数字电子技术第五版阎石 第五版第6章的 习题答案
数字电子技术第五版阎石 第五版第6章的 习题答案

第六章习题课后一、选择题1.PROM和PAL的结构是。
A.PROM的与阵列固定,不可编程B. PROM与阵列、或阵列均不可编程C.PAL与阵列、或阵列均可编程D. PAL的与阵列可编程2.PAL是指。
A.可编程逻辑阵列B.可编程阵列逻辑C.通用阵列逻辑D.只读存储器3.当用异步I/O输出结构的PAL设计逻辑电路时,它们相当于。
A.组合逻辑电路B.时序逻辑电路C.存储器D.数模转换器4.PLD器件的基本结构组成有。
A.输出电路B.或阵列C. 与阵列D. 输入缓冲电路5.PLD器件的主要优点有。
A.集成密度高B. 可改写C.可硬件加密D. 便于仿真测试6.GAL的输出电路是。
A.OLMCB.固定的C.只可一次编程D.可重复编程7.PLD开发系统需要有。
A.计算机B. 操作系统C. 编程器D. 开发软件8.只可进行一次编程的可编程器件有。
A.PALB.GALC.PROMD.PLD9.可重复进行编程的可编程器件有。
A.PALB.GALC.PROMD.ISP-PLD10.ISP-PLD器件开发系统的组成有。
A.计算机B.编程器C.开发软件D.编程电缆11.全场可编程(与、或阵列皆可编程)的可编程逻辑器件有。
A.PALB.GALC.PROMD.PLA12.GAL16V8的最多输入输出端个数为。
A.8输入8输出B.10输入10输出C.16输入8输出D.16输入1输出13一个容量为1K×8的存储器有个存储单元。
A.8B. 8192C.8000D. 8K14.要构成容量为4K×8的RAM,需要片容量为256×4的RAM。
A. 8B.4C. 2D.3215.寻址容量为16K×8的RAM需要根地址线。
A. 8B. 4C.14D.16KE. 1616.RAM的地址码有8位,行、列地址译码器输入端都为4个,则它们的字线加位线共有条。
A.8B.16C.32D.25617.某存储器具有8根地址线和8根双向数据线,则该存储器的容量为。
阎石《数字电子技术基础》(第5版)(课后习题 数制和码制)【圣才出品】

1.3 将下列二进制小数转换为等值的十进制数。
(1)(0.1001)2
;(2)(0.0111)2
;(3)(0.101101)2
(0.001111)2 。
解:(1) (0.1001)2 1 21 0 22 0 23 1 24 0.5625 (2) (0.0111)2 0 21 1 22 1 23 1 24 0.4375
3/8
圣才电子书
十万种考研考证电子书、题库视频学习平
台
1.9 将下列十进制数转换为等值的二进制数和十六进制数。要求二进制数保留小数点
以后 4 位有效数字。
Байду номын сангаас
(1)(25.7)10 ; (2)(188.875)10 ; (3)(107.39)10 ; (4)
(174.06)10 。
2/8
圣才电子书
十万种考研考证电子书、题库视频学习平
台
。
解:(1)
8C 16
1000
1100 2
(2) 3D.
BE 16
0011 1101.1011 1110 2
(3)
8F
.FF
16
1000
1111. 1111
1111 2
(4) 10.
00 16
0001
0000.0000
(4) (255)10 (11111111)2 (FF )16
1.8 将下列十进制数转换为等值的二进制数和十六进制数。要求二进制数保留小数点 以后 8 位有效数字。
(1)(0.519)10 ; (2)(0.251)10 ; (3)(0.0376)10 ; (4) (0.5128)10 。
解:(1) (0.519)10 (0.10000100)2 (0.84)16 (2) (0.251)10 (0.01000000)2 (0.40)16 (3) (0.0376)10 (0.00001001)2 (0.09)16 (4) (0.5128)10 (0.10000011)2 (0.83)16
阎石《数字电子技术基础》笔记和课后习题详解-时序逻辑电路【圣才出品】

第6章时序逻辑电路6.1复习笔记本章系统地讲述了时序逻辑电路的工作原理和分析方法、设计方法。
首先讲述了时序逻辑电路在逻辑功能和电路结构上的特点以及分析时序逻辑电路的具体方法和步骤。
然后介绍了移位寄存器、计数器、顺序脉冲发生器等各类时序逻辑电路的工作原理和使用方法。
最后介绍了时序逻辑电路的竞争-冒险现象。
一、概述时序电路称为状态机(简称SM)、有限状态机(FSM)或算法状态机(ASM),工作时在电路的有限个状态间按一定的规律转换,关于时序电路的要点总结如表6-1-1所示。
表6-1-1时序电路要点总结二、时序逻辑电路的分析方法1.同步时序逻辑电路的分析方法分析一个时序电路,就是要求找出电路的状态和输出的状态在输入变量和时钟信号作用下的变化规律。
由于同步时序电路中所有触发器都是在同一个时钟信号操作下工作的,因此分析方法比较简单。
分析同步时序电路时一般按如下步骤进行:(1)由逻辑图得到每个触发器的驱动方程;(2)将驱动方程代入相应触发器的特性方程,得到状态方程;(3)得到整个时序电路的状态方程组;(4)根据逻辑图得到电路的输出方程。
2.时序逻辑电路的状态转换表、状态转换图、状态机流程图和时序图(1)状态转换表:①状态方程和输出方程中代入任意一组输入变量及电路初态的取值;②计算出电路的次态和现态下的输出值;③将其再代入状态方程和输出方程;④得到一组新的次态和输出值;⑤将所有计算结果列成真值表的形式,得到状态转换表。
(2)状态转换图:将电路的各个状态用圆圈表示,状态转换方向用箭头表示。
箭头旁注明状态转换前的输入变量取值和输出值。
输入变量取值通常写在斜线以上,输出值写在斜线以下。
(3)状态机流程图(SM图):SM图表示在一系列时钟脉冲作用下时序电路状态转换的流程以及每个状态下的输入和输出。
SM图常用图形符号见表6-1-2。
表6-1-2SM图常用图形符号(4)时序图:在输入信号和时钟脉冲序列作用下,电路状态、输出状态随时间变化的波形图称为时序图。
《数字电子技术基础》第五版阎石第6章

取决于该时刻电由路触的发输器入保存 还取决于前一时刻电路的状态
时序电路: 组合电路 + 触发器
电路的状态与时间顺序有关
输 X1 入 Xp
…
组合电路
…
Y1 输 Ym 出
Q1 Qt …
存储电路
W1 … Wr
时序电路在任何时刻的稳定输出,不仅与 该时刻的输入信号有关,而且还与电路原来的 状态有关。
构成时序逻辑电路的基本单元是触发器。
输出方程
Y (( AQ1Q2 ) ( AQ1Q2 )) AQ1Q2 AQ1Q2
③计算、 Y
列状态转 换表
输A入Q1Q2现 AQ态1Q2
A Q2 Q1
000
001
010
QQ102*1*
Q11 A0
Q1
1 0 Q2
101
110
111
次态
Q2* Q1*
寄存器和移位寄存器
一、寄存器 在数字电路中,用来存放二进制数据或代码
的电路称为寄存器。
寄存器是由具有存储功能的触发器组合起来构成的。 一个触发器可以存储1位二进制代码,存放n位二进制 代码的寄存器,需用n个触发器来构成。
01 10 11 00 11
00 01 10
输出
Y
0 0 0 1 1 0 0 0
QQ2*1*DD21
Q1 A
Q1
Q2
Y AQ1Q2 AQ1Q2
转换条件
画状态转换图
输入 现 态
电路状态 A/Y
A
Q2 Q1
Q2Q1
0
转换方向 0
0
00 1/0 01
0 1
0/1 1/1
第六章-数字电子技术基础第五版-阎石、王红、清华大学

状态 Q * 方 H (Z ,Q 程 )
《数字电子技术基础》第五版
三、时序电路的分类
1. 同步时序电路与异步时序电路 同步:存储电路中所有触发器的时钟使用统一的clk,状态变
化发生在同一时刻 异步:没有统一的clk,触发器状态的变化有先有后
2. Mealy型和Moore型
Mealy型: Y F(X,Q) Moore型:Y F(Q)
《数字电子技术基础》第五版
(4)列状态转换表:
Q2*Q1 *Y A
0
00 Q 2 Q1 01/0
01 10/0
10 11/0
11 00/1
1
11/1 00/0 01/0 10/0
(5)状态转换图
《数字电子技术基础》第五版
*6.2.3 异步时序逻辑电路的分析方法
各触发器的时钟不同时发生
例:
Q2*Q2cl2k
与X、Q有关 仅取决于电路状
6.2 时序电路的分析方法
《数字电子技术基础》第五版
6.2.1 同步时序电路的分析方法 分析:找出给定时序电路的逻辑功能
即找出在输入和CLK作用下,电路的次态和输出。
一般步骤: ①从给定电路写出存储电路中每个触发器的驱动方程 (输入的逻辑式),得到整个电路的驱动方程。
②将驱动方程代入触发器的特性方程,得到状态方程。
《数字电子技术基础》第五版
《数字电子技术基础》(第五版)教学课件
邮政编码:100084 电子信箱: 联系电话:
《数字电子技术基础》第五版
第六章 时序逻辑电路
6.1 概述
《数字电子技术基础》第五版
一、时序逻辑电路的特点
1. 功能上:任一时刻的输出不仅取决于该时刻的输入,还 与电路原来的状态有关。
数电1-6_公式化简法

(A+C)
10
解:
1.Y AB B AB
A B AB
消因子法
A B
2.Y ABC A B C
看作整体运用还原 律和德摩根定律
ABC (( A B C))
16
卡诺图的构成原则
构成卡诺图的原则是: ① N变量的卡诺图有2N个小方块(最小项); ② 最小项排列规则:几何相邻的必须逻辑相邻。 逻辑相邻:两个最小项,只有一个变量的 形式不同,其余的都相同。逻辑相邻的最小项可以合 并。 几何相邻的含义: 一是相邻——紧挨的; 二是相对——任一行或一列的两头; 在五变量和六变量的卡诺图中,用相重来判断 三是相重——对折起来后位置相重。 某些最小项的几何相邻性,其优点是十分突出的。
Y ( A, B, C) AB(C C) A(B B)C ABC
ABC ABC ABC ABC
m7 m6 m5 m1
A BC 00 0 m0 0 m4 01 1 m1 1 m5 11 0 m3 1 m7 10 0 m2 1 m6
0
1
0
1 1 1
32
Y2 ( A, B, C, D) m(0,1,2,3,4,6,7,8,9,11 ,15)
1 1 0 1
1 0 0 1
1 1 1 1
1 1 0 0
33
Y3 A B C ABCD
1 1 1 1
1 1 1 1
1 1 1 1
22
二、 用卡诺图表示逻辑函数
(1)从真值表画卡诺图 根据变量个数画出卡诺图,再按真值表填写每一个小方 块的值(0或1)即可。需注意二者顺序不同。 例1: 已知Y的真值表,要求画Y的卡诺图。 逻辑函数Y的真值表 A B C Y 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 1 卡诺图
阎石《数字电子技术基础》(第5版)(名校考研真题 时序逻辑电路)【圣才出品】

第6章 时序逻辑电路一、选择题1.一个六位二进制减法计数器,初始状态为000000,问经过203个输入脉冲后,此计数器的状态为()。
[电子科技大学2008研]A.110011B.110101C.111000D.110110【答案】B【解析】六位减法器的计数周期为;203%64=11,即从000000经过11个6264计数周期,输出状态变为110101。
2.为了把串行输入的数据转换为并行输出的数据,可以使用()。
[北京科技大学2010研]A.寄存器B.移位寄存器C.计数器D.存储器【答案】B【解析】移位寄存器能能够串行输入串行输出,并行输入并行输出,串行输入并行输出。
3.一个四位二进制码加法计数器的起始值为1001,经过100个时钟脉冲后的值为( )。
[北京邮电大学2010研]A .1110B .1111C .1101D .1100【答案】C【解析】1001经过16的倍数个周期后仍为1001,即96个时钟脉冲后计数器显示1001,再经历4个时钟脉冲,即100个时钟脉冲时,计数为1001+0100(4)=11014.某计数器的状态转换图如下图所示,该计数器的模为( )。
[电子科技大学2010研]A .三B .四C .五D .八图6-1【答案】C【解析】循环状态的有5个,也就是说当计数器使用的过程中只有这5个状态才能保持一直计数。
二、填空题1.8级扭环计数器的状态转换圈中,无效状态有______个。
[电子科技大学2008研]【答案】240【解析】n 级扭环计数器的无效状态共有:个。
22n n 2.用移位寄存器产生1101010序列,至少需要______位的移位寄存器。
[电子科技大学2010研]【答案】6【解析】共七位序列数,由于采用移位寄存器,而且状态在序列中没有循环,移位寄存器在传输过程中数据是一次传递的,所以需要至少6位移位寄存器。
表6-13.一个三级环形计数器的初始状态是Q2Q1Q0=001(Q2为高位),则经过40个时钟周期后的状态Q2Q1Q0=______。
数电第五版(阎石)第六章课后习题及答案

2 1 0 2 1 0 1 0 2 1 0 ' ' ' ' 2 1 0 1 0 1 0 1 0 ' ' ' ' ' 2 1 0 2 1 0 1 0 2 1 0
) Q (Q
) 0 (Q
电路图如下图所示:
【题6-34】设计一个控制步进电机三相六状态工作的逻辑电 路。如果用1表示电机绕组导通,0表示电机绕组截止,则三 个绕组ABC的状态转换图应如下图所示。M为输入的控制变 量,当M=1时 为正转,M为0时为反转。
第六章 时序逻辑电路
解:74160的状态转换图如A6.24所示;当A=0时74LS147的输 ' ' ' ' 出为Y 3 Y 2 Y 1 Y 0 1110 ,74160的数据输入端 D 3 D 2 D 1 D 0 0001 则状态转换顺序将如图所示,即成为九进制计数器。输出的 脉冲Y的频率为CLK频率的1/9。以此类推可得:
低电平 输入端 1/9 1/8 1.11 1.25
1/7 1/6
1/5 1/4 1/3 1/2 0
1.43 1.67
2 2.5 3.33 5 0
【6.29】设计一个序列信号 发生器电路,使之在一系列 CLK信号作用下能周期性地 输出“0010110111”的序列 信号。 解:方案:十进制计数器 和8选1数据选择器 十进制计数器选用74160, 则计数器状态 Q 3 Q 2 Q 1 Q 0 与输出Z之间的关系真值 表如右图所示。
MQ MQ MQ
*
' 2 ' 3 ' 1
பைடு நூலகம்
M Q M Q M Q
' '
电子教案《数字电子技术(第5版_杨志忠)》教学资源第6章练习题参考答案

5 18第6章 时序逻辑电路练 习 题[题6 1] 试分析图P6 1所示时序逻辑电路的逻辑功能。
写出它的驱动方程、状态方程、列出状态转换真值表、画出状态转换图和时序图。
P6 1 [解] (1)写方程式 驱动方程J0=Qn1 K0=1J1=Qn0 K1=1状态方程Qn+10=J0Qn0+K0Qn1=Qn1Qn0Qn+11=J1Qn1+K1Qn1=Qn0Qn1(2)列状态转换真值表(见表[题6 1])表[题6 1]的状态转换真值表现 态次 态Qn1Qn0Qn+11Qn+100001011010001100 (3)逻辑功能说明 为同步三进制加法计数器 (4)画状态转换图 状态转换图如图[题6 1](a)所示。
(5)画时序图 时序图如图[题6 1](b)所示。
图[题6 1] [题6 2] 试分析图P6 2所示时序逻辑电路的逻辑功能。
写出它的驱动方程、状态方程、列出状态转换真值表、画出它的状态转换图和时序图。
图P6 2 [解] 分析步骤 (1)写方程式 输出方程Y=Qn2 驱动方程J0=Qn2 K0=1J1=Qn0K1=Qn0J2=Qn1Qn0K2=1 状态方程Qn+10=J0Qn0+K0Qn0=Qn2Qn0Qn+11=J1Qn1+K1Qn1=Qn0Qn1+Qn0Qn1Qn+12=J2Qn2+K2Qn2=Qn1Qn0Qn2 (2)列状态转换真值表(见表[题6 2])表[题6 2]的状态转换真值表现 态次 态输 出Qn2Qn1Qn0Qn+12Qn+11Qn+10Y00000100010100010011001110001000001101010111001011110001 (3)逻辑功能说明 由状态转换真值可知,当输入第5个CP时,Y输出一个负跃变的进位信号,所以图P6 2所示电路为同步五进制加法计数器。
(4)自启动检查 由状态转换真值表可看出,当计数器进入无效状态101、110和111后,在CP作用下能自动返回到010、010和000有效状态,故电路具有自启动能力。
(完整word版)《电子技术基础》第五版课后答案

第一章数字逻辑习题1.1数字电路与数字信号1。
1.2 图形代表的二进制数0101101001.1.4一周期性数字波形如图题所示,试计算:(1)周期;(2)频率;(3)占空比例MSB LSB0 1 2 11 12 (ms)解:因为图题所示为周期性数字波,所以两个相邻的上升沿之间持续的时间为周期,T=10ms频率为周期的倒数,f=1/T=1/0。
01s=100HZ占空比为高电平脉冲宽度与周期的百分比,q=1ms/10ms*100%=10%1。
2数制21.2。
2将下列十进制数转换为二进制数,八进制数和十六进制数(要求转换误差不大于4(2)127 (4)2.718解:(2)(127)D=72-1=(10000000)B-1=(1111111)B=(177)O=(7F)H(4)(2。
718)D=(10。
1011)B=(2。
54)O=(2.B)H1。
4二进制代码1.4.1将下列十进制数转换为8421BCD码:(1)43 (3)254.25解:(43)D=(01000011)BCD1。
4。
3试用十六进制写书下列字符繁荣ASCⅡ码的表示:P28(1)+ (2)@(3)you (4)43解:首先查出每个字符所对应的二进制表示的ASCⅡ码,然后将二进制码转换为十六进制数表示。
(1)“+"的ASCⅡ码为0101011,则(00101011)B=(2B)H(2)@的ASCⅡ码为1000000,(01000000)B=(40)H(3)you的ASCⅡ码为本1111001,1101111,1110101,对应的十六进制数分别为79,6F,75(4)43的ASCⅡ码为0110100,0110011,对应的十六紧张数分别为34,331。
6逻辑函数及其表示方法1。
6.1在图题1。
6。
1中,已知输入信号A,B`的波形,画出各门电路输出L的波形.解: (a)为与非, (b)为同或非,即异或第二章 逻辑代数 习题解答2.1.1 用真值表证明下列恒等式 (3)A B AB AB ⊕=+(A ⊕B )=AB+AB A B A B ⊕AB AB A B ⊕ AB +AB 0 0 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 11111由最右边2栏可知,A B ⊕与AB +AB 的真值表完全相同。
数字电子技术 第六章习题答案

第六章 习题解答6.1. 分析题图P6.1所示电路的功能,列出功能表。
解:图P6.1所示电路的功能表如表6.1所示。
将功能表中各变量数值关系的逻辑函数用对应的“卡诺图”如图6.1所示。
RS 具有约束条件RS =0,触发器的逻辑表达式为⎪⎩⎪⎨⎧=+=+0RS Q R S Q n 1n ,根据这一逻辑表达式,P6.1逻辑电路具有基本RS 触发器的逻辑功能,约束条件是SR=0。
6.2同步RS 触发器与基本RS 触发器的主要区别是什么?解:同步RS 触发器与基本RS 触发器的主要区别是基本RS 触发器的RS 输入信号不论任何时刻都是有效的,只要RS 输入的状态组合发生变化,输出Q 的状态跟随发生变化;而同步同步RS 触发器的RS 输入信号只要在CP 时钟脉冲信号有效时段内起作用,只有在这一时段内,输出Q 的状态才跟随RS 输入的状态组合变化而发生变化。
1& & 1QR图 P6.1QR S Q nQ n+1功 能 1 1 1 1 0 1 不用 不用 不允许11 0 0 0 1 0 0 01=+n Q 置0 0 0 1 1 0 1 1 1 11=+n Q 置10 00 00 10 1n n Q Q =+1 保持6.3如图P6.3 (a)所示电路的初始状态为Q =1,R 、S 端和CP 端的信号如图P6.3(b )所示,画出该同步RS 触发器相应的Q 和Q 端的波形。
解:根据图P6.3 (a)所示电路结构,其功能为同步RS 触发器,电路的特性方程为:⎪⎩⎪⎨⎧=+=+0RS Q R S Q n 1n ,若R=S=1,在CP 时钟脉冲信号为“1”的时段内,触发器的两个输出端的状态均输出“1”,此种情况下,若CP 时钟脉冲信号从“1”状态,跳变为“0”的输入状态,则触发器的两个输出状态为不确定状态。
根据特性方程以及电路的初始状态,作出电路的输出端时序图如图6.3所示。
6.4 主从RS 触发器输入信号的波形如图P6.4(a )、(b )所示。
数字电子技术基础阎石主编第五版

四、触发器分类
SR锁存器
按
SR触发器
按
逻
构 造
电平触发旳触发器 辑 功
JK触发器
可 分
脉冲触发旳触发器 能 可
D触发器
为
边沿触发触发器
分 为
T和T′触发器
5.2 触发器旳电路构造与动作特点
一、SR锁存器 (基本RS触发器)
1.或非门构成
RSD— RSeetset 直直接接复置位位端端 ((置置01端端))
转换环节:
(1)写出已经有触发器和待求触发器旳特征方程。
(2)变换待求触发器旳特征方程,使之形式与已经 有触发器旳特征方程一致。
(3)比较已经有和待求触发器旳特征方程,根据两 个方程相等旳原则求出转换逻辑。
(4)根据转换逻辑画出逻辑电路图。
JK触发器→RS触发器
变换RS触发器旳特征方程,使之形式与JK触发器旳特征 方程一致:
T触发器特征方程:
Q* TQ T Q T Q
J T 与JK触发器旳特征方程比较,得: K T
电 路 图
D触发器→T触发器
D T Q
D触发器→T'触发器
D Q
三、触发器电路构造和逻辑功能旳关系
同一种逻辑功能旳触发器能够用不 同旳电路构造实现。反过来,用同一种 电路构造形式能够作成不同逻辑功能旳 触发器。
RS触发器特征方程
Q* S RQ RS 0
Q* S RQ S(Q Q ) RQ SQ SQ RQ SQ RQ SQ (R R) SQ RQ RSQ RSQ SQ RQ
Q* JQ K Q
Q* SQ RQ
比较,得:
J K
S R
电路图
JK触发器→T触发器
0
数字电子技术应用答案4、5、6

6-8答:
T=0.7(R1+2R2)C
=0.7×(15+2×22)×0.1
=4.13 s
6-9答:
图A4.9
4-8答:
4-9答:
见图A4.11
图A4.11
4-10答:
[解]见图A4.12
图A4.12
4-11答:
[解]见图A4.13
图A4.13
4-12答:
[解]
电路驱动方程为:
, ;
, ; ;
代入特性方程,得状态方程:
根据状态方程画波形,见图A4.14。
图A4.14
4-13答:
[解]见图A4.15
[解]
,代入到特性方程 ,得: ;
,代入到特性方程 ,得: ;
由状态方程可得其状态转换表,如表5.4所示,状态转换图如图A5.4所示。
表5.4
000
001
010
011
100
111
110
101
011
100
110
000
110
101
010
000
其功能为:当A=0时,电路作2位二进制加计数;当A=1时,电路作2位二进制减计数。
2.VT-= = =4(V)
T=VT+--VT-=4(V)
3.VT+= =6(V)
VT-= = =3(V)
T=VT+--VT-=3(V)
6-5答:
1.波形如下图所示
2.Tw=1.1RC=4.29ms
6-6答:
VT+= = =3.34(V)
VT-= = =1.67(V)
6-7答:
阎石《数字电子技术基础》(第5版)(章节题库 触发器)【圣才出品】

第5章 触发器一、选择题1.为了使钟控RS触发器的次态为1,RS的取值应为()。
A.RS=0B.RS=01C.RS=10D.RS=11【答案】B【解析】当S=l,R=0时,Q=1、Q'=O。
在SD=1;当S=0,R=1时,Q=0,Q'=l;当S=R=0时,电路维持原来的状态不变。
2.4级移位寄存器,现态为0111,经右移一位后其次态为()。
A.0011或1011B.1111或1110C.1011或1110D.0011或1111【答案】B【解析】实际上移位可以看做小数点做移动,右移相当于小数点右移,应该是前三位为111,最后一位不确定,在阎石教科书中所举的例子从左到右是低位到高位进行的变换。
3.用n个触发器构成计数器,可得到的最大计数长度为()。
A.nB.2nC.n3D.2n【答案】D【解析】每个触发器可以计数为0或1两个不同的状态,这些状态彼此独立,最大计数长度为2n。
4.设计一“00001111”串行序列发生器,最少需要触发器个数是()A.4个B.3个C.5个D.8个【答案】B【解析】设有三个不同的变量Q2Q1Q0,前三个状态可以确定下一个状态,比如Q2Q1Q0=000确定输出状态为1,001的时候为1,依次类推,八个输出需要计数器至少有8个不同的状态。
5.图5-1所示电路是()。
A.无稳态触发器B.单稳态触发器C .双稳态触发器D .多谐振荡器图5-1【答案】B【解析】首先该电路有输入端,一定不会是多谐振荡器。
若以555定时器的V I2端作为触发信号的输入端,并将由T D 和R 组成的反相器输出电压v OD 接至V I1端,同时在V I1对地接入电容C ,则构成单稳态触发器。
6.为将D 触发器转换为T 触发器,图5-2所示电路的虚线框内应是( )。
A .或非门B .与非门C .异或门D .同或门图5-2【答案】D【解析】由T 触发器和D 触发器的触发方程可得:Q n +1=D ;Q n +1=T ’Q n +TQ n ’,需要令输入D =T ’Q n +TQ n ’,与Q n ’作同或运算,与Q n 作异或运算。
数字电子技术基础第五章、第六章习题参考答案

第五章锁存器和触发器1、Q n 1二S RQ n, SR = O2、Q n, 03、324、TCP J I I I I I I I7、4-13题解图8、D= A 二BCP_ I~I I~I I~I I~I I~LI Iz卄I TH 1D i - I i i1 . I | , __ L,I ■ I ______第六章时序逻辑电路1、 输入信号,原来的状态2、 异3、 n 5、反馈清零、反馈置数扌-6、N乂—LJ UU 仑厂 II ~ 7、状态方程和输出方程:㈣ =A®Q'tZ^AQ&激励方程A =Kq = A &/. =e 0=i 状态方程0:戚;忧"无©土死输出方程Z=AQ1Q0根据状态方程组和输出方程可列出状态表,如表题解6 . 2 . 4所示,状态图如图题解2. 4 所示。
Q - M?; + M V ;* Q ; = + “:14、图题解6.2.4Q;・枫"烟00保持,01右移10左移11并行输入当启动信号端输人一低电平时,使S仁1 ,这时有So= Sl= 1 ,移位寄存器74HC194执行并行输人功能,Q3Q2Q1Q0 = D3D2D1D0 = 1110。
启动信号撤消后,由于Q°= 0,经两级与非门后,使S仁0 ,这时有S1S0= 01 ,寄存器开始执行右移操作。
在移位过程中,因为Q3Q2、Q1、Q0中总有一个为0,因而能够维持S1S0=01状态,使右移操作持续进行下去°其移位情况如图题解6, 5, 1所示。
该电路能按固定的时序输出低电平脉冲,是一个四相时序脉冲产生电路。
-JT AAA TL幺I15、状态方程为儿⑷儿個)X(O24、解:74HC194功能由S1S0控制。
电子技术基础数字部分第五版康光华主编第6章习题答案

第六章作业答案解:根据状态表作出对应的状态图如下:6.1.3 已知状态图如题图6.1.3所示,试列出其状态表。
00/010/06.1.8已知状态表如表题6.1.8所示,若电路的初始状态为Q 1Q 0=00,输入信号A 的波形如图题6.1.8所示,输出信号为Z ,试画出Q 1Q 0的波形(设触发器对下降沿敏感)。
解:根据已知的状态表及输入信号A=011001,该电路将从初始状态Q1Q0=00开始,按照下图所示的顺序改变状态:Q1Q0的波形图如下:CPAQQ16.2.1试分析图题6.2.1(a)所示时序电路,画出其状态表和状态图。
设电路的初始状态为0,试画出在图题6.2.1(b)所示波形的作用下,Q和Z的波形图。
CP AZ解:由电路图可写出该电路的状态方程和输出方程分别为:1n n Q A Q Z AQ+=⊕=状态图如下所示:0/1Q 和Z 的波形如下所示:CP A Q Z6.2.4分析图题6.2.4所示电路,写出它的激励方程组、状态方程组和输出方程,画出状态表和状态图。
A CPZ解:电路的激励方程组为:10101011J Q K AQ J Q K ==== 状态方程组为:()11101101100nn n nnnnnn n Q Q Q QQ Q AQ Q Q Q A ++==+=+输出方程为: 10Z AQ Q =根据状态方程组和输出方程可列出状态表如下:状态图如下:6.3.2 某同步时序电路的状态图如图题6.3.2所示,试写出用D 触发器设计时的最简激励方程组。
解:由状态图可知,要实现该时序电路需要用3个D 触发器。
(2)画出各激励信号的卡诺图,在状态转换真值表中未包含的状态为不可能出现的,可作无关项处理。
(3)由卡诺图得到各激励信号的最简方程如下:22110nnnD Q D Q D Q === 6.3.5试用下降沿触发的JK 触发器和最少的门电路实现图6.3.5所示的Z 1和Z 2输出波形。
Z Z解:从Z 1和Z 2输出波形可以看出,对于每一个Z 1或Z 2周期,均可等分为4段时间间隔相等的状态,即Z 2 Z 1=00、Z 2 Z 1=01、Z 2 Z 1=11和Z 2 Z 1=01,因此要设计的时序电路可以有4个状态,分别用00、01、10、11来表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章习题课后
一、选择题
1.PROM和PAL的结构是。
A.PROM的与阵列固定,不可编程
B. PROM与阵列、或阵列均不可编程
C.PAL与阵列、或阵列均可编程
D. PAL的与阵列可编程
2.PAL是指。
A.可编程逻辑阵列
B.可编程阵列逻辑
C.通用阵列逻辑
D.只读存储器3.当用异步I/O输出结构的PAL设计逻辑电路时,它们相当于。
A.组合逻辑电路
B.时序逻辑电路
C.存储器
D.数模转换器
4.PLD器件的基本结构组成有。
A.输出电路
B.或阵列
C. 与阵列
D. 输入缓冲电路
5.PLD器件的主要优点有。
A.集成密度高
B. 可改写
C.可硬件加密
D. 便于仿真测试
6.GAL的输出电路是。
A.OLMC
B.固定的
C.只可一次编程
D.可重复编程
7.PLD开发系统需要有。
A.计算机
B. 操作系统
C. 编程器
D. 开发软件
8.只可进行一次编程的可编程器件有。
A.PAL
B.GAL
C.PROM
D.PLD
9.可重复进行编程的可编程器件有。
A.PAL
B.GAL
C.PROM
D.ISP-PLD
10.ISP-PLD器件开发系统的组成有。
A.计算机
B.编程器
C.开发软件
D.编程电缆
11.全场可编程(与、或阵列皆可编程)的可编程逻辑器件有。
A.PAL
B.GAL
C.PROM
D.PLA
12.GAL16V8的最多输入输出端个数为。
A.8输入8输出
B.10输入10输出
C.16输入8输出
D.16输入1输出
13一个容量为1K×8的存储器有个存储单元。
A.8
B. 8192
C.8000
D. 8K
14.要构成容量为4K×8的RAM,需要片容量为256×4的RAM。
A. 8
B.4
C. 2
D.32
15.寻址容量为16K×8的RAM需要根地址线。
A. 8
B. 4
C.14
D.16K
E. 16
16.RAM的地址码有8位,行、列地址译码器输入端都为4个,则它们的字线加位线共有条。
A.8
B.16
C.32
D.256
17.某存储器具有8根地址线和8根双向数据线,则该存储器的容量为。
A.8×3
B.8K×8
C.256×8
D. 256×256
18.采用对称双地址结构寻址的1024×1的存储矩阵有。
A.10行10列
B.5行5列
C.32行32列
D.1024行1024列
19.随机存取存储器具有功能。
A.读/写
B.无读/写
C.只读
D.只写
20.欲将容量为128×1的RAM扩展为1024×8,则需要控制各片选端的辅助译码器的输出端数为。
A.1
B.2
C.3
D.8
21.欲将容量为256×1的RAM扩展为1024×8,则需要控制各片选端的辅助译码器的输入端数为。
A.4
B.2
C.3
D.8
22.只读存储器ROM在运行时具有功能。
A.读/无写
B.无读/写
C.读/写
D.无读/无写
23.只读存储器ROM中的内容,当电源断掉后又接通,存储器中的内容。
A.全部改变
B.全部为0
C.不可预料
D.保持不变
24.随机存取存储器RAM中的内容,当电源断掉后又接通,存储器中的内容。
A.全部改变
B.全部为1
C.不确定
D.保持不变
25.一个容量为512×1的静态RAM具有。
A.地址线9根,数据线1根
B.地址线1根,数据线9根
C.地址线512根,数据线9根
D.地址线9根,数据线512根
26.用若干RAM实现位扩展时,其方法是将相应地并联在一起。
A. 读/写线
B.数据线
C. 地址线
D. 片选信号线
27.PROM的与陈列(地址译码器)是。
A.全译码可编程阵列
B. 全译码不可编程阵列
C. 非全译码不可编程阵列
D. 非全译码可编程阵列
二、判断题(正确打√,错误的打×)
1.PROM不仅可以读,也可以写(编程),则它的功能与RAM相同。
()
2.PAL的每个与项都一定是最小项。
()
3.PAL和GAL都是与阵列可编程、或阵列固定。
()
4.PLA的与门阵列是可编程的,或门阵列是固定的。
()
5.PAL的输出电路是固定的,不可编程,所以它的型号很多。
()
6.GAL的型号虽然很少,但却能取代大多数PAL芯片。
()
7.ABEL语言是一种通用的硬件描述语言(HDL),用于PLD的开发。
()
8.GAL不需专用编程器就可以对它进行反复编程。
()
9.在系统可编程逻辑器件ISP-PLD不需编程器就可以高速而反复地编程,则它与RAM随机存取存储器的功能相同。
()
10.PLA是全场可编程(与、或阵列皆可编程)的可编程逻辑器件,功能强大,便于使用,因此被普遍使用。
()
11.实际中,常以字数和位数的乘积表示存储容量。
()
12.RAM由若干位存储单元组成,每个存储单元可存放一位二进制信息。
()
13.动态随机存取存储器需要不断地刷新,以防止电容上存储的信息丢失。
()
14.用2片容量为16K×8的RAM构成容量为32K×8的RAM是位扩展。
()
15.所有的半导体存储器在运行时都具有读和写的功能。
()
16.ROM和RAM中存入的信息在电源断掉后都不会丢失。
()
17.RAM中的信息,当电源断掉后又接通,则原存的信息不会改变。
()
18.存储器字数的扩展可以利用外加译码器控制数个芯片的片选输入端来实现。
()
19.PROM的或阵列(存储矩阵)是可编程阵列。
()
20.ROM的每个与项(地址译码器的输出)都一定是最小项。
()
21.用PROM实现四位二进制码到Gray码的转换时,要求PROM的容量为4*4b。
()
三、填空题
1.存储器的和是反映系统性能的两个重要指标。
2.半导体存储器按功能可分为 和 两种类型,其中 在电源掉电后信息不会丢失。
3.用户可编程ROM 有 、 和 三种类型,其中 的编程是一次性的。
4.PLD 器件的基本结构包括 和 两部分。
5.GAL 器件由 、 和 三个主要部分组成。
6.PROM 的与门阵列是 ,或门阵列是 ;PLA 的与门阵列是 ,或门阵列是 ;PAL 的与门阵列是 ,或门阵列是 。
四、综合题
1.试分析题图6-1给定的阵列图,试写出输出表达式Y 的最小项表示形式。
题图6-1
2.对于题图6-2所示PAL ,试列出其输入、输出真值表.
Y 0Y 1X 0
X 2
X 1
题图6-2
3.4×2位容量的ROM 的点阵图如题图6-3所示.。
试写出逻辑表达式,列出其真值表,并说明电路的逻辑功能。
S
C
题图6-3
一、选择题
1.AD;
2.B;
3.A;
4.ABCD;
5.ABCD;
6.AD;
7.ABCD; 8.AC; 9.BD; 10.ACD; 11.D; 12.C;
13.BD; 14.D; 15.C; 16.C; 17.C; 18.C;
19.A; 20.D; 21.A; 22.D; 23.B; 24.A;
25.D; 26.C; 27.A; 28.ACD; 29.B。
二、判断题
1.×;
2.×;
3.√;
4.×;
5. √;
6.√;
7.√;
8.×;
9.×;
10.×;11.√; 12.√; 13.√; 14. ×; 15.×;
16.×; 17.×; 18.√; 19.√; 20.√;21.×。
三、填空题
1.存储容量存取时间;
2.RAM ROM ROM;
3.PROM EPROM E2PROM PROM;
4.与门阵列或门阵列;
5.与门阵列或门阵列输出逻辑宏单元(OLMC);
6.固定的可编程的可编程的可编程的可编程的固定的
四、综合题
1.解:Y(A,B,C,D)=∑m(2,12,11,3,8)
2
3
所以为半加器。