2018年吉林省长春市高考数学三模试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年吉林省长春市高考数学三模试卷(理科)

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.

1.已知集合A={3a,3},B={a2+2a,4},A∩B={3},则A∪B等于()A.{3,5}B.{3,4}C.{﹣9,3}D.{﹣9,3,4}

2.复数z满足zi=1﹣i(i为虚数单位),则z等于()

A.﹣﹣i B.﹣i C.i D.﹣i

3.已知向量,,且||=2,与的夹角为,⊥(3﹣),则||等于()

A.6 B.6C.12 D.12

4.等差数列{a n}的前n项和为S n,且S5=﹣15,a2+a5=﹣2,则公差d等于()A.5 B.4 C.3 D.2

5.如图所示的程序框图,运行程序后,输出的结果为()

A.5 B.4 C.3 D.2

6.某公司在2012﹣2016年的收入与支出情况如表所示:

根据表中数据可得回归直线方程为=0.8x+,依次估计如果2017年该公司收入为7亿元时的支出为()

A.4.5亿元B.4.4亿元C.4.3亿元D.4.2亿元

7.已知a=2﹣1.2,b=log36,c=log510,则a,b,c的大小关系是()

A.c<b<a B.c<a<b C.a<b<c D.a<c<b

8.若x,y满足,且当z=y﹣x的最小值为﹣12,则k的值为()

A.B.﹣C.D.﹣

9.已知一个几何体的三视图如图所示,则该几何体的体积为()

A.B.C.D.

10.设函数f(x)=sin(2x+)(x∈[0,]),若方程f(x)=a恰好有三个根,分别为x1,x2,x3(x1<x2<x3),则x1+2x2+x3的值为()

A.πB.C.D.

11.如图,在三棱柱ABC﹣A1B1C1中,底面为正三角形,侧棱垂直底面,AB=4,AA1=6,若E,F分别是棱BB1,CC1上的点,且BE=B1E,C1F=CC1,则异面直线A1E与AF所成角的余弦值为()

A. B. C. D.

12.设函数f(x)=﹣x,若不等式f(x)≤0在[﹣2,+∞)上有解,则实数a的最小值为()

A.B.C. D.

二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).

13.《九章算术》是我国第一部数学专著,下有源自其中的一个问题:“今有金箠(chuí),长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问金箠重几何?”其意思为:“今有金杖(粗细均匀变化)长5尺,截得本端1尺,重4斤,截得末端1尺,重2斤.问金杖重多少?”则答案是.

14.函数f(x)=e x•sinx在点(0,f(0))处的切线方程是.

15.直线kx﹣3y+3=0与圆(x﹣1)2+(y﹣3)2=10相交所得弦长的最小值为.16.过双曲线﹣=1(a>b>0)的左焦点F作某一渐近线的垂线,分别与两渐近线相交于A,B两点,若,则双曲线的离心率为.

三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤).

17.(12分)已知点,Q(cosx,sinx),O为坐标原点,函数.(1)求函数f(x)的最小值及此时x的值;

(2)若A为△ABC的内角,f(A)=4,BC=3,求△ABC的周长的最大值.18.(12分)某手机厂商推出一款6吋大屏手机,现对500名该手机用户(200名女性,300名男性)进行调查,对手机进行评分,评分的频数分布表如下:

(1)完成下列频率分布直方图,并指出女性用户和男性用户哪组评分更稳定(不计算具体值,给出结论即可);

(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.

19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.

(1)求证:PD⊥平面ABE;

(2)若F为AB中点,,试确定λ的值,使二面角P﹣FM ﹣B的余弦值为.

20.(12分)已知F1,F2分别是长轴长为的椭圆C:

的左右焦点,A1,A2是椭圆C的左右顶点,P为椭圆上异于A1,A2的一个动点,O为坐标原点,点M为线段PA2的中点,且直线PA2与OM的斜率之积恒为.(1)求椭圆C的方程;

(2)设过点F1且不与坐标轴垂直的直线C(2,2,0)交椭圆于A,B两点,线段AB的垂直平分线与B(2,0,0)轴交于点N,点N横坐标的取值范围是,求线段AB长的取值范围.

21.(12分)已知函数.

(1)求f(x)的极值;

(2)当0<x<e时,求证:f(e+x)>f(e﹣x);

(3)设函数f(x)图象与直线y=m的两交点分别为A(x1,f(x1)、B(x2,f (x2)),中点横坐标为x0,证明:f'(x0)<0.

请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程选讲](共1小题,满分10分)

22.(10分)已知在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系.曲线C1的极坐标方程为ρ=4cosθ,直线l:(

为参数).

(1)求曲线C1的直角坐标方程及直线l的普通方程;

(2)若曲线C2的参数方程为(α为参数),曲线P(x0,y0)上点P 的极坐标为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.

[选修4-5:不等式选讲](共1小题,满分0分)

23.已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.

(1)求证:2a+b=2;

(2)若a+2b≥tab恒成立,求实数t的最大值.

相关文档
最新文档