最新7种塔吊的基础计算
塔吊基础抗倾覆验算
M0V2=M2+Fh2*1.3=2821KN*m
抗倾覆方程为:MX1=(Fh1+Gk)*1.3+2*R*2.6
=1.3*(22.8+6*6*2.5*25)+2*500*2.6
=5554.64KN*m>M0V1=2197KN*m
=1.5*(97+6*6*2.5*25)+2*500*3
=6520.5KN*m>M0V2=2889KN*m
1#、2#塔满足抗倾覆要求。
3#塔吊倾覆计算:
已知:Fh1=22.8KN、Fv1=684.5KN、M1=2152KN*m
Fh2=97KN、Fv2=624.5KN、M1=2695KN*m
单桩抗拔承载力特征值为R=500KN
塔吊基础抗倾覆验算抗倾覆验算抗倾覆验算规范带撑抗倾覆验算抗倾覆抗倾覆安全系数基础抗倾覆基础抗倾覆计算抗倾覆力矩抗浮验算
1#、2#塔吊倾覆计算:
已知Fh1=22.8KN、Fv1=684.5KN、M1=2152KN*m
Fh2=97KN、Fv2=624.5KN、M1=2695KN*m
单桩抗拔承载力特征值为R=500KN
解:假设以A桩为整体倾覆转动总计算
倾覆方程为:M0V1=M1+Fh1*2=2197KN*m
抗倾覆方程为:MX1=(Fh1+Gk)*1.5+2*R*3
=1.5*(22.8+6*6*2.5*25)+2*500*3
=6409.2KN*m>M0V1=2197KN*m
MX2=(Fh2+Gk)*1.5+2*R*3
=1107000N=1107KN>R=500KN
塔吊基础设计计算
筑龙网WW W.ZH U L ON G.C OM(一)塔吊基础设计计算 1、根据塔吊使用说明书,十字梁设计为1100×1500、砼C25,适当配置钢筋,本基础坐落在5根桩上,即本塔吊基础设计, 2、基础十字梁钢筋设计根据塔吊使用说明书,十字梁所受的荷载为F1=F2=150KN 截面尺寸为1100×1500,砼为C25假如十字梁双排钢筋为5Φ25验算如上草图,M max F ×a =150×3.00=450KN.M 查表:ρ=0.26%As =ρ×b ×h =0.26%×1100×1500=4290mm 2A 设=4908mm 2 >As =4290mm 2故十字梁双排配筋满足要求。
3、 稳定验算以知条件:基础所受的垂直荷载 476KN基础所受的水平荷载 24KN 基础所受的倾翻力矩 1220KN 基础所受的扭矩 185 KN.mm 基础设计重量 610 KN.mm计算塔吊在非工作情况下是否稳定筑龙网WW W.ZH U L ON G.C OMe =(M+H ×h )/(V+G )≤Le/3=(185×103×24103×50)/(476×103+610×103)=1.28<=2.03L/3 故基础满足要求 五、塔吊稳定验算:(1) 塔吊在工作情况下有荷载稳定验算:K1=[G ×(c-h ×sina+b )-v ×(a-h )÷gt] ÷[Q ×(a-b )]=1.534>1.15 取a =0(2) 非工作下的稳定验算(取W3=2KN/M 风载按12级台风取) K2=[G1×(b+c1-h1×sina )] ÷[G2×C2-b + h2×sina+W3×P3]]=1.39>1.15故:塔吊在工作和非工作下均能保持稳定。
塔吊基础计算
塔吊基础计算一、天然基础塔吊在安装完毕后。
其下地基即承受塔吊基础传来的上部荷载,一是竖向荷载,包括塔吊重量F和基础重量G;另一部分是弯矩M,主要是风荷载和塔吊附加荷卸产生的弯矩。
塔吊基础受力,可简化成偏心受压的力学模型(图1),此时,基础边缘的接触压力最大值和最小值分别可以按下式计算:图1塔吊基础受力简图(天然地基)图1塔吊基础受力简图(天然地基)其中:F————塔吊工作状态的重量,单位KNG————基础自重,单位KNG=b×b×h×ρ,单位KNb×h———基础边长、厚度,单位mρ——————基础比重,取25KN/m3e————偏心距,单位me=M/(F+G)M————塔吊非工作状态下的倾覆力矩。
若计算出的P min<0,即基底出现拉力,由于基底和地基之间不能承受拉力,此时基底接触压力将重新分布。
应按下式重新计算P maxF、M可由塔吊说明书中给出,将计算得出的最大接触压力P max和地质资料中给出的地基承载力标准值相比较,小于地基的承载力标准值即可满足要求。
二、桩基础对于有桩基础的塔吊,必须验算桩基础的承载力。
根据计算分析,在非工作状态下,塔吊大臂垂直于基础面对角线时最危险。
当以对角两根桩的连线为轴(图2—1),产生倾覆力矩时,将由单桩受力,此时桩的受力为最不利情况。
图2—1桩基础1、受力简图图2—2塔吊基础受力简图(桩基础)2、荷载计算当只受到倾覆力矩时:当只受到基础承台及塔吊重力时:3、单桩荷载最不利情况3、单桩最小荷载若计算出的P2<0,即桩将受到拉力,拉力为|P2|L———桩的中心距。
4、单桩承载力单桩的受压承载力由桩侧摩阻力共同承担的,单桩受压承载力为:单桩的抗拔承载力由桩侧摩阻力承担,单桩抗拔力为:R K2=U P∑q Si L i (2—6)其中:q p—————桩端承载力标准值,KP aA P—————桩身横截面面积,m2U—————桩身的周长,mPq Si—————桩身第I层土的摩阻力标准值,KP A kL i—————按土层划分的各段桩长,m将计算所得的P1和R K1相比较,|P2|和R K2相比较,若P1< R K1且|P2|< R K2则可满足要求。
7种塔吊基础知识计算
7 种塔吊基础计算目录一、单桩基础计算二、十字交叉梁基础计算三、附着计算四、天然基础计算五、三桩基础计算书六、四桩基础计算书七、塔吊附着计算一、塔吊单桩基础计算书一. 参数信息塔吊型号:QT60,自重(包括压重)F1=245.00kN,最大起重荷载F2=60.00kN塔吊倾覆力距M=600.00kN.m,塔吊起重高度H=50.00m,塔身宽度B=1.60m混凝土强度:C35,钢筋级别:Ⅱ级,混凝土的弹性模量 Ec=14500.00N/mm2桩直径或方桩边长 d=2.50m,地基土水平抗力系数 m=8.00MN/m4桩顶面水平力 H0=100.00kN,保护层厚度:50mm二. 塔吊基础承台顶面的竖向力与弯矩计算1. 塔吊自重(包括压重)F1=245.00kN2. 塔吊最大起重荷载F2=60.00kN作用于桩基承台顶面的竖向力 F=1.2×(F1+F2)=366.00kN塔吊的倾覆力矩 M=1.4×600.00=840.00kN.m三. 桩身最大弯矩计算计算简图:1. 按照m法计算桩身最大弯矩:计算依据《建筑桩基础技术规范》(JGJ94-94)的第5.4.5条,并参考《桩基础的设计方法与施工技术》。
(1) 计算桩的水平变形系数(1/m):其中 m──地基土水平抗力系数;b0──桩的计算宽度,b0=3.15m。
E──抗弯弹性模量,E=0.67Ec=9715.00N/mm2;I──截面惯性矩,I=1.92m4;经计算得到桩的水平变形系数:=0.271/m(2) 计算 D v:D v=100.00/(0.27×840.00)=0.45(3) 由 D v查表得:K m=1.21(4) 计算 M max:经计算得到桩的最大弯矩值:M max=840.00×1.21=1018.87kN.m。
由 D v查表得:最大弯矩深度 z=0.74/0.27=2.78m。
四.桩配筋计算依据《混凝土结构设计规范》(GB50010-2002)第7.3.8条。
塔吊混凝土基础计价规则
塔吊混凝土基础计价规则一、基础混凝土材料费混凝土是塔吊基础的主要材料,其费用包括原材料费用和运输费用。
混凝土的强度等级和数量需要根据塔吊的设计要求和施工现场条件来确定。
混凝土材料的费用一般以市场价格为基础进行计算,并按照施工合同中的约定进行结算。
二、钢筋材料费及加工费塔吊基础需要使用一定数量的钢筋,其费用包括钢筋原材料费用、运输费用和加工费用。
钢筋的规格、数量需要根据塔吊的设计要求确定,并考虑到基础结构的特殊性。
钢筋加工费包括钢筋的调直、切割、弯曲等费用。
钢筋材料费及加工费一般以市场价格为基础进行计算,并按照施工合同中的约定进行结算。
三、模板材料费及安装拆卸费塔吊基础的混凝土浇筑需要使用模板,因此需要计算模板的材料费用和安装拆卸费用。
模板的材料可以选择木材、钢材等,根据不同的材料类型和规格,费用计算也不同。
模板的安装拆卸费用需要根据施工组织设计和施工现场实际情况来确定。
模板材料费及安装拆卸费一般以市场价格为基础进行计算,并按照施工合同中的约定进行结算。
四、脚手架搭设费塔吊基础的施工需要搭设脚手架,因此需要计算脚手架的搭设费用。
脚手架的类型可以选择扣件式、碗扣式等,根据不同的类型和规格,费用计算也不同。
脚手架的搭设需要根据施工现场实际情况和施工组织设计来确定,并考虑到基础结构的特殊性。
脚手架搭设费一般以市场价格为基础进行计算,并按照施工合同中的约定进行结算。
五、运输及浇筑费塔吊基础混凝土的运输和浇筑需要一定的费用,包括运输车辆的费用、浇筑设备的租赁费用等。
运输和浇筑费用需要根据施工现场实际情况和施工组织设计来确定,并考虑到基础结构的特殊性。
运输及浇筑费一般以市场价格为基础进行计算,并按照施工合同中的约定进行结算。
六、养护及成品保护费塔吊基础混凝土浇筑完成后需要进行养护和成品保护,因此需要计算相关的费用。
养护费用包括人工费、材料费等,成品保护费用包括人工费、材料费等。
养护及成品保护费一般以市场价格为基础进行计算,并按照施工合同中的约定进行结算。
塔吊基础计算书
塔吊分项参数计算塔吊是施工场地最重要的施工机械之一,其使用贯穿了整个工程。
在这过程中间隔时间长,不可预见性因素多,为确保塔吊的安全,以下计算都按极限苛刻条件下能保证塔吊正常工作计算。
即:塔吊设置在最大开挖深度处;型钢柱与混凝土灌注桩连接按光滑面锚固。
(计算详值见计算表格) 1. 基础竖向极限承载力计算F=F1+ F2F ——基础竖向极限承载力kn F1——塔吊自重(包括压重)kn F2最大起吊重量kn 2.单桩抗压承载力、抗拔力计算桩顶竖向力的计算(依据《建筑桩技术规范》JGJ94-94的第条)F 十。
iV V-A- M =1.2 —±士 弱尹2" Z* ("+”计算结果为抗压,“-”为抗拔)其中 N i ——单桩桩顶竖向力设计值kNn 单桩个数,n=4;F ——作用于桩基承台顶面的竖向力设计值TG ——塔吊基础重量KNMx,My 承台底面的弯矩设计值kN.mxi,yi 单桩相对承台中心轴的XY 方向距离mM ——塔吊的倾覆力矩kN.m3.桩长以及桩径计算 桩采用钻孔灌注桩R =f A +U £ f l >R = N xgk 实际 ppp s ii1U P =n d其中Rk 实际一一实际钻孔灌注桩承载能力KN桩端面承载能力KN桩侧摩擦阻力总和IUp£fsliKNR——单桩轴向承力安全值KN孔一一桩安全系数取2d桩直径m4.桩抗拔验算Ok=入RQk八k实际5.桩配筋计算桩身配筋率可取0.20%〜0.65% (计算取上限0.65%),抗压主筋不应少于6①10,箍筋采用不少于①6@3mm的螺旋箍筋,在桩顶5倍桩身直径范围内箍筋①6@1mm,每隔2m设一道2①12焊接加强箍筋。
As = S桩截面*配筋率n = 4As/ (n 巾2)其中n ——竖筋根数根As ——钢筋总截面积m①一一竖筋直径m6.桩上部钢支柱计算钢支柱采用 hxbxtwxt = 350 * 350 x 12 x 19, H 型钢。
塔吊基础技术计算公式
塔吊基础技术计算公式引言。
塔吊是建筑工地上常见的起重设备,它具有起重能力大、操作范围广等优点,因此在建筑施工中得到了广泛应用。
在塔吊的设计和施工过程中,基础技术计算是至关重要的一环。
正确的基础技术计算可以确保塔吊的安全稳定运行,保障施工现场的安全。
本文将介绍塔吊基础技术计算的一些常用公式,希望对相关工程师和施工人员有所帮助。
一、塔吊基础技术计算公式。
1. 塔吊的起重能力计算公式。
塔吊的起重能力是指它能够承受的最大起重重量。
起重能力的计算公式如下:Q = (P F) × r。
其中,Q为塔吊的起重能力,P为塔吊的额定起重能力,F为塔吊自重,r为塔吊的工作半径。
2. 塔吊基础承载力计算公式。
塔吊的基础承载力是指它能够承受的最大荷载。
基础承载力的计算公式如下:Pb = ∑(Gk + Qk) + ∑(Ek × Ak)。
其中,Pb为塔吊的基础承载力,Gk为地面荷载,Qk为动载荷,Ek为风载荷,Ak为风载面积。
3. 塔吊的抗倾覆稳定计算公式。
塔吊在使用过程中需要保持稳定,抗倾覆稳定的计算公式如下:Fh = (M × L) / (H × 2)。
其中,Fh为塔吊的抗倾覆稳定系数,M为塔吊的最大起重力矩,L为塔吊的最大工作半径,H为塔吊的高度。
4. 塔吊的基础尺寸计算公式。
塔吊的基础尺寸是指它的基础面积和深度,基础尺寸的计算公式如下:A = Pb / σ。
D = A / B。
其中,A为塔吊的基础面积,Pb为塔吊的基础承载力,σ为土壤承载力,D为塔吊的基础深度,B为土壤的承载力系数。
5. 塔吊的基础沉降计算公式。
塔吊的基础沉降是指它在使用过程中可能发生的沉降情况,基础沉降的计算公式如下:S = (Q / A) × C。
其中,S为塔吊的基础沉降,Q为塔吊的荷载,A为塔吊的基础面积,C为土壤的沉降系数。
二、塔吊基础技术计算实例分析。
为了更好地理解塔吊基础技术计算公式的应用,我们以一个实际工程为例进行分析。
塔吊基础计算(格构柱)
塔吊基础计算(格构柱)八、基础验算基础承受的垂直力:P=449KN 基础承受的水平力:H=71KN 基础承受的倾翻力矩:M=1668KN。
m(一)、塔吊桩竖向承载力计算:1、单桩桩顶竖向力计算:单桩竖向力设计值按下式计算:Q ik=(P + G )/n ±M/a2式中:Q ik—相应于荷载效应标准组合偏心竖向力作用下第i根桩的竖向力;P-塔吊桩基础承受的垂直力,P=449KN;G—桩承台自重,G=(4。
8×4.8×0.4+4。
8×4.8×1。
3)×25=979。
2KN;P+G=449+979.2=1428。
2KNn—桩根数,n=4;M-桩基础承受的倾翻力矩,M=1668+71×1.3=1760.3KN。
m;a—桩中心距,a=3.2m。
Q ik=1428。
2/4±1760.3/3。
2×2单桩最大压力:Q压=357.05+389.03=746。
08KN单桩最大拔力:Q拔=357.05—389.03=-31.98KN2、桩承载力计算:(1)、单桩竖向承载力特征值按下式计算:R a = q pa A P+u P∑q sia L i式中: R a-单桩竖向承载力特征值;q pa、q sia—桩端阻力,桩侧阻力特征值;A P—桩底端横截面面积;u P—桩身周边长度;L i—第i层岩土层的厚度.5号塔吊桩:对应的是8-8剖的Z52。
桩顶标高为—6。
8m,绝对标高为-1。
9m,取有效桩长52m,桩端进入6-1粘土层2。
19m.52R a = 0.8×3。
14×(4×12.51+16×3。
8+14×14。
4+18×19.1+30×2。
19)=1813。
51>746.08KN 满足要求3、承台基础的验算(1)承台弯矩计算Mx1=My1=2×(746.08—979.2/4)×(3。
塔吊基础设计计算方案
塔吊基础设计实例(一)、整体块式钢筋混凝土基础稳定和强度的计算依据固定式塔吊的砼基础设计应同时满足抗倾翻稳定性和强度要求。
与基础抗注:1、从塔吊偏心压应力计算公式可知,偏心距大于b/6;2、[PB ] 、fa属地基容许承载力,地基承载力设计值约等于地基容许承载力乘1.25;3、偏心距为b/3时,基础受压宽度为b/2,也就是基础只有一半面积受压,因此宜按b/2计算地基承载力设计值;4、塔吊基础属临时设施,按规范结构重要性系数γ取0.9。
在上海地区的工程,应按上海市《地基基础设计规范》DGJ08-11-1999进行基础抗倾翻稳定性验算。
下面详细介绍主要计算内容:1.采用土的抗剪强度指标计算地基承载力按地质勘察报告上提供持力层的土的粘聚力标准值ck和土的内摩擦角标准值φk,计算地基承载力设计值f d:φd=0.7φk/1.3 c d=0.7 c k/2.0f dh =0.5Nγζγγb+N qζqγ0d+N cζc c df d =γdfdhγd、Nγ、N q、N c均按查表φd查表ζγ=0.6 ζq=1.0+sinφdζc=1.22.基础抗倾翻稳定性验算按《建筑地基基础设计规范》(GB50007-2002)的规定,该荷载设计值可取为荷载标准值乘1.35。
地基土反力的偏心距e应满足下列条件:e=(Md +Fhd×h)/( (Fdv+ Gd)≤b/3地基土应力按下公式验算:P dmax =2γ(Fdv+Gd)/3ba≤1.2fd式中:e—偏心距(m),为总的倾翻力矩(ΣM)除以作用在基础上的总垂直力(ΣN)之商,也等于地基土反力的合力到基础中心距离;Md—塔吊作用在基础顶面上的弯矩(KN•m)Fvd—塔吊作用在基础顶面上的垂直力(KN)Fhd—塔吊作用在基础上顶面的水平力(KN)Gd—砼基础的重力(KN)b—基础底板长度和宽度(m)h—塔吊基础的高度(m)基础抗倾翻稳定性计算简图从图可知,塔基总的垂直作用力ΣN= Fdv +Gd;而ΣN又等于地基土的总反力,即ΣN=3(b/2-e)×b×Pdmax/2,移项后即得公式(2),该公式成立的前提条件是公式(1),即要求e≤b/3,也即合ΣN离基础边的距离应大于或等于(b/2-e)=b/2-b/3=b/6;地基土反力三角形图的底边AB长不得小于AB=3×(b/2-e)=3×b/6=b/2,所以公式(1)基础抗倾翻稳定的条件是地基土反力三角形图顶点A的极限位置是基础中心点O。
塔吊基础计算
1.基础1.1 固定式基础现在不少塔式起重机生产厂提供的说明书中,对基础的地耐力要求很高,不现实,笔者认为只要符合GB/T 13752中抗倾翻稳定性和地面压应力的要求即可,如图1。
1.1.1 混凝土基础的抗倾翻稳定性1.1.2 地面压应力式中:e —偏心距,即地面反力的合力至基础中心的距离,m;M —作用在基础上的弯距,N•m;Fv —作用在基础上的垂直载荷,N;Fh —作用在基础上的水平载荷,N;Fg —混凝土基础的重力,N;pB —地面计算压应力,Pa;[pB] —地面许用压应力,由工程地质勘探和基础处理情况确定,Pa;b —混凝土基础的截面尺寸,m;h —混凝土基础的厚度(高度),m;M、Fv、Fh、Fg均可在塔式起重机说明书中找到。
1. 2 钻孔灌注桩基础有时,地面许用压应力很低或塔式起重机安装的地理位置太小,不能使用占地面积较大的固定式基础,此时使用钻孔灌注桩是一种很好的解决问题的方法。
在计算时,水平力和扭矩可以略去不计,主要考虑塔式起重机的重力Fv和倾翻力矩M,如图2。
每根钻孔灌注桩的轴向力:式中:n —桩的根数;X —每根桩到基础(塔机)中心的距离,m;1.2.1 轴向承压验算根据经验公式和地质勘探资料:Pa=πdΣLi•f i+A•Rj>N压 (6)式中:Pa —桩的轴向受压允许承载能力,N;d —桩的直径,m;Li —桩的入土范围第i层的厚度,m;f i —桩的入土范围第i层的允许摩擦阻力,N/㎡;A —桩的横截面积,㎡;Rj —桩的底端土的允许端承载力,N/㎡;1.2.2 抗拔验算根据经验公式:N=λπdΣLi•f i+0.9Gs>N拉 (7)式中:λ—抗拔允许摩阻力与受压摩阻力比例系数;Gs —桩的自重,N;(地下水位以下取浮容重)2.附墙在施工过程中,很多情况塔式起重机的附墙杆件需要加长,随机的附墙杆件不能使用,因此附墙杆件必须重新计算。
2.1 公式推导如图 3 ,根据EJy″=M得EJy″式中:E —弹性模量;J —截面惯性矩;q —附墙杆件单位长度自重;P —轴向力。
塔吊基础计算(天然基础)
塔吊基础计算(天然基础)
塔吊在安装完毕后,其下地基即承受塔吊基础传来的上部荷载,一是竖向荷载,包括塔吊重量F和基础重量G;另一部分是弯矩M,主要是风荷载和塔吊附加荷卸产生的弯矩。
塔吊基础受力,可简化成偏心受压的力学模型(图1),此时,基础边缘的接触压力最大值和最小值分别可以按下式计算:
图1塔吊基础受力简图(天然地基)
其中:F————塔吊工作状态的重量,单位KN
G————基础自重,单位KN
G=b×b×h×ρ,单位KN
b×h———基础边长、厚度,单位m
ρ——————基础比重,取25KN/m3
e————偏心距,单位m
e=M/(F+G)
M————塔吊非工作状态下的倾覆力矩。
<0,即基底出现拉力,由于基底和地基之间不能承受拉力,若计算出的P
min
此时基底接触压力将重新分布。
应按下式重新计算P
max
和地质资料 F、M可由塔吊说明书中给出,将计算得出的最大接触压力P
max
中给出的地基承载力标准值相比较,小于地基的承载力标准值即可满足要求。
塔吊基础计算
塔吊基础的计算书(一)(一)参数信息塔吊型号:QTZ6018, 自重+压重850kN,塔吊倾覆力距3146kN.m 承台尺寸6.0 X 6.0 x 1.5m基础自重6X6X 1.5X25=1350 kN(二)塔吊基础承台顶面的竖向力与弯矩计算竖向力1.2 (F+G =1.2 X (850+1350) =2640kN塔吊的倾覆力矩M=1・4x3146=4404kN.m(三)矩形承台弯矩的计算计算简图:f-M图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。
1 •桩顶竖向力的计算(依据《建筑桩基础技术规范》JGJ94-2008的第5.1.1条)匕斗竺+竺1其中n ——单桩个数,n=4 (由于护坡桩一半裸露在基坑内,单桩承载力折减xi,yi单桩相对承台中心轴的XY方向距离(m)4.5/1.414=3.18 ;Ni ——单桩桩顶竖向力设计值(kN)。
经计算得到单桩桩顶竖向力设计值:最大荷载:N=2640/4+(4404 X 3.18)/ (2X 3.182) =1352.45kN最小荷载N=2640/4-(4404 X 3.18)/ (2X 3.182) =-32.45kN(六)桩承载力验算桩承载力计算依据《建筑桩基础技术规范》(JGJ94-2008)根据第二步的计算方案可以得到桩的轴向压力设计值,取其中最大值N=1352.45kN桩顶轴向压力设计值应满足下面的公式:其中” 一一建筑桩基重要性系数,取1-0 ;fc ——混凝土轴心抗压强度设计值,fc=16.70N/mm2;A ——桩的截面面积>A=0.157m2经过计算得到桩顶轴向压力设计值满足要求!(七)桩竖向极限承载力验算及桩长计算桩承载力计算依据《建筑桩基础技术规范》(JGJ94-94)的第522-3条根据第二步的计算方案可以得到桩的轴向压力设计值,取其中最大值Ra= qpkx Ap+ u 艺 qsk X li桩侧第i 层土的极限侧阻力标准值,按下表取值;极限端阻力标准值,按下表取值;桩身的周长,u=2.5m;qskqpkAp 桩端面积,取Ap=0.5m2li ——第i层土层的厚度,取值如下表;厚度及侧阻力标准值表如下最大压力验算:Ra =0.5 x( 1800x 0.5+2.5 x 60x 25) =2325kN上式计算的R的值大于最大压力1352.45kN,所以满足要求!塔吊基础的计算书(二)(一)参数信息塔吊型号:QTZ6018, 自重+压重850kN,塔吊倾覆力距3146kN.m 承台尺寸6.4 X 6.4 x 1.5m基础自重6.4 X 6.4 X 1.5X25=1536 kN(二)塔吊基础承台顶面的竖向力与弯矩计算竖向力1.2 (F+G =1.2 X (850+1536) =2863.2kN塔吊的倾覆力矩M=1・4x3146=4404kN.m(三)矩形承台弯矩的计算计算简图:f-M图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。
塔吊基础计算(湘江公馆)
G1=25×b×l×h=
756.25 kN
覆土重量
G2=r×hp×(l×b-lp×lb)=
0.00 kN
配重
G3=25×bp×lp×hp=
0.00 kN
垂直荷载
F2+G1+G2+G3=
1217.65 kN
总弯矩
M =M2+H2×(h+hp)=
1625.90 kN∙m
偏心矩
e=M/(F2+G1+G2+G3)=
基础底面处的平均压力值PkN/m2
<
f
2
3、基础抗冲切验算: 塔吊的基础节和基础的交接处还必须验算受冲击承载力,危险截面为交接处向下和 底面成45度的斜截面。
45°
bb c b
c
h0 l
冲击承载力Fl≤0.7β hpft×bm×ho=
2766733 N
其中:
β hp为受冲切承载力截面高度影响系数
73.9
461.4
1552
塔吊在非工作状态垂直荷载较小,弯矩较大,故只计算非工作状态的受力情况
3、假设基础尺寸
基础持力层
粉细砂 土的重度r=
18.5 kN/m3
基础埋深(自然地面以下)d (m)
0
地基承载力标准值 fk =
150
kN/m2
初选基础面积
A=1.4×F2/(fk-rd)=
4.31 m2
假设塔吊基础:
塔吊基础计算
适用范围: 采用钢筋混凝土独立基础的塔吊基础
一、计算参数:
1、塔吊型号 TC5013B 标准节尺寸
1.7
2、塔吊荷载
工作状态
m 非工作状态
塔机天然地基基础计算范本
塔吊基础设计计算书工程名称: 编制单位:1.计算参数 (1)基本参数采用1台塔式起重机,塔身尺寸m ;现场地面标高m,基础底标高m ,基础埋设深度m 。
(2)塔吊受力情况:M塔吊基础受力示意图基础顶面所受垂直力基础顶面所受水平力基础所受扭矩基础顶面所受倾覆力矩比较桩基础塔吊基础的工作状态和非工作状态的受力情况,塔吊基础按计算: F k =kN ,F h =kN ,M=kN.mF k ,=kN ,F h ,=kN ,M k =kN .m2.基础底面尺寸验算 (1)基础尺寸:长(a)=m ,宽(b)=m ,高(h)=m 。
(2)基础混凝土: 强度等级,f t =N/mm 2,γ砼=25kN/m 3。
(3)基础底面基础底面标高m 、基础置于土层:;地基承载力特征值f ak=kPa、地基土γ=18.8kN/m3。
G k=a×b×h×γ砼=kNkPa基础底面矩W=ab2/6=m3M k/W=kPa3.地基承载力验算(1)修正后的地基承载力特征值计算f a=f ak+ηbγ(b-3)+ηdγm(d–0.5)=kPa(2)地基承载力验算1)当轴心荷载作用时2)当偏心荷载作用时4.抗倾覆验算倾覆力矩M倾=M=kN.m抗倾覆力矩M抗=(F k+G k)×a/2=kN.mM抗/M倾=5.受冲切承载力验算kPaA L=m2h0=m,βhp=a t=m,a b=m,a m=m0.7βhp f t a m h0=kNF L=P j A L=kNα=1,βhs=,a m/L=(α-P j/1.4f tβhs)βhs/βhp=F L=0.7βhp f t a m h0=kN6.受剪切承载力验算a m/L=(α-P j/1.4f tβhs)βhs/βhp=7.基础配筋验算(1)基础弯矩计算a=m,a’=m,L=mP jmax=F k'/A+M k'/W=kPaP jmin=F k'/A-M k'/W=kPaM=1/12a2[P jmax(3L+a’)+P jI(L+a’)]=kN.m(2)基础配筋基础采用钢筋,f y=300N/mm2;A s1=M/(0.95f y h0)=mm2;按照最小配筋率ρ=0.15%计算配筋;A s2=ρbh0=mm2;比较A s1和A s2,按配筋,取mm(钢筋间距满足要求);8.计算结果(1)基础尺寸:长(a)=m,宽(b)=m,高(h)=m,基础底标高m。
塔吊基础承载力计算
塔吊基础承载力计算根据机械租赁公司提供的数据,塔吊最大支反力为1200KN(单桩)。
由于本桩机承台刚度小,对桩的约束有限,且塔吊四个支腿分别安装在四个桩顶,所以桩不考虑承台抗冲切以及群桩效应。
1、桩顶轴向压力设计值“N=F+GN=1200+1.2×25×(4×2+2×1)×0.8=1360KN2、桩承载力设计值单桩竖向承载力极限值Q uk=Q sk+Q pk=u∑q sik l i+q pk A pQ uk= Q sk+Q pk =0.6×π(2.8×20+4.5×40+2.4×40+1.6×40+5×100+3.7×50)+1400×π×0.3²Q uk=2428.6KN桩身承载力设计值R= Q sk/r s+Q pk/r p因为r s= r p=1.7R= Q uk/1.7=2428.6/1.7=1428.6 KN3、验算R0N=0.9×1360<R=1428.6 KN 满足要求其中:F——作用于桩顶承台顶面的竖向力设计值G——承台自重r0——桩基重要性系数,取0.9;N——轴心竖向力作用下基桩的竖向力设计值;R ——基桩的竖向力设计值;Q sk——单桩总极限侧阻力标准值;Q pk——单桩总极限端阻力标准值;q sik——桩侧第i层土的极限侧阻力标准值(按《建筑桩基技术规范》JGJ94——94表5.2.8.1取值)q pk——极限端阻力标准值(按《建筑桩基技术规范》JGJ94——94表5.2.8.2取值)l i——桩穿越第I层土的厚度A p——桩端面积u——桩身周长;r s、r p——分别为桩侧阻抗力分项系数、桩端阻抗力分项系数(按《建筑桩基技术规范》JGJ94——94表5.2.2取值)。
塔吊桩基础计算
塔吊桩基础计算一、基本参数塔吊型号 QTZ80A基础埋深 D=3.8 m承台长度 Lc=5.5 m承台宽度 Bc=5.5 m承台厚度 Hc=1.35 m桩直径 d=800 m桩间距 a=3.4 m箍筋间距 S=200 mm二、矩形承台弯矩的计算图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。
1、作用于桩基承台顶面的竖向力设计值计算其中 F1 自重(包括压重) F1=245 kNF2 最大起重荷载 F2=60 kN经过计算 F=(245+60)×1.2=305 kN2、桩基承台的自重计算其中 D 基础埋深 D=3.8 mLc 承台长度 Lc=5.5 mBc 承台宽度 Bc=5.5 mHc 承台厚度 Hc=1.35 m经过计算 G=25×5.5×5.5×1.35+20×5.5×5.5×3.8=3319.94 kN3、轴向压力设计值计算依据《建筑桩技术规范》JGJ94-94的第5.1.1条其中 n 单桩个数 n=4 个F 作用于桩基承台顶面的竖向力设计值 F=305 kNG 桩基承台的自重 G=3319.94 kNMx,My 承台底面的弯矩设计值 Mx=My=840 kNxi,yi 单桩相对承台中心轴XY方向的距离,当M沿四桩中两个对角桩时 yi=2.4 m经过计算 Ni=(305+3319.94)÷4+840×2.4÷(2×2.4)^2=1081.23 kN4、矩形承台弯矩计算依据《建筑桩技术规范》JGJ94-94的第5.6.1条扣除承台自重的单桩桩顶竖向力设计值其中 n 单桩个数 n=4 个a 桩间距 a=3.4 mF 作用于桩基承台顶面的竖向力设计值 F=305 kNG 桩基承台的自重 G=3319.94 kNM 承台底面的弯矩设计值 M=840 kN.m经过计算 Ni1=(305+3319.94)÷4+840÷2×(3.4÷2)÷(2×(3.4÷2)^2)-3319.94÷4=199.78 kN 矩形承台弯矩其中 xi,yi 单桩相对承台中心轴的XY方向距离 xi=yi=0.45 m Ni1 扣除承台自重的单桩桩顶竖向力设计值 Ni1=199.78 kN 经过计算 Mx1=My1=2×199.78×0.45=179.8 kN.m三、矩形承台截面主筋的计算依据《混凝土结构设计规范》(GB50010-2002)第7.5条其中 M 计算截面处的弯矩设计值 M=179.8 kN.mh0 承台计算截面处的计算高度 h0=承台厚-50mm=1.3 mfy 钢筋受拉强度设计值 fy=210 N/mm2。
塔吊基础计算书
配重高度hp(m)
0.70
基础混凝土强度
C35
3、计算简图
二、计算过程:
1. 修正地基承载力设计值:(本基础设计不考虑上部覆土)
f = fk+ηb×r×( b-3)+ηd×rm×( d-0.5)=
208.12
kN/m2
其中:
基础宽度的地基承载力修正系数ηb=
0.3
基础深度的地基承载力修正系数ηd=
fy为钢筋的抗拉、抗压强度设计值查规范
fy=
300
N/mm2
最小配筋面积
Asmin=ρbh=
9375
mm2
其中:
ρ为基础最小配筋率
0.0015
查表得配筋
Φ28 @ 125双向
截面积As(mm2)
13816
mm2
满足要求
冲击承载力Fl≤0.7βhpft×bm×ho=
3512507
N
其中:
βhp为受冲切承载力截面高度影响系数
0.94
ft为混凝土的抗拉强度设计值查表得ft=
1.57
N/mm2
c的取值:
1.6
m
bm为冲切破坏最不利一侧计算长度
bm=(c+bb)/2=
2.81
m
bb==c+2h0=
4.02
m
h0为截面有效高度h0=h-as=
Pmax=2×(F2+G1+G2+G3)/(3×l×a)=
165.01
kN/m2
Pmax
<
1.2f=
249.75
kN/m2
基础底面处的平均压力值Pk
Pk=Pmax/2=
82.50
7种塔吊基础计算
7种塔吊基础计算在塔吊建设中,基础计算是非常重要的环节。
一个良好的基础设计可以确保工程的安全和稳定,减少不必要的损失和事故。
在该文档中,我们将探讨七种常见的塔吊基础计算。
1. 常规混凝土基础常规混凝土基础是最常见的塔吊基础,通常需要考虑以下因素: - 塔吊载荷 - 土壤承载能力 - 基础尺寸和形状 - 混凝土配方和强度等级基础计算需要考虑上述因素,以保证基础的稳定性和安全性,有助于塔吊的使用寿命。
2. 锚固式基础锚固式基础主要用于需要更强的支撑力的情况下,例如在高风区域和高层建筑物的塔吊。
锚固基础的设计通常依靠锚杆的力量来提供更强的支撑力。
3. 沉桩式基础当需要在地面较松散的区域建设塔吊时,沉桩式基础是最好的选择,可以大幅度增加塔吊的稳定性和安全性。
沉桩需要在土中钻孔并注入混凝土,以确保桩的固定性和地基的稳定性。
4. 层式基础层式基础是针对较大塔吊设计的一种基础计算方式。
它往往需要考虑塔吊中心的重力位置,以及需要排除的竖向压力等因素。
5. 礁石式基础在海边或山区等特殊的环境中,基础计算往往需要考虑土壤情况和承载能力。
在这种情况下,较好的选择是借助现有的天然石块或制作石头基础。
要确保石块和基础的完整性和可靠性。
6. 波纹管式基础波纹管式基础是一种非常新颖的基础设计,它一般用于地面不平的区域。
此类基础的主要特点是拼接波纹钢,形成一个管状构建,容易拆卸并移植至其他场地。
它的使用范围非常广泛,配合现代工程设备可缩短基础设计周期。
7. 内置塔身基础内置塔身基础是一种能够提高塔吊在建设过程中稳定性的技术。
这种基础的设计中,塔吊身体自身被认为是一部分基础。
确保塔吊内部重心的位置和表面载荷分布可以大幅度增加塔吊在建设过程中的稳定性和安全性。
每种基础设计都有自己的特殊性,需要根据实际情况进行选择。
我们需要考虑每个因素的影响,并确保设计的基础具有足够的载荷能力和稳定性。
基础计算的可能性不仅在于适合建筑物的设计,还需要考虑施工工序、时限和实际预算。
塔吊计算
塔吊基础受力的计算一、已知的参数A、桩、承台和塔吊的参数桩:Φ600mm;桩长L:南塔吊桩长L=10M,北塔吊桩长L=11M;砼为C25配筋为:主筋10Φ14、箍筋φ8@200(螺旋)、φ12@2000加强箍筋。
桩承台尺寸:B×H×L=4800mm×4800mm×1350mm;承台埋深d=1.0M;地下水位在地面下0.5M。
B、N1,N2—基础所受的水平力,单位:KN;N3—基础所受的垂直力,单位KN;M1,M2—基础所受的倾翻力矩,单位:KN·M;M3—基础所受的扭矩,单位:KN·M。
C、2台塔吊所处位置的地质状况表:二、承载计算过程:桩承台重量G d=1.2×4.8×4.8×1.35×25-1×10×4.8×4.8×0.5=817.9KN㈠单桩竖向承载力设计值:Rd=R sk/γs+R pk/γp=U p∑f si l i/γs+ f p A p /γp南塔吊单桩承载力设计值、R sk= U p∑f si l i=1.2×(1.2×15+2.7×6+2×23+0.9×37+0.9×47+0.5×160)=283KN同理可得:北塔吊单桩承载力设计值R sk =1.2×(1.2×15+5×6+2.3×23+1.3×37+0.4×47+0.5×160)=297.4KN因为R sk(南)=283KN<R sk(北)=297.4KN,所以以下按南塔吊桩L=10M计算。
R pk=f p·A p=5500×π·(0.6)2/4=1544.3KNρp=R sk/(R pk+R sk)=1554.3/(1554.3+283)=0.845由规范查得:γs=γp=1.67R d= R sk/γs+R pk/γp=283/1.67+1554.3/1.67=1100.2KN单桩抗拔承载力:R d'= U p∑λi f si l i/γs+G pG p=1.0×25×π·(0.6)2/4×10-1.2×10×π·(0.6)2/4=36.7KN·MR d'=0.6×283/1.67+36.7=138.4KN㈡倾翻稳定性验算:a、核算工作状态:N d=γo(F dv+G d)/n=0.9×(513×1.35+817.9)/4=339.9KN<R d=1100.2KNN di =γo(F dv+G d)/n±γo(M d+ F nd×h)x i/∑x i2=339.9±0.9×(1252×1.35+24.5×1.35×1.35)/4×1.8=339.9±216.9KN由此可见,桩全部受压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7 种塔吊基础计算目录一、单桩基础计算二、十字交叉梁基础计算三、附着计算四、天然基础计算五、三桩基础计算书六、四桩基础计算书七、塔吊附着计算一、塔吊单桩基础计算书一. 参数信息塔吊型号:QT60,自重(包括压重)F1=245.00kN,最大起重荷载F2=60.00kN塔吊倾覆力距M=600.00kN.m,塔吊起重高度H=50.00m,塔身宽度B=1.60m混凝土强度:C35,钢筋级别:Ⅱ级,混凝土的弹性模量 Ec=14500.00N/mm2桩直径或方桩边长 d=2.50m,地基土水平抗力系数 m=8.00MN/m4桩顶面水平力 H0=100.00kN,保护层厚度:50mm二. 塔吊基础承台顶面的竖向力与弯矩计算1. 塔吊自重(包括压重)F1=245.00kN2. 塔吊最大起重荷载F2=60.00kN作用于桩基承台顶面的竖向力 F=1.2×(F1+F2)=366.00kN塔吊的倾覆力矩 M=1.4×600.00=840.00kN.m三. 桩身最大弯矩计算计算简图:1. 按照m法计算桩身最大弯矩:计算依据《建筑桩基础技术规范》(JGJ94-94)的第5.4.5条,并参考《桩基础的设计方法与施工技术》。
(1) 计算桩的水平变形系数(1/m):其中 m──地基土水平抗力系数;b0──桩的计算宽度,b0=3.15m。
E──抗弯弹性模量,E=0.67Ec=9715.00N/mm2;I──截面惯性矩,I=1.92m4;经计算得到桩的水平变形系数:=0.271/m(2) 计算 D v:D v=100.00/(0.27×840.00)=0.45(3) 由 D v查表得:K m=1.21(4) 计算 M max:经计算得到桩的最大弯矩值:M max=840.00×1.21=1018.87kN.m。
由 D v查表得:最大弯矩深度 z=0.74/0.27=2.78m。
四.桩配筋计算依据《混凝土结构设计规范》(GB50010-2002)第7.3.8条。
沿周边均匀配置纵向钢筋的圆形截面钢筋混凝土偏心受压构件,其截面受压承载力计算:(1) 偏心受压构件,其偏心矩增大系数按下式计算:式中 l0──桩的计算长度,取 l0=4.00m;h──截面高度,取 h=2.50m;h0──截面有效高度,取 h0=2.50m;1──偏心受压构件的截面曲率修正系数:解得:1=1.00A──构件的截面面积,取 A=4.91m2;2──构件长细比对截面曲率的影响系数,当l0/h<15时,取1.0,否则按下式:解得:2=1.00经计算偏心增大系数=1.00。
(2) 偏心受压构件应符合下例规定:式中 A s──全部纵向钢筋的截面面积,取 A s;r──圆形截面的半径,取 r=1.25m;r s──纵向钢筋重心所在圆周的半径,取 r s=1.20m;e0──轴向压力对截面重心的偏心矩,取 e0=2.78m;e a──附加偏心矩,取 e a=0.08m;──对应于受压区混凝土截面面积的圆心角与2的比值,取=0.53;t──中断纵向受拉钢筋截面面积与全部纵向钢筋截面面积的比值,当>0.625时,取t=0:由上两式计算结果:只需构造配筋!五.桩竖向极限承载力验算桩承载力计算依据《建筑桩基础技术规范》(JGJ94-94)的第5.2.2-3条根据第二步的计算方案可以得到桩的轴向压力设计值,取其中最大值N=366.00kN桩竖向极限承载力验算应满足下面的公式:其中 Q uk──最大极限承载力标准值;Q sk──单桩总极限侧阻力标准值;Q pk──单桩总极限端阻力标准值;q sik──桩侧第i层土的极限侧阻力标准值,按下表取值;q pk──极限端阻力标准值,按下表取值;u──桩身的周长,u=7.854m;A p──桩端面积,取A p=4.91m2;l i──第i层土层的厚度,取值如下表;厚度及侧阻力标准值表如下:序号土厚度(m) 土侧阻力标准值(kPa) 土端阻力标准值(kPa) 土类别1 2 22 500 粘性土或粉土2 2 13 500 粘性土或粉土3 0 61 675 砂土或碎石类土由于桩的入土深度为4m,所以桩端是在第2层土层。
最大压力验算:R=7.85×(2×22×1.00+2×13×1.00)+0.75×500.00×4.91=2395.76kN上式计算的R的值大于最大压力366.00kN,所以满足要求!二、塔吊十字交叉梁基础计算书一. 参数信息塔吊型号:QT60,自重(包括压重)F1=245.00kN,最大起重荷载F2=60.00kN塔吊倾覆力距M=600.00kN.m,塔吊起重高度H=37.00m,塔身宽度B=1.6m混凝土强度:C35,钢筋级别:Ⅱ级,桩直径或方桩边长 d=0.50m桩间距=3000mm交叉梁的宽度=300mm,交叉梁的高度=500mm,保护层厚度:50mm二. 塔吊对交叉梁中心作用力的计算1. 塔吊自重(包括压重)F1=245.00kN2. 塔吊最大起重荷载F2=60.00kN作用于塔吊的竖向力 F=1.2×(F1+F2)=366.00kN塔吊的倾覆力矩 M=1.4×600.00=840.00kN.m三. 交叉梁最大弯矩和桩顶竖向力的计算计算简图:十字交叉梁计算模型(最大弯矩M方向与十字交叉梁平行)。
两段梁四个支点力分别为R A=N/4-3M/2L R B=N/4+3M/2LR C=N/4 R D=N/4两段梁的最大弯矩分别为M1=N(L-b)2/16L+M/2 M2=N(L-b)2/16L得到最大支座力为 R max=R B,最大弯矩为 M max=M1。
桩顶竖向力 R max:R max=N/4+3M/2L=(366.00+38.18)/4+3×840.00/(2×4.24)=398.07kN交叉梁得最大弯矩 M max:M max=N(L-b)2/16L+M/2=(366.00+38.18)×(4.24-2.26)2/(16×4.24)+840.00/2=443.34kN.m 四. 交叉梁截面主筋的计算依据《混凝土结构设计规范》(GB50010-2002)第7.2条受弯构件承载力计算。
式中1──系数,当混凝土强度不超过C50时,1取为1.0,当混凝土强度等级为C80时,1取为0.94,期间按线性内插法确定;f c──混凝土抗压强度设计值;h0──交叉梁的有效计算高度。
f y──钢筋受拉强度设计值,f y=300N/mm2。
经过计算得s=443.34×106/(1.00×16.70×300.00×450.002)=0.437=1-(1-2×0.437)0.5=0.645s=1-0.645/2=0.677A sx= A sy=443.34×106/(0.677×450.00×300.00)=4847.21mm2。
五.桩承载力验算桩承载力计算依据《建筑桩技术规范》(JGJ94-94)的第4.1.1条根据第二步的计算方案可以得到桩的轴向压力设计值,取其中最大值N=398.07kN桩顶轴向压力设计值应满足下面的公式:其中0──建筑桩基重要性系数,取1.0;f c──混凝土轴心抗压强度设计值,f c=16.70N/mm2;A──桩的截面面积,A=0.165m2。
经过计算得到桩顶轴向压力设计值满足要求,只需构造配筋!七.桩竖向极限承载力验算及桩长计算桩承载力计算依据《建筑桩基础技术规范》(JGJ94-94)的第5.2.2-3条根据第二步的计算方案可以得到桩的轴向压力设计值,取其中最大值N=398.07kN桩竖向极限承载力验算应满足下面的公式:最大压力:其中 R──最大极限承载力;Q sk──单桩总极限侧阻力标准值:Q pk──单桩总极限端阻力标准值:s,p──分别为桩侧阻群桩效应系数,桩端阻群桩效应系数,承台底土阻力群桩效应系数;s,p──分别为桩侧阻力分项系数,桩端阻抗力分项系数,承台底土阻抗力分项系数;q sk──桩侧第i层土的极限侧阻力标准值,按下表取值;q pk──极限端阻力标准值,按下表取值;u──桩身的周长,u=1.571m;A p──桩端面积,取A p=0.16m2;l i──第i层土层的厚度,取值如下表;厚度及侧阻力标准值表如下:序号土厚度(m) 土侧阻力标准值(kPa) 土端阻力标准值(kPa) 土名称1 2 24 825 粘性土2 3 86.5 1900 粘性土3 4 64 4350 砂类土中挤土群桩由于桩的入土深度为3m,所以桩端是在第2层土层。
最大压力验算:R=1.57×(2×24×0.8+1×86.5×0.8)/1.65+1.64×1900.00×0.16/1.65=413.91kN 上式计算的R的值大于最大压力398.07kN,所以满足要求!三、塔吊附着计算塔机安装位置至建筑物距离超过使用说明规定,需要增长附着杆或附着杆与建筑物连接的两支座间距改变时,需要进行附着的计算。
主要包括附着杆计算、附着支座计算和锚固环计算。
一、支座力计算塔机按照说明书与建筑物附着时,最上面一道附着装置的负荷最大,因此以此道附着杆的负荷作为设计或校核附着杆截面的依据。
附着式塔机的塔身可以视为一个带悬臂的刚性支撑连续梁,其内力及支座反力计算如下:风荷载取值 q=0.10kN/m塔吊的最大倾覆力矩 M=500kN.m10.0m 10.0m 10.0m 20.0mqM计算结果: N w=68.394kN二、附着杆内力计算计算简图:计算单元的平衡方程为:其中:三、第一种工况的计算塔机满载工作,风向垂直于起重臂,考虑塔身在最上层截面的回转惯性力产生的扭矩和风荷载扭矩。
将上面的方程组求解,其中从0-360循环,分别取正负两种情况,分别求得各附着最大的轴压力和轴拉力:杆1的最大轴向压力为:91.96 kN杆2的最大轴向压力为:0 kN杆3的最大轴向压力为:60.54 kN杆1的最大轴向拉力为:44.82 kN杆2的最大轴向拉力为:24.85 kN杆3的最大轴向拉力为:76.25 kN四、第二种工况的计算塔机非工作状态,风向顺着起重臂,不考虑扭矩的影响。
将上面的方程组求解,其中=45,135,225,315, Mw=0,分别求得各附着最大的轴压力和轴拉力。
杆1的最大轴向压力为:68.29 kN杆2的最大轴向压力为:0 kN杆3的最大轴向压力为:52.45 kN杆1的最大轴向拉力为:43.90 kN杆2的最大轴向拉力为:0.00 kN杆3的最大轴向拉力为:62.75 kN五、附着杆强度验算1.杆件轴心受拉强度验算验算公式:=N/A n≤f其中 N──为杆件的最大轴向拉力,取N=76.25kN;──为杆件的受拉应力;A n──为杆件的的截面面积,本工程选取的是14号工字钢,查表可知 A n=2150mm2;经计算,杆件的最大受拉应力=76.25×1000/2150=35.47N/mm2。