B-C级GPS大地控制网测量
GPS控制点等级
G P S控制点等级Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998观测时段 observation session测站上开始接收卫星信号到停止接受,连续观测的时间间隔称为观测时段,简称时段。
同步观测 simultaneous observation两台或两台以上接收机同时对一组卫星进行的观测。
同步观测环 simultaneous observation loop三台或三台以上接收机同步观测所获得的基线向量构成的闭合环。
独步观测环 independent observation loop由非同步观测获得的基线向量构成的闭合环。
数据剔除率 percentage of data rejection同一时段中,删除的观测值个数于获得的观测值总数的比值。
天线高 antenna height观测时接收机相位中心至测站中心标志面的高度。
参考站 Reference station在一定的观测时间内,一台或几台接收机分别固定在一个或几个测站上,一直保持跟踪观测卫星,其余接收机在这些测站的一定范围内流动设站作业,这些固定测站就成为参考站。
流动站 roving station在参考站得一定范围内流动作业的接收机所设立的测站。
观测单元 observation unit快速静态测量定位时,参考站从开始至停止接收卫星信号连续观测的时间段。
世界大地坐标系 1984(GPS84) World Geodetic System 1984由美国国防部在与WGS72相应的精密星历NSWC-9Z-2基础上,采用1980大地参考数和系统定向所建立的一种地心坐标系。
国际地球参考框架 ITRF YY,International Terrestrial Reference Frame由国际地球自转服务局推荐的以国际参考子午面和国际参考极为定向基准,以LERS YY天文常数为基础所定义的一种地球参考系和地心(地球)坐标。
GPS控制网等级分类和规范标准
1 分类方法一:A、B、C、D、E级1.1参考规范《全球定位系统GPS测量规范-2009》1.2 界面显示参数1.3 划分标准B、C、D和E级的精度应不低于表1的要求:表1.2布设原则:表1.3各级GPS网点位应均匀分布,相邻点间距离最大不宜超过网平均间距的2倍。
接收机的选用:表1.4级别 B C D、E单频/双频双频/全波长双频/全波长双频/单频观测量至少有L1、L2载波相位L1、L2载波相位L1载波相位同步观测机数≥4 ≥3 ≥2观测:表1.5级别级别B C D E卫星截止高度角/度10 15 15 15同时观测有效卫星数≥4 ≥4 ≥4 ≥4有效观测卫星总数≥20 ≥6 ≥4 ≥4 观测时段数≥3 ≥2 ≥1.6 ≥1.6时段长度≥23h ≥4h ≥60min ≥40min采样间隔30 10-30 5-15 5-15注1:计算有效观测卫星总数时,应该各时段的有效观测卫星扣除期间的重复卫星数注2:观测时段长度,应为开始纪律数据到结束记录的时间段注3:观测时段≥1.6,指采用网观测模式时,每站至少观测一时段,其中二次设站点数应不少于GPS网总点数的60%注4:采用基于卫星定位连续运行基准站点观测模式时,可连续观测,但观测时间应不低于表中规定的各时段观测时间的和数据处理(1)外业数据检核1)B级GPS网基线外业预处理和C、D、E级GPS网基线处理,复测基线的长度较差ds应满足公式1.1的规定:ds≦2σ (1.1)σ---为基线测量中误差,单位为毫米2)B、C、D、E级GPS网基线测量中误差σ采用外业测量时使用的GPS接收机的标称精度,计算时变长按实际平均边长计算。
3)B、C、D、E级GPS网同步环闭合差,不宜超过以下规定:三边同步环中只有两个同步边成果可以视为独立的成果,第三边成果应为其余两边的代数和。
由于模型误差和处理软件的内在缺陷,第三边处理结果与前两边的代数和常不为零,其差值应符合公式1.2≦≦≦(1.2)式中:σ----基线测量中误差,单位为毫米,计算按12.2.5规定执行。
C级控制网的精度等总结
C级控制网的精度等总结C级控制网的精度等总结C级(;邢控制网的建立,为全省提供较高密度的地心坐标,加上精密星历的应用,将大大提高C那测量的精度(估计为10~7),从而可拓宽GPS技术在全省的应用领域,如在精密工程测量;城市三维形变监测;大型水工建筑物、高层建筑物、大型桥梁的实时监测;线路工程勘测;大比例尺的“三图”测绘;公安、交通、航道安全系统等领域的应用,有着广阔的前景。
另外,高精度的C级C邢控制网点的成果,为C咫测量提供更为可靠和更没有争议的起算点坐标,对于规范CPS作业手段和作业程序,以及对GIS测量精度的客观评价,也具有权威性和准确性。
测区东部、南部和西部有国家一等三角锁和二等三角网,经全国整体平差,平面成果为1980西安坐标系坐标。
Ⅲ等底雅水准路线,由西向东穿过测区中部。
以上已知数据作为测区的平面和高程起算依据。
为了保证成果成图资料的精度能满足地质工程和地质勘查的需要,在国家一、二等三角点的基础上布设C级GPS网,全网共计82点,按点边连接的混合方式布设成大地四边形以保证整网精度。
GPS网见图1。
然而,我国的大地坐标框架近年来在应用中遇到诸多方面的问题,如:!成果毁坏严重;\全国现行的大地坐标框架点位平面位置的相对精度比!\点位精度低*+,个数量级;#点位多埋设在山上,应用极其不便;$*-.)北京坐标成果兼容性很差,*-(/西安坐标虽经过统一平差和转换,但精度问题依然存在;%由于没有一个相应精度和相应分辨率的似大地水准面模型,在把!\大地高转换为正常高的过程中精度严重损失%GPS-C级网是国家GPS-B级网的加密,是对传统控制网的改造,为用户的实际应用确立了统一的WGS-84坐标起算点,求解出WGS-84与1954、1980坐标系之间的转换参数,更加满足了用户对空间数据基准框架的需要,为下一级gps网D、E级的布设提供了测量基准,也可以使已经完成的城域GPS网改算到统一的坐标框架之中,其定位精度较以往三角测量有1-2个数量级的提高,为研究地球局部重力场、地球动力学、板块相对运动和火山活动的监测提供准确的数据资料。
大地测量学基础:第五章 大地测量技术-1-2-3
(1)不同比例尺地图对大地点的数量要求 :
测图比例尺
1:5万 1:2.5万 1:1万
平均每幅图面积(km2) 350~500 100~125 15~20
国家平面大地控制网
惯性测量系统(INS)
惯性测量是利用惯性力学基本原理,在相距较远的两点之间, 对装有惯性测量系统的运动载体(汽车或直升飞机)从一个已知点 到另一个待定点的加速度,分别沿三个正交的坐标轴方向进行 两次积分,从而求定其运动载体在三个坐标轴方向的坐标增量 ,进而求出待定点的位置,它属于相对定位,其相对精度为 (1~2)·10-5,测定的平面位置中误差为±25cm左右。 优点:完全自主式,点间也不要求通视;全天候,只取决于汽 车能否开动、飞机能否飞行。 缺点:相对测量,精度不高。
平均每幅图的三角点个数
3
2~3
1
每点控制的面积(km2)
150
50
20
三角网的平均边长(km)
13
8
2~6
相应的三角网等级
二等
三等
四等
国家平面大地控制网布设原则
(2)GPS测量中两相邻点间的距离要求(单位:km):
等级 相邻点最小距离
A
100
B
15
C
5
D
2
E
1
相邻点最大距离 2000 250 40 15 10
测图比例尺
1∶5万 1∶2.5万 1∶1万 1∶5千 1∶2千
图根点对于三角点 的点位误差(m) ±5.0 ±2.5 ±1.0 ±0.5 ±0.2
GPS控制网等级
GPS控制网等级1、控制网等级及其用途按照国家标准《全球定位系统(GPS)测量规范》(GB/T13814-2009),GPS测量按其精度分为A、B、C、D、E五级。
其中:1)A级GPS网由卫星定位连续运行基站构成,用于建立国家一等大地控制网,进行全球性的地球动力学研究、地壳变形测量和卫星精密定轨测量。
2)B级GPS测量主要用于建立国家二等大地控制网,建立地方或者城市坐标基准框架、区域性的地球动力学研究、地壳变形测量和各种精密工程测量等。
3)C级GPS测量用于建立三等大地控制网,以及区域、城市及工程测量的基本控制网等。
4)D级GPS测量用于建立四等大地控制网。
5)E级GPS测量用于测图、施工等控制测量。
2、精度要求3、卫星定位连续运行基准站网的布设1)布设原则CORS依据管理形式、任务要求和应用范围,划分为国家基准站网、区域基准站网和专业应用站网。
(1)国家基准站网国家基准站网的布设应顾及社会发展、经济建设和自然条件因素。
在即将实施的国家大地基准基础设施建设项目中,我国将在全国范围内建设360个地基稳定、分布均匀的连续运行基准站(其中:新建150个、改造60个、直接利用已有的站150个)。
(2)区域基准站网区域基准站网是指在省、市地区建立的连续运行基准站网,主要构成高精度、连续运行的区域坐标基准框架,为省、市区域提供不同精度的位置服务和相关信息服务。
区域基准站网的布设按实时定位精度而选择基准站间的距离,当采用网络RTK技术满足厘米级实时定位,其区域基准站布设间距不应超过80KM。
(3)专业应用站网专业应用站网是由专业部门或者机构根据专业需求建立的基准网站,用于开展专业信息服务。
它的布设间距主要根据专业需求,当满足实时定位分米级要求,则基准站布设间距一般在100~150KM之间。
2)基准站设计与选址基准站设计时应根据基准站网布设原则,在图上标出设计基准站站址,同时标明基准站及其周围地区的主要地质构造、地震活动,与设计有关的地震台、人卫站,以及可以利用的GPS、大地测量网站点。
GPS控制网等级分类和规范
1 分类方法一:A、B、C、D、E级1.1参考规范《全球定位系统GPS测量规范-2009》1.2 界面显示参数1.3 划分标准B、C、D和E级的精度应不低于表1的要求:表1.2布设原则:各级GPS网点位应均匀分布,相邻点间距离最大不宜超过网平均间距的2倍。
接收机的选用:表1.4级别 B C D、E单频/双频双频/全波长双频/全波长双频/单频观测量至少有L1、L2载波相位L1、L2载波相位L1载波相位同步观测机数≥4 ≥3 ≥2观测:表1.5级别级别B C D E卫星截止高度角/度10 15 15 15同时观测有效卫星数≥4 ≥4 ≥4 ≥4有效观测卫星总数≥20 ≥6 ≥4 ≥4 观测时段数≥3 ≥2 ≥1.6 ≥1.6时段长度≥23h ≥4h ≥60min ≥40min采样间隔30 10-30 5-15 5-15注1:计算有效观测卫星总数时,应该各时段的有效观测卫星扣除期间的重复卫星数注2:观测时段长度,应为开始纪律数据到结束记录的时间段注3:观测时段≥1.6,指采用网观测模式时,每站至少观测一时段,其中二次设站点数应不少于GPS网总点数的60%注4:采用基于卫星定位连续运行基准站点观测模式时,可连续观测,但观测时间应不低于表中规定的各时段观测时间的和数据处理(1)外业数据检核1)B级GPS网基线外业预处理和C、D、E级GPS网基线处理,复测基线的长度较差ds应满足公式1.1的规定:ds≦2σ (1.1)σ---为基线测量中误差,单位为毫米2)B、C、D、E级GPS网基线测量中误差σ采用外业测量时使用的GPS接收机的标称精度,计算时变长按实际平均边长计算。
3)B、C、D、E级GPS网同步环闭合差,不宜超过以下规定:三边同步环中只有两个同步边成果可以视为独立的成果,第三边成果应为其余两边的代数和。
由于模型误差和处理软件的内在缺陷,第三边处理结果与前两边的代数和常不为零,其差值应符合公式1.2≦≦≦(1.2)式中:σ----基线测量中误差,单位为毫米,计算按规定执行。
C级控制网的精度等总结
C级控制网的精度等总结C级(;邢控制网的建立,为全省提供较高密度的地心坐标,加上精密星历的应用,将大大提高C那测量的精度(估计为10~7),从而可拓宽GPS技术在全省的应用领域,如在精密工程测量;城市三维形变监测;大型水工建筑物、高层建筑物、大型桥梁的实时监测;线路工程勘测;大比例尺的“三图”测绘;公安、交通、航道安全系统等领域的应用,有着广阔的前景。
另外,高精度的C级C邢控制网点的成果,为C咫测量提供更为可靠和更没有争议的起算点坐标,对于规范CPS作业手段和作业程序,以及对GIS测量精度的客观评价,也具有权威性和准确性。
测区东部、南部和西部有国家一等三角锁和二等三角网,经全国整体平差,平面成果为1980西安坐标系坐标。
Ⅲ等底雅水准路线,由西向东穿过测区中部。
以上已知数据作为测区的平面和高程起算依据。
为了保证成果成图资料的精度能满足地质工程和地质勘查的需要,在国家一、二等三角点的基础上布设C级GPS网,全网共计82点,按点边连接的混合方式布设成大地四边形以保证整网精度。
GPS网见图1。
然而,我国的大地坐标框架近年来在应用中遇到诸多方面的问题,如:!成果毁坏严重;"全国现行的大地坐标框架点位平面位置的相对精度比!"#点位精度低*+,个数量级;#点位多埋设在山上,应用极其不便;$*-.)北京坐标成果兼容性很差,*-(/西安坐标虽经过统一平差和转换,但精度问题依然存在;%由于没有一个相应精度和相应分辨率的似大地水准面模型,在把!"#大地高转换为正常高的过程中精度严重损失%GPS-C级网是国家GPS-B级网的加密,是对传统控制网的改造,为用户的实际应用确立了统一的WGS-84坐标起算点,求解出WGS-84与1954、1980坐标系之间的转换参数,更加满足了用户对空间数据基准框架的需要,为下一级gps网D、E级的布设提供了测量基准,也可以使已经完成的城域GPS网改算到统一的坐标框架之中,其定位精度较以往三角测量有1-2个数量级的提高,为研究地球局部重力场、地球动力学、板块相对运动和火山活动的监测提供准确的数据资料。
全球定位系统(GPS)测量规范概要
中华人民共和国国家标准全球定位系统(GPS)测量规范 GB/T 18314-2001Specifications for global positioning system (GPS) surveys-----------------------------------------------------------------------------------------------------------1.范围本标准规定利用全球定位系统(GPS)按静态、快速静态定位原理,建立测量控制网(简称(GPS)控制网)的原则、等级划分和作业方法。
本标准适用于国家和局部GPS控制网的设计、布测和数据处理。
2.引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。
本标准出版时,所示版本均为有效。
所有标准都会被修订,适用本标准的各方应探讨使用下列标准最新版本的可能性。
GB 12897-1991 国家一、二等水准测量规范GB 12898-1991 国家三、四等水准测量规范GB/T 17942-2000 国家三角测量规范CH 1002-1995 测绘产品检查验收规定CH 1003-1995 测绘产品质量评定规定CH/T 1004-1999 测绘技术设计规定CH 8016-1995 全球定位系统(GPS)测量型接收机检定规程3.术语3.1观测时段 observation session测站上开始接收卫星信号到停止接受,连续观测的时间间隔称为观测时段,简称时段。
3.2同步观测 simultaneous observation两台或两台以上接收机同时对一组卫星进行的观测。
3.3同步观测环 simultaneous observation loop三台或三台以上接收机同步观测所获得的基线向量构成的闭合环。
3.4独步观测环 independent observation loop由非同步观测获得的基线向量构成的闭合环。
GPS控制网等级分类和规范
≥15 ≥1.4 ≥4 ≤30 ≤6
≥10 ≥1.2 ≥4 ≤30 ≤6
ds≦ σ 式中:ds----重复基线测量的差值;
σ---标准差。 3) 各级 GPS 网同步环闭合差应符合式 3.2 的规定。
≦σ
(3.1)
≦σ
≦σ
≦σ
式中:n----环或附和路线的边数 σ---标准差 4) 各级 GPS 网异步环闭合环或附合路线坐标闭合差应符合公式 3.3 的规定。
测量等级
最弱相邻点边长相对中误差
二等 三等 四等
1/100 000 1/70 000 1/35 000
一级 二级
1/20 000 1/10 000
测量等级 二等 三等 四等
表 3.3 相邻点间平均边长参照值
平均边长(km)
测量等级
3.0
一级
2.0
二级
1.0
平均边长(km) 0.5 0.3
测量等级 二等 三等 四等 一级 二级
dV△X≦
σ
dV△y≦
σ
式中:σ---标准差(mm)。
1、控制网等级及其用途
dV△z≦
σ
GPS 控制网等级
页脚内容10
(3.5)
页眉内容
按照国家标准《全球定位系统(GPS)测量规范》(GB/T13814-2009),GPS 测量按其精度分为 A、B、C、 D、E 五级。其中:
1)A 级 GPS 网由卫星定位连续运行基站构成,用于建立国家一等大地控制网,进行全球性的地球动力学 研究、地壳变形测量和卫星精密定轨测量。
坐标年变化率中误差
水平分量/ (mm/a)
垂直分量/ (mm/a)
5
10
10
20
精密控制B级GPS网技术设计
1.1.1 GPS 测量按精度应划分为AA、A、B、C、D、E 级,布网时可以根据控制测量的精度要求逐级布网。
B 级主要用于局部变形监测和各种精密工程测量,也可以作为建立国家空间大地测量控制网的基础。
1.1.2 各级网相邻点间弦长精度应按公式1.1.1 计算σ= a2 +(b.d) 2 (1.1.1)式中σ——基线弦长标准差(mm)a——固定误差(mm)b ——比例误差(mm/km)d ——相邻点距离(km)1.1.3 各等级网的精度指标应满足表4.1.3 的规定。
精度分级表1.1.1 等级固定误差a (㎜) 比例误差系数AA ≤3 ≤0.01A ≤5 ≤0.1B ≤8 ≤1C ≤10 ≤5D ≤10 ≤10E ≤10 ≤201.2.1 控制网设计应视其目的,预期达到的精度,作业时卫星的可见性,成果的可靠性,以及参加作业的接收机台数,交通等后勤条件,按照优化设计的原则进行。
1.2.2 控制网的设计应满足下列准则:(1) 精度设计应满足表1.1.1 中相应等级的指标;(2) 按下式计算的网的平均可靠率r 应大于0.25~ rr (1.2.2)n式中 r ——控制网中多余观测数;n ——控制网中的总观测数。
(3) 基准设计应满足投影变形限值的要求。
1.2.3 控制网应由一个或者若干个独立观测环构成。
当网的可靠性和精度要求较高时,宜采用三角形网或者大地四边形网;当精度要求较低时,可采用四边形网、导线环、附合路线或者包括这些布网形式的混合网。
普通不得用单基线定点。
1.2.4 AA、A、B 级控制网普通应布设成连续网,除边缘点外,每点的连接点应不少于3 个。
1.2.5 控制网同步图形之间的连接应采用边联式或者网联式。
当精度要求不高时,也可采用点联式布网,但应加强全网定位结果的检核,防止粗差浮现。
1.2.6 控制网最简独立闭合环或者附合路线边数应符合表 1.2.6 的规定。
最简独立环或者附合路线边数的规定表 1.2.6等级闭合环或者附合路线边数E≦10D≦8A≦5C≦6B≦61.2.7 各级 GPS 控制网相邻点间平均距离应符合表 1.2.7 的规定。
GPS控制网等级分类与规范标准[详]
的较差(d V△X 、d V△Y 、d V△Z)应符合下式要求:
dV△X≦2σ
dV△y≦2σ
dV△z≦2σ
()
当超限时,可认为作为约束的已知坐标、距离,已知方位与 GPS 网不兼容,应采用软件
提供的或人为的方法剔除某些误差较大的约束值,直至符合上式要求。
3 分类方法三:公路二、三、四等和一、二级
公路二等、三等、四等、一级、二级
四等 2
≤10 ≤10
1/45000
一级 1
≤10 ≤10
1/20000
二级 <1
≤15 ≤20
1/10000
注:当边长小于 200m 时,边长中误差小于 20mm。
3)布网原则
接收机选择,观测基本技术要求(略),参考规范六七章。
闭合环或附和路线边数的规定
等级
二等 三等 四等 一级 二级
闭合环或附和路线的边数 ≤6 ≤8 ≤10 ≤10 ≤10
坐标基准框架,为省、市区域提供不同精度的位置服务和相关信息服务。区域基准站网的布设
按实时定位精度而选择基准站间的距离,当采用网络 RTK 技术满足厘米级实时定位,其区域基 准站布设间距不应超过 80KM。 (3)专业应用站网 专业应用站网是由专业部门或者机构根据专业需求建立的基准网站,用于开展专业信息服务。
3、卫星定位连续运行基准站网的布设 1)布设原则
CORS 依据管理形式、任务要求和应用范围,划分为国家基准站网、区域基准站网和专业应用 站网。
(1)国家基准站网 国家基准站网的布设应顾及社会发展、经济建设和自然条件因素。在即将实施的国家大地基准
基础设施建设项目中,我国将在全国范围内建设 360 个地基稳定、分布均匀的连续运行基准站 (其中:新建 150 个、改造 60 个、直接利用已有的站 150 个)。 (2)区域基准站网 区域基准站网是指在省、市地区建立的连续运行基准站网,主要构成高精度、连续运行的区域
注册测绘师案例总结--大地测量
1 .确定国家和区域卫星定位连续运行基准站网、卫星定位控制网、高程控制网、重力控制网以及区域似大地水准面精化方案,进行技术设计. (重点:大地测量控制网等级,观测技术,技术设计)2 .优化作业组织,控制作业进度,确定安全生产,成果保密和质量控制措施. (重点:作业组织,质量控制)3 .选择满足技术设计要求的点(站) 址,建造合适的测量标志,并提交相应的材料. (重点:选点埋石及作业要求,各级控制网选点原则及流程)4 .选择经检验合格的测量仪器设备进行外业观测,对观测数据进行检核,选择适当的数据处理方法和软件,对外业观测数据进行处理. (重点:设备检验,外业观测方法,平差计算)5 .建立并运行大地测量数据库和高精度导航定位服务系统。
6 .确定不同坐标系统之间的转换方法,建立不同等级、不同年代控制网间的相互转换关系。
(重点:坐标系统定义, 国家坐标系、地方坐标系、地心坐标系、参心坐标系、站心坐标系、54、80、2000、wgs84 ,不同坐标形式之间的转换,不同坐标系统之间的转换,空间三维转换,二维转换)7 .对项目过程质量进行控制,并对项目成果进行整理、检查、验收、归档。
8.规范:《全球导航卫星系统连续运行参考站网建设规范》、《全球定位系统测量规范》、《国家一、二等水准测量规范》.9 .关键点:大地测量控制网技术设计、费用计算,选点原则、实施方案、外业观测、检核,数据处理方法,似大地水准面精化,坐标系及其转换、质量控制与成果验收。
1 .基准站网组成1) 连续运行基准站2) 数据中心3) 数据通信网络2 .基准站网分类1) 国际基准站网:主要用于维持和更新国家地心坐标系参考框架2) 区域基准站网(省、市、自治区) :用于维持和更新区域地心参考坐标系框架,开展区域内位置服务和相关信息服务。
3) 专业应用站网:由专门部门或者机构根据专业需求建立的基准站网,用于开展专业信息服务。
3 .基准站建设:设计、选址、基建、设备1) 技术设计方案:点位设计图、站点位置信息、基准站施工设计图2) 选址:观测环境、地质环境、依托保障、提交成果3) 基建:观测墩、观测室、防雷工程、辅助工程、提交成果4) 设备:接收机、天线、气象、电源设备、计算机与软件4 .国家GNSS 连续运行基准站堪选的主要考虑事项和条件1) 依托条件:建设用地、交通及基础设施保障2) 地质条件:基岩和站址地质结构的稳定性3) 环境条件:观测环视条件4) 其他:考虑周边已有大地控制点、水准点、重力点等情况5 .堪选完成后应提交的资料1) 地质勘查证明2) 点之记3) 堪选站址照片4) 土地使用相关文件5) 站址实地测试结果6) 堪选技术报告7) 堪选中采集的其他资料(含地质、交通、水利、通信网络等)1 .建立大地控制网的方法1) 常规大地测量a. 三角测量法:图形简单、结构强、几何条件多,便于检核、精度高b. 导线测量法:布设灵便、易克服地形障碍、边长精度均匀、成本低、易于测量c. 三边测量及边角同测法:精度高、工作量大、用于精密工程控制测量d. 天文测量法2) 导航卫星定位技术观测简便、精度高、速度快、费用省、全天候.GNSS 用于大地网测量控制网的建立,通常采用静态观测模式。
GPS控制点等级
3.1观测时段observation session测站上开始接收卫星信号到停止接受,连续观测的时间间隔称为观测时段,简称时段。
3.2同步观测simultaneous observation两台或两台以上接收机同时对一组卫星进行的观测。
3.3同步观测环simultaneous observation loop三台或三台以上接收机同步观测所获得的基线向量构成的闭合环。
3.4独步观测环independent observation loop由非同步观测获得的基线向量构成的闭合环。
3.5数据剔除率percentage of data rejection同一时段中,删除的观测值个数于获得的观测值总数的比值。
3.6天线高antenna height观测时接收机相位中心至测站中心标志面的高度。
3.7参考站Reference station在一定的观测时间内,一台或几台接收机分别固定在一个或几个测站上,一直保持跟踪观测卫星,其余接收机在这些测站的一定范围内流动设站作业,这些固定测站就成为参考站。
3.8流动站roving station在参考站得一定范围内流动作业的接收机所设立的测站。
3.9观测单元observation unit快速静态测量定位时,参考站从开始至停止接收卫星信号连续观测的时间段。
3.10世界大地坐标系1984(GPS84) World Geodetic System 1984由美国国防部在与WGS72相应的精密星历NSWC-9Z-2基础上,采用1980大地参考数和BIH1980.0 系统定向所建立的一种地心坐标系。
3.11国际地球参考框架ITRF YY,International Terrestrial Reference Frame由国际地球自转服务局推荐的以国际参考子午面和国际参考极为定向基准,以LERS YY天文常数为基础所定义的一种地球参考系和地心(地球)坐标。
3.12GPS静态定位测量static GPS positioning通过在多个测站上进行若干个时段同步观测,确定测站之间相对位置的GPS定位测量。
GPS控制测量
GPS控制测量测量工作必须遵循“有整体到局部,先控制后碎部,从高级到低级”的原则。
先建立控制网,然后根据控制网进行碎部测量。
控制网又分为平面控制网和高程控制网。
测定点的平面位置的工作,称为平面控制测量,测定点的高程工作,称为高程控制测量.目前,数字化成图的外业控制测量一般分为GPS首级控制测量和全站仪导线测量及水准测量。
(一)GPS控制测量概述GPS控制测量,按其工作性质可分为外业和内业两大部分,外业工作主要包括:选点、建立测站标志、埋石、野外观测作业以及成果质量检核等;内业工作主要包括:技术设计、测后数据处理以及技术总结等。
按照GPS测量实施的工作程序,大体分为几个阶段:GPS控制网的优化设计,选点与埋石,外业观测,成果检核,数据处理,编制报告。
GPS测量是一项技术复杂、要求严格的工作,实施的原则是,在满足用户对测量精度和可靠性等要求的情况下,尽可能地减少经费、时间和人力的消耗。
因此,对其各阶段的工作,都要精心设计、组织和实施.为了满足实际的要求,GPS测量作业应遵守统一的规范和细则.GPS控制测量与GPS定位技术的发展水平密切相关,GPS接收机硬件与软件的不断改善,将直接影响测量工作的实施方法、观测时间、作业要求和成果的处理方法。
《全球定位系统(GPS)测量规范》将GPS控制网依其精度划分为A、B、C、D、E等不同级别,表6列出了它们的精度和标准。
本章主要讨论其中的C、D和E级网的布设和观测.表6 GPS网的精度标准表7 GPS各等级网的基本技术要求(二)GPS控制测量技术设计的内容和步骤1、收集和分析测区经济地理等情况以及已有的测绘成果成图资料通过对已有控制网测设数据及成果资料的了解和分析,可获知控制网的质量情况,所设置的坐标系和高程、中央子午线位置以及起始点坐标、起始方位角等基本数据。
以决定是新建还是改建、扩建控制网时的参考。
踏勘已有控制点标石的完好情况以便加以利用。
测区的气象、地址、交通等情况对于选点、埋石及制定观测计划也很重要,1:1万国家基本图及大比例尺地形图对于图上设计、实地选点、野外作业时必不可少的资料。
GPS静态控制测量技术设计指南
GPS静态控制测量实施指南一、综述GPS网建立过程分3个阶段:设计准备、施工作业、数据处理1.设计准备该阶段的主要工作项目:项目规划、方案设计、施工设计、测绘资料收集、选点埋石、仪器检测。
1.1项目规划①位置及范围:测区的地理位置、覆盖范围及控制网的控制面积②用途及精度等级:控制网的具体用途、所要求达到的精度或等级。
(各级GPS网采用中误差作为精度指标,以2倍中误差作为极限误差。
)C级网用途:三等大地控制网、区域、城市及工程测量的基本控制网;D 级网用途:四等大地控制网;E 级网用途:中小城市、城镇及测图、地籍、土地信息、建筑施工等。
(由于本基坑工程跨距较长,基坑深距大,暂定C、D级测量精度GPS测量相邻点间基线长度的精度用下面公式表示:σ为基线向量的弦长中误差,单位mm,a为固定误差,单位mm,b为比例误差系数,单位1 X 10-6 ,d为相邻点间距离,单位为km。
城市GPS测量精度指标:(本工程选用四等)GPS高程拟合板块:D、E级网点按四等水准测量方法进行高程联测,GPS点需要高程联测时,可采用使GPS点与水准点重合,平原、微丘地形联测点的数量不宜少于6个,必须大于3个,联测点的间距不宜大于20km,且均匀分布;重丘、山岭地形联测点的数量不宜少于10个。
各级GPS控制网的高程联测应不低于四等水准测量的精度。
当GPS控制网点间距离小于20km时,可不考虑对流层和电离层的修正;当大于20KM 时,每时段应于始、中、终个观测一次气象元素,并采用标准模型加入对流层和电离层的修正。
为GPS控制网点的正常高,先利用已联测高程的GPS点正常高和经GPS控制网平差得到的大地高,求其高程异常值,然后采用拟合或插值等方法求其他高程异常值和正常高。
③点位分布及数量:控制网点的分布、数量及密度要求。
(GPS网点应均匀分布,相邻点间距离最大不宜超过该网平均点间距的2倍。
依据城市测量规范三等基线平均距离为5km,四等为2km,鉴于平时土方开挖收方测量需要5km左右设置一控制观测点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B\C级GPS大地控制网测量
摘要:本文针对我省开展的辽宁现代测绘基准体系建设项目,对B、C级GPS控制网测量进行探讨。
关键词:GPS 控制网测量
1目的
B级GPS测量主要用于建立国家二等大地控制网,建立地方或城市坐标基准框架,区域性的地球动力学研究,地壳形变测量和各种精密工程测量等。
C 级GPS测量用于建立三等大地控制网,以及区域,城市及工程测量的基本控制网等。
2精度要求
3选点与埋石
3.1.1
选点准备工作应符合下列要求:
(1)应收集、研究布网设计和测区的资料,包括测区1:50000或更大比例尺的地形图、既有的各类测量控制点、布网方案设计、工程的平面图和纵断面图等。
(2)了解测区的交通、通讯、供电、气象等资料。
3.1.2
点位选择应符合下列要求:
(1)应按技术设计的点位,并按照网形设计和观测要求选择点位。
(2)点位应便于安置接收设备和操作。
点周围视野开阔和对天空通视情况良好,高度角15°以上不得有成片障碍物阻挡卫星信号。
(3)点位应远离大功率无线电发射台(如电视塔、微波站等),其距离不宜小于200m,远离高压输电线,其距离不宜小于50m;特殊情况下需缩短时,应使用抗干扰性能强的接收机观测。
(4)点位基础应坚实稳定,易于保存。
应便于利用常规测量方法扩展与联测。
(5)附近不应有强烈干扰卫星信号接收的物体,如大型建筑物等。
(6)交通应方便,并宜于寻找和到达。
3.1.3
选点作业应完成下列以下项目:
(1)在实地按要求选择和标定点位。
(2)实地绘制点之记。
(3)点位周围有高于10°的成片障碍物时,应使用罗盘仪测绘环视图。
(4)当所选点位需进行高程联测时,应实地踏勘高程联测路线,提出观测建议。
(5)当利用既有控制点时,应对旧点标石的稳定性、完好性、觇标的安全性逐一检查,符合要求方可利用;当觇标不能利用或影响卫星信号接收时,应对观测提出处理意见。
(6)确定所选点位的交通方式、交通路线以及到达点位所需时间。
3.2.1
埋石
各级卫星测量控制点均应埋设桩橛,其类型及埋设方法应符合全球定位系统(GPS)测量规范要求。
GPS点标石类型
等级可用标石类型
B 基岩GPS、水准共用标石
C 基岩GPS、水准共用标石;土层GPS 、水准共用标石
3.2.2
B级点标石埋设后,至少需经过一个雨季,冻土区至少经过一个冻解期,基岩或基岩标石至少经过一个月后,方可用于观测。
3.2.3
埋石后应提交下列资料:⑴点之记、环视图;⑵选点网图;⑶选点埋石工作总结(包括详细的交通情况、交通路线、到达点位的行走时间、高程联测方案、观测建议以及当地通讯、供电、生活条件等情况)。
4接收设备的检验
新购置的或经过维修的接收机必须进行全面检验,使用中的接收机应定期检验。
检验合格才能用于相应等级网的测量。
5观测
5.1.1
基本技术要求
(1)最少观测卫星数4颗
(2)采样间隔30S(3)观测模式:静态
(4)卫星截止高度角10° (5)坐标系统和时间系统:WGS-84,UTC
(6)观测时段和时长:B级连续3个时段,每时段≥23H; C级连续2个时段,每时段≥4H
(7)观测设备:双频大地型GPS接收机
(8)观测方案:基于GPS连续运行站的观测模式;同环连接GPS静态相对定位观测模式:同步观测仪器数≥5台,异步环边数≤6条,环长≤1500KM
5.2.1
作业要求
(1)观测组必须遵守调度命令,按规定的时间同步观测同一组卫星。
当不能
按计划到达点位时,应及时通知其它各组,并经观测计划编制者同意对时段作必要的调整,观测组不得擅自更改观测计划。
(2)观测者到达测站后,应先安置好接收机使其处于静置状态。
并应在关机状态下连接接收机、控制器、天线、数据链间的电缆。
(3)一般情况下,安装天线应利用脚架直接对中,对中误差应小于1mm;当精度要求较低时,可用带支架的对中杆对中,观测期间对中杆上的圆水准气泡必须居中;需在觇标基板上安置天线时,应将觇标顶部卸掉,将标志中心投影到基板上,依投影点安置天线。
(4)天线定向标志宜指向正北方向,对于定向标志不明显的接收机天线,可预先设置标记。
每次应按此标记安置天线。
(5)天线高应在时段观测前、后各量取一次,其较差小于3mm取平均值作为最后的天线高。
当较差超限时,应查明原因,提出处理意见。
天线高应根据仪器类型,量取至厂方指定的天线高的部位,并应注明天线高的类型(斜距、垂距)。
(6)经检查,接收机的电源电缆、天线电缆等项连接正确,接收机预置状态正常后,方能启动接收机开始观测。
(7)接收机开始记录数据后,应及时将测站名、测站号、时段号、天线高等信息输入接收设备。
观测过程中,应注意观察并记录卫星变化的升落时刻、各通道的信噪比、接收信号的类型和数量、卫星信号质量、存储器余量与电池余量等。
对特殊的变化过程(如刮风、下雨等作业中出现的异常情况)、仪器显示的警告信息及处理情况等均应作必要的记录。
卫星测量手薄中的内容应逐项填写。
(8)一个时段观测过程中严禁进行以下操作:关闭接收机重新启动;进行自测试(发现故障除外);改变接收设备预置参数;改变天线位置;按关闭和删除文件功能键等。
(9)观测员在作业期间不得擅自离开测站,应防止碰动仪器或仪器受震动。
注意防止行人和其它物体靠近天线遮挡卫星信号。
(9)观测时,使用对讲机应距天线10m以上,使用车载台应离开天线50m以上。
雷雨过境时应关机停测,并卸下天线以防雷击。
(10)观测记录应包括如下内容:①接收机自动记录的信息包括:相位观测值及其对应的时间、卫星星历参数、测站和接收机初始信息(测站名、测站号、时段号、近似坐标及高程、天线及接收机编号、天线高)等;②测量手薄的记录内容应符合本规范附录G的规定。
记录手薄中的记事项目应现场填写,不得事后补记或追记。
6外业数据检查与外业记录的管理
6.1.1
数据质量检查
采用TEQC软件进行检查,检查内容包括:
(1)观测卫星数≥ 4 颗(2)数据可利用率≥80%
(3)L1L2频率的多路径应影响MP1MP2应小于0.5M(4)接收机的日频稳定性10-8
经检查,调度命令已执行完毕,所有规定的作业项目已经完成并符合要求,记录和资料完整无误后方可迁站。
6.1.2
外业记录的管理应符合下列要求:
(1)当天的观测记录数据应及时录入计算机硬盘,并拷贝成一式两份;数据文件备份时,不得进行任何剔除或删改,不得调用任何对数据实施重新加工组合的操作指令。
(2)测量手薄应按控制网装订成册,交内业验收。
7 结语
以上是B、C 级大地控制网测量工序中的一小部分,也是非常重要的环节,直接影响到后期控制网成果的质量和精度。
如果总结有疏乎之处,还望各界同仁指导和批评。