全的影响。
20
© 2017 ANSYS, Inc.
August 3, 2017
ANSYS UGM 2017
核岛及堆内流动模拟
Containment Atmosphere Mixing (CAM)
Simulation of spray experiments performed in TOSQAN facility
27
© 2017 ANSYS, Inc.
August 3, 2017
ANSYS UGM 2017
过冷沸腾
气相体积分数分布
温度分布
28
© 2017 ANSYS, Inc.
August 3, 2017
ANSYS UGM 2017
过冷沸腾 - 两相流模型
• 核燃料棒周围的流动
―Pressure 50 atm ―Reliq=300,000 ―Heat flux 0.522 MW/m2 ―Inlet subcooling 4.5 K ―y+=100
和热态时体积的变化
通过加热、喷淋调整压力 • 核心问题是其响应的速度控制
◦ 安全注水系统
反应堆失水时启动(失水事故分析)
◦ 核阀:闸阀、安全阀、隔离阀等 ◦ 其他:非动能安全壳体喷淋等
7
© 2017 ANSYS, Inc.
August 3, 2017
ANSYS UGM 2017
核工业主要关心的流体问题
ANSYS UGM 2017
CFD 仿真流程及注意事项
几何
网格
网格划分难度大,需 要灵活的网格划分策略
求解器
计算规模大,流场复杂, 多数情况下涉及到多物理场耦合
核电设备结构 形式多样
CAD数模与CAE链 接遇到挑战
SCDM基于直接建模思想,能够 一键完成几何修改和清理。 同时能够直接打开和编辑其 它商业软件的几何文件
26
© 2017 ANSYS, Inc.
August 3, 2017
ANSYS UGM 2017
过冷沸腾
• 模拟一个环形域 • FLUENT 模拟了三组试验条件下的流动和换热 • 使用Eulerian multiphase 模型和RPI model
2Roy,
R. P., Velidandla, V., and Kalra, S. P., ASME J. Heat Trans. 119, 754-766 (1997).
August 3, 2017
ANSYS UGM 2017
承压热冲击( PTS )
• 该问题需要处理复杂的全尺寸模型和复杂的流动形态(分层流、 射流、羽流),且可能需要处理两相流及相变现象
19
© 2017 ANSYS, Inc.
August 3, 2017
ANSYS UGM 2017
核电站冷却塔模拟
◦ 粒子撞击时发生的飞溅 ◦ 液滴的脱落 ◦ 边界分离 ◦ 液膜和壁面间的换热 ◦ 与欧拉模型耦合 ◦ 与DPM模型耦合 计算颗粒捕集率
• 应用:波纹板分离器
T film
The wall film on a car mirror with droplets released due to wind shear
Facility located at IRSN Saclay
Volume: 7 m3, height: 4.8 m Wall temperature controlled Test 101: depressurization test
21
© 2017 ANSYS, Inc.
August 3, 2017
August 3, 2017
ANSYS UGM 2017
ANSYS CFD- 多相流模型
• 拉格朗日多相流
―DPM ―欧拉多相流 ―VOF ―Mixture ―Eulerian多相流


DDPM extended to the packing limit particles
solids vof
liquid water injected
film Q = 3000 W
air solid
Q 3000 75 K m CP 0.01 4000
Contours of temperature in an Eulerian Wall Film with heat transfer case
• 稳压器:喷淋水喷射、蒸发降压过程
• 压力安全壳:喷淋冷却过程
• 汽水分离器:两相流动 • 高压/低压加热器 • 汽轮机长叶片的气动、蒸汽过冷凝结与流致振动 • 核电站泄漏事故控制 • 建筑内部舒适度和通风 • 冷却塔内部的流动换热
9 © 2017 ANSYS, Inc. August 3, 2017
却剂系统中的传播以及主泵转速变化和自然对流现象
23
© 2017 ANSYS, Inc.
August 3, 2017
ANSYS UGM 2017
压水堆失水事故补水分析
• 该问题需要对完整的一回路系统进行瞬态分析,而随着LOCA的
进行,当闪蒸发生后,需要考虑两相流及相变的模拟
14 s
40 s
68 s
50 s
ANSYS UGM 2017
波纹板汽水分离器
• 分析流速、液滴直径、板间距对分离效率的影响 • DPM模拟液滴运动 • Wall film模型模拟液膜在壁面的形成
―粒子撞击时发生的飞溅 ―液滴的脱落、边界分离 ―液膜运动 ―液膜和壁面间的换热
入口速度为7m/s双钩波纹板速度 分布云图
入口速度为4m/s双钩波纹板速度分布 云图
铀矿开采和加工 燃料棒 燃料系统 核反应堆 热生成
核电厂配套设施 (发电机组)
核废料处理
4
© 2017 ANSYS, Inc.
August 3, 2017
ANSYS UGM 2017
核工业统计
ANSYS全球核工业用户群
• 完整的解决方案可以很好的满足用户模拟需求 • 严格保证产品开发过程的质量 • 提供独特的NQA-1质量服务 • 聚焦于核工业,有着超过40年的成熟的全球业务
22
© 2017 ANSYS, Inc.
August 3, 2017
ANSYS UGM 2017
硼稀释
• 欧盟的EUBORA和FLOWMIX-R项目使用ANSYS Fluent产品 • ANSYS-CFX被应用在VVER-1000机组的相关分析中 • 该分析需要模拟完整的一回路系统,要求能够合理模拟硼在冷
12 © 2017 ANSYS, Inc. August 3, 2017
ANSYS UGM 2017
ANSYS CFD- 多相流相变模型
• 通过相变吸热、放热达到更好换热效果 • 蒸发冷凝 • 空化模型
• 核状沸腾模型
Surface Vapor Volume Fraction: Pb = 350 kPa.
ANSYS UGM 2017
热疲劳 & 热分层
• 冷热冷却剂混合现象在反应堆中经常发生,交变的温度变化 (温差可达160℃)现象会产生管道的热疲劳,影响管道的寿 命。
• 该现象需要建立完整的3D模型,与湍流方程的选取和模拟精度
密切相关。
• 法国西奥1号机组RHR系统管道热疲劳失效事故分析。
18
© 2017 ANSYS, Inc.
© 2017 ANSYS, Inc.
August 3, 2017
ANSYS UGM 2017
反应堆燃料棒温度场模拟
16
© 2017 ANSYS, Inc.
August 3, 2017
ANSYS UGM 2017
反应堆 - 堆顶
• 控制棒驱动机构冷却性能
17
© 2017 ANSYS, Inc.
August 3, 2017
ANSYS UGM 2017
ANSYS 与核工业
• 1973:ANSYS 在核工业中开始应用 • 2007:国际热核反应堆工程选择采用ANSYS 解决方案进行核聚变装置的实验和设计
相关文档
最新文档