大坝安全监测系统
水库大坝安全监测系统
水库大坝安全监测系统1. 监测内容、方法及仪器a. 大坝区降雨强度和雨量监测采用翻斗式雨量计测量降雨量和降雨强度。
b. 大坝浸润线及坝基渗压监测通过埋设渗压计来观测坝体的渗流压力分布情况和浸润线位置以及坝基渗流压力分布情况。
c. 大坝上下游水位监测通过安装浮子式、振弦式水位计观测大坝的上下游的水位。
d. 大坝坝体位移监测采用全站仪自动极坐标测量系统监测大坝变形,内外业一体化的工程测量系统可实现无人值守及自动监测。
e. 大坝渗流量监测在大坝下游设置量水堰,安装量水堰计以监测大坝渗流量。
2. 传感器可根据实际需求,在监测范围内安装各种传感器。
一般常用的有:渗压计、混凝土应变计、应力计、多点位移计、测缝计、水位计、钢筋计、倾角计、测力计、气压计、温度计、压力盒等。
3. 自动监测系统a. 系统简介随着计算机技术和电测技术的发展,使得以电测传感器技术为基础的监测项目能实现全天候自动监测。
同样,监测系统也具备人工观测条件,通过观测人员携带读数仪或笔记本电脑到各监测站读取数据,并可由人工输入计算机,进入相关数据库。
连续的自动监测可以记录下监测对象完整的数据变化过程,并且实时得到数据,借助于计算机网络系统,还可以将数据传送到网络覆盖范围内的任何需要这些数据的部门。
b. 系统组成本系统由三部分组成:1)现场量测部分2)远程终端采集单元MCU3)管理中心数据处理部分c. 系统网络结构水库大坝安全监测数据采集系统采用分层分布开放式结构,运行方式为分散控制方式,可命令各个现地监测单元按设定时间自动进行巡测、存储数据,并向安全监测中心报送数据。
系统MCU之间以及MCU与监控计算机之间的网络通信采用光缆。
安全监测数据采集系统可通过光缆将位于本工程各个监测站内的监测数据采集上来,然后通过光缆传送到位于管理所的监测中心内的监控主机内。
图1 系统网络组成图4.监测系统功能特点本监测系统是专为大坝安全监测提供最优解决方案,其基本的功能有:a.可实时远程监测大坝的各测试参数,可根据需要设定采集频率、测点数据,对原始数据可进行各种计算。
大坝安全监测自动化系统的结构形式.
水利工程管理技术
ห้องสมุดไป่ตู้
图6-23分布式采集系统示意图
大坝安全监测自动化系统的结构形式
(三)混合式
混合式是上述两种采集方式的混合形态,它具有分布式的外形布 置,同时采用集中式进行数据采集。在同一个工程中,一部分类型仪 器布置较集中则实施集中采集,如集中布置在一起的温度计、钢筋计、 测缝计、应力应变计等卡尔逊式仪器。另一部分类型仪器可以用MCU 进行分散采集。所有仪器最终都用数字信号与中央控制单元的计算机 连接。
水利工程管理技术
图6-22 集中式采集系统示意图
水利工程管理技术
大坝安全监测自动化系统的结构形式
(二)分布式 分布式采集系统是将数据采集仪分散布置在靠近仪器的地方,俗称测 量控制单元(MCU)。系统对MCU的要求较高,MCU除执行数据采集把模拟 量转换为数字量(A/D) 的功能外,还要具备一定的存储和数据处理功能、 网络通信功能。MCU一般就近置于坝内,要求其防潮性能要好,能适应坝 内的恶劣环境。这种系统布置方式比较灵活,可靠性高、适应能力强,适 用于测点众多的大型水库工程。系统的典型布置如图6-23所示。
水利工程管理技术
大坝安全监测自动化系统的结构形式
(一)集中式 所谓集中式,通常在大坝内设一专门的监测室,置放数据采集仪,分 布于坝内各测点处的传感器通过电缆直接与数据采集仪相连,传感器信 号通过数据采集仪传输到坝外监控中心的数据处理计算机上进行存储管 理。这种系统适用于测点数量在200个以内,布置相对集中,传输距离不 远的工程,如图6-22所示。
水利工程管理技术
大坝安全监测自动化系统的结构形式
大坝安全监测自动化系统的结构形式
水库工程的监测自动化采集系统一般由观测点的遥测传感器、遥 控集线箱、数据自动巡检采集装置及监控中心中央控制单元(计算机) 等组成。从国际上看,监测自动化系统的布置形式根据不同工程情况 朝多元化方向发展。系统的结构形式按照数据的采集方式大体可分为 三类,即集中式、分布式和混合式。
水库大坝安全监测系统
水库大坝安全监测系统摘要:水库大坝是重要的水资源调控和洪水防治设施,其安全性直接关系到人民生命财产的安全。
本文介绍了水库大坝安全监测系统的基本原理、主要功能以及发展趋势。
水库大坝安全监测系统的建立和运行对于确保水库大坝的安全具有重要的意义。
一、引言水库大坝是用于调节水资源、防止洪水以及发电等功能的重要设施。
然而,由于自然因素、人为因素等原因,水库大坝的安全性面临着一定的挑战。
为了确保水库大坝的安全性,水库大坝安全监测系统的建立和运行变得至关重要。
二、水库大坝安全监测系统的基本原理水库大坝安全监测系统通过安装传感器、数据采集设备、数据传输设备和数据处理设备等组成,对水库大坝的物理量进行实时监测和数据采集。
基于监测数据的分析和处理,可以实现对水库大坝安全状态的评估和预警,为保障水库大坝的安全性提供技术支持。
三、水库大坝安全监测系统的主要功能1. 水文监测功能:包括对水库水位、流量、水质等水文参数的监测和采集,通过分析这些参数的变化可以判断水库大坝是否存在安全隐患。
2. 结构监测功能:包括对水库大坝结构的变形、裂缝、沉降等参数的监测和采集,通过分析这些参数的变化可以评估水库大坝的稳定性和安全性。
3. 应力监测功能:包括对水库大坝内部和周围岩土体的应力变化的监测和采集,通过分析这些参数的变化可以判断水库大坝是否存在应力集中区域。
4. 渗流监测功能:包括对水库大坝内部和周围岩土体的渗流量的监测和采集,通过分析这些参数的变化可以判断水库大坝是否存在渗漏问题。
5. 通信与报警功能:水库大坝安全监测系统可以通过与监测站点的通信设备实现远程监测和数据传输,及时向相关部门发送预警信息,保障水库大坝的安全。
四、水库大坝安全监测系统的发展趋势1. 自动化技术的应用:随着自动化技术的发展,水库大坝安全监测系统将越来越多地采用自动化设备和技术,实现对水库大坝的实时监测和数据采集。
2. 大数据和人工智能的应用:水库大坝安全监测系统将结合大数据和人工智能技术,通过对大量监测数据的分析和处理,实现对水库大坝安全状态的准确评估和预警。
大坝安全监测2仪器原理教学内容
钢弦式仪器原理图
钢弦式应变计
钢弦式点焊应变计(钢板计)
钢弦式钢筋计
钢弦式渗压计
钢弦式测缝计
钢弦式钢索计
钢弦式裂缝计
钢弦式压应力计
钢弦式读数仪(二次仪表)
§5电阻应变片式传感器的基本原理
原理:金属导体的电阻随着所受机械变 形的大小而变化,从而测得应变物理量。
光纤传感器与传统的各类传感器相比有一系列独特的 优点,如灵敏度高,抗电磁干扰、耐腐蚀、电绝缘性 好,防爆,光路有可挠曲性,便于与计算机联接,结 构简单,体积小,重量轻,耗电少等。
第二章 大坝安全监测仪器的 基本原理和特点
思考题
1.大坝安全监测仪器的基本要求。 2.大坝安全监测系统的基本构成。 3.简述差阻式、振弦式仪器工作原理
测量过程: 力--试件--应变--电阻应变片
--电阻--电阻应变仪--电压或电 流--显示记录仪表
感原理可分为功能型和 非功能型。
功能型光纤传感器是利用光纤本身的特性把光 纤作为敏感元件,所以也称传感型光纤传感器, 或全光纤传感器。
非功能型光纤传感器是利用其它敏感元件感受 被测量的变化,光纤仅作为传输介质,传输来 自远处或难以接近场所的光信号.所以也称为 传光型传感器.或混合型传感器。
§2大坝安全监测系统的基本构成 一个监测系统主要由现场的监测 仪器、导线、采集测控单元(集线 箱)、接受仪表(二次仪表)、通 讯装置、计算机及其相应的监测软 件等构成。
下图为监测系统的基本结构图。
Z=R1/R2 (电阻比)
§4振弦式仪器的基本原理
原理:利用钢弦的自振频率与钢弦所 受到的外加张力关系式测得各种物理 量。
大坝安全监测系统使用标准
(1)《自动化仪表安装工程质量评定标准》(GBJ131-90);(2)《中华人民共和国共和国水法》(3)《微型数字电子计算机通用技术条件》(GB9813—2000);(4)《土石坝安全监测资料整编规程》(SL196-96);(5)《土石坝安全监测技术规范》(SL60-94);(6)《水文自动测报系统规范》(SL61-2003);(7)《水文仪器总技术条件》(GB9359-88);(8)《水文仪器术语》(SL10-89);(9)《水文测报装置遥测雨量计》(GB 11831-89);(10)《水文测报装置遥测水位计》(GB11830-89);(11)《水位观测标准》(GBJ138-90);(12)《水情信息编码标准》(SL330-2005);(13)《水利水电建设工程验收规程》(SL223-1999);(14)《水利水电工程水情自动测报系统设计规定》(DL/T5051-1996);(15)《水利水电工程施工质量评定规程》(SL176-96);(16)《水库工程管理设计规范》(SL106-96)(17)《水库大坝安全管理条例》(1991年国务院发布)(18)《水电厂计算机监控系统基本技术条件》(DL/T578-95)(19)《实时雨水情数据库表结构与标识符标准》(SL323-2005);(20)《计算机软件质量保证计划规范》(GB/T 12504-90);(21)《计算机软件可靠性和可维护性管理》(GB/T14394-93);(22)《计算机软件开发规范》(GB 8566-88);(23)《混凝土坝安全监测技术》(DLT5178-2003)(24)《国家一、二等水准测量规范》(GB12897-1991);(25)《国家三角测量规范》(GB/T17942-2000);(26)《国家三、四等水准测量规范》(GB12898-1991);(27)《国家防汛指挥系统工程水雨情库表结构设计》。
(28)《国家防汛指挥系统工程工情数据表结构设计》;(29)《工业自动化仪表安装工程施工及验收规范》(GBJ93-86);(30)《工业企业通讯接地设计规范》(GBJ79-85);(31)《工业企业通信设计规范》(GBJ42-81);(32)《电子计算机机房设计规范》(GB50174-93);(33)《电气装置安装工程接地装置施工及验收规范》(GB50169-92);(34)《电气装置安装工程电缆线路施工及验收规范》(GB501680-92);(35)《大坝安全监测系统验收规范》(GBT 22385-2008)(36)《大坝安全监测系统施工监理规范》(DLT 5385-2007)(37)《大坝安全监测系统设备基本技术条件》(SL268-2001);(38)《崩塌、滑坡、泥石流监测规范》(DZT0221-2006)。
大坝安全监测系统v.doc
大坝安全监测系统产品概述大坝安全监测系统是对水库大坝进行实时地监测管理,通过对监测数据采集、分析、处理、查询,掌握水库大坝的实时运行状况,及时发现异常情况并采取措施。
大坝安全监测系统,采用高度集成化、智能化的、现代化的工业自动化控制技术,通过使用数据采集器,并采用各类相应的测量传感器,完成对土石坝、混凝土坝及其它水工建筑物、库区环境、高边坡、涵洞、楼宇、交通工程等岩土工程的变形,渗压渗流、环境因素(水位、气温、雨量)、应力应变等观测项目进行自动远程在线监测。
并对所监测的项目数据进行进行数据采集、在线运算、分析处理、存储及输出。
图:大坝安全监测系统系统具备的特点本系统内部可采用RS232 ,RS485/422以及其他国际标准构建现场通信,网络基本系统之间及基本系统与监测管理中心站之间采用局域网连接监测。
系统功能1.系统具备巡测和选测功能,系统数据采集方式采用自动控制方式2.系统有显示功能能,显示建筑物及监测系统的总体和过程曲线报警状态显示窗口等3.系统有操作功能,能在监测管理站的计算机或监测管理中心站的计算机上实现监视操作输入输出显示打印4.系统能报告现在测值状态调用历史数据,评估系统运行状态5.系统设备具备掉电保护功能在外部电源突然中断时保证数据和参数不丢失6.系统具备数据通信功能包括数据采集装置与监测管理站计算机之间的数据通信以及监测管理站和监测管理7.系统可靠.平均故障间隔时间MTBF=1/λ . λ是产品的故障总数与寿命单位总数系统性能系统具备下列采集性能指标采集信号:模拟量、数字量采集对象:差动电阻式、电感式、电容式、压阻式、振弦式、差动变压器、电位器式、光电式等监测仪器,步进电机式、测量装置、及其他测量装置系统运行方式:支持24h不间断运行根据需要可调测量周期:大于10min ,根据需要和测量装置可调系统具有较强的环境适应性,具备防雷、防潮、防锈蚀、防鼠、抗振抗、电磁干扰等性能具有图文并茂的用户界面采集计算机1.具备适合工业应用环境有较高运算速度和较大存储容量的工业机2.配置便携式计算机作为移动工作站并配有打印机3.能与监测管理中心站和监测站,进行网络通信并接收管理计算机的命令,向监测站数据采集装置转发指令4.具有可视化用户界面能方便地修改系统设置设备参数及运行方式能根据实测数据反映的状态进行修改选择监测的频次和监测对象5.具有对采集数据库进行管理的功能6.具有画面报表编辑功能7.具有自动报警功能8.具有运行日志故障日志记录功能图:分布式数据采集方式监测管理中心设备1.交流电源掉电时不间断电源维持系统正常工作时间不小于30min2.能通过采集计算机对现场采集系统进行采集和控制3.能完成大坝监测数据的管理及日常工程安全管理工作如在线监测、离线分析、图表制作、测值预报4..监测自动化系统的构建。
大坝安全监测自动化系统的结构形式标准版文档
水利工程管理技术
图6-22 集中式采集系统示意图
大坝安全监测自动化系统的结构形式 (二)分布式 在同一个工程中,一部分类型仪器布置较集中则实施集中采集,如集中布置在一起的温度计、钢筋计、测缝计、应力应变计等卡尔逊 量量网内用控 转 络 的 于分制 换 通 恶 测布单 为 信 劣 点式元 数 功 环 众采字能境多(M集量。。的CU系这大(MA)C统。种型/DU是系系水)一的将统统 库般功数对布 工就能据M置 程近外C采方。置U,集式系的于还仪比统要坝要分较的求内具散灵典较,备布活型高要一置,布,求定在可置M其的靠靠如C防存U近性图潮除储仪高6性执-和2器、能3行数的所适要数据地示应好据处方。能,采理,力能集功俗强适把能称,应模、测适坝拟 大从系系混 在式系信这图水组 这大在式混系信在式这大系信图大图系系式大系信在式这所感系 水组大水水混图 系信在式坝国统统合同仪统功种6库成种坝同仪合统功同仪种坝统功6坝6统统仪坝统功同仪种谓器统库成坝利利合6统功同仪----2222安 际 的 的 式一 器 对 能 系 工 。系 安 一 器 式 对 能 一 器 系 安 对 能 安 的 的 器 安 对 能 一 器 系 集 信 的工 。 安 工 工 式 对 能 一 器2332全上结典是 个。M。统程统全个。是M。个。统全M。全结结。全M。个。统中号典 程全程程是M。个。分分集集CCCCC监看构型上 工布的布监工上工适监监构构监工适式通型 的监管管上工布布中中UUUUU测,形布述 程置监置测程述程用测测形形测程用,过布 监测理理述程式式式式的的的的的自监式置两 中方测方自中两中于自自式式自中于通数置 测自技技两中采采采采要要要要要动测按如种 ,式自式动,种,测动动按按动,常据如 自动术术种,集集集集求求求求求化自照图采 一比动比化一采一点化化照照化一点在采图 动化采一系系系系较较较较较系动数集 部较化较系部集部数系系数数系部数大集化系集部66统统统统高高高高高--22统化据方分灵采灵统分方分量统统据据统分量坝仪采统方分示示示示,,,,,33的系的式 类活集活的类式类在的的的的的类在内传集的式类意意所所意意MMMMM结统采的 型,系,结型的型结结采采结型设输系结的型22图图示示CCCCC图图00UUUUU构的集混 仪可统可构仪混仪构构集集构仪一到统构混仪。。00除除除除除个个形布方合 器靠一靠形器合器形形方方形器专坝一形合器执执执执执以以式置式形 布性般性式布形布式式式式式布门外般式形布行行行行行内内形大态 置高由高置态置大大置的监由态置数数数数数,,式体, 较、观、较,较体体较监控观,较据据据据据布布根可它 集适测适集它集可可集测中测它集采采采采采置置据分具 中应点应中具中分分中室心点具中集集集集集相相不为有 则能的能则有则为为则,的的有则把把把把把对对同三分 实力遥力实分实三三实置数遥分实模模模模模集集工类布 施强测强施布施类类施放据测布施拟拟拟拟拟中中程,式 集,传,集式集,,集数处传式集量量量量量,,情即的 中适感适中的中即即中据理感的中转转转转转传传况集外 采用器用采外采集集采采计器外采换换换换换输输朝中形 集于、于集形集中中集集算、形集为为为为为距距多式布 ,测遥测,布,式式,仪机遥布,数数数数数离离元、置 如点控点如置如、、如,上控置如字字字字字不不化分, 集众集众集,集分分集进,集量量量量量远远方布同 中多线多中同中布布中行线同中(((((的的AAAAA向式时 布的箱的布时布式式布于存箱时布/////工工DDDDD发和采 置大、大置采置和和置坝储、采置)))))程程展混用 在型数型在用在混混在内管数用在的的的的的,,。合集 一水据水一集一合合一各理据集一功功功功功如如式中 起库自库起中起式式起测。自中起能能能能能图图。式 的工动工的式的。。的点动式的外外外外外66进 温程巡程温进温温处巡进温,,,,,--22行 度。检。度行度度的检行度22还还还还还所所数 计采计数计计传采数计要要要要要示示据 、集、据、、感集据、具具具具具。。采 钢装钢采钢钢器装采钢备 备 备 备 备集筋 置 筋 集 筋 筋 通 置 集 筋一一一一一。 计及计。计计过及。计定定定定定、监、、、电监、的的的的的测控测测测缆控测存存存存存缝中缝缝缝直中缝储储储储储计心计计计接心计和和和和和、中、、、与中、数数数数数应央应应应数央应据据据据据力控力力力据控力处处处处处应制应应应采制应理理理理理变单变变变集单变功功功功功计元计计计仪元计能能能能能等等等等相等((、、、、、计计卡卡卡卡连卡网网网网网算算尔尔尔尔,尔络络络络络机机逊逊逊逊传逊通通通通通))等等
大坝安全监测与控制系统设计与实现
大坝安全监测与控制系统设计与实现近年来,随着国家水利建设的进一步发展,大坝建设也迎来了一个高峰期。
虽然大坝建设方便了人们的生活和经济发展,但是也给社会带来了极大的安全隐患。
因此,建立一套高效的大坝安全监测与控制系统对于保障人民生命财产安全至关重要。
一、大坝安全监测系统的设计与结构大坝安全监测系统是指对大坝水文、水文、水文、结构、周边环境等因素进行实时监控和预报,实现对大坝安全的持续、全面、科学的监测和控制的系统。
大坝安全监测系统包括传感器、数据采集器、通信模块、数据处理与分析、系统控制与管理等几个方面。
(一)传感器传感器是大坝安全监测系统的核心部件之一。
传感器的作用是对大坝周围的各种监测要素进行实时监测和数据采集,并将数据传递给数据采集器。
传感器常用的有测水位传感器、量河流量传感器、渗流传感器、地震传感器、温度传感器、湿度传感器等,通过对这些传感器数据的监测和分析,确定大坝是否存在安全隐患。
(二)数据采集器数据采集器是大坝安全监测系统的数据采集和传输设备。
它的作用是对传感器采集到的数据进行处理后,通过通信模块上传到数据处理中心进行存储和分析。
数据采集器的主要接口有模拟量接口、数字量接口、通讯口、定时口等,数据采集设备的稳定性和可靠性直接关系到系统的可靠性和精确度。
(三)通信模块通信模块的作用是采集到的信息传递给数据处理和分析中心进行处理分析,通信模块一般包括有线通信和无线通信两种。
大坝安全监测系统的通信模块必须保证高速、高带宽、低时延和稳定性。
(四)数据处理与分析数据处理与分析是大坝安全监测系统中的另一个重要的部分。
数据处理与分析是通过大数据处理和机器学习等技术来对大坝周边环境从各个方面进行高精度的评估和预测。
(五)系统控制与管理传感器、数据采集器、通信模块等监测设备的控制和管理是由系统控制与管理模块实现的。
该模块主要完成对监测设备的状态监测及时告警,数据采集周期设置和查询控制,数据传输模式控制等功能。
大坝安全监测自动化解决方案
大坝安全监测自动化解决方案目录第一部分大坝安全监测系统 (1)一. 系统概述 (1)二. 系统组成 (1)三. 系统设计 (1)四. 组网方式及数据流程 (5)五. 大坝安全监控系统功能 (5)5.1用户管理 (5)5.2系统配置管理 (6)5.3运行管理 (6)5.4系统状态管理 (6)5.5数据管理 (6)5.6报表生成 (6)5.8曲线绘制功能 (6)六. 主要设备技术指标 (7)6.1渗压计 (7)6.2量水堰计 (7)6.3库水位计 (7)6.4雨量计 (7)6.5分布式网络测量单元 (8)第二部分GPS坝体变形监测系统 (10)一.系统概述 (10)二.系统结构 (10)三.基准站 (11)四.监测站 (12)五.数据处理中心 (12)二十三.第三章软件系统功能 (12)第一部分大坝安全监测系统一. 系统概述整套系统采用分层分布的优化设计方法,硬件及软件系统均采用模块化、开放式结构设计,以方便系统升级以及与其它系统的连接。
关键部件选国外原装产品,配以国内的成熟技术与产品,系统设计力求较高的稳定性、可靠性、灵活性、可操作性和可扩展性,以利主坝后期子坝和副坝自动化安全监测的扩展设计安装,系统内部的通讯完全采用数字信号的传输。
二. 系统组成测量系统由计算机、安全监测系统软件、测量单元、传感器等组成,可完成各类工程安全监测仪器的自动测量、数据处理、图表制作、异常测值报警等工作。
系统软件基于WINDOWS工作平台,集用户管理、测量管理、数据管理、通讯管理于一身,为工程安全的自动化测量及数据处理提供了极大的方便和有力的支持。
软件界面友好,操作简单,使用人员在短时间内即可迅速掌握并使用该软件;三. 系统设计依据坝体现在状况,分别进行坝体渗流监测、水位监测、降雨量监测,具体配置如下:1.2.1坝体渗流监测(1)坝体浸润线监测一般监测断面不少于3个,监测断面位置一般选择在最具有代表性的、能控制主要渗流情况和估计可能出现异常渗流情况的横断面上,如最大坝高断面、原河床断面、合龙坝段、坝体结构有变化的断面和地质情况复杂的断面等,断面间距一般为100~200m。
大坝安全监测自动化系统的运行与维护
大坝安全监测自动化系统的运行与维护概况:大坝安全监测是通过仪器观测和巡视检查对水利水电工程主体结构、地基基础、两岸边坡、相关设施以及周围环境所作的测量及观察;"监测"既包括对建筑物固定测点按一定频次进行的仪器观测;也包括对建筑物外表及内部大范围对象的定期或不定期的直观检查和仪器探查..一、大坝安全自动监测系统系统由三部分组成:现场量测部分传感器数据采集模块CCU远程终端采集单元MCU系统监测内容、方法及仪器大坝区降雨强度和雨量监测:采用翻斗式雨量计测量降雨量和降雨强度..大坝浸润及坝顶基渗压监测:通过埋设渗压计来观测坝体的渗流压力分布情况和浸润线位置及坝基渗流压力分布情况..大坝渗流量监测:在大坝下游设置水堰;安装量水堰计以监测大坝渗流量..二、大坝安全监测自动化系统的运行操作传感器可根据实际需求;在监测范围内安装各种传感器..一般常用的有:渗压计、混凝土应变计、应力计、多点位移计、测缝计、水位计、钢筋计、倾角计、测力计、气压计、温度计、压力盒、风速计、风向仪、蒸发仪等遥测设备..数据采集模块CCU控制运行操作1.每周二次自动化监测系统巡测;可采取中央控制方式;也可采用自动控制方式运行..每周施测时间如无特殊情况应固定不变;规定在每周二、周五上班后半小时内进行..2.在汛期高水位;低温高水位;以及某些部位出现异常等情况下;可根据有关领导决定加密测次并采取自动控制方式运行..3.正常情况下;数据采集模块处于工作状态;显示器可以关掉运行..4.数据采集模块控制测量步骤:1数据采集模块向各远程终端采集单元提供的系统工作电源220VAC50Hz和系统加热电源220VAC50Hz应可靠工作..2MCU的RS-422通讯总线接入数据采集模块CCU的RS-485通讯卡的1口..3数据采集模块在WindowsXP环境下运行“大坝安全监测数据采集系统软件”..4首先数据采集模块进行系统自检;自检完毕后查阅自检结果..若系统正常;进行正常自动化测量..若系统不正常;根据系统维护规程进行维修;若维修不了即和厂方联系..5读取各远程终端采集单元自报数据入库..6进行系统巡测..7对本次系统巡测的所有数据进行浏览;检查数据采集情况和数据可靠性..中心站主机远程控制数据采集模块运行操作1、远程终端采集单元的RS-422通讯总线接入CCU的RS-485通讯卡的1口..2、数据采集模块的RS-422通讯总线一端接入数据采集模块的RS-485通讯卡的2口;另一端接入主机的RS-485通讯卡的1口..3、在主机上即可进行远控自动化数据采集..4、测量完毕后;逐级退出系统;再关机..主机直接远程控制各MCU测量的操作1、数据采集模块的RS-422通讯总线一端通过总线驱动器接入MCU的RS-422通讯总线的另一端;另一端接入主机的RS--485通讯卡的1口..2、数据采集模块向各远程终端采集单元提供正常的系统工作电源220VAC50HZ和系统加热电源220VAC50HZ..3、主机在WindowsXP环境下运行“大坝安全监测数据采集系统软件”..4、进行远控自动化数据采集..5、测量完毕后;逐级退出系统;再关机..三、大坝安全监测自动化系统维护巡视维护周期确定每一个月进行一次系统巡视维护..正式运行的第三年到第七年;每个季度巡视维护一次;对故障率较高的少数据仪器设备可局部加密维护次数..正式运行第八年后根据系统的运行情况和仪器设备实际老化状态确定巡视维护周期..根据规定;每三个月应对监测自动化系统至少进行1次巡回检查..汛前应进行1次全面检查..每次台风来临前;应对监测自动化系统进行1次巡视检查..定期维护步骤1.对系统内的监测仪器、监测仪器配套装置、连接电缆、远程终端采集单元、防雷器、总线电缆、电源电源、数据采集模块、主机、消防设备逐一检查..对以上各个环节的不正常或损坏进行记录..2.即时采取相应措施消除系统中已发现的各环节的不政党或损坏问题;对消除时间和情况进行记录..维护检查重点:1.垂线系统1浮筒或阻尼油桶内油位是否偏高或偏低钢丝是否能自由移动钢丝是否受风、虫、灰尘影响2垂线坐标仪和引张线仪是否受水、虫、灰尘影响是否能正常工作2.引张线系统引张线的浮船是否正常浮托着引张线测点箱的浮船的水箱液面高度是否下降引张线是否处于自由状特别要注意浮船是否存在翻转3.各种电缆是否受鼠咬或盗割有无断列之处4.远程终端采集单元是否受到渗水、灰尘或人为损害防雷器是否已被雷电流击穿四、大坝安全监测自动化系统维修自动化系统在运行发生故障时;根据故障住处查明故障部位和原因传感器维修1光电探头故障;即更换光电探头..更换光电探头时;要确保光电探头和靠山夹紧..更换光电探头后;用远程终端采集单元控制该垂线坐标仪测量;基准杆测值和原值的误差应≤0.1mm..否则要重新安装探头;2机械故障;需用机油清洗丝杆..清洗完后;用MCU控制该垂线坐标仪测量;基准杆测值应和原值的误差≤0.1mm..否则要重新清洗..数据采集模块维修1、数据采集模块硬件故障;须和厂方沟通..2、数据采集模块软件故障;即系统软件被破坏;用备份文件恢复..远程终端采集单元维修CPU板、电源板或通道板故障;更换即可..水情监测系统的运行与维护一、概述山洪灾害是山丘区在一定强度或持续的降雨下;因特殊的地形地质条件而发生的自然灾害;它具有突发、破坏性大、防治困难的鲜明特点;山洪及其诱发的泥石流和滑坡;往往对局部地区造成毁灭性灾害;对国民经济和人民生命财产造成重大损失..近年来;我国山洪灾害问题日益突出;每年都造成大量人员伤亡;严重影响社会经济发展..水情监测预报系统主要包括水情遥测站网布设、信息采集、信息传输通信组网、设备设施配置等..适用于水文部门对江、河、湖泊、水库、渠道和地下水等水文参数进行实时监测;监测内容包括:水位、流量、降雨雪、风速等..水情自动监测预报系统采用多种无线通讯方式实时传送监测数据;各通信数据互为补充保证监测数据的实时性和准确性;可以大大提高水文部门的工作效率..二、系统功能及设备1.系统功能管理功能:具有数据分级管理功能;监测点管理等功能..采集功能:采集监测点水位、降雨量等水文数据..通信功能:监测中心可分别与被授权管理的监测点进行通讯..告警功能:水位、降雨量等数据超过预设的告警上限时;监测预报系统软件主动告警..查询功能:监测预报系统软件可以查询各种历史记录..存储功能:前端监测设备具备大容量数据存数功能;监测中心数据库可以记录所有历史数据..分析功能:水位、降雨量等数据可以生成曲线及报表;供趋势分析..2.系统设备组成水情自动监测预报系统由前端遥测站、测量设备、通信网络超短波中继站、监测中心站等使部分组成..主要组成设备为:前端遥测站:自动遥测终端机..中继站:中继站终端设备——中继机..中心站设备:前置接收机、中心计算机等..测量设备:翻斗式雨量计、水位计等..其他设备:太阳能电池板及充电控制器、避雷针等..3.设备及功能3.1自动遥测终端机当雨量每产生一个计量单位1mm或水位每变化一个计量单位时;自动采集、存贮并向中心发送数据..达到设定的时间间隔时;即自动采集、存贮和发送数据..雨量发送累计值;水位发送实时值..支持超短波、GPRS、北斗卫星等多种无线通讯方式..可现场和远程通过GPRS设定站号和各项遥测数据的上、下限报警值等工作参数;数据越限时立刻上报告警信息..支持现场或远程升级设备程序..支持遥测;和历史数据远程查询功能..具有自检功能;低压报警功能..具有信道机超时发送强迫掉电功能..可扩展连接其他水文传感器、采集器接口..3.2中继机有较强的抗干扰能力;可靠性高..可设定中继站站号、工作信道..接收到下属遥测站数据;经译码、纠错后加上中继站信息再编码发送..3.3中心站全天候值守、实时接收遥测终端站点的数据;并对其进行处理、管理和存储..对所接收的信息进行解码、合理性检查、纠错;并按要素分类进行存储..对遥测终端站进行远程工作设定和工作参数修改、校时..监视遥测终端站点的工作状态功能..自动对采集得到的数据;按照水利、水文的数据规则和客户配置的数据检查逻辑;判断数据的合理性..数据库满足分中心数据查询、洪水预报、报表输出及其它水文业务应用的要求;数据库具有良好的维护功能..3.4测量设备翻斗式雨量计浮子式水位计遥测终端机GPRS/GSM模块北斗卫星终端超短波通信终端3.5其他设备无线超短波通信无线GPRS网络北斗卫星通信系统系统工作过程3.6软件功能通信和采集功能时钟同步功能数据补调功能具有基于优先级别的任务调度功能;事故、越限优先报警;报警记录可查询、打印..数据库管理功能图形显示功能多种形式的曲线报表功能美观的图形用户界面。
喀浪古尔水库大坝安全自动化监测系统
通过水力学计算渗流量 。监测范 围 0 i0 H O m ,精度达 O 卜O 2 口 0 2m 柱 . .
H O m柱,N A 3 3按主机 要求进行数据采集、存储。 2m D 10
2 内部 变 形 监 测 、
1)坝体 内部 位移 监测现 状 坝 体体 内水平 位移采用 N W型引张线式水平 位移计监 测 ,竖 向位 Y
水利工 程 中广 泛 使用 。
读 要 求 进 行 过 程 控 制 、采 集 、存 储 。
3)水平位移 监 测 自动 化
内部水 平位 移 监测 自动化 ,即将引张线 式水平位 移计改造 为 自动
化监 测 ,首先要对 原 设备进 行改造 ,加反力 架 ,安装 加 卸、载机 构。 其 原理 框 图如 图 3所示 ,简述 如 下: a)引张线 砝码 加载 卸载 自动化 每 套 引张线式 水 平位移 计用 1 台步进 电机 ( 同步 电机 )控制监测 房 内各条 引张线 式水平位 移计的 或 砝 码块 B 的加 载卸 载 ; b)传 感器采用 电容式大 量程变位计 ,数据采集 装置用 N AI 6 D 3 3 数据采集智 能模块 ,N A 3 3按 引张线式水平位移计测读要求进行过程 D I2 控 制 、数据 采集 、存 储 。测 量 时控 制加 载采 集 数据 ,不 测 时控制 卸
量 。水平位 移计和 沉 降仪有二条线 布置在 同一位置 。二则可 以相互校 核监测值 。相应 高程 的坝 体下游坡 布置监测 房,铟瓦钢 丝 以镀锌 钢管
保护 ,水管 以聚 乙烯 塑料 管保护 ,铟 瓦钢 丝和水 管通过各 自的保 护管
引至 下游 监 测 房 内 。
图如 图 2 所示 ,简述 如 下 :
主机传送所 测数据 。监控主机 则根据一定 的模型对 实测数据 进行检验
水库大坝安全监测系统是由什么组成的
水库大坝是防洪抗灾的重要设施,它们的安全性直接关系到人民群众的生命财产安全。
因此,水库大坝的安全监测必不可少。
水库大坝安全监测系统是一种集成了数据采集、传输、处理和分析的技术平台,能够实时、准确地监测大坝的状态,及时发现异常情况,提供科学的依据和支持,为大坝安全稳定运行提供了有力保障。
水库大坝安全监测系统主要由监测与分析子系统、信息管理子系统和应急处置子系统组成。
其中,监测与分析子系统包括大坝结构监测、水文监测、地质灾害监测、地震监测等。
信息管理子系统主要包括数据管理、信息共享、预警发布、决策支持等。
应急处置子系统包括应急响应、救援处置、备品备件储备等。
█传感器传感器是监测系统的核心部件,它们用于测量水库大坝的各项参数,如位移、倾斜、应力等。
传感器根据测量参数的不同,分为各种类型。
如位移传感器可分为水平位移传感器、垂直位移传感器等。
█数据采集与传输装置传感器采集到的数据经过数据采集与传输装置传输到数据分析处理装置进行处理。
数据采集与传输装置中还包括了数据存储设备、通讯装置等。
█数据分析处理装置数据分析处理装置是监测系统的另一个核心部件,它负责对传输过来的数据进行处理分析,并将分析结果反馈给监测系统的控制中心。
随着社会科技的进步,水库大坝安全监测技术也得到了广泛应用。
水库大坝安全监测系统的应用前景十分广阔,可以用于各种类型的水库大坝,如饮用水水库、灌溉水库和水电站泄洪预警等。
通过安装水库大坝安全监测系统,可以实现对水库大坝进行可靠、准确、实时的监测,保证大坝的安全性能。
总之,水库大坝安全监测系统是一项具有广泛应用前景的技术,它可以对水库大坝进行实时监测、提高大坝的安全性能。
随着社会科技的不断发展,水库大坝安全监测技术也会不断提升,为人民群众的生命财产安全保驾护航。
大坝安全监测系统
大坝安全监测是通过仪器观测和巡视检查对水利水电工程主体结构、地基基础、两岸边坡、相关设施以及周围环境所作的测量及观察;“监测”既包括对建筑物固定测点按一定频次进行的仪器观测,也包括对建筑物外表及内部大范围对象的定期或不定期的直观检查和仪器探查。
公司自主研发的大坝安全监测系统采用分布式结构,维护简便,可根据各种实地情况接入多种类型传感器,实现变形监测、位移监测、压力监测、渗流监测以及水情监测,具有广泛的应用性和较强的通用性。
系统用于工程安全自动化数据采集,集数据采集、存储、传输、远控操控于一体。
软件可采集离线数据、设备预警、出具报表、绘制曲线图等,为工程的数据处理提供了极大的方便,为项目的安全运行提供了信息化保障。
监测项目不同坝型的主要观测项目如下:1、土坝、土石混合坝:主要观测项目有垂直和水平位移、裂缝、浸润线、渗流量、土压力、孔隙水压力等(见闸坝变形观测、渗流观测)。
2、混凝土坝、圬工坝:主要观测项目有变形、应力、温度、渗流量、扬压力和伸缩缝等(见水工建筑物裂缝观测、混凝土建筑物温度观测)。
此外,对泄水建筑物应进行泄流观测和必要的水工建筑物观测。
如大坝位于地震多发区和附近有不稳定岸坡,还应进行必要的抗震、滑坡、崩岸等观测项目(见水工建筑物抗震监测、滑坡崩岸观测)。
系统组成大坝安全监测系统主要由控制中心、数据采集系统、数据传输系统、电源供电系统、监测传感器等部分组成。
控制中心主要由服务器、监控计算机、显示设备、UPS电源、数字化办公设备等组成,主要实现:1、与数据传输系统进行接口互联;2、采集、处理、设置下位机的数据及参数;3、数据入库、处理、拟制图表、预警并显示。
数据采集系统是智能化、模块化的多功能装置,体积小巧、结构紧凑、安装简单、拆卸方便。
具有控制、测量、数据存储等各种功能,可采集振弦、RS485、标准信号、差阻、电阻等多种信号类型传感器。
多台组网后,安装在监测房内或传感器附近,再辅以电源供电系统,可实现多传感器、长期自动化无人值守监测。
大坝安全监测系统验收规范
大坝安全监测系统验收规范
1 引言
水库大坝安全监测系统是指在水库大坝下游、大坝上游,以及堤防、闸门、大坝段等多个部位,通过安装多种传感器,采集当地气象、地质力学参数,并将采集的数据传输到中心机房的一套完整的监测系统。
本文旨在阐述水库大坝安全监测系统的验收规范。
本文分为三部分:验收原则、验收内容及验收方法。
2 验收原则
2.1 根据施工图说明书进行验证;
2.2 负责人应尽快实施各个工作内容;
2.3 验收人员应合理利用办公资料、工作态度;
2.4 实施验证根据相关标准要求书写日志及材料。
3 验证内容
3.1 检测仪表的性能是否正常;
3.2 确保传感器的位置正确及焊接质量可靠;
3.3 确保有效信号传送不中断;
3.4 确保仪表显示准确无误;
4 验证方法
4.1 现场勘察法:通过勘察工作了解水库大坝上下游情况,对传感器位置进行核对,了解仪表性能,并检阅相关材料;
4.2 测量方法:采用多工具(如数字式电子尺)测量传感器之间的距离;
4.3 信号测试:使用测试仪表对有效信号是否正常进行测试;
4.4 斜弯波形图:使用特定仪表对真实情况进行图形化显示;。
中小型水库大坝安全自动监测系统解决方案
中小型水库大坝安全自动监测系统解决方案一、背景中小型水库大坝在灌溉、发电、防洪等方面起到重要作用,然而由于诸多因素的影响,如自然灾害、人为破坏等,水库大坝可能存在一定的安全隐患。
为了及时发现并防范潜在的安全问题,建立一个高效可靠的水库大坝安全监测系统显得至关重要。
二、系统架构1.监测仪器设备:包括水位测量仪器、渗流监测仪器、变形测量仪器、温度监测仪器等。
2.数据传输系统:将监测到的数据传输到数据处理中心。
3.数据处理中心:对接收到的数据进行分析处理,并根据预设的安全标准和算法进行实时监测和预警。
4.警报系统:当发现潜在的安全隐患时,及时向相关部门、人员发送警报信息。
5.远程监控与管理系统:允许用户通过互联网远程访问和管理该系统。
三、监测指标及仪器设备1.水位监测:通过使用超声波等测量技术的水位仪器进行监测,实时获取水位信息。
2.渗流监测:采用压力式和流速式渗流仪器,测量渗流量和温度,判断基础渗流以及溢流情况。
3.变形监测:使用测站、地面变形监测仪器,记录监测点的变形信息,分析判断大坝是否发生变形。
4.温度监测:通过温度传感器等仪器,实时监测水库大坝内部和周围环境温度变化,发现异常情况。
以上仪器设备需要定期进行校准和维护,以确保监测数据的准确性和可靠性。
四、数据传输与处理监测仪器设备采集到的数据会通过无线传输技术(如物联网技术)传输到数据处理中心。
数据传输系统需要具备高效、稳定的数据传输能力,同时保证数据的安全性和机密性。
数据处理中心是系统的核心,负责接收、储存、处理和分析监测数据,并根据预设的算法和安全标准进行实时监测和预警。
五、警报系统当监测数据异常或超出安全范围时,警报系统会自动发出警报信号,同时向相关部门、人员发送警报信息。
警报系统应具备可靠的报警功能,确保及时有效地向相关人员传递警报信息,以便采取紧急措施。
六、远程监控与管理系统七、总结中小型水库大坝安全自动监测系统可以实时监测水位、渗流、变形和温度等指标,及时发现潜在安全隐患,并通过警报系统向相关部门、人员发送警报信息。
智慧大坝安全监测系统解决方案
传感器具备高精度、高稳定性、长寿命等特点,确保监测数据的准确性和可靠性。
数据采集与传输层
通过数据采集设备对传感器数据 进行实时采集和预处理。
采用高速、稳定的数据传输技术 ,如4G/5G、光纤等,将数据传
输至数据中心。
具备数据远程传输和本地存储功 能,确保数据的完整性和安全性
。
采用数据挖掘方法,对监测数据进行深 结合历史数据和实时监测数据,进行综
度挖掘,发现潜在的安全隐患和规律。
合分析,评估大坝安全状况。
人工智能在大坝安全监测中应用
构建智能预警系统,实现对大坝安全状况的实时监测 和预警。
利用人工智能技术,对监测数据进行智能分析和处理 ,提高监测效率和准确性。
利用机器学习算法,对大坝安全监测数据进行训练和 学习,不断优化监测模型。
智慧大坝安全监测
02
系统架构设计
整体架构设计思路
以大坝安全为核心,构建全面 、高效、智能的监测系统。
采用分层架构设计,实现各层 之间的独立性和可扩展性。
整合传感器网络、数据采集与 传输、数据处理与分析、应用 展示等多个环节,形成完整的 监测体系。
传感器网络层
部署多种类型传感器,如渗压计、应变计、温度计等,实现大坝全方位监测。
需求分析
明确大坝安全监测的具体 需求,包括监测参数、监 测频次、数据传输等。
现场勘查
对大坝进行实地勘查,了 解大坝结构、环境条件等 ,为设备选型和安装部署 提供依据。
技术方案设计
根据需求分析和现场勘查 结果,设计智慧大坝安全 监测系统的技术方案。
设备选型、采购及安装部署
设备选型
1大坝安全监测系统数据采集软件操作手册
大坝安全监测系统数据采集软件操作手册
安装
硬件要求
大坝安全监测系统数据采集软件的硬件要求如下:
•操作系统:Windows 7 或以上版本
•CPU:Intel Core i3 或以上
•内存:4GB 或以上
•硬盘空间:200MB 或以上
软件安装
1.下载大坝安全监测系统数据采集软件安装程序。
2.双击运行安装程序,并按照提示进行安装。
3.安装完成后,桌面会出现一个快捷方式图标。
操作
登录
1.双击打开快捷方式图标,打开软件。
2.在登录界面输入账号和密码,然后点击“登录”按钮。
3.登录成功后,进入数据采集界面。
数据采集
1.在数据采集界面,选择要采集的大坝,点击“采集数据”按钮。
2.系统会自动连接传感器,开始采集数据。
3.在采集完成后,可以导出数据并保存在本地。
数据可视化
1.在数据采集界面,选择要采集的大坝,点击“显示图表”按钮。
2.系统会自动将采集到的数据可视化,以图表形式呈现。
3.在图表界面,可以选择不同的参数进行查看,并可以导出图表与数据。
系统设置
1.在数据采集界面,点击“系统设置”按钮。
2.进入系统设置界面后,可以进行控制器类型、波特率、串口等设置。
3.点击“保存设置”按钮保存更改。
注意事项
•在数据采集前,确保传感器已经正确连接。
•采集数据时,尽量避免在电脑上进行其它运算操作。
•采集数据后,及时进行保存与备份。
以上是大坝安全监测系统数据采集软件的操作手册,如果您有任何问题,请及时联系我们的客服人员。
霍林河水库大坝安全监测系统概述
霍林河水库大坝安全监测系统概述1、建设内容霍林河水库大坝安全监测主要项目为表面变形、内部变形、接缝、渗流量、坝基渗流压力、坝体渗流压力、环境量监测。
除表面位移监测仍采用人工观测外,其余均进行自动化监测。
具体内容为:(1)大坝施工期监测仪器的观测和资料整理;(2)全部自动化监测项目的系统集成与统一;(3)安全监测管理网络系统的搭建;(4)数据采集、整编及分析软件平台及数据库平台的设计与开发。
监测坝体渗流的振弦式渗压计32支及监测坝体渗漏量的坝下10根测压管,每根测压管放人一支振弦式渗压计,一起接入与之配套的2台多通道传感器采集仪,用于自动测读传感器数据。
以满足大坝安全、稳定及实时监测的要求,同时对接缝进行监测。
并将此采集仪与管理中心的计算机组成分布式网络监测系统。
在管理中心可实时监测大坝的各种工况,并具有超限报警、数据库管理、查询、打印报表等多种功能。
霍林河水库自动化监测系统要求采用分布式体系结构,一次传感器就近接入MCU,坝上设两个观测房,一个新建,一个设在闸房内。
在厂区办公楼设立现场监测中心,通过现场监测中心的数据采集工作站完成现场实时自动化数据采集工作。
大坝监测系统的中心设备集中放在水库的管理楼机房内。
大坝安全监测自动化系统结构图见资料。
2、大坝安全监测系统设计总则(1)各项观测设备布置,结合本工程特点,突出重点,兼顾一般,具有明显的针对性和代表性,能较全面反映各建筑物的运行状态及其变化规律。
(2)各监测项目统筹安排,合理布置。
以渗流和施工期及永久期变形监测为主,兼顾地下水位等监测。
(3)仪器选型;选用的仪器要保证长期稳定可靠,精度高,观测方法简单。
主要观测仪器尽量选用原装进口设备。
(4)各监测断面主要设置在最大坝高处、缺口导流处、地质条件复杂处、地形突变处等,对重要监测断面要作全面综合的仪器布置,各观测项目要尽可能作到自身校核和互相校核,以保证监测成果的可靠性,同时考虑到观测结果的反馈分析和验证设计。
大坝安全监测系统
大坝安全监测系统大坝是水利工程中重要的基础设施之一,其安全性直接关系到人民群众的生命财产安全。
为了及时发现大坝可能存在的安全隐患,保障大坝的安全稳定运行,大坝安全监测系统应运而生。
一、大坝安全监测系统的作用。
大坝安全监测系统是通过对大坝结构、地质、水文等方面的监测,实时掌握大坝的变化情况,及时预警和处理可能存在的安全隐患,保障大坝的安全稳定运行。
大坝安全监测系统的作用主要包括以下几个方面:1. 实时监测大坝的变形、渗流、应力、裂缝等情况,及时发现大坝可能存在的安全隐患。
2. 对大坝周边的地质和水文环境进行监测,预警可能对大坝产生影响的自然灾害。
3. 通过监测数据分析,为大坝的维护和管理提供科学依据。
二、大坝安全监测系统的组成。
大坝安全监测系统主要由监测设备、数据传输系统、数据处理与分析系统以及预警系统等组成。
1. 监测设备包括变形监测仪、应力监测仪、渗流监测仪、地质监测仪等,用于实时监测大坝的各项指标。
2. 数据传输系统负责将监测数据传输至数据处理与分析系统,保证监测数据的及时性和准确性。
3. 数据处理与分析系统通过对监测数据的处理和分析,实现对大坝安全状态的评估和预警。
4. 预警系统根据监测数据的分析结果,及时发出预警信息,为大坝管理部门和相关人员提供决策依据。
三、大坝安全监测系统的发展趋势。
随着科技的不断发展,大坝安全监测系统也在不断完善和发展。
未来,大坝安全监测系统的发展趋势主要体现在以下几个方面:1. 自动化和智能化,大坝安全监测系统将更加自动化和智能化,监测设备将实现远程控制和自动化运行,数据处理与分析系统将更加智能化,实现对大量监测数据的快速处理和分析。
2. 多元化监测手段,未来的大坝安全监测系统将采用多种监测手段,包括遥感监测、无人机监测等,实现对大坝安全状态的全方位监测。
3. 数据共享和联网,大坝安全监测系统将实现监测数据的共享和联网,不同地区、不同大坝的监测数据可以实现共享和对比分析,提高监测数据的综合利用价值。
大坝安全监测系统鉴定 项目
大坝安全监测系统鉴定项目大坝安全监测系统鉴定项目大坝是水利工程中重要的水源调配和能源开发设施,它对于保障水资源的供应、防洪排涝以及发电等方面起着至关重要的作用。
然而,由于大坝所处环境的复杂性和长期使用的疲劳性,大坝安全问题一直备受关注。
为了及时发现大坝潜在的安全隐患,预防事故的发生,大坝安全监测系统鉴定项目应运而生。
大坝安全监测系统鉴定项目旨在通过对现有大坝安全监测系统的性能评估和可靠性分析,为大坝运行管理部门提供科学的决策依据,及时发现和解决潜在的安全问题。
大坝安全监测系统鉴定项目需要对现有监测系统的性能进行评估。
这包括对监测系统的监测指标、测量设备、数据采集与传输、数据处理与分析等方面进行全面的考察。
通过对监测系统各个方面的评估,可以了解系统的优点和不足之处,为后续的改进提供依据。
大坝安全监测系统鉴定项目需要对监测系统的可靠性进行分析。
可靠性分析是在评估系统性能的基础上,对系统的可靠性进行定量分析和预测。
通过对监测系统的可靠性分析,可以评估系统在正常和异常工况下的性能表现,为系统的合理运行提供保障。
大坝安全监测系统鉴定项目还包括对监测数据的处理与分析。
监测数据是大坝安全监测系统的核心内容,通过对监测数据的处理与分析,可以及时发现大坝潜在的安全隐患。
在数据处理方面,可以采用数据融合和模型识别等方法,提高数据的准确性和可靠性。
在数据分析方面,可以采用统计分析和模式识别等方法,寻找数据之间的规律和关联,为大坝安全预警提供科学依据。
大坝安全监测系统鉴定项目还包括对监测系统的改进与优化。
通过对现有监测系统的评估和分析,可以发现系统存在的问题和不足之处,并提出相应的改进建议。
这些改进建议可以涉及到监测设备的更新、监测指标的扩展、数据处理算法的优化等方面,以提高监测系统的性能和可靠性。
大坝安全监测系统鉴定项目是为了确保大坝的安全运行,预防事故的发生而进行的一项重要工作。
通过对现有监测系统的评估、可靠性分析、数据处理与分析以及系统的改进与优化,可以为大坝运行管理部门提供科学的决策依据,提高大坝的安全性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大坝安全监测系统
一、系统概述
近年来,随着工业的快速发展,自然环境遭到破坏,每年都有不少大坝事故爆发,造成无法预估的损失。
我国共有3000多座水库垮坝。
七十年代平均每年垮200多座,其中1973年高达554座。
1975年的板桥水库垮坝事故,造成约万余人死亡。
大坝的安全关系到百姓的生命财产,任重而道远,所以展开现代化的大坝安全监测是很有必要的。
为了实现无人值守的大坝实时监测自动化,我司推出大坝安全远程监测系统。
该系统通过采集大坝沉降、倾斜、水压以及大坝形状特征。
通过各种信息的获取、整理和分析,做出大坝安全评价,控制大坝安全运行校核计算参数的准确性、计算方法的实用性和反馈施工方法的正确性,帮助管理人员做出准确、快速灾情预警预报,保证百姓的生命财产安全。
二、系统解决方案(构成+拓扑图)
该系统由监测中心、通信网络、现场监测设备、现场采集设备组成,根据不同地区的通信、经济条件,设立大坝安全监测站点。
采用有人看管,无人值守的管理模式,配置相应的传感器,以及遥测终端及通信终端设备,实现大坝安全信息的自动采集、传输。
监测站采用定时自报、阀值加报和召测的工作模式;人工置数信息应有反馈确认的功能。
三、系统功能、特点
实时监测:
尾矿库在线监测系统可实现对尾矿库坝体浸润线及坝体内孔隙水压力、库内水位、降雨量、干滩指标(高程和长度)、坝体位移(内部水平位移和顶部垂直位移)的实时监测。
视频监控:
对坝体和溢水塔等重点部位的影像监控,从微观到宏观,构成一个立体监测网,确保尾矿坝运行安全。
及时报警:
系统自动根据该预警数据发布不同级别的报警信息。
系统登录提示、声光报警器、短信通知等多种方式传达至相关领导和责任人。
数据分析预判:
对大坝浸润线、库水位、实时雨量、大坝渗流量及坝体位移历史数据等相关数据进行综合比较分析,推算出各类坝体运行数据的时间和空间的相关性,综合判断坝体健康状况。
GIS模拟建模
在适用前提下将大坝安全管理过程中的新思想、新方法融入到系统开发,做到数据和图形相融合、GIS与数学模型相结合,把科学计算的结果通过三维情景表现和动态的形式直观表现。
操作便捷:
具备LCD液晶显示屏以及多功能输入键盘,用于现场参数设置、人工置数、安装调试、状态显示等功能,以及串口配置方式。
低功耗设计:
支持多种工作模式(包括自报式、查询式、兼容式等),最大限度降低功耗。
多种通信方式:
至少可向5个中心站分发数据和主备信道自动切换,GPRS/CDMA/3G/4G为主传输通道、短信为备份传输通道;可选北斗、卫星、PSTN、超短波、微波、ZigBee 等通信方式。
文章来源:四信物联网。