信息光学课件 信息光学理论1B-德尔塔函数与傅里叶变换
信息光学中的傅里叶变换
为了克服这些局限性,未来的研究将更加注重发展新型的 光学器件和技术,如光子晶体、超表面和量子光学等。这 些新技术有望为傅里叶光学的发展带来新的突破和机遇, 推动光学领域的技术进步和应用拓展。同时,随着人工智 能和机器学习等领域的快速发展,将人工智能算法与傅里 叶光学相结合,有望实现更高效、智能的光波信号处理和 分析。
信息光学中的傅里叶变换
目录
• 傅里叶变换基础 • 信息光学基础 • 信息光学中的傅里叶变换 • 傅里叶变换在信息光学中的应用
实例 • 傅里叶变换的数学工具和软件包
01
傅里叶变换基础
傅里叶变换的定义
傅里叶变换是一种数学工具,用于将 一个信号或函数从时间域或空间域转 换到频率域。在信息光学中,傅里叶 变换被广泛应用于图像处理和通信系 统的 编程语言,具有广泛的应 用领域。
R语言是一种统计计算语 言,广泛应用于数据分析 和可视化。
ABCD
C的开源科学计算软件包 如FFTW等可用于计算傅 里叶变换,并支持并行计 算以提高效率。
R语言的科学计算库如 fftw等可用于计算傅里叶 变换,并支持多种数据类 型和可视化方式。
光的波动理论
光的波动理论认为光是一种波动现象,具有波长、频率、相 位等特征,能够发生干涉、衍射等现象。
光的波动理论在光学领域中具有基础性地位,是研究光的行 为和性质的重要工具。
光的量子理论
光的量子理论认为光是由粒子组成的,这些粒子被称为光子。该理论解释了光的 能量、动量和角动量等物理量的本质。
光的量子理论在量子力学和量子光学等领域中具有重要应用,为现代光学技术的 发展提供了理论基础。
04
傅里叶变换在信息光学中的 应用实例
图像处理中的傅里叶变换
图像去噪
信息光学中的傅里叶变换
了图像科学、应用光学和光电子学的发展。可以认为它是光 学、光电子学、信息论和通讯理论的交叉学科。
信号频域分布特性的分析与处理 系统传输不同空间频率信号能力的分析与处理
空域←→频域
傅里叶分析
➢离散周期信号 ➢连续周期信号 ➢离散非周期信号 ➢连续非周期信号
F ( f x , f y )用模和幅角表示如下
F ( f x , f y ) F ( f x , f y ) exp j( f x , f y )
F( fx, fy)
( fx, fy)
2
F( fx, fy)
振幅谱 相位谱 功率谱
类似地,函数f (x,y)也可以用其频谱函数表示,即:
f (x, y) F( fx , f y ) exp j2 ( fx x f y y) dfxdf y = F -1{F ( f x , f y )}
但需说明的,为了物理学上描述方便起见,我们往往又用 理想化的数学函数来表示实际的物理图形,对这些有用的函 数而言,上面的三个条件中的一个或多个可能均不成立。例 如阶跃函数, 函数等就不满足存在条件。
因此,为了在傅里叶分析中能有更多的函数来描述物理图 形,有必要对傅里叶变换的定义作一些推广。
三、广义傅里叶变换
4、平移特性
F f ( x x0 , y y0 ) exp j2 ( fx x0 f y y0 ) F ( fx , f y )
F exp j2 ( fx0 x f y0y) f (x, y) F ( fx fx0 , f y f y0 )
f (x, y)
f
f (x x0, y y0)
(1)互相关定理
F f ( x , y ) ★g( x , y ) F( fx, fy ) G( fx , f y )
《信息光学》第一章 傅里叶分析
1、一些常用函数
函数的常用性质 a) 筛选性质
x x , y y x, y dxdy x , y
0 0 0 0
b) 对称性
( x) ( x)
1 | | x0
c) 比例变化性质
(x x0 )
(x
矩形函数
三角形函数 sinc函数 高斯函数 圆域函数 描述不同类型的“图像”信号
***图像信息的体现:强度分布、颜色
脉冲函数(函数)
梳状函数
1、一些常用函数 1)阶跃函数 (Step function) 定义
1 x 0 1 step x x0 2 x0 0
相位板的振幅透过率
1、一些常用函数 3)矩形函数 (Rectangle function) 定义 应用
1 x rect a 0
2 others
x a
常用矩形函数表示狭缝、矩孔的透 过率;它与某函数相乘时,可限制 该函数自变量的范围,起到截取的 作用,故又常称为“门函数”。
圆孔光瞳的非相干脉冲响应 以及圆孔的夫琅和费衍射图样
1、一些常用函数
需要特别说明的是,上面提到的常用函数有的本身就是二维函
数,而那些只给出一维形式的函数也具有二维形式,这里不再赘 述,只给出这些常用二维函数的图形化表示。 二维矩形函数
x x0 y y 0 x x0 y y0 rect ( , ) rect ( )rect ( ) b d b d
ramp ( x x0 ) b
slope=1/b
slope=1/2
ramp (
x 1 ) 2
1
0 x0 x0+b -4 -3 -2
信息光学课件
电磁场与麦克斯韦方程
电磁场的基本概念
电磁场是由电场和磁场组成的, 它们之间存在相互作用。
麦克斯韦方程
描述了电磁场变化的四个基本方程 ,包括电场的散射方程、磁场的散 射方程、电场的波动方程和磁场的 波动方程。
电磁场的能量守恒
电磁场在空间中传播时,其能量不 会消失也不会凭空产生,即电磁场 的能量守恒。
将光学传感技术应用于物联网领域,实现智能化 、远程化和自动化的监测和控制。
3
光学传感器的集成与小型化
通过集成和优化光学器件,实现光学传感器的微 型化和便携化,满足不同应用场景的需求。
05 信息光学实验与实践教学 环节设计
实验内容与目标设定
实验内容
信息光学实验包括干涉、衍射、光学 信息处理等基本实验,以及一些综合 性和创新性实验。
信息光学课件
目录
CONTENTS
• 信息光学概述 • 信息光学基础理论 • 信息光学器件与系统 • 信息光学前沿技术与发展趋势 • 信息光学实验与实践教学环节设计 • 信息光学课程评价与总结反思环节设计
01 信息光学概述
信息光学定义与特点
信息光学定义
信息光学是一门研究光学信息的 获取、传输、处理、存储和显示 的科学。
傅里叶变换与信息光学
傅里叶变换
是一种将时域信号转换为频域信号的数学工具,常用于信号处理 和图像处理等领域。
信息光学的基本概念
信息光学是一门研究光波在空间和时间上传递、处理和存储信息的 科学。
信息光学的应用
信息光学在通信、生物医学成像、军事等领域有着广泛的应用,如 光纤通信、光学显微镜、光学雷达等。
03 信息光学器件与系统
光学器件分类与特点
主动光学器件
信息光学chap1傅里叶分析
a
0
x2 + y2 circ a
1.1.7 高斯函数
Gaussian Function
Gaus(x) = exp(-px2) Gaus(0) = 1 S=1 是非常平滑的函数,即 各阶导数均连续.
Gaus(x)
x
0
二维情形:
Gaus(x)Gaus(y)=exp[- p(x2+y2)] 可代表单模激光束的光强分布
1.1.8复指数函数 Complex exponential function
Aexp(j)=Acos + jAsin
w = 2p
A 0 对于简谐振动, = 2p t
:振子的位相角
推广到二维:
Aexp[j 2p (fxx+fyy)]
注意
以上定义的函数,其宗量均无量纲。在处理实际 问题时,要根据所取的单位采用适当的缩放因子。 例: 以 rect(x) 代表单缝。若x单位为cm,则 rect(x) 代表宽度为1cm 的单缝。若x单位为mm, 则 rect(x/10) 代表宽度为1cm 的单缝。
当n=k,二者定义域和值域都一样。左边=右边。 证毕。 例题2:写出下图函数g (x)的表达式。
g(x)
1
………
b 0 x0
……….
x
写出第一个δ函数的表达形式: 写出第n个δ函数的表达形式:
d ( x - x0 )
d ( x - x0 - nb)
0
写出g(x)的表达形式:
n -
d (x - x
一维矩形函数定义
x - x0 1 x - x0 1, rect ( ) a 2 a 0, 其它
傅里叶变换专题教育课件
Ω
-
2
3双边奇指数信号
et
f
(t )
e t
旳傅里叶变换为 :
t 0 t 0
f (t) 1
0
t
F () f (t)e jt dt
-1
0 et e jt dt et e jt dt
0
1
j
2 2 2
| F() |
其幅度频谱和相位频谱为
|
F
()
|
2
2
||
2
() 2
2
0 0
2.在任何有限区间内,只有有限个最大值和最小值。
3.在任何有限区间内,只有有限个不连续点,而且在 每个不连续点上信号都必须取有限值,这时傅里叶 变换收敛于间断点两边函数值旳平均值。
常见非周期信号旳傅里叶变换
1矩形脉冲信号
f(t)
E
E f (t )
0
| t |
2
| t |
2
-
0
t
2
2
E:脉冲幅度,τ:脉冲宽度。其傅里叶变换为
信号可进行傅里叶变换旳条件: 一般来讲,若信号函数满足绝对可积条件,即:
f (t) dt
则信号可进行傅里叶变换。注:此式只是信号函数进行傅里叶变换 旳充分条件。在引入广义函数后,有些不满足此式旳信号函数也能够 进行傅里叶变换。
周期信号旳傅里叶变换:
设有周期性矩形脉冲信号f(t),
E
f (t )
“非周期信号都能够用正弦信号旳 加权积分来表达”——傅里叶旳第 二个主要论点
§3 傅里叶变换
3.2信号旳傅里叶变换 傅里叶变换有下列积分定义:
: 傅里叶正变换公式
F () F [ f (t )] f (t )e jt dt
傅立叶光学(信息光学)_课件
0 x<0
step(x)
1
0
step(x-x0),间断点移到x0处
x
二、符号函数:描述某孔径一半宽有 的位相差
1 x>0 Sgn(x)= 0 x=0
-1 x<0
Sgn(x)=2step(x)-1
sgn(x)
1
x
0
1
三、矩形函数(门函数):表示狭缝、矩孔的透过
傅立叶光学
第一章 绪论 第二章 线性系统与Fourier分析 第三章 光波的标量衍射理论 第四章 透镜的Fourier变换性质 第五章 光学成像系统的频率响应 第七章 光学全息 第八章 空间滤波与光学信息处理
第一章 绪论
一、“信息光学”的含义 信息光学=数学工具(级数、积分)+经典光学 (光波的传播、干涉、衍射、成像、光学信息的记 录与再现、光学信号的处理)
2、光学中的线性叠加原理uv uuv uuv 波的迭加原理:矢量:E E1( p) E2( p) L
n
相干光场:复振幅:U(p)=Ui ( p) i 1
n
非相干光场:光强:I ( p) Ii ( p) i 1
3、利用系统的特性来求输入/输出关系 “三步法则”: 第一步:将复杂输入分解为简单输入函数之和 第二步:分别求出简单函数的输出 第三步:将简单函数输出加起来
2.1 线性系统的基本概念 一、系统:同类事物按一定关系所组
成的整体
特征(性):不管内部结构,只是全体与外 部的关系,是整体行为,综 合行为
二、物理系统:由一个或多个物理装
置所组成的系统
1、概念:考虑与外形的信息交换 2、内容:输入/输出关系 3、特点:系统的外特性 4、作用:对输入信号变换作用——运算作用
信息光学第一章ppt
例: f(x)={
x, 0
0<x<1 其它
求 f (-2x+4)
解1: f(-2x+4)= f[-2(x-2)],包含折叠、压缩、平移
先折叠
再压缩
f(x)
f(-x)
f(-2x)
0 1 x -1 0 x
-1/2 0 x
最后平移
f[-2(x-2)]
0 3/2 x
11
解2: 根据已知条件有
f
(2x
4)
x a/2
其它
应用:单缝透过率、门函数、时间脉冲波形.
标准型:
1 x 1/ 2
rect(x)
0
else
15
y
0
x0
a
x
rect ( x x0 ) a
16
17
18
2 sinc函数 应用:单缝或矩形孔的夫琅和费衍射的振幅分布
强度分布为sinc函数平方
注意归一化和非归一 化的两种表达方法。
xa / 2
原函数f(x)在某点x的值卷积后用某一段(x-a/2, x+a/2) 的积分值来表示, 等价于这段区间的平均值。
50
卷积的运算性质
交换律:f (x) h(x) h(x) f (x) 分配律:[aw(x) bv(x)] h(x) aw(x) h(x) bv(x) h(x) 分配律体现了卷积的线性特性。 结合律:[v(x) w(x)] h(x) v(x) [w(x) h(x)] 可分离变量特性: 如果参与卷积的两个函数是可分离的, 其 二维卷积也是可分离的。(极坐标和直角坐标)
1 a
1 a
当a 0时, (ax)dx lim m (ax)dx lim am (ax)d ax
傅里叶变换光学课件
相因子判断法
• 知道了衍射屏的屏函数,就可以确定衍射场,进 而完全确定接收场。
• 但由于衍射屏的复杂性以及衍射积分求解的困难, 完全确定屏函数几乎是不可能的。
• 采取一定的近似方法获取衍射场的主要特征。 • 了解了屏函数的位相,则能通过研究波的位相改
变来确定波场的变化。这种方法称为相因子判断法。 • 一般都是在傍轴近似下进行判断。
52
除0级外,全开放 53
振动(电场强度)分布 像平面
4F系统
• 物平面O,变换平面T,像平面I:OTI系统
54
空间频率滤波举例 1. 网格实验
频 谱
像
(a)
(b)
(c)
焦平面 谱面
像面
(d)
55
➢若只让焦平面上的亮点透过在象平面上出现清洁 的光栅图形--其它图形滤掉。 ➢若挡住焦平面上的亮点在象平面上出现消除了光栅 线条的图形。
45
空间滤波
• 空间频率与波的衍射角相关, 可以据此做成低通、高通或带通的滤波装置
衍射屏或物的空间频率
低通
高通
带通
46
低通
高通
带通
47
阿贝(1874)—波特(1906)空间滤波实验 • 以黑白光栅为物,单色平行光照射 • 在傅氏面上加一可调狭缝,观察像的变化
48
像平面 可调光阑
傅氏面
黑白光栅
49
(c)
(d)
61
θ调制
0级
x
1级
光缝
花白 底白 叶白
蓝绿红 蓝绿红 蓝绿红
花
叶
底 红 绿蓝
白
底
蓝绿 红
花 叶
62
相衬显微镜
• 很薄的透明样品,例如生物切片,对光的 吸收很小,因而不同的部分反差较小,在 显微镜下观察,不容易分辨细节。这类样 品,不会引起透射光振幅的改变,所以不 是振幅型的;但由于各处折射率并不相同, 因而透射光的相位会有改变,是相位型的。
傅里叶变换课件
第三章付里叶级数和付里叶变换第三章主要包括以下几点内容:1、付里叶级数教学内容要点:(1)、三角函数的正交性(2)、周期信号的付里叶展开(3)、奇、偶函数的付里叶展开(4)、付里叶级数的指数形式2、付里叶变换教学内容要点:(1)付里叶变换式(2)奇异函数的付里叶变换3、付里叶变换的性质教学内容要点:(1)、线性(2)、奇、偶性(3)、对称性(4)、尺度变换(5)、时移特性(6)、频移特性(7)、卷积定理(8)、时域微分和积分(9)、频率微分和积分4、周期信号的付里叶变换教学内容要点:(1)正、余弦函数的付里叶变换(2)一般周期函数的付里叶变换第三章内容的学时分配:湖南文理学院12课时,芙蓉学院16课时。
分为4部分:一、傅里叶级数二、傅里叶变换三、傅里叶变换的性质四、周期信号的傅里叶变换一、傅里叶变换级数教学重点:1、傅里叶变换式;2、奇异函数的傅里叶变换教学难点:1、傅里叶变换式;2、奇异函数的傅里叶变换教学目的:1、掌握傅里叶变换式;2、掌握奇异函数的傅里叶变换教学方法:讲授法,演示法教学课时:文理学院3课时;芙蓉学院4课时教学过程:1.傅里叶变换二、 傅里叶变换教学重点:1、傅里叶变换式;2、奇异函数的傅里叶变换教学难点:1、傅里叶变换式;2、奇异函数的傅里叶变换教学目的:1、掌握傅里叶变换式;2、掌握奇异函数的傅里叶变换教学方法:讲授法,演示法教学课时:文理学院3课时;芙蓉学院4课时教学过程:2. 傅里叶变换对于非周期信号,重复周期T 趋于无限大,谱线间隔趋于无穷小量d ω,而离散频率n Ω变成连续频率ω。
在这种极限情况下,n F 趋于无穷小量,但Ω=⋅n n F T F π2可望趋于有限值,且为一个连续函数,通常记为F (j ω),即dt et f F j F tjn TT T nT ωωπω--∞→∞→⎰==22)(lim2lim)(得dt et f j F tj ωω-∞∞-⎰=)()(称)(ωj F 为非周期信号)(t f 的频谱密度函数。
《傅立叶变换光学》课件
光学设计:傅立叶光学在光学设计 领域也有着广泛的应用,如光学系 统设计、光学器件设计等。
傅立叶变换光学的发展历程
1807年,傅立叶提出傅立 叶变换理论
19世纪末,傅立叶变换在 光学领域得到应用
20世纪初,傅立叶光学理 论逐渐成熟
20世纪中叶,傅立叶光学 在成像、通信等领域得到 广泛应用
21世纪初,傅立叶光学在 生物医学、遥感等领域得 到进一步发展
傅立叶变换光学的应用领域
光学成像:傅立叶光学在光学成像 领域有着广泛的应用,如光学显微 镜、光学望远镜等。
光学测量:傅立叶光学在光学测量 领域也有着广泛的应用,如光学干 涉测量、光学衍射测量等。
添加标题
添加标题
添加标题
添加标题
光学通信:傅立叶光学在光学通信 领域也有着广泛的应用,如光纤通 信、光波导通信等。
傅立叶变换在调制和解调中的应用
傅立叶变换在调制中的应用:将信 号从时域转换为频域,便于传输和 处理
傅立叶变换在信号处理中的应用: 通过傅立叶变换,可以对信号进行 滤波、压缩、加密等处理
添加标题
添加标题
添加标题
添加标题
傅立叶变换在解调中的应用:将接 收到的信号从频域转换回时域,恢 复原始信号
傅立叶变换在通信系统中的应用: 傅立叶变换在通信系统中广泛应用, 如数字通信、无线通信、卫星通信 等
频谱分析:分析信 号的频率成分和能 量分布
滤波处理:通过傅 立叶变换进行滤波 处理,去除噪声或 提取特定频率成分
信号重构:将处理 后的频谱通过傅立 叶逆变换重构为时 域信号
图像的频谱分析和处理
傅立叶变换:将 图像从空间域转 换到频域
频谱分析:分析 图像的频率成分 和分布
频谱处理:对图 像的频率成分进 行修改和调整
最新信息光学2第一章 傅里叶变换光学与相因子分析方法ppt课件
▲特征表
余弦光栅的组合 (1) 平行密接 组合 G 1 · G 2 :
共有9 个衍射斑,分布于x′轴上,方向角分别为
(2) 正交密 接
组合 G 1 · G 2 :
(3) 复合光栅 设某光栅其屏函数含有两种频率成分:
屏函数曲线图
在光学领域,处理的是光信号,它是空间的三维函数, 不同方向传播的光用空间频率来表征,需用空间的三维函 数的傅里叶变换。
6.1 衍射系统 波前变换
光源:脉冲光源:发光短暂,激发一个波包而在空间传播。 连续光源:稳定地持续发光。激发一个长波列而在空间推移。
波场中的各点以与光源同样的时间特性稳定地持续 发生扰动,且扰动的基本形式是简谐式振荡。
)
z(1
2w04 2 z 2
)
1 2
有效 z 半 o ,w (0 ) 径 w 0 达 ; 到 腰 最 粗 小
曲率半径:各等相面的曲率中心不重合于一点,是 随光束的传播而移动。
( 1 ) 知 腰 位 w 0 置 w (z)r,(、 z) U ~ 腰 (x,y,z)粗 ( 2 ) 知w 某 、 r 一 w 0 、 z处 的
波前相因子分析法:根据波前函数的相因子,来判断其波场的 类型、分析其衍射场的主要特性。
两类典型相因子函数:
1.波前函数的相因子:平面波前与球面波前(系可供选择的两种基元成分)
(1)平面波 U ~ (x ,y ) A e i( ks 1 x i s n i2 n y ) 1
其空间角频率为
其空间频率为
特点:振幅A 为常数 ,与场点坐标无关。
位相因子是场点直角坐标的线性函数——线性相因子。
2. 单色球面波复振幅:
信息光学-傅立叶变换
设观察点P(x, y, z)与发散球面波中心的距离为r,
j(P) = k . r k = | k |=2 /l , 为波数. 表
(P(x,y,z))
k : 传播矢量
示由于波传播, 在单位长度 上引起的位相变化, 也表明
y
(r
球面波: k//r 了光场变化的“空间频率”
k
则P点处的复振幅:
U (P) a0 e jkr r
a0: 单位距 离处的光振
幅
球面波的等位相面: kr=c 为球面
源点S
z
0 x k: 传播矢量
#
球面波 : 空间分布
会聚球面波 U (P) a0 e jkr r
距离 r 的表达
若球面波中心在原点:
r x2 y2 z2
(P(x,y,z)) y (r
二、线性平移不变系统的脉冲响应或点扩散函数 ➢ 线性系统的脉冲响应(点扩散函数)为:
h(x2 , y2; , ) L{ (x1 , y1 )}
➢ 对于线性平移不变系统
L{ (x1 , y1 } h(x2 , y2; , ) h(x2 M , y2 M )
如果对输入、输出的取适当的标度,可使M=1,则
h(x2 , y2; , ) L{ (x1 , y1 } h(x2 , y2 )
h(x2 , y2 ) 称为线性平移不变系统的脉冲响应。
系统的输出: g(x2, y2 ) f ( , )h(x2 , y2 )dd f (x2, y2 ) * h(x2, y2 ) 其中h(x2, y2 )是系统对输入面坐标原点的点脉冲 (x1, y1)的输出响应。
傅里叶变换(课堂PPT)
f(t)21 2g()ejtd
F
f(t)2g()
.
46
例题4.9 求
2
1 t2
的傅里叶变换。
解:根据例题4.2,我们有,
F
e|t|
2
12
利用对偶性
2
F
2e||
1t2
.
47
利用对偶性来进一步分析和推导傅里叶变换的性质。 (1)下面将微分性质与对偶性结合,可得,
jt(xt) F d X() d
.
56
在这里,我们进一步来理解频谱 X( j) 的含义。
我们将一个信号除 [0,0] 以外的频率分量“滤掉”
x(t)
带通滤波器
x0 (t)
.
57
x0 (t) 的能量就等于
1 | 0 X(j)|2 d
2 0
可以说,| X(j0)|2 表示了信号 x (t ) 在 0 处的能量密度。
从这个意义上来说,
.
49
4.3.7 帕斯瓦尔(Parseval)定理 可以证明,对于能量有限信号
能谱密度
|x(t)|2d t1
|X(j
)|2d
2
信号在时域里面的能量
信号在频域里面的能量
.
50
对于周期信号,那么上面公式的左边将为无穷大。 我们有帕斯瓦尔定律的另一种形式
1
T0
|
T0
x(t)|2
d
t |ak
.
2
抽样函数或者称为采样函数:
Sa(x) sinx x
S(ax)S(a x) 偶函数
通过罗必塔法则,可以得到
Sa(0) 1
Sa()0
x 抽样函数右边的第一个过零点在
信息光学中的傅里叶变换
傅里叶变换的物理意义
频域分析
通过傅里叶变换可以将信号从时域转换到频域,从而可以分析信号的频率成分 和频率变化。
时频分析
傅里叶变换可以用于时频分析,即同时分析信号的时域特性和频域特性,对于 非平稳信号的处理尤为重要。
信息光学中的傅里叶变换
目 录
• 傅里叶变换基础 • 信息光学基础 • 傅里叶变换在信息光学中的应用 • 傅里叶变换的实验实现 • 傅里叶变换的未来发展与展望
01 傅里叶变换基础
定义与性质
傅里叶变换的定义
将一个时域信号转换为频域信号的过 程,通过使用傅里叶级数或傅里叶积 分进行转换。
傅里叶变换的性质
THANKS FOR WATCHING
感谢您的观看
核磁共振成像等,能够提供更准确的图像分析和诊断。
通信技术
02
傅里叶变换在通信技术领域中用于信号调制、解调以及频谱分
析等方面,有助于提高通信系统的性能和稳定性。
地球物理学
03
傅里叶变换在地球物理学领域中用于地震信号处理和分析,有
助于揭示地球内部结构和地质构造。
傅里叶变换面临的挑战与机遇
数据安全与隐私保护
傅里叶变换的应用领域
01
02
03
信号处理
傅里叶变换在信号处理领 域应用广泛,如滤波、频 谱分析、调制解调等。
图像处理
傅里叶变换在图像处理中 用于图像压缩、图像增强、 图像去噪等。
通信系统
在通信系统中,傅里叶变 换用于信号的调制和解调, 以及频谱分析和频分复用 等。
02 信息光学基础
信息光学的定义与特点
《傅里叶变换》课件
小波变换具有多尺度分析的特点,能够同时获得 信号在时间和频率域的信息,并且在时频域具有 很好的局部化能力。
应用
在信号处理、图像处理、语音识别等领域广泛应 用。
周期性和共轭对称性
总结词
周期性和共轭对称性是傅里叶变换的重要性质。
详细描述
由于傅里叶变换将时间域的函数映射到频率域,因此频谱具有周期性,即F(ω) = F(ω+2πn),其中n为整数。此 外,频谱还具有共轭对称性,即F*(ω) = F(-ω),这意味着频谱在频率轴上关于原点对称。这些性质在信号处理 、图像处理等领域有着广泛的应用。
线性性质
如果a和b是常数,f(t)和g(t)是可傅里叶变换的函数,那么 a*f(t)+b*g(t)也是可傅里叶变换的,并且其频域表示为 a*F(ω)+b*G(ω)。
时移性质
如果f(t)是可傅里叶变换的,那么f(t+a)也是可傅里叶变换 的,并且其频域表示为F(ω)e^(iωa)。
频移性质
如果f(t)是可傅里叶变换的,那么f(t)e^(iω0t)也是可傅里叶 变换的,并且其频域表示为F(ω-ω0)。
04
傅里叶逆变换
傅里叶逆变换的定义
01
傅里叶逆变换是将频域函数转 换为时域函数的过程。
02
它与傅里叶变换是可逆的,即 给定一个频域函数,通过傅里 叶逆变换可以恢复原始的时域 函数。
03
傅里叶逆变换的公式为:f(t) = ∫F(ω)e^(iωt)dω,其中f(t)是 时域函数,F(ω)是频域函数。
傅里叶逆变换的性质
在图像处理中的应用
图像频域滤波
通过傅里叶变换将图像从空间域 转换到频域,可以在频域中对图 像进行滤波处理,如去除噪声、
《傅里叶变换详解》课件
原理:利用信号的稀疏性,通过测量矩阵将高维信号投影到低维空间,再 利用优化算法重构出原始信号。
单击添加标题
应用:在图像处理、通信、雷达、医学成像等领域有广泛应用,能够实现 高分辨率和高帧率成像,降低数据采集成本和存储空间。
单击添加标题
展望:随着压缩感知技术的不断发展,未来有望在人工智能、物联网、无 人驾驶等领域发挥重要作用,为信号处理领域带来更多创新和突破。
应用:傅里叶逆变换在信号处理、图像处理等领域有着广泛的应用
逆变换的应用场景
信号处理:用于信号的滤波、去噪、压缩等 图像处理:用于图像的增强、去噪、边缘检测等 音频处理:用于音频的滤波、去噪、压缩等 通信系统:用于信号的调制、解调、编码、解码等
06
傅里叶变换的计算机实现
离散傅里叶变换(DFT)
傅里叶变换的分类
连续傅里叶变换:适用于连续信号,将信号分解为不同频率的正弦波
离散傅里叶变换:适用于离散信号,将信号分解为不同频率的正弦波
快速傅里叶变换:适用于快速计算傅里叶变换,通过FFT算法实现 短时傅里叶变换:适用于分析非平稳信号,将信号分解为不同频率的正弦 波,同时考虑时间因素
03
傅里叶变换的性质
04
傅里叶变换的应用
在信号处理中的应用
滤波器设计:设计滤波器以 消除或增强特定频率的信号
信号分解:将信号分解为不 同频率的谐波
信号压缩:通过傅里叶变换 进行信号压缩,减少数据量
信号分析:分析信号的频率 成分,了解信号的特性和变
化规律
在图像处理中的应用
傅里叶变换可以用于图像的平滑处理,去除噪声 傅里叶变换可以用于图像的锐化处理,增强图像的细节 傅里叶变换可以用于图像的频域滤波,去除图像中的特定频率成分 傅里叶变换可以用于图像的压缩和编码,减少图像的数据量
信息光学常用函数傅立叶变换相关卷积线性系统二维光场PPT课件
傅里叶-贝塞耳变换
G
2
0
rg
(r
)
J
0
(2
r
)dr
——正变换
g(r) 2 0 G()J0 (2r)d ——逆变换
-
22
傅里叶变换
-
23
广义傅里叶变换
周期函数:1. 只有有限个极值点和间断点, 2. 绝对可积
非周期函数: 延拓为周期函数,
光学中不少有用的函数,如:脉冲函数、阶跃函 数等,不能满足以上条件,因此必须把以上傅里 叶变换定义推广,才能求出其傅氏变换式
4. 二者相乘;乘积曲线下 面积的值 即为g(x).
g(x) 1
-1 0
x 1
-
38
卷积效应
展宽:一般来说,卷积的宽度
等于被卷积函数的宽度之和。
平滑:被积函数经过卷积运算,
其微细结构在一定程度上被消除, 函数本身的起伏变得平缓圆滑。
-
39
卷 积 运算定律
1.交换律
fx * h (x ) h x * fx
-
33
傅里叶变换与光学
例:振幅型透射光栅的傅里叶级数展开
光栅常数: d 2b
透射率 T ( :x )
--空间周期为d 的函数 --空间位置 x 有确定的函数关系
{ T (x) 1 md x (2m 1)d / 2, m 0,1,2 0 其他
-
34
傅里叶变换与光学
展开为傅里叶级数
T (x)
互相关不满足交换律自相关autocorrelation互相关在两函数有相似性时出现峰值自相关则在位移到重叠时出现极大值45自相关与互相关的比较互相关自相关46线性系统分析线性平移不变系统linearshiftinvariantsystemxygxyhxyhxy输入和输出的变换关系不随空间位置而变化h仅依赖于观察点与脉冲输入点坐标在x和y方向的相对间距与坐标本身的绝对数值无关
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 傅里叶光学的基本思想 • 通讯系统与光学系统的联系 • 傅里叶光学与经典光学的比较 • 光学中常用的几种函数及其光学上的意义 • δ函数及其主要性质 • Comb函数与抽样 • 傅里叶变换的数学和物理意义 • 的基本思想 • 通讯系统与光学系统的联系 • 傅里叶光学与经典光学的比较 • 光学中常用的几种函数及其光学上的意义 • δ函数及其主要性质 • Comb函数与抽样 • 傅里叶变换的数学和物理意义 • 空间频率与空间频谱
13
思考题
• 傅里叶光学的基本思想 • 通讯系统与光学系统的联系 • 傅里叶光学与经典光学的比较 • 光学中常用的几种函数及其光学上的意义 • δ函数及其主要性质 • Comb函数与抽样 • 傅里叶变换的数学和物理意义 • 空间频率与空间频谱
20