2019年高考理科数学全国2卷(附答案)

合集下载

2019年高考数学真题及答案(含全国1卷,全国2卷,全国3卷共3套)

2019年高考数学真题及答案(含全国1卷,全国2卷,全国3卷共3套)

绝密★启用前 全国卷Ⅰ2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A . B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为A .B .C . D二、填空题:本题共4小题,每小题5分,共20分。

2019年高考全国2卷真题(含语文,理科数学,英语)及答案

2019年高考全国2卷真题(含语文,理科数学,英语)及答案

2019年普通高等学校招生全国统一考试全国2卷含语文,理科数学,英语学科绝密★启用前2019年普通高等学校招生全国统一考试语文本试卷共22题,共150分,共10页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。

杜甫之所以能有集大成之成就,是因为他有可以集大成之容量。

而其所以能有集大成之容量,最重要的因素,乃在于他生而禀有一种极为难得的健全才性——那就是他的博大、均衡与正常。

杜甫是一位感性与理性兼长并美的诗人,他一方面具有极大极强的感性,可以深入到他接触的任何事物,把握住他所欲攫取的事物之精华;另一方面又有着极清明周至的理性,足以脱出于一切事物的蒙蔽与局限,做到博观兼美而无所偏失。

这种优越的禀赋表现于他的诗中,第一点最可注意的成就,便是其汲取之博与途径之正。

就诗歌体式风格方面而言,古今长短各种诗歌他都能深入撷取尽得其长,而且不为一体所限,更能融会运用,开创变化,千汇万状而无所不工。

我们看他《戏为六绝句》之论诗,以及与当时诸大诗人,如李白、高适、岑参、王维、孟浩然等,酬赠怀念的诗篇中论诗的话,都可看到杜甫采择与欣赏的方面之广;而自其《饮中八仙歌》《曲江三章》《同谷七歌》等作中,则可见到他对各种诗体运用变化之神奇工妙;又如从《自京赴奉先县咏怀五百字》《北征》及“三吏”“三别”等五古之作中,可看到杜甫自汉魏五言古诗变化而出的一种新面貌。

就诗歌内容方面而言,杜甫更是无论妍媸巨细,悲欢忧喜,宇宙的一切人物情态,都能随物赋形,淋漓尽致地收罗笔下而无所不包,如写青莲居士之“飘然思不群”,写空谷佳人之“日暮倚修竹”;写丑拙则“袖露两肘”,写工丽则“燕子风斜”;写玉华宫之荒寂,予人以一片沉哀悲响;写洗兵马之欢忭,写出一片欣奋祝愿之情、其涵蕴之博与变化之多,都足以为其禀赋之博大、均衡与正常的证明。

2019年全国高考Ⅱ卷(理数) - 含参考答案

2019年全国高考Ⅱ卷(理数) - 含参考答案

2019年普通高等学校招生全国统一考试(Ⅱ卷)数学(理工类)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合=<-=>+-=B A },01|{},065|{A 2则x x B x x x ________)(3,.D ,-1)3C.(- ,1)2(-. ,1)A.(-+∞∞B2. 设z=-3+2i,则在复平面内z 对应的点位于________A.第1象限B.第2象限C.第3象限D.第4象限3. 已知=⋅===B C AB ,1|B C |),,3(AC ),3,2(AB 则t ________A. -3B.-2C.2D.34. 2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面着陆,我国航天事业取得又一重大成就。

实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系。

为解决这个问题,发射了嫦娥四号中继器“鹊桥”,鹊桥沿着围绕地月拉格拉日2L 点的轨道运行。

2L 点是平衡点,位于地月连线的延长线上。

设地球质量为1M ,月球质量为2M ,地月距离为R,2L 点到月球的距离为r,根据牛顿运动定律和万有引力定律,r 满足方程:312221RM )r R (r M r)(R M +=++.设325433)1(33.ααααααα≈+++=计算中的值很小,因此在近似由于R r ,则r 的近似值为________R 3M M D. R M 3M C.R 2M M B. R M M A.1231231212⋅⋅⋅⋅ 5. 演讲比赛共有9位评委分别给出某位选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分。

7个有效评分与9个原始评分相比,不变的数字特征是________A.中位数B.平均数C.方差D.极差6. 若a>b,则________||||.D 0C. 33. 0 b)-A.ln(a 33b a b a B b a >>-<>7. 设βαβα//为两个平面,则,的充要条件是________平行内有两条相交直线与平行内有无数条直线与βαβα. A.B 垂直于同一个平面,平行于同一条直线βαβα.D ,C.8. 若抛物线13)0(2222=+>=py p x p px y 的焦点是椭圆的一个焦点,则p=________A.2B.3C.4D.89. 下列函数中,以单调递增的是为周期,且在区间)2,4(2πππ________ A.f(x)=|cos2x|B.f(x)=|sin2x|C.f(x)=cos|x|D.f(x)=sin|x|10. 已知=+=∈αααπαsin ,12cos 2sin 2),2,0(则________552.D 33C. 55. 51A.B 11. 设F 为双曲线C:)0,0(12222>>=-b a by a x的右焦点,O 为坐标原点,以OF 为直径的圆与圆222a y x =+交于P ,Q 两点。

2019全国2卷高考数学理科含答案详解(珍藏版)

2019全国2卷高考数学理科含答案详解(珍藏版)

绝密★启用前2019年普通高等学校招生全国统一考试(全国2卷)理科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设集合A ={x|x 2﹣5x+6>0},B ={x|x ﹣1<0},则A ∩B =()A .(﹣∞,1)B .(﹣2,1)C .(﹣3,﹣1)D .(3,+∞)2.(5分)设z =﹣3+2i ,则在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3.(5分)已知=(2,3),=(3,t ),||=1,则?=()A .﹣3B .﹣2C .2D .34.(5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:+=(R +r ).设α=.由于α的值很小,因此在近似计算中≈3α3,则r 的近似值为()A .RB .RC .R D .R5.(5分)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A .中位数B .平均数C .方差D .极差6.(5分)若a >b ,则()A .ln (a ﹣b )>0B .3a<3bC .a 3﹣b 3>0D .|a|>|b|7.(5分)设α,β为两个平面,则α∥β的充要条件是()A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.(5分)若抛物线y 2=2px (p >0)的焦点是椭圆+=1的一个焦点,则p =()A .2B .3C .4D .89.(5分)下列函数中,以为周期且在区间(,)单调递增的是()A .f (x )=|cos2x|B .f (x )=|sin2x|C .f (x )=cos|x |D .f (x )=sin|x|10.(5分)已知α∈(0,),2sin2α=cos2α+1,则sin α=()A .B .C .D .11.(5分)设F 为双曲线C :﹣=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ|=|OF |,则C 的离心率为()A .B .C .2D .12.(5分)设函数f (x )的定义域为R ,满足f (x+1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x ﹣1).若对任意x ∈(﹣∞,m],都有f (x )≥﹣,则m 的取值范围是()A .(﹣∞,]B .(﹣∞,]C .(﹣∞,]D .(﹣∞,]二、填空题:本题共4小题,每小题5分,共20分。

2019年高考全国二卷数学试题答案解析-全国二卷数学答案解析

2019年高考全国二卷数学试题答案解析-全国二卷数学答案解析

2
3p p
∴ p 2 p ,∴ p 8 . 2


9.
下列函数中,以
2
为周期且在区间
4
, 2
单调递增的是(

A. f (x) | cos 2x |
B. f (x) | sin 2x |
C. f (x) cos | x |
D. f (x) sin | x |

M1

3 3

3

M2 3M 1
,可得
r

3
M2 3M1
R

5. 演讲比赛共有 9 位评委分别给出某位选手的原始评分,评定该选手的成绩时,从 9 个原 始评分中去掉 1 个最高分、1 个最低分,得到 7 个有效评分。7 个有效评分与 9 个原始评分 相比,不变的数字特征是( ) A. 中位数 B.平均数 C.方差 D.极差 A
对于 D,函数 f (x) sin | x | 的周期T ,不符合题意.
10. 已知 (0, ) , 2 sin 2 cos 2 1,则 sin (

2
1
A.
5
5
B.
5
C. 3 3
25
D.
5
B
(0, ) , 2 sin 2 cos 2 1 4 sin cos 2 cos2 , 2
足方程 M1 (R r)2
M2 r2

(R

r)
M1 R3
。设= r R
。由于
的值很小,因此在近似计算中
3 3 +3 4 5 (1 )2
3 3 ,则 r 的近似值为(

2019年高考理数全国卷2及答案解析

2019年高考理数全国卷2及答案解析

数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前2019年普通高等学校招生全国统一考试·全国Ⅱ卷理科数学本试卷满分150分,考试时间120分钟.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}2–56|0A x x x =+>,{}–10|B x x =<,则A B =I( )A .(–1)∞,B .(–2)1,C .(–3)–1,D .(3)+∞,2.设–32z i =+,则在复平面内z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 3.已知()2,3AB =u u u r ,(3)AC t =,uuu r,1BC =uu u r ,则AB BC =⋅uu u r uu u r( ) A .–3 B .–2 C .2D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r满足方程:121223()()M M M R r R r r R +=++.设rR α=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为( ) ABCD5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 ( ) A .中位数 B .平均数 C .方差 D .极差 6.若a b >,则 ( ) A .0()ln a b -> B .33a b < C .330a b -> D .a b >7.设α,β为两个平面,则αβP 的充要条件是 ( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面 8.若抛物线()220y px p =>的焦点是椭圆2231x y pp+=的一个焦点,则p =( ) A .2 B .3 C .4D .89.下列函数中,以2π为周期且在区间42ππ⎛⎫ ⎪⎝⎭,单调递增的是( )A .()cos 2f x x =B .()sin 2f x x =毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)C .()cos f x x =D .()f x sin x =10.已知π20a ⎛⎫∈ ⎪⎝⎭,),2sin2cos2+1αα=,则sin α=( ) A .15 BCD11.设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为( )ABC .2D12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是( )A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分。

2019年高考理科数学全国2卷(附答案)

2019年高考理科数学全国2卷(附答案)

12B-SX-0000020-绝密★启用前__2019 年普通高等学校招生全国统一考试_ -__-理科数学 全国 II 卷__- 本试卷共 23 小题,满分 150 分,考试用时 120 分钟:号 -(适用地区:内蒙古 / 黑龙江 /辽宁 /吉林 /重庆 /陕西 / 甘肃 /宁夏 /青海 /新疆 / 西藏 /海南 )学 -注意事项:_-__1. 答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

_-__2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

__ -如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在___答题卡上。

写在本试卷上无效。

_ 线__ 封_ 3. 考试结束后,将本试卷和答题卡一并交回。

_密__ -__12 小题,每小题 5 分,共 60 分。

在每个小题给出的四个选: -一、 选择题:本题共 名 - 项中,只有一项是符合题目要求的。

姓 -2- 1.设集合 A={ x|x -5x+6>0} , B={ x|x-1<0} ,则 A ∩B=班-A . (-∞, 1)B . (-2, 1)C .(-3 , -1)D . (3, +∞)___ -_ 2 .设 z=-3+2i ,则在复平面内 z 对应的点位于_-__A .第一象限B .第二象限C .第三象限D .第四象限年-____ 线 3 .已知 AB =(2,3) , AC =(3 ,t), BC =1,则 AB BC= _ _ 封_A . -3B . -2C . 2D . 3_密_-__4. 2019 年 1 月 3 日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,_- ___ -我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键___-_ 技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中__ -___ -继星 “鹊桥 ”,鹊桥沿着围绕地月拉格朗日 L 2 点的轨道运行. L 2 点是平衡点,__ -_M 1,月球质量为 M 2 ,地月距离为: - 位于地月连线的延长线上.设地球质量为校 学 -R , L 2 点到月球的距离为 r ,根据牛顿运动定律和万有引力定律,地月连线的延长线上.设地球质量为M 1 ,月球质量为 M 2 ,地月距离为R, L 2 点到月球的距离为 r ,根据牛顿运动定律和万有引力定律,r 满足方程:M 1M 2M 1(R r) 2r 2(R r ) 3 .R设r ,由于 的值很小,因此在近似计算中3 33453 3,则R(1 ) 2r 的近似值为A .M2RB .M2RC .33M2RD .3M2RM 12M 1M 13M 15.演讲比赛共有 9 位评委分别给出某选手的原始评分,评定该选手的成绩时,从9 个原始评分中去掉 1 个最高分、 1 个最低分, 得到 7 个有效评分 .7 个有效评分与 9 个原始评分相比,不变的数字特征是 A .中位数B .平均数C .方差D .极差6.若 a>b ,则A . ln(a- b)>0B .3a<3bC . a 3- b 3>0D . │a │ >│b │7.设 α, β为两个平面,则α∥ β的充要条件是A . α内有无数条直线与β平行B .α内有两条相交直线与β平行C . α, β平行于同一条直线D .α,β垂直于同一平面2x2y2p=8.若抛物线 y =2px(p>0) 的焦点是椭圆1 的一个焦点,则3p p- 1 -- 2 -12B-SX-0000020A .2B . 3C . 4D . 89.下列函数中,以为周期且在区间 ( , )单调递增的是242A .f(x)= │ cos x2│B . f(x)= │ sin 2x │C .f(x)=cos │x │D . f(x)= sin x │10.已知 α∈ (0, ), 2sin 2α=cos 2α+1,则 sin α=21B .5A .55C .3D .2535x 2y 21(a 0,b 0) 的右焦点, O 为坐标原点, 以 OF11.设 F 为双曲线 C :b2a2为直径的圆与圆 x2y 2a 2交于 P ,Q 两点 .若 PQ OF ,则 C 的离心率为A . 2B . 3C . 2D .512.设函数 f ( x) 的定义域为 R ,满足 f (x 1)2 f ( x) ,且当 x (0,1] 时,f (x )x(x 1) .若对任意 x (, m] ,都有 f ( x)8 ,则 m 的9取值范围是A .9 B .7,,43C .5 D .8,,23二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

2019年全国2卷 理科数学真题(解析版)

2019年全国2卷 理科数学真题(解析版)

19年全国2卷 理数一、选择题:1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B =A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞) 2.设z =-3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 3.已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A .-3 B .-2 C .2 D .3 4.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差 D .极差 6.若a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │ 7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y p p+=的一个焦点,则p =A .2B .3C .4D .89.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin │x │10.已知α∈(0,2π),2sin 2α=cos 2α+1,则sin α=A .15 B5 C3 D511.设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为ABC .2 D12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.14.已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________. 15.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________. 16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)三、解答题:17.如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.18.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.19.已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+ ,1434n n n b b a +-=-.(1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式.20.已知函数()11ln x f x x x -=-+. (1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e xy =的切线.21.已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.(二)选考题:共10分.请考生在第22、23题中任选一题作答。

2019年高考理科数学(2卷)答案详解

2019年高考理科数学(2卷)答案详解

2019年普通高等学校招生全国统一考试理科数学(II 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(集合)设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B =( ) A .(∞-,1) B .(–2,1)C .(–3,–1)D .(3,∞+)【解析】集合A ={x |x 2–5x +6>0}={x |x <2或x >3},集合B ={x |x <1},所以有A ∩B={x |x <1},即A 答案. 【答案】A2.(复数)设i z 23+-=,则在复平面内z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【解析】i z 23+-=,则z 的共轭复数为i z 23--=,所以在复平面内z 对应的点位于第三象限. 【答案】C3.(平面向量)已知AB =(2,3),AC =(3,t ),||BC =1,则AB BC ⋅=( ) A .–3 B .–2C .2D .3【解析】(1,3)=+=-BC BA AC t ,由于||1=BC ,所以03=-t ,即3=t ,(1,0)=BC .所以21302⋅=⨯+⨯=AB BC【答案】C4.(公式推导)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设rRα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为( ) A .21M R M B .212M R MC .2313M R M D .2313M R M【解析】∵=rR α,∴=r R α,代入121223()()+=++M M M R r R r r R 中得12122222(1)(1)+=++M M M R R R ααα12122(1)(1)+=++M M M ααα33453122333=3(1)++⎛⎫=≈ ⎪+⎝⎭M r M R ααααα所以有 2313=M r R M 【答案】C5.(概率统计)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A .中位数 B .平均数 C .方差D .极差【解析】根据几个数字特征的定义,很容易得出答案:去掉1个最高分、1个最低分,最后中位数不变. 【答案】A6.(函数)若a >b ,则( ) A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0D .|a |>|b |【解析】答案A :∵a >b ,∴a -b >0,无法判断ln(a −b )的正负;答案B :∵y =3x 为增函数,∴3a >3b ;答案C :∵y =x 3为增函数,∴a 3>b 3;答案D :当0>a >b 时,|a |<|b |.【答案】C7.(立体几何)设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】通过画图,采用排除法,很容易得到正确答案. 【答案】B8.(解析几何)若抛物线y 2=2px (p >0)的焦点是椭圆1322=+py p x 的一个焦点,则p =( ) A .2 B .3 C .4D .8【解析】抛物线y 2=2px (p >0)的焦点为)0,2(p,并且在x 轴上. 所以椭圆1322=+p y p x 的一个焦点为)0,2(p . 所以有p p22=,得p =8. 【答案】D9.(三角函数)下列函数中,以2π为周期且在区间)2,4(ππ单调递增的是( ) A .f (x )=|cos2x | B .f (x )=|sin2x | C .f (x )=cos|x |D .f (x )=sin|x |【解析】答案A :函数f (x )=|cos2x |的图像如图A9-1所示,其周期是函数f (x )=cos2x 的一半,即21π=T ,且在区间)2,4(ππ为单调递增的. 答案B :与答案A 类似,函数f (x )=|sin2x |的周期是函数f (x )=sin2x 的一半,即22π=T ,且在区间)2,4(ππ为单调递减的;答案C :函数f (x )=cos|x |为偶函数,其图像如图A9-2所示.由函数f (x )=cos|x |的图像可知,其周期π23=T ;答案D :与答案C 类似,由函数f (x )=sin|x |的图像可知,其不是周期函数. 【答案】A图A9-1 图A9-210.(三角函数)已知α∈(0,2π),2sin2α=cos2α+1,则sin α=( ) A .15B .55C .33D .255【解析】利用三角公式12cos 2sin 2+=αα化简得ααα2cos 2cos sin 4=ααcos sin 2=所以2cot =α,设α所对得边为1,则临边为2,斜边为5,所以55sin =α. 【答案】B11.(解析几何)设F 为双曲线C :22221(0,0)-=>>x y a b a b的右焦点,O 为坐标原点,以OF 为直径的圆与圆222+=x y a 交于P ,Q 两点.若=PQ OF ,则C 的离心率为( ) A .2 B .3C .2D .5【解析】如图A11所示. ∵OF 为直径,=PQ OF ,∴PQ 也是直径.,即点P 、Q 的坐标为)2,2(c c .把)2,2(c c 代入222+=x y a 得,222=c a . ∴22=e ,即2=e .图A11【答案】A12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【解析】由)(2)1(x f x f =+可得Z x x f t x f t∈⋅=+),(2)(,即Z x t x f x f t∈-⋅=),(2)(.∵当(0,1]∈x 时,()(1)=-f x x x ,1()[,0]4∈-f x ∴当(1,2]∈x 时,1(0,1]-∈x ,则)2)(1(2)1(2)(--=-⋅=x x x f x f ,1()[,0]2∈-f x∴当(2,3]∈x 时,2(0,1]-∈x ,则)3)(2(4)2(2)(2--=-⋅=x x x f x f ,()[1,0]∈-f x 函数()f x 的图像如图A12所示. 对任意(,]∈-∞x m ,都有8()9≥-f x ,因此(2,3]∈m 令98)3)(2(4)(-=--=x x x f ,得 37=x 或38=x . 由图A12可知,当37≤m 时,都有8()9≥-f x .图A12【答案】B二、填空题:本题共4小题,每小题5分,共20分。

2019年高考理科数学全国2卷(附答案)

2019年高考理科数学全国2卷(附答案)
12.设函数f(x)的定义域为R,满足f(x1)2f(x),且当x(0,1]时,
f(x)x(x1).若对任意x(,m],都有
8
f(x),则m的
9
取值范围是
A.
,
9
4
B.
,
7
3
C.
,
5
2
D.
,
8
3
- 3 -- 4 -
12B-SX-0000020
三、解答题:共70分。解答应写出文字说明、解答过程或演算步骤。第17~21题
假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果
⊥EC1.
相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结(1)ຫໍສະໝຸດ 明:BE⊥平面EB1C1;束.
(1)求P(X=2);
(2)若AE=A1E,求二面角B–EC–C1的正弦值.
(2)求事件“X=4且甲获胜”的概率.
注意事项:
1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在
答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
位于地月连线的延长线上.设地球质量为M1,月球质量为M
2,地月距离为
9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分
与9个原始评分相比,不变的数字特征是
A.中位数B.平均数C.方差D.极差
6.若a>b,则
a<3bC.a3-b3>0D.│a│>│b│

2019年高考理科数学全国卷2(附参考答案和详解)

2019年高考理科数学全国卷2(附参考答案和详解)

*%$
,%+
-%)
.%4
!一!选!!择!题!本!大!题!共!!!$!小 题!!每!小!题!"!分共 &# 分!在 每
小 题 给 出 的 四 个 选 项 中 只 有 一 项 是 符 合 题 目 要 求 的
!!设集合 +'!#"#$("#0&)#"#0'!#"#(!##"#则 +$0
'
$! ! %
*%$( A #!%
,%$($#!%
-%$(+#(!%
.%$+#0 A %
$!设%' (+0$/#则 在 复 平 面 内%!对 应 的 点 位 于
$! ! %
*%第 一 象 限
,%第 二 象 限
-%第 三 象 限
.%第 四 象 限
+!已 知++*0' $$#+%#++*.' $+#;%#"0+*."'!#则++*0.0+*.'
#3$##!)时#*$#%'#$#(!%!若 对 任 意 #3 $( A#D)#都

*$#%1
(
4 8
#则
D
的取




$! ! %
$ ) *% (A#8)
$ ) ,%
(
A
#7 +
$ ) -%
(
A
#" $
$ ) .%
(
A
#4 +
"! $A0B%$

2019年高考理科数学全国2卷(附答案)

2019年高考理科数学全国2卷(附答案)

-- 12B-SX-0000020- 绝密★启用前__2019 年普通高等学校招生全国统一考试_-__ - 理科数学全国 II 卷___- 本试卷共 23 小题,满分150 分,考试用时120 分钟:号 - (适用地区:内蒙古 / 黑龙江 /辽宁 /吉林 /重庆 /陕西 / 甘肃 /宁夏 /青海 /新疆 / 西藏 /海南 )学-注意事项:_-__1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

_-__2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

__- 如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在___ 答题卡上。

写在本试卷上无效。

_线__封_ 3.考试结束后,将本试卷和答题卡一并交回。

_密__-__12 小题,每小题5 分,共 60 分。

在每个小题给出的四个选:-一、选择题:本题共名- 项中,只有一项是符合题目要求的。

姓- 2- 1.设集合 A={ x|x -5x+6>0} , B={ x|x-1<0} ,则A∩B=班- A . (-∞, 1) B . (-2, 1) C.(-3 , -1) D. (3, +∞)_ _ _-_2.设 z=-3+2i,则在复平面内 z对应的点位于_-__A .第一象限B .第二象限C.第三象限D.第四象限年-____线3.已知 AB =(2,3) , AC =(3 ,t), BC =1,则 ABBC =__封_A.-3 B.-2 C. 2 D. 3_密_-__ 4. 2019 年 1 月 3 日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,_-___- 我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键___-_技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中__-___-继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2 点的轨道运行. L2 点是平衡点,__-_ M1,月球质量为 M2,地月距离为:-位于地月连线的延长线上.设地球质量为校学--- R, L2点到月球的距离为 r ,根据牛顿运动定律和万有引力定律,地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R, L2点到月球的距离为 r,根据牛顿运动定律和万有引力定律,r 满足方程:M1M 2M1(R r)2r2 (R r )3 .R设r ,由于的值很小,因此在近似计算中 3 33 45 3 3,则R (1 ) 2r的近似值为A .M 2 RB .M 2 R C.33M2R D .3M 2RM 12M 1M 13M 15.演讲比赛共有9 位评委分别给出某选手的原始评分,评定该选手的成绩时,从9 个原始评分中去掉 1 个最高分、 1 个最低分,得到 7 个有效评分 .7 个有效评分与 9 个原始评分相比,不变的数字特征是A .中位数B .平均数C.方差D.极差6.若 a>b,则A . ln(a- b)>0B .3a<3 b C. a3- b3>0 D .│a│ >│b│7.设α,β为两个平面,则α∥ β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C.α,β平行于同一条直线D .α,β垂直于同一平面2 x2y2p=8.若抛物线 y =2px(p>0) 的焦点是椭圆 1 的一个焦点,则3p p-1- -2---12B-SX-0000020A .2B . 3C . 4D . 8 9.下列函数中,以 为周期且在区间( , )单调递增的是 2 4 2A .f(x)= │ cosx2│ B . f(x)= │ sin 2x │C .f(x)=cos│x │ D . f(x)= sin x │10.已知 α∈(0, ), 2sin 2α=cos 2α+1,则 sin α=21B .5 A .5 5C .3 D . 2535x 2y 21(a 0,b 0) 的右焦点, O 为坐标原点, 以 OF11.设 F 为双曲线 C : b 2a 2为直径的圆与圆 x 2y 2a 2交于 P ,Q 两点 .若 PQOF ,则 C 的离心率 为A . 2B. 3C . 2 D. 512.设函数 f ( x) 的定义域为 R ,满足 f (x1) 2 f ( x) ,且当 x (0,1] 时, f (x ) x(x 1) .若对任意 x ( , m] ,都有 f ( x) 8,则 m 的9取值范围是A . 9B .7 , , 43 C .5 D .8 ,,2 3-- 二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

(完整版)2019年高考全国2卷理科数学及答案

(完整版)2019年高考全国2卷理科数学及答案

绝密★启用前2019年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)2.设z =-3+2i ,则在复平面内z 对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限3.已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅=A .-3B .-2C .2D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差 D .极差 6.若a >b ,则 A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0 D .│a │>│b │ 7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .89.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin│x │10.已知α∈(0,2π),2sin 2α=cos 2α+1,则sin α=A .15B .55C .33D .25511.设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为A .2B .3C .2D .512.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9(,]4-∞B .7(,]3-∞C .5(,]2-∞D .8(,]3-∞二、填空题:本题共4小题,每小题5分,共20分。

2019年全国卷高考数学(理科数学1,、2、3卷,有答案详解)

2019年全国卷高考数学(理科数学1,、2、3卷,有答案详解)

2019年普通高等学校招生全国统一考试(1卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=在[,]-ππ的图像大致为A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为2sin cos ++x xxxA .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+ D .A =112A+9.记为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2n S其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D二、填空题:本题共4小题,每小题5分,共20分。

2019年全国2卷数学试卷及参考答案

2019年全国2卷数学试卷及参考答案

2019年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求。

1.1212ii+=-( ) A .4355i --B .4355i -+C .3455i --D .3455i -+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( )A .9B .8C .5D .43.函数()2x xe ef x x --=的图象大致是( )4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=( ) A .4B .3C .2D .05.双曲线()2222100x y a b a b-=>,> )A .y =B .y =C .2y = D .y =6.在ABC △中,cos 2C =1BC =,5AC =,则AB =( )A .BCD .7.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图, 则在空白框中应填入( ) A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( )A .15B .56C .55D .2210.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是( )A .4π B .2π C .43πD .π11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=( )A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12C .13D .14二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.14.若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。

(完整版)2019年高考理科数学全国2卷

(完整版)2019年高考理科数学全国2卷

2019年普通高等学校招生全国统一考试理科数学一、选择题:本题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合}065|{2>+-=x x x A ,}01|{<-=x x B ,则=B A I ( )A.)1,(-∞B.)1,2(-C.)1,3(--D.),3(+∞2.设i z 23+-=,则在复平面内z 对应的点位于 ( )A.第一象限B.第二象限C.第三象限D.第四象限3.已知)(3,2=,),3(t =,1||=,则=⋅BC AB ( ) A.-3 B.-2 C.2 D.34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就。

实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系。

为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行。

2L 点事平衡点,位于地月连线的延长线上。

设地球质量为1M ,月球质量为2M ,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程: 312221)()(RM r R r M r R M +=++. 设Rr =α,由于α的值很小,因此在近似运算中325433)1(33ααααα≈+++,则r 的近似值为( ) A.R M M 12 B.R M M 122 C.R M M 3123 D.R M M 3123 5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效分。

7个有效评分与9个原始评分相比,不变的数字特征是 ( )A.中位数B.平均数C. 方差D. 极差6.若b a >,则( )A.0)ln(>-b aB. b a 33<C. 033>-b a D.||||b a >7.设βα,为两个平面,则βα//的充要条件是( )A. α内有无数条直线与β平行B.α内有两条相交直线与β平行C. α,β平行于同一条直线D.α,β垂直于同一条直线 8.若抛物线)0(22>=p px y 的焦点是椭圆1322=+p y p x 的一个焦点,则=p ( ) A.2 B.3 C.4 D.89.下列函数中,以2π为周期且在区间)2,4(ππ单调递增的是 ( ) A.|2cos |)(x x f = B.|2sin |)(x x f = C.||cos )(x x f = D.||sin )(x x f =10.已知)2,0(πα∈,12cos 2sin 2+=αα,则=αsin ( )A.51 B.55 C.33 D.552 11.设F 为双曲线)0,0(1:2222>>=-b a by a x C 的右焦点,O 为坐标原点,以OF 为直径的 圆与圆222a y x =+交于Q P ,两点,若||||OF PQ =,则C 的离心率为( ) A.2 B.3 C.2 D.512.设函数)(x f 的定义域为R ,满足)(2)1(x f x f =+,且当]1,0(∈x 时,)1()(-=x x x f .若对任意],(m x -∞∈,都有89)(-≥x f ,则m 的取值范围是( ) A.]49,(-∞ B.]37,(-∞ C.]25,(-∞ D.]38,(-∞ 二、填空题:本题共4小题,每小题5分,共20分。

(完整版)2019高考全国卷数学答案

(完整版)2019高考全国卷数学答案

绝密★启用前 2019年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-= D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A . B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为A .68πB .64πC .62πD .6π二、填空题:本题共4小题,每小题5分,共20分。

(完整版)2019年高考理科数学全国2卷(附答案)

(完整版)2019年高考理科数学全国2卷(附答案)

学校:___________________________年_______班姓名:____________________学号:________---------密封线---------密封线---------绝密★启用前2019年普通高等学校招生全国统一考试理科数学全国II 卷本试卷共23小题,满分150分,考试用时120分钟(适用地区:内蒙古/黑龙江/辽宁/吉林/重庆/陕西/甘肃/宁夏/青海/新疆/西藏/海南)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A={x|x 2-5x+6>0},B={ x|x-1<0},则A ∩B=A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)2.设z=-3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.已知AB uuu r=(2,3),AC uuu r =(3,t),BC uuu r =1,则AB BC uu u r uuu r =A .-3B .-2C .2D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r rR.设r R,由于的值很小,因此在近似计算中34532333(1),则r 的近似值为A .21M RM B .212M RM C .2313M RM D .2313M RM 5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差6.若a>b ,则A .ln(a-b)>0B .3a<3bC .a 3-b 3>0D .│a │>│b │7.设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.若抛物线y 2=2px(p>0)的焦点是椭圆2231xypp的一个焦点,则p=A .2B .3C .4D .89.下列函数中,以2为周期且在区间(4,2)单调递增的是A .f(x)=│cos 2x │B .f(x)=│sin 2x │C .f(x)=cos │x │D .f(x)= sin │x │10.已知α∈(0,2),2sin 2α=cos 2α+1,则sin α=A .15B .55C .33D .25511.设F 为双曲线C :22221(0,0)x ya b ab的右焦点,O为坐标原点,以OF 为直径的圆与圆222xy a交于P ,Q 两点.若PQ OF,则C 的离心率为A .2B .3C .2D .512.设函数()f x 的定义域为R ,满足(1)2 ()f xf x ,且当(0,1]x时,()(1)f x x x .若对任意(,]x m ,都有8()9f x ,则m的取值范围是A .9,4B .7,3C .5,2D .8,3二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -绝密★启用前2019年普通高等学校招生全国统一考试理科数学 全国II 卷本试卷共23小题,满分150分,考试用时120分钟(适用地区:内蒙古/黑龙江/辽宁/吉林/重庆/陕西/甘肃/宁夏/青海/新疆/西藏/海南) 注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、 选择题:本题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中, 只有一项是符合题目要求的。

1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A .(-∞,1) B .(-2,1) C .(-3,-1) D .(3,+∞)2.设z =-3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限 3.已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A .-3 B .-2 C .2D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R+=++.设rR α=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差 D .极差6.若a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │ 7.设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .8 9.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin│x │10.已知α∈(0,2π),2sin 2α=cos 2α+1,则sin α=A .15B.5C.3D.511.设F 为双曲线C :22221(0,0)x ya b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为 ABC .2D12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C . 5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分。

13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________. 14.已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.15.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)三、解答题:共70分。

解答应写出文字说明、解答过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值. 18.(12分)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.19.(12分)已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+ ,1434n n n b b a +-=-.(1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式.20.(12分)已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e xy =的切线.21.(12分)已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−12.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.(i)证明:PQG△是直角三角形;(ii)求PQG△面积的最大值.(二)选考题:共10分.请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分。

22.[选修4-4:坐标系与参数方程](10分)在极坐标系中,O为极点,点000(,)(0)Mρθρ>在曲线:4sinCρθ=上,直线l过点(4,0)A且与OM垂直,垂足为P.(1)当=3θπ时,求0ρ及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程. 23.[选修4-5:不等式选讲](10分)已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1]x ∈-∞时,()0f x <,求a 的取值范围.2019年普通高等学校招生全国统一考试理科数学 全国II 卷 参考答案1.A 2.C 3.C 4.D 5.A 6.C7.B8.D9.A10.B11.A 12.B 13.0.98 14.–315.616.26117.解:(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BEEC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知11Rt Rt ABE A B E ≅△△,所以45AEB ∠=︒,故AE AB =,12AA AB =.以D 为坐标原点,DA 的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D -xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,1,1)CE=-,1(0,0,2)CC =.设平面EBC 的法向量为n =(x ,y ,x ),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.z x y z =⎧⎨-+=⎩ 所以可取m =(1,1,0). 于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --的正弦值为2.18.解:(1)X =2就是10:10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P (X =2)=0.5×0.4+(1–0.5)×(1–04)=05. (2)X =4且甲获胜,就是10:10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分. 因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1. 19.解:(1)由题设得114()2()n n nn a b a b +++=+,即111()2n n n n a b a b +++=+.又因为a 1+b 1=l ,所以{}n n a b +是首项为1,公比为12的等比数列. 由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+.又因为a 1–b 1=l ,所以{}n n a b -是首项为1,公差为2的等差数列.(2)由(1)知,112n n n a b -+=,21n n a b n -=-. 所以111[()()]222n n n n n n a a b a b n =++-=+-,111[()()]222n n n n n n b a b a b n =+--=-+.20.解:(1)f (x )的定义域为(0,1),(1,+∞)单调递增.因为f (e )=e 110e 1+-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--, 所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0.又1101x <<,1111111()ln ()01x f x f x x x +=-+=-=-,故f (x )在(0,1)有唯一零点11x .综上,f (x )有且仅有两个零点. (2)因为0ln 01e x x -=,故点B (–ln x 0,01x )在曲线y =e x 上. 由题设知0()0f x =,即0001ln 1x x x +=-, 故直线AB 的斜率0000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----. 曲线y =e x在点001(ln ,)B x x -处切线的斜率是01x ,曲线ln y x =在点00(,ln )A x x 处切线的斜率也是1x , 所以曲线ln y x =在点00(,ln )A x x 处的切线也是曲线y =e x 的切线.21.解:(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点. (2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kx x y =⎧⎪⎨+=⎪⎩得x =记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得 22222(2)280k x uk x k u +-+-=.①设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uk y k=+.从而直线PG 的斜率为322212(32)2uk uk k u k ku k-+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i)得||2PQ =22||2PG k =+, 所以△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k,则由k >0得t ≥2,当且仅当k =1时取等号.因为2812tS t =+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169.因此,△PQG 面积的最大值为169.22.解:(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 3ρπ==由已知得||||cos 23OP OA π==.设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中cos ||23OP ρθπ⎛⎫-== ⎪⎝⎭, 经检验,点(2,)3P π在曲线cos 23ρθπ⎛⎫-= ⎪⎝⎭上. 所以,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭. (2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ== 即4cos ρθ=..因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ⎡⎤⎢⎥⎣⎦.所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π .23.解:(1)当a =1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥.所以,不等式()0f x <的解集为(,1)-∞. (2)因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x ----- 所以,a 的取值范围是[1,)+∞.。

相关文档
最新文档