三相异步电动机的工作特性(精)
三相异步电动机的工作原理及特性
2.转子 转子由铁心与绕组构成。
转子铁心也是电动机磁 路旳一部分,由硅钢片叠压 而成。转子铁心装在转轴上。 硅钢片冲片如图所示。
线绕式和鼠笼式两种电动机旳转子构造虽然不同,但工作原理 是一致旳。转子旳作用是产生转子电流,即产生电磁转矩。
鼠笼式异步电动机转子绕 组是在转子铁心槽里插入铜条, 再将全部铜条两端焊在两个铜 端环上而构成,如图所示。
即1/4转,电流变化一种周期,旋转磁场在空间只转了1/2转。
由此可知,当旋转磁场具有两对磁极(p=2)时,其旋转速度
仅为一对磁极时旳二分之一。依次类推,当有p对磁极时,其转速
为:
n0
60 f p
所以,旋转磁场旳旋转速度与电流旳频率成正比而与磁级对数
成反比。
4.工作原理 三相异步电动机旳工作原
理是基于定子旋转磁场和转子 电流旳相互作用。
iC=0 此时旳合成磁场如图(b) 所示,合成磁场已从t=0 瞬间
所在位置顺时针方向旋转了
/3。
3t T 3时
iA为正,电流实际方向与正方向一致,即电流从A端流到X端。
iB=0 iC为负,电流实际方向与正方向相反,即电流从Z端流到C端;
此时旳合成磁场如图 (c)所示,合成磁场已从 t=0 瞬间所在位置顺时针方
第一章 机电传动断续控制
学习任务
1.1 三相异步电机
• 了解三相异步电动机旳基本构造及工作原理;
• 掌握三相异步电动机旳转矩特征和机械特征;
• 掌握三相异步电动机旳连接措施和额定参数;
• 掌握三相异步电动机开启、调速和制动等多种特征;
• 掌握实现三相异步电动机开启、调速和制动旳多种措施及
它们旳使用场合。
向旋转了2 /3。
三相异步电动机的工作特性(精)
P2
M2
n
E2
I2
I 0 I1 I 2
I1
四、功率因数特性 cos1 f (P 2)
r2' r1 s r2' 2 )2 (r11
曲线基本是上升
P2 0
I1 I 0 ,基本是无功性质的, cos1 0.2 。
P2
M2
可变损耗 不变损耗
曲线是先上升后下降的曲线
P2 0
0 。
当可变损耗 不变变损耗,即 约(0.75~ 1.1)P N时
P2
max
P2
可变变损
PN
(0.75~ 1.1)P N
结论:异步电动机的功率因数和效率都是在额定
负载附近达到最大值。因此,选用电动机时,应使电
动机容量与负载容量相匹配。 ▲电动机容量选择过大,电机长期处于轻载运行,
n
曲线是一条微微向下倾斜的曲线
二、转矩特性 M 2 f ( P2 )
P2 P2 M2 2n 60
曲线在正常范围运行时是一条 稍微上翘的 直线 P2 0 时, M 2 0
P2
n
M2
三、定子电流特性
I1 f ( P2 )
E2 sE20
曲线是上升
P2 0
I1 I 0
图611异步电动机的工作特性曲线一转速特性曲线是一条微微向下倾斜的曲线二转矩特性曲线在正常范围运行时是一条稍微上翘的直线三定子电流特性曲线是上升四功率因数特性曲线基本是上升cos功率因数达到最高值五效率特性曲线是先上升后下降的曲线feadcucu损耗损耗不变可变不变变损耗即当可变损耗max结论
6.5.1异步电动机的工作特性
电机与电气控制技术三相异步电动机的空载负载运行及工作特性
5)由损耗分析法求额定负载时的效率
任务小结
1.总结本次课程的重难点和学生实际掌握的情况
2.鼓励学生自主解决问题的意识,养成主动思考独立思考,培养理论联系实际的学习方法。学会电动机的拆装下线。
考核评价
考核方法与工具
采用过程考核和绩效考核两种方法。
教法学法设计
课程的学习方法,理论联系实际,在实训中加深对理论的理解,提升学生课堂参与度,在实践中促进学生主动思考。因此,本课程教学本着以学生为中心,少讲多练多问的原则,以问题为导向,以促使学生自主学习为目的,布置任务。包括学习引入、指导看书、回答问题、分析问题、动手实操5个部分。
学习引入:三相异步电动机的定子和转子之间只有磁的耦合,没有电的直接联系,它是靠电磁感应作用,将能量从定子传递到转子。
能力目标:
1.三相异步电动机的空载、短路(堵转)及负载试验的方法
素质目标:促使学生养成自主的学习习惯;学会电动机实验方法和数据分析的方法
主要教学内容
1.三相异步电动机的空载运行
2.三相异步电动机的负载运行及等效电路
3.三相异步电动机的功率、转矩平衡方程式及工作特性
4.实训:三相异步电动机的空载、短路(堵转)及负载试验
讲解并指导学生看书:三相异步电动机的空载、负载运行的磁通分布及等效电路,总结笔记;教师指导学习方法和答疑;
实操:三相异步电动机的空载、短路(堵转)及负载试验,参数分析
教学实施
1.提出问题,相异步电动机的定子和转子之间只有磁的耦合,没有电的直接联系,它是靠电磁感应作用,将能量从定子传递到转子。磁场是怎么分布的?
重点与难点
重点:
1.三相异步电动负载运行及等效电路
7-7三相异步电动机的工作特性及其测试方法
二、工作特性的求取
异步电动机的工作特性可以通过直接给异步电动机带负载测 得,即直接负载法;也可以利用等效电路计算而得。 直接负载试验是在电源电压为额定电压、额定频率的条件 下,给电动机的轴上带上不同的机械负载,加负载到额定值的 5/4,然后减少负载到额定值的1/4,测量不同负载下的输入功 率 P1 、定子电流 I1 、转速n,然后计算出不同负载下的功率因 数 cos 1 、电磁转矩 T 及效率 等,并画成曲线。
p10 m1I102r1 pFe pm
铁耗是随着定子的端电压变化的,与磁密的平方成正比,近似地看 成为与电动机的端电压成正比。 机械损耗与电压无关,只要转速不变,可认为是常数。这样就可以 2 U p p m 对 1 的关系曲线。 作出 Fe
2、励磁参数与铁耗及机械损耗的确定 (1)机械损耗和铁耗的分离
3、功率因数特性
异步电动机在额定电压和额定频率下,输出功率变化时,定 子功率因数的变化曲线 cos 1 f ( P 2 ) ,称为功率因数特性。
特点:
• 异步电动机是感性阻抗,功率因数滞后, 必须从电网吸取感性的无功功率。 • 空载时, 定子电流用于无功励磁,功率因 数很低,不超过0.2 。 • 负载增加,有功分量增加,功率因数提高。 • 接近额定负载时,功率因数最大。
p P2 P2 1 P P2 p P2 pCu1 pFe pCu 2 pm ps 1
特点:
p P2 P2 1 P P2 p P2 pCu1 pFe ቤተ መጻሕፍቲ ባይዱ pCu 2 pm ps 1
0 。 P2 0 , • 空载时, • 输出功率增加,效率增加。 • 在正常运行范围内因主磁通变化很小,所以铁损耗变化 不大,机械损耗变化也很小,合起来叫不变损耗。 • 定、转子铜损耗与电流平方成正比,变化很大,叫可变 损耗。 • 当不变损耗等于可变损耗时,电动机的效率达最大。 • 中、小型异步电动机, P2 0.75PN 时,效率最高。 • 如果负载继续增大,效率反而要降低。 • 一般来说,电动机的容量越大,效率越高。
(整理)电机实验——三相鼠笼异步电动机的工作特性
三相鼠笼异步电动机的工作特性一、实验目的1、掌握用日光灯法测转差率的方法。
2、掌握三相异步电动机的空载、堵转和负载试验的方法。
3、用直接负载法测取三相鼠笼式异步电动机的工作特性。
4、测定三相鼠笼式异步电动机的参数。
二、预习要点1、用日光灯法测转差率是利用了日光灯的什么特性?2、异步电动机的工作特性指哪些特性?3、异步电动机的等效电路有哪些参数?它们的物理意义是什么?4、工作特性和参数的测定方法。
三、实验项目1、测定电机的转差率。
2、测量定子绕组的冷态电阻。
3、判定定子绕组的首末端.4、空载实验。
5、短路实验。
6、负载实验。
四、实验方法1、实验设备2、屏上挂件排列顺序DQ43、DQ42、DQ25-3、DQ22、DQ27、DQ31 三相鼠笼式异步电机的组件编号为DQ11。
3、用日光灯法测定转差率日光灯是一种闪光灯,当接到50H z 电源上时,灯光每秒闪亮100次,人的视觉暂留时间约为十分之一秒左右,故用肉眼观察时日光灯是一直发亮的,我们就利用日光灯这一特性来测量电机的转差率。
(1)异步电机选用编号为DQ11的三相鼠笼异步电动机(U N =220V ,Δ接法)极数2P=4。
直接与测速发电机同轴联接,在DQ11和测速发电机联轴器上用黑胶布包一圈,再用四张白纸条(宽度约为3毫米),均匀地贴在黑胶布上。
(2)由于电机的同步转速为 ,而日光灯闪亮为100次/秒,即日光灯闪亮一次,电机转动四分之一圈。
由于电机轴上均匀贴有四张白纸条,故电机以同步转速转动时,肉眼观察图案是静止不动的(这个可以用直流电动机DQ09、DQ19和三相同步电机DQ14来验证)。
(3)开启电源,打开控制屏上日光灯开关,调节调压器升高电动机电压,观察电动机转向,如转向不对应停机调整相序。
转向正确后,升压至220V ,使电机起动运转,记录此时电机转速。
(4)因三相异步电机转速总是低于同步转速,故灯光每闪亮一次图案逆电机旋转方向落后一个角度,用肉眼观察图案逆电机旋转方向缓慢移动。
三相异步电动机的机械特性
三相异步电动机的机械特性引言三相异步电动机是目前工业用电动机中广泛使用的一种电机,具有结构简单、成本低、效率高等优点。
本文将着重介绍三相异步电动机的机械特性,包括转速、转矩、效率等方面。
转速三相异步电动机的转速主要取决于供电电源的频率和极对数。
一般来说,三相异步电动机的额定转速为每分钟1450转或每分钟2900转,对应的供电电源频率分别为50Hz和60Hz。
除了额定转速外,三相异步电动机还有超额定转速和滑差转速。
超额定转速是指电机的转速高于额定转速,通常只能在短时间内工作,例如起动前的转速提高。
滑差转速是指电动机在空载时的转速,通常比额定转速略高一些。
转矩三相异步电动机的转矩可以分为起动转矩、额定转矩和最大转矩三种。
起动转矩是指电动机在启动时需要克服惯性负载等因素所需的转矩,通常是额定转矩的23倍。
额定转矩是指电机在额定工作条件下所需的转矩,通常为电机的额定输出功率与额定转速的乘积除以转子的转速。
最大转矩是指电机可2倍。
以承受的最大转矩,通常为额定转矩的1.5效率三相异步电动机的效率是指输出功率与输入功率的比值,通常用百分比表示。
三相异步电动机的效率通常在75%~95%之间,其中额定效率是指在额定工作条件下的效率,是电机最重要的性能指标之一。
三相异步电动机的效率取决于多种因素,包括电机本身的设计、工作条件、负载特性等。
在实际应用过程中,为了提高三相异步电动机的效率,可以采取如下措施:1.选择合适的电机型号和规格;2.优化电机的设计参数,例如提高功率因数、降低铁损和电阻损耗等;3.选择合适的工作条件,例如控制负载、降低温度等;4.定期维护和检查电机,保持电机状态良好。
三相异步电动机是工业应用最广泛的电动机之一,具有转速稳定、转矩大、效率高等优点。
本文介绍了三相异步电动机的机械特性,包括转速、转矩和效率等方面,希望对读者理解和应用三相异步电动机有所帮助。
三相异步电动机运行特性
第13章 三相异步电动机运行特性
图13-1 异步电动机工作特性曲线
第13章 三相异步电动机运行特性
13.2 转矩特性
三相异步电动机的转矩特性是指在电源电压和频率为额定值,
并且电动机固有参数不变的情况下,电磁转矩与输出功率的关系
特性,即T=f(P2)的关系曲线。 电动机稳定运行时,电磁转矩应与负载制动转矩相平衡,即
即启动电流也将达到最大值,三相异步电动机的启动电流一般可
达额定电流的4~7倍。启动电流的大小是
Ist I2
U1 (r1 r2 )2 (x1 x2 )2
(14-1)
第13章 三相异步电动机运行特性
较大的启动电流是十分有害的,对频繁启动的电动机来说, 会引起电动机过热而温升较高,使电动机绝缘材料老化,使用寿 命减少。对供电变压器来说,当变压器容量有限,输电距离较长 时,大的启动电流将造成变压器输出电压下降,并且会影响到同 一供电线路上的其他设备的正常工作。例如,在电动机启动瞬间, 照明灯会变暗,数控机床会失控等。
(14-2)
第13章 三相异步电动机运行特性
异步电动机启动时,在满足启动转矩的条件下,应尽量减小 启动电流。由式(14-1)和式(14-2)看出,降低启动电流的方法有三 种: 一是降低电源电压;二是增加定子回路电阻或电抗值;三是 增加转子回路电阻或电抗值。加大启动转矩的方法是适当增加转 子电阻。
第13章 三相异步电动机运行特性
空载时,输出功率P2=0,转子电流I2接近于零,转子转速n接 近于同步转速。由负载转矩公式T2=P2/Ω可知,随着负载的增大, 即输出功率的增大,输出转矩也将增大,以达到电磁转矩与负载 转矩平衡。而转子电流增大才能保证电磁转矩增大,也就是说转 子电动势E2s必须增大,因此,转子转速随着负载的增大而下降。 为了保证电动机负载时有较高的效率,转子铜耗不能太大, 因此 负载时转差率限制在比较小的范围内。所以,随着负载的增大, 转速降并不大。三相异步电动机的转速特性是一条稍向下倾斜的 曲线,特性曲线较硬,如图13-1所示。
三相异步电动机的机械特性
空载时损耗占比例大,效率低;随P2增 加,增加,当负载过大,铜损耗增加快,使 效率下降,如图所示。
2023年8月26日 星期六
§4-5 三相异步电动机的机械特性
效率曲线和功率因数曲线都是在额定负载附近 达到最高,因此合理选用电动机容量时,对电动 机的寿命、功率因数和效率都有很实际的意义。 5、功率因数特性cos1=f(P2)
§4-5 三相异步电动机的机械特性
本节要点: 一、三相异步电动机的工作特性 二、机械特性:n = f ( T ) ㈠固有机械特性曲线分析 ㈡人为机械特性 三、运行性能 1、运行状态 2、启动转矩倍数
3、过载能力 4、异步电动机机械特性的结论
2023年8月26日 星期六
§4-5 三相异步电动机的机械特性
原因:是静止的转子导体与定子旋转磁 场之间的相对切割速度很大(n1)。将 产生很大的I2,使定子电流也增大。但 由于转子绕组的功率因数cosφ2很小, 由于Tst=CTφI2cosφ2,故启动转矩并不 很大。
只有当Tst达到一定值时,电动机才 能启动。
Tst>TL ,将 S = 1代入T公式,即 可得Tst 的表达式。
2023年8月26日 星期六
§4-5 三相异步电动机的机械特性
⑵额定运行点(TN、nN) TN = 9.55 PN/nN
⑶临界工作点(Tm、nm) 当S = Sm 时,电磁转矩达到最大
值。
Sm ∈( 0.04,0.14 ) ⑷同步点(0、n1)
n = n1
2023年8月26日 星期六
§4-5 三相异步电动机的机械特性
2023年8月26日 星期六
§4-5 三相异步电动机的机械特性
2、转矩特性T=f(P2) 空载时P2=0,电磁转矩T等于空载转矩 T0。随着P2的增加,已知T2=9.55P2/n, 如n基本不变,则T2为过原点的直线。 考虑到P2增加时,n稍有降低,故 T2=f(P2)随着P2增加略向上偏离直线。 在T=T0+T2式中。T0很小,且为常数。所 以T=f(P2)将比平行上移T0数值,如图所 示。
三相鼠笼异步电动机的工作特性
4— 1三相鼠笼异步电动机的工作特性实验目的1.掌握三相异步电动机的空载、堵转和负载试验的方法。
2.用直接负载法测取三相鼠笼有电动机的工作特性。
3.测定三相鼠笼异步电动机的参数。
1.异步电动机的工作特性指哪些特征2.异步电动机的等效电路有哪些参数它们的物理意义是什么3.工作特性和参数的测定方法。
三、实验设备序号DDSZ-1 名称数量1 DD03 导轨、测速发电机及转速表1件2 DJ23 校正过的直流电机1件;3 DJ16 三相鼠笼异步电动机1件4 D33 交流电压表1件5 D32 交流电流表1件6 D34-3 单三相智能功率、功率因数表1件7 D31 直流电压、毫安、安培表1件8 D42 三相可调电阻器1件9 D51 波形测试及开关板1件四、测量定子绕组的冷态直流电阻将电机在室内放置一段时间,用温度计测量电机绕组端部或铁心的温度与冷却介质温度之差不超过2K时,即为世纪冷态。
记录此时的温度和测量定子绕组的直流电阻,此阻值即为冷态直流电阻。
预习要点用伏安法测定子绕组电阻,测量线路如图4-1.直流电源用主控屏上电枢电源先调到50V。
开关S1、S2选用D51挂箱,R用D42挂箱上1800Q可调电阻图4-1三相交流绕组电阻测定量程的选择:测量时通过的测量电流应小于额定电流的20%约为50mA因而直流电流表的量程用200mA档0三相鼠笼式异步电动机定子一相绕组的电阻约为50Q,因而当流过的电流为50mA时二端电压约为,所以直流电压表量程用20V 档。
按图4-1接线。
把R调至最大位置,合上开关S1,调节直流电源及R阻值使试验电流不超过电机额定电流的20%以防因试验电流过大而引起绕组的温度上升,读取电流值,再接通开关S2读取电压值。
读完后,先打开开关S2,再打开开关S1o调节R使A表分别为50mA 40mA,30mAW取三次,取其平均值,测量定子三相绕组的电阻值,采集数据:表4-1五、负载情况(一)针对DDSZ-1电机教学实验台1.空载实验(1)按图4-2接线。
三相异步电动机的工作特性和参数测定
三相异步电动机的工作特性和参数测定原理简述一、基本方程式和等效电路异步电机定子绕组所产生的旋转磁场,以转差速度切割转子导体,在转子导体中感应电势,产生电流,转子导体中的电流与定子旋转磁场相互作用而产生电磁转矩,使转子旋转。
当转子的转速与定子旋转磁场的转速相等时,定、转子之间没有相对切割,转子中就没有电流,也就不能产生转矩。
因此转子的转速一定要异于磁场的转速,故称异步电机。
由于异步而产生的转矩称为异步转矩。
当时,为电动机运行;时为发电机运行;当即转子逆着磁场方向旋转时,它是制动运行。
异步电机绝大多数都是作为电动机运行。
其转矩和转速(转差率)曲线,如图8-1所示。
由《电机学》中可知,将转子边的量经过频率折算和绕组折算,可得到异步电机的基本方程式为:式中转差率是异步电机的重要运行参数,为折算到定子一边的转子参数,也就是从定子上测得转子方面的数值。
由方程式可以画出相应的等效电路,如图8-2所示。
当异步电动机空载时,,。
附加电阻。
图8-2中转子回路相当开路;当异步电动机堵转时,,,附加电阻,图8-2转子回路相当短路,这就和变压器完全相同。
因此异步电机也可以通过空载实验和堵转(短路)实验来求出异步电机的等效电路中的各参数。
二、空载实验由空载实验可以求得励磁参数,以及铁耗和机械损耗。
实验是在转子轴上不带任何机械负载,转速,电源频率的情况下进行的。
用调压器改变试验电压大小,使定子端电压从逐步下降到左右,每次记录电动机的端电压、空载电流和空载功率,即可得到异步电动机的空载特性,如图8-3所示。
图 8-3 空载特性 图 8-4 铁耗和机械耗分离空载时,电动机的输入功率全部消耗在定子铜耗、铁耗和转子的机械损耗上。
所以从空载功率中减去定子铜耗,即得铁耗和机械耗之和,即式中为定子绕组每相电阻值,可直接用双臂电桥测得。
机械损耗仅与转速有关而与端电压无关,因此在转速变化不大时,可以认为是常数。
铁耗在低电压时可近似认为与磁通密度的平方成正比。
三相异步电动机的工作特性
三相异步电动机的工作特性三相异步电动机是一种常见的电机类型,广泛应用于工业、农业、交通运输等领域。
其工作特性主要包括以下几个方面:1.转速特性三相异步电动机的转速与电源频率、电机极数、转差率等因素有关。
在额定负载范围内,电机转速与电源频率成正比,极数越多转速越低。
此外,转差率的变化也会影响电机的转速。
一般来说,电机的转差率在0.01-0.05之间。
2.转矩特性三相异步电动机的转矩与电源电压、电流、磁通量等因素有关。
在额定电压和电流下,电机的转矩与磁通量成正比。
随着负载的增加,电流也会增加,进而导致转矩增大。
但是,当负载超过额定负载时,电机会过载,电流和转矩会超出额定范围,导致电机受损。
3.功率因数特性三相异步电动机的功率因数与负载性质、电源电压、电流等因素有关。
在空载时,电机的功率因数较低;随着负载的增加,功率因数也会逐渐提高。
当负载达到某一值时,电机的功率因数达到最大值;当负载继续增加时,功率因数会逐渐降低。
4.效率特性三相异步电动机的效率与负载性质、电源电压、电流等因素有关。
在空载时,电机的效率较低;随着负载的增加,效率也会逐渐提高。
当负载达到某一值时,电机的效率达到最大值;当负载继续增加时,效率会逐渐降低。
5.温升特性三相异步电动机的温升与负载性质、环境温度、散热条件等因素有关。
在额定负载范围内,电机的温升与工作时间成正比;超过额定负载时,电机的温升会急剧上升,导致电机受损。
因此,使用时要注意控制负载和工作时间,保证电机在安全范围内运行。
6.启动特性三相异步电动机的启动方式有多种,如直接启动、降压启动等。
直接启动时,启动电流较大,会对电网造成一定冲击;降压启动时,启动电流较小,可以减少对电网的冲击。
但是,降压启动时需要使用启动设备或其他辅助设备,增加了使用成本和维护工作量。
7.调速特性三相异步电动机的调速可以通过改变电源频率、电压等方法来实现。
但是,这些方法都存在一定的局限性,如变频调速虽然可以方便地实现调速,但成本较高且对电网有一定的影响。
三相异步电动机的转矩等工作特性
三相异步电动机相关理论1、对于某台确定的三相异步电机来说,转差率不是恒定值。
分析如下:S=(n1-n)/n1 式中:n1为同步转速, n 为电机转速。
影响电动机转差率的因素较多,一般来说,当电动机的实际负载率越高时转差率越大。
举个极端的例子:当电机负载过大,导致n=0时候,此时S=1;而其他情况下,0<S<1。
2、三相异步电动机速度公式:n=60f(1−s)/p(1-1)其中:f为供电电源频率,s为转差率,p电机磁极对数。
3、电机转矩公式:T=9550P/n(1-2)其中:P为电机功率,n为转速;在机械设计的时候,可根据此公式进行确定电机的功率。
4、在目前我们所使用的变频控制方式下,电流是影响电机转矩变化的直接因素。
推导过程如下:P=3UI cos∅(1-3)电机转速n=60f(1−s)/p代入转矩公式中得到:T=9550∗3UIp cos∅(1-4)60f(1−S)而:我们使用的变频调速方式中电压U与频率f的比值为常数,假定为常数I(1-5)k,公式变为T=9550∗3kp cos∅60(1−S)在公式(1-5),k为常数、对同一电机来说,p与cos∅均为固定值,在负载恒定的条件下,转差率S固定,只有电流I是个变化值,即:电机输出转矩只与电流有关系。
5、同一个电机在三角形接法、星形接法下,在同样的供电电源下,输出转矩是不同的,转差率是不同的,转速也是不同的。
在同样的供电电源下,电动机电流I∆>I Y,电机输出转矩T∆>T Y,电机转速n∆>n Y,转差率S∆<S Y.6、在中国,星形接法电机额定供电电压三相380V,额定频率为50HZ;角形接法的电机额定供电电压为三相220V,额定频率为87HZ。
7、电机的电流是导致电机能否烧掉得直接因素,其他物理量如电压等并不是直接因素。
一般情况下,单纯的将电机工作电压超过其额定电压,电流不超过额定电流,并不会将电机烧坏。
三相异步电动机的调速方法与特性(精)
由定子绕组展开图知: 只要改变一相绕组中一半元 件的电流方向即可改变磁极 对数。当T1、T2、T3外接三 相交流电源,而T4、T5、T6 对外断开时,电动机的定子 绕组接法为△,极对数为2P, 当T4、T5、T6外接三相交流 电源,而T1、T2、T3连接在 一起时,电动机定子绕组的 接法为YY,极对数为P,从 而实现调速,其控制电路图 如所示。
5.5 三相异步电动机的调速
由 可知,若要改变异步电动机的转速,可以有 以下三种方法: (1)改变电动机的磁极对数p。 (2)改变电动机的电源频率f1。 (3)改变电动机的转差率s。 下面对各种调速方法的原理及特点做一简单 介绍。
60 f1 n n1 (1 s ) (1 s ) p
5.5.1 变极调速
△/YY变极调速控制原理图
其工作情况为:合上刀开 关QS后,当KM3闭合而KM1、 KM2断开时,电动机定子绕组 为D接法,电动机低速启动。当 KM3断开,而KM2、KM1闭合 时,电动机的定子绕组接成YY, 电动机高速运行。△/YY接法的 调速方式适用于恒功率负载, 其机械特性如图4.25所示。 由机械特性知,变极调速 时电动机的转速几乎是成倍的 变化,因此调速的平滑性差, 但是稳定性较好,特别是低速 启动转矩大。
1 1 1 N 1 1 N N
1 1
1 1
1 1
1
1
1
5.5.3 改变转差率调速
改变转差率的方法主要有三 种:定子调压调速、转子电路串电 阻调速和串级调速。下面分别介绍。 1.定子调压调速 图为定子调压的机械特性曲线, 由图可知对恒转矩负载而言,其调 速范围很窄,实用价值不大,但对 于通风机负载而言,其负载转矩TL 随转速的变化而变化,如图中虚线 所示。可见其调速范围很宽,所以 目前大多数的风扇采用此法。 但是这种调速方法在电动机转 速较低时,转子电阻上的损耗较大, 使电动机发热较严重,所以这种调 速方法一般不宜在低速下长时间运 图 行。
三相异步电动机的原理和特性
(1)旋转磁场的分类
旋转磁场是交流电机工作的基础 在交流电机理论中有两种旋转磁场:
机械旋转磁场
通过原动机拖动磁极旋转可以产生机械旋转磁场
电气旋转磁场
三相对称的交流绕组通入三相对称的交流电流, 会在电机的气隙空间产生电气旋转磁场
交流绕组处于旋转磁场中,并切割旋转磁场,产 生感应电动势
(1)旋转磁场的分类
(1)定子铁心
(1)定子铁心
作用:
产生旋转磁场
是电动机磁路的一部分,装在机座里 由内周有槽的硅钢片叠成
为了降低定子铁心里的铁损耗
定子铁心用0.5mm厚的硅钢片叠压而成的 在硅钢片的两面还应途上绝缘漆
定子铁心内圆上均匀开槽,安放定子绕组
图5.2 定子铁心冲片
图 定子槽
(a)开口槽 高压大中型
三相异步电动机的主要结构
定子部分
定子铁心
stator
又称电枢
定子绕组
交
armature
流
(静止)
电
机座
机
转子铁心
的
主 转子部分
要
Rotor
转子绕组
结 (旋转)
构
转轴
笼型 绕线型
气隙
在定子、转子之间
1.定子
静止部分 定子又称电枢
定子部分
stator 又称电枢
armature (静止)
定子铁心 定子绕组 机座
V2
N
V2
W2
W1
W1 S
S
U2
V1
U2
60
U1
N W2
V1
V2
S
W1 U2
U1 W2
N
V1
ωt = 0° 合成磁场方向向下
三相异步电动机的工作特性和参数测定(精)
三相异步电动机的工作特性和参数测定原理简述异步电机定子绕组所产生的旋转磁场,以转差速度切割转子导体,在转子导体中感应电势,产生电流,转子导体中的电流与定子旋转磁场相互作用而产生电磁转矩,使转子旋转。
当转子的转速与定子旋转磁场的转速相等时,定、转子之间没有相对切割,转子中就没有电流,也就不能产生转矩。
因此转子的转速一定要异于磁场的转速,故称异步电机。
由于异步而产生的转矩称为异步转矩。
当时,为电动机运行;时为发电机运行;当即转子逆着磁场方向旋转时,它是制动运行。
异步电机绝大多数都是作为电动机运行。
其转矩和转速(转差率)曲线,如图8-1 所示。
由《电机学》中可知,将转子边的量经过频率折算和绕组折算,可得到异步电机的基本方程式为:式中转差率是异步电机的重要运行参数,为折算到定子一边的转由方程式可以画出相应的等效电路,如图8-2 所示。
当异步电动机空载时,,。
附加电阻。
图8-2 中转子回路相当开路;当异步电动机堵转时,,,附加电阻,图8-2 转子回路相当短路,这就和变压器完全相同。
因此异步电机也可以通过空载实验和堵转(短路)实验来求出异步电机的等效电路中的各参数。
二、空载实验 由空载实验可以求得励磁参数 ,以及铁耗 和机械损耗 。
实验是在转子轴上不带任何机械负载,转速 ,电源频率 的情况下进行的。
用调压器改变 试验电压大小, 使定子端电压从逐步下降到左右, 每次记录电动机的端电压、空载电流 和空载功率,即可得到异步电动机的空载特性,如图 8-3所示。
图 8-3 空载特性 图 8-4 铁耗和机械耗分离空载时,电动机的输入功率全部消耗在定子铜耗、铁耗和转子的机械损耗上。
所以从空载功率,即式中 为定子绕组每相电阻值,可直接用双臂电桥测得。
机械损耗仅与转速有关而与端电压无关,因此在转速变化不大时,可以认为是常数。
铁耗在低电压时可近似认为与磁通密度的平方成正比。
机械耗和铁耗之和与端电压的平方值8-4 所示,把曲线延长与纵坐标交于K点,由K点作平行于,直线以上的部分即为不同电压的铁耗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、三相异步电动机的转矩特性
异步电动机的电磁转矩T是由载流导体在磁场中受电磁力的作用而产生的,它使电动机旋转。
式中U1——定子绕组相电压有效值,单位是伏特(V;
f1——定子电源频率,单位是赫兹(Hz;
s——电动机的转差率;
R2——转子绕组一相电阻,单位是欧姆(Ω;
X20——转子不动时一相感抗,单位是欧姆(Ω;
C——与电机结构有关的比例常数。
为了分析方便,将异步电动机的电磁转矩T代替电动机的输出转矩T2
由于电动机的转子参数R2及X20是一定的,电源频率f1也是一定的,故当电源电压U1一定时,上式即表明异步电动机的电磁转矩T只与转差率s有关,因此可用函数式T=f(s)表示,称为异步电动机的转矩特性,画出其图象则称为转矩特性曲线,如图1-13所示。
图1-13异步电动机的转矩特性曲线
二、异步电动机的机械特性
1.电动机的额定转矩的实用计算式
旋转机械的机械功率等于转矩和转动角速度的乘积,对于电动机而言,就有
P2=T2Ω(1-4
当电动机的输出转矩T2用牛·米(N·m作单位,旋转角速度Ω用弧度/秒(rad/s作单位时,输出功率P2的单位是瓦特。
在电动机中计算转矩时输出功率P2的单位是千瓦(kW,转速n的单位是转/分(r/min,所以可以将计算公式简化,如在额定状态下转矩公式为
式中T N——电动机的额定转矩,单位是牛·米(N·m;
P N——电动机的额定功率,单位是千瓦(kW;
n N——电动机的额定转速,单位是转/分(r/min.
2.异步电动机的机械特性曲线
将异步电动机的转矩特性曲线顺时针转过90度,并把转差率S换成转速n,即得如图1-14所示的曲线,我们称为异步电动机的机械特性曲线,可表示为n=f(T)。
图1-14异步电动机的机械特性曲线
电动机在旋转时,作用在轴上的有两种转矩,一种是电动机产生的电磁转矩T,一种是生产机械作用在轴上的负载转矩T L(其它如摩擦转矩忽略不计,当T=T L时,电动机便以某种相应转速稳定运行;当T>T L时,电动机则提高转速;当T<T L时,电动机将降低转速。
3.异步电动机的机械特性参数
(1)额定转矩额定转矩T N是指电动机在额定状态下工作时,轴上输出的最大允许转矩。
电动机的额定转矩可根据电动机铭牌的额定功率和额定转速用(1-5式来求得。
(2)最大转矩与过载系数
电动机的额定转矩应小于最大转矩Tm,而且不许太接近Tm,否则,电动机略一过载,电动机便停转,因此,一般电动机的额定转矩较最大转矩小得多。
把最大转矩与额定转矩的比值称作过载系数λ,它是表示电动机过载能力的一个参数。
其表达式为
(3)起动转矩与起动能力电动机的起动转矩Tst是指电动机刚起动瞬间(n=0,s=1的转矩。
起动转矩与额定转矩之比可表示起动能力,用起动转矩倍数来表示,是标明异步电动机起动性能的重要指标。
空载或轻载起动的电动机,起动能力为1~1.8,一般的电动机起动能力为1.5~2.4,在重负荷下起动的电动机,要求有大的起动转矩,故起动能力可达2.6~3。
[全屏欣赏]。