2019-2020学年广东省珠海市香洲区八年级(上)期末数学试卷
2022-2023年广东珠海市香洲区八年级上数学试卷及答案
![2022-2023年广东珠海市香洲区八年级上数学试卷及答案](https://img.taocdn.com/s3/m/17aaf1ac80c758f5f61fb7360b4c2e3f57272597.png)
2022-2023学年广东省珠海市香洲区八年级上期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中.轴对称图形是()A.B.C.D.2.下列各线段中,能与长为4,6的两线段组成三角形的是()A.2B.8C.10D.123.下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+14.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A、B,下列结论中不一定成立的是()A.PA=PB B.OA=OB C.∠OAB=2∠PAB D.∠AOB=2∠PAB 5.在平面内,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形()A.三条角平分线的交点B.三条高线的交点C.三条中线的交点D.三条边垂直平分线的交点6.如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED 7.用科学记数法表示:0.000000109是()A.1.09×10﹣7B.0.109×10﹣7C.0.109×10﹣6D.1.09×10﹣68.若(x2﹣px+q)(x﹣3)展开后不含x的一次项,则p与q的关系是()A.p=3q B.p+3q=0C.q+3p=0D.q=3p9.如图是用4个相同的小长方形与1个小正方形镶嵌而成的正方形图案,已知图案的面积为25,小正方形的面积为9,若用x,y长示小长方形的两边长(x>y),请观察图案,以下关系式中不正确的是()A.4xy+9=25B.x+y=5C.x﹣y=3D.x2+y2=16 10.如图,点E是Rt△ABC、Rt△ABD的斜边AB的中点,AC=BC,∠DBA=20°,则∠DCE的度数是()A.25°B.30°C.35°D.40°二.填空题(共7小题,满分28分,每小题4分)11.(4分)因式分解:a3﹣9a=.12.(4分)当x=时,分式 ul h 无意义.13.(4分)一个多边形的每一个外角为30°,那么这个多边形的边数为.14.(4分)点(2,﹣3)关于y轴对称的点的坐标是.15.(4分)已知:a,b,c是等腰三角形ABC的三条边,其中a,b满足a2+b2﹣2a﹣8b+17=0,则△ABC的周长为.16.(4分)如图,在△ABC中,BA=BC,∠ABC=120°,BD⊥BC交AC于点D,BD=1,则AC的长.17.(4分)观察下列单项式(其中a≠0):﹣a,a2, , ,…,若按此规律继续写下去,则第11个单项式为.三.解答题(共3小题,满分18分,每小题6分)18.(6分)计算:|﹣3|﹣( hπ)0+(l )﹣1+(﹣1)2019h .19.(6分)如图,在△ABC中,AB=AC,∠BAC=100°,BD平分∠ABC,且BD=AB,连接AD、DC.(1)求证:∠CAD=∠DBC;(2)求∠BDC的度数.20.(6分)先化简,再求值:(1h l hl) h hl.其中a=﹣3.四.解答题(共3小题,满分24分,每小题8分)21.(8分)在防疫新冠状病毒期间,市民对医用口罩的需求越来越大.某药店第一次用3000元购进医用口罩若干个,第二次又用3000元购进该款口罩,但第二次每个口罩的进价是第一次进价的1.25倍,购进的数量比第一次少200个﹒(1)求第一次和第二次分别购进的医用口罩数量为多少个?(2)药店第一次购进口罩后,先以每个4元的价格出售,卖出了a个后购进第二批同款口罩,由于进价提高了,药店将口罩的售价也提升至每个4.5元继续销售卖出了b个后﹒因当地医院医疗物资紧缺,将其已获得口罩销售收入6400元和剩余全部的口罩捐赠给了医院﹒请问药店捐赠口罩至少有多少个?(销售收入=售价×数量)22.(8分)如图,已知△ABC,点B在直线a上,直线a,b相交于点O.(1)画△ABC关于直线a对称的△A1B1C1;(2)在直线b上画出点P,使BP+CP最小.23.(8分)如图,在等边三角形ABC中,AD是∠BAC的平分线,E为AD上一点,以BE 为一边且在BE下方作等边三角形BEF,连接CF.(1)求证:△ABE≌△CBF;(2)求∠ACF的度数.五.解答题(共2小题,满分20分,每小题10分)24.(10分)先化简,再求值: ul hl h ul h h ul,其中x满足x2﹣x﹣1=0.25.(10分)以点A为顶点作等腰Rt△ABC,等腰Rt△ADE,其中∠BAC=∠DAE=90°,如图1所示放置,使得一直角边重合,连接BD、CE.(1)试判断BD、CE的数量关系,并说明理由;(2)延长BD交CE于点F,试求∠BFC的度数;(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.2022-2023学年广东省珠海市香洲区八年级上期末数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中.轴对称图形是()A.B.C.D.解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不合题意.故选:C.2.下列各线段中,能与长为4,6的两线段组成三角形的是()A.2B.8C.10D.12解:设组成三角形的第三边长为x,由题意得:6﹣4<x<6+4,即:2<x<10,故选:B.3.下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+1解:2a+3b不能合并同类项,B错误;5a2﹣3a2=2a2,C错误;(a+1)2=a2+2a+1,D错误;故选:A.4.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A、B,下列结论中不一定成立的是()A.PA=PB B.OA=OB C.∠OAB=2∠PAB D.∠AOB=2∠PAB 解:∵OP平分∠AOB,PA⊥OA,PB⊥OB,∴PA=PB,故A选项正确;在Rt△AOP和Rt△BOP中,t h tܣh ,∴Rt△AOP≌Rt△BOP(HL),∴∠APO=∠BPO,OA=OB,故B选项正确;∵PA=PB,∴PO⊥AB,∴∠PAB+∠OAB=90°,∠OAB+∠AOP=90°,∴∠PAB=∠AOP,∴∠AOB=2∠PAB.故选项D正确;故选:C.5.在平面内,有一个点到三角形三个顶点的距离相等,则这个点一定是三角形()A.三条角平分线的交点B.三条高线的交点C.三条中线的交点D.三条边垂直平分线的交点解:∵点到三角形三个顶点的距离相等,∴这个点一定是三角形三条边的垂直平分线的交点,故选:D.6.如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED 解:∵△ABC≌△ADE,∴AC=AE,AB=AD,∠ABC=∠ADE,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.故A,C,D选项错误,B选项正确,故选:B.7.用科学记数法表示:0.000000109是()A.1.09×10﹣7B.0.109×10﹣7C.0.109×10﹣6D.1.09×10﹣6解:用科学记数法表示:0.000000109是1.09×10﹣7.故选:A.8.若(x2﹣px+q)(x﹣3)展开后不含x的一次项,则p与q的关系是()A.p=3q B.p+3q=0C.q+3p=0D.q=3p解:(x2﹣px+q)(x﹣3)=x3﹣3x2﹣px2+3px+qx﹣3q=x3+(﹣p﹣3)x2+(3p+q)x﹣3q,∵结果不含x的一次项,∴q+3p=0.故选:C.9.如图是用4个相同的小长方形与1个小正方形镶嵌而成的正方形图案,已知图案的面积为25,小正方形的面积为9,若用x,y长示小长方形的两边长(x>y),请观察图案,以下关系式中不正确的是()A.4xy+9=25B.x+y=5C.x﹣y=3D.x2+y2=16解:大正方形的面积=4个小长方形面积+1个小正方形面积,∴4xy+9=25;大正方形的边长为5,∴5=x+y;小正方形的边长为3,∴x﹣y=3;故选:D.10.如图,点E是Rt△ABC、Rt△ABD的斜边AB的中点,AC=BC,∠DBA=20°,则∠DCE的度数是()A.25°B.30°C.35°D.40°解:∵点E是Rt△ABD的斜边AB的中点,∴ED=EB h l AB,∴∠EDB=∠DBA=20°,∴∠DEA=∠EDB+∠DBA=40°,∵点E是Rt△ABC的斜边AB的中点,AC=BC,∴EC h l AB,CE⊥AB,∴∠DEC=130°,ED=EC,∴∠DCE=25°,故选:A.二.填空题(共7小题,满分28分,每小题4分)11.(4分)因式分解:a3﹣9a=a(a+3)(a﹣3).解:原式=a(a2﹣9)=a(a+3)(a﹣3),故答案为:a(a+3)(a﹣3).12.(4分)当x= 时,分式 ul h 无意义.解:∵分式 ul h 无意义,∴2x﹣7=0,解得:x h .故答案为: .13.(4分)一个多边形的每一个外角为30°,那么这个多边形的边数为12.解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.14.(4分)点(2,﹣3)关于y轴对称的点的坐标是(﹣2,﹣3).解:点(2,﹣3)关于y轴对称的点的坐标是(﹣2,﹣3),故答案为(﹣2,﹣3).15.(4分)已知:a,b,c是等腰三角形ABC的三条边,其中a,b满足a2+b2﹣2a﹣8b+17=0,则△ABC的周长为9.解:∵a2+b2﹣2a﹣8b+17=0,∴(a﹣1)2+(b﹣4)2=0,∴a﹣1=0,b﹣4=0,∴a=1,b=4.①当a为腰时,1+1<4,不能构成三角形;②当b为腰时,该三角形的周长为:1+4+4=9.故答案是:9.16.(4分)如图,在△ABC中,BA=BC,∠ABC=120°,BD⊥BC交AC于点D,BD=1,则AC的长3.解:∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵DB⊥BC,∴∠DBC=90°,∴∠ABD=∠ABC﹣∠DBC=30°,∴∠A=∠ABD,∵BD=1,∴AD=BD=1,∵CD=2BD=2,∴AC=AD+DC=1+2=3,故答案为3.17.(4分)观察下列单项式(其中a≠0):﹣a,a2, , ,…,若按此规律继续写下去,则第11个单项式为 ll l .解:∵单项式(其中a≠0):﹣a,a2, , ,…,∴第n个单项式是 h ,当n=11时,这个单项式是 ll llh h ll l ,故答案为: ll l .三.解答题(共3小题,满分18分,每小题6分)18.(6分)计算:|﹣3|﹣( hπ)0+(l )﹣1+(﹣1)2019h .解:原式=3﹣1+4﹣1﹣3=2.19.(6分)如图,在△ABC中,AB=AC,∠BAC=100°,BD平分∠ABC,且BD=AB,连接AD、DC.(1)求证:∠CAD=∠DBC;(2)求∠BDC的度数.证明(1)∵AB=AC,∠BAC=100°∴∠ABC=∠ACB=40°∵BD平分∠ABC∴∠ABD=∠DBC=20°∵BD=AB∴∠ADB=∠DAB=80°∴∠CAD=20°∴∠CAD=∠DBC(2)延长AD到点E,使得AE=BC,∵BD=AB=AC,∠CAD=∠DBC,∴△DBC≌△CAE,∴CD=CE,∠BDC=∠ACE,∴∠CDE=∠CED=α,∵∠ADB=80°,∴∠BDE=100°∴∠BDC=∠ACE=100°+α,∴20°+100°+α+α=180°,∴α=30°,∴∠BDC=130°.20.(6分)先化简,再求值:(1h l hl) h hl.其中a=﹣3.解:原式h h hl• hlu hh h hl• hlu hh l u .当a=﹣3时,原式=﹣1四.解答题(共3小题,满分24分,每小题8分)21.(8分)在防疫新冠状病毒期间,市民对医用口罩的需求越来越大.某药店第一次用3000元购进医用口罩若干个,第二次又用3000元购进该款口罩,但第二次每个口罩的进价是第一次进价的1.25倍,购进的数量比第一次少200个﹒(1)求第一次和第二次分别购进的医用口罩数量为多少个?(2)药店第一次购进口罩后,先以每个4元的价格出售,卖出了a个后购进第二批同款口罩,由于进价提高了,药店将口罩的售价也提升至每个4.5元继续销售卖出了b个后﹒因当地医院医疗物资紧缺,将其已获得口罩销售收入6400元和剩余全部的口罩捐赠给了医院﹒请问药店捐赠口罩至少有多少个?(销售收入=售价×数量)解:(1)设第一次购进医用口罩的数量为x个,∴第二次购进医用口罩的数量为(x﹣200)个,∴由题意可知: ttt h tt h1.25 ttt ,解得:x=1000,经检验,x=1000是原方程的解,∴x﹣200=800,答:第一次和第二次分别购进的医用口罩数量为1000和800个.(2)由(1)可知两次购进口罩共1800个,由题意可知:4a+4.5b=6400,∴a=1600h ,∴1800﹣a﹣b=1800﹣(1600h )﹣b=200u ,∵a≤1000,∴1600h 1000,∴b≥533l ,∵a,b是整数,∴b是8的倍数,∴b的最小值是536,∴1800﹣a﹣b≥267,答:药店捐赠口罩至少有267个22.(8分)如图,已知△ABC,点B在直线a上,直线a,b相交于点O.(1)画△ABC关于直线a对称的△A1B1C1;(2)在直线b上画出点P,使BP+CP最小.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,点P即为所求.23.(8分)如图,在等边三角形ABC中,AD是∠BAC的平分线,E为AD上一点,以BE 为一边且在BE下方作等边三角形BEF,连接CF.(1)求证:△ABE≌△CBF;(2)求∠ACF的度数.(1)证明:∵△ABC是等边三角形,∴AB=BC,∠ABE+∠EBC=60°,∵△BEF是等边三角形,∴BE=BF,∠CBF+∠EBC=60°,∴∠ABE=∠CBF,在△ABE 和△CBF ,ܣ h ܣ h ߄ h ߄,∴△ABE ≌△CBF (SAS );(2)解:∵等边△ABC 中,AD 是∠BAC 的角平分线,∴∠BAE =30°,∠ACB =60°,∵△ABE ≌△CBF ,∴∠BCF =∠BAE =30°,∴∠ACF =∠BCF +∠ACB =30°+60°=90°.五.解答题(共2小题,满分20分,每小题10分)24.(10分)先化简,再求值: ul hl h ul h h ul ,其中x 满足x 2﹣x ﹣1=0.解: ul hl h ul h h ul h ul h ul hl hl hl hl h u h ul h ul ,∵x 2﹣x ﹣1=0∴x 2=x +1,∴原式h ul ul h 1.25.(10分)以点A 为顶点作等腰Rt △ABC ,等腰Rt △ADE ,其中∠BAC =∠DAE =90°,如图1所示放置,使得一直角边重合,连接BD 、CE .(1)试判断BD 、CE 的数量关系,并说明理由;(2)延长BD 交CE 于点F ,试求∠BFC 的度数;(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.解:(1)CE=BD,理由如下:∵等腰Rt△ABC,等腰Rt△ADE,∴AE=AD,AC=AB,在△EAC与△DAB中,ܣ hܣܣ h ܣ h tܣ hܣ ,∴△EAC≌△DAB(SAS),∴CE=BD;(2)∵△EAC≌△DAB,∴∠ECA=∠DBA,∴∠ECA+∠CBF=∠DBA+∠CBF=45°,∴∠ECA+∠CBF+∠DCB=45°+45°=90°,∴∠BFC=180°﹣90°=90°;(3)成立,∵等腰Rt△ABC,等腰Rt△ADE,∴AE=AD,AC=AB,在△EAC与△DAB中,ܣ hܣܣ h ܣ h tܣ hܣ ,∴△EAC≌△DAB(SAS),∴CE=BD;∵△EAC≌△DAB,∴∠ECA=∠DBA,∴∠ECA+∠CBF=∠DBA+∠CBF=45°,∴∠ECA+∠CBF+∠DCB=45°+45°=90°,∴∠BFC=180°﹣90°=90°.。
广东省珠海市香洲区2019—2020学年度第一学期义务教育阶段质量检测七年级数学试卷及答案
![广东省珠海市香洲区2019—2020学年度第一学期义务教育阶段质量检测七年级数学试卷及答案](https://img.taocdn.com/s3/m/6fb6b6112e3f5727a5e962db.png)
=-a2-2b………………………………..5分
当a=-1,b=3时
原式=-(-1)2-2×3………………………………..6分
=-7………………………………8分
22.解:
(1)(+2)+(-3)+(+3)+(-4)+(+5)+(+4)+(-7)+(-2)...........................2分
2019-2020学年第一学期初一数学试卷参考答案及评分说明
说明:1.提供的答案除选择题外,不一定是唯一答案,对于与此不同的答案,只要是
正确的,同样给分.
2.评分说明只是按照一种思路与方法给出作为参考.在阅卷过程中会出现各种
不同情况,可参照评分说明,定出具体处理办法,并相应给分.
1、选择题(本大题10小题,每小题3分,共30分)
(2)先化简,再求值: .
22.的士司机李师傅从上午9:00~10:15在东西方向的九洲大道上营运,共连续运载八批乘客.若规定向东为正,向西为负,李师傅营运八批乘客里程如下:(单位:千米)+2,-3,+3,-4,+5,+4,-7,-2.
(1)将最后一批乘客送到目的地时,李师傅位于第一批乘客出发地的东面还是西面?距
三、解答题(一)(本大题3小题,每小题6分,共18分)
18.计算:
19.解方程:
20.如图,点M为AB中点,BN= AN,MB= ,求AB和MN的长.
四、解答题(二)(本大题3小题,每小题8分,共24分)
21.如图是一个长方体纸盒的表面展开图,已知纸盒中相对两个面上的数互为相反数.
2019-2020学年广东珠海香洲八年级上数学期末试题答案
![2019-2020学年广东珠海香洲八年级上数学期末试题答案](https://img.taocdn.com/s3/m/7b76a19dd1d233d4b14e852458fb770bf78a3ba6.png)
2019-2020学年第一学期初二数学试卷参考答案及评分说明说明:1.提供的答案除选择题外,不一定是唯一答案,对于与此不同的答案,只要是正确的,同样给分.2.评分说明只是按照一种思路与方法给出作为参考.在阅卷过程中会出现各种不同情况,可参照评分说明,定出具体处理办法,并相应给分.一、选择题(本大题10小题,每小题3分,共30分)1. D2. B3. C4.D5. B6.A7. D8.B9. C 10. C二、填空题(本大题7小题,每小题4分,共28分)11.m(m+3)(m-3) 12. x≠3 13. 120°14. (-3,-2)15.10或1116. 14317. a3n−1n2+1三、解答题(一)(本大题3小题,每小题6分,共18分)18.解:原式=−1+1−4+3 .................4分=−1.................6分19.解:由题意得:BA=BD .................1分∵∠B=50°∴∠BAD=∠BDA=65°.................3分∵∠BAD=∠DAC+∠C .................4分∴∠DAC=29°.................6分20.解:原式=x−2x−1×(x+1)(x−1)(x−2)2.................4分=x+1x−2.................5分当x=3时,原式=4 .................6分四、解答题(二)(本大题3小题,每小题8分,共24分)21. 解:设货车的速度为x千米/时,依题得.................1分360 x −3601.5x=9060.................3分解得x=80 .................5分经检验x=80为原方程的解(若没有检验扣1分)∴1.5x=120 .................6分答:货车的速度为80千米/时,小汽车的速度为120千米/时.(2)3.5×80-2×120=40(千米).................8分答:两车的距离是40千米.注:没有作答不扣分.22.(1)图略.................3分(2)∵A(-1,5),A1(1,5)∴AA1=2∴△AA1B1的面积=12×2×4=4.................6分(3)(0,4).................8分23.(1)证明:∵△ABC是等边三角形∴AB=AC,∠BAC=60°∵AE=ACFEDCBA12534G∴AE=AB ∵AF 平分∠EAB ∴∠1=∠2∴△AEF ≌△ABF (SAS )∴EF=BF .................3分 (2) ∠AFC=60° .................4分 理由如下在EC 上截取CG=EF ,连接AG ∵AE=AC ∴∠1=∠3 ∵EF=CG∴△AEF ≌△ACG (SAS ) ∴AF=AG ,∠4=∠1=∠2 ∵∠5+∠4=60° ∴∠2+∠5=60° ∴∠FAG=60°∴△AFG 是等边三角形 ∴∠AFC=60° .................8分 【其他解法类此给分】 五、解答题(三)(本大题2小题,每小题10分,共20分) 24.(1)= ,= .................2分 (2)ba+b=dc+d.................3分理由如下:∵ ab=cd∴ad=bc .................4分∴ba+b - dc+d =b (c+d )−d(a+b)(a+b )(c+d)=0∴ba+b = dc+d .................6分(3)∵a c=b d=t∴a=ct ,b=dt ∵2a+ca−c −3b+d b−d+2=3∴2t+1t−1−3t+1t−1=1解得 t=12 .................10分 【其他解法类此给分】 25.(1)(0,4) .................2分 (2)∵A (4,0) ∴OA=OB=4 ∵C (0,7) ∴OC=7过点D 作DE ⊥y 轴,垂足为E ∴∠DEC=∠AOC=90° ∵∠DCA=90°∴∠1+∠2=∠1+∠3=90° ∴∠2=∠3∴△DEC ≌△COA (AAS ) ∴DE=OC=7,EC=OA=4 ∴OE=OC+EC=11∴D (7,11) .................6分 (3)∵BE=OE-OB=11-4=7 ∴BE=DE∴△DBE 是等腰直角三角形 ∴∠DBE=45°y∵OA=OB∴∠OBA=45°∴∠DBA=90°∴∠5+∠ANB=90°∵∠DCA=90°∴∠4+∠DNC=90°∵∠DNC=∠ANB∴∠4=∠5∵∠DCA=90°∴∠ACM=∠DCN=90°∴△DCN≌△ACM(ASA)∴CM=CN .................10分。
2019-2020学年珠海市香洲区八年级下期末数学试卷((有答案))(已审阅)
![2019-2020学年珠海市香洲区八年级下期末数学试卷((有答案))(已审阅)](https://img.taocdn.com/s3/m/04281c1731b765ce050814a2.png)
广东省珠海市香洲区八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.直角三角形的两条直角边长分别为a和b,斜边长为c,已知c=13,b=5,则a=()A.1B.5C.12D.253.矩形的对角线一定具有的性质是()A.互相垂直B.互相垂直且相等C.相等D.互相垂直平分4.在今年的八年级期末考试中,我校(1)(2)(3)(4)班的平均分相同,方差分别为S12=20.8,S22=15.3,S32=17,S42=9.6,四个班期末成绩最稳定的是()A.(1)班B.(2)班C.(3)班D.(4)班5.函数y=﹣2x+3的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限6.如图,下列哪组条件不能判定四边形ABCD是平行四边形()A.AB∥CD,AB=CD B.AB∥CD,AD∥BCC.OA=OC,OB=OD D.AB∥CD,AD=BC7.下列计算正确的是()A.B.C.D.8.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b <kx﹣1的解集在数轴上表示正确的是()A.B.C.D.9.如图,把一张正方形纸对折两次后,沿虚线剪下一角,展开后所得图形一定是()A.三角形B.菱形C.矩形D.正方形10.如图,正方形ABCD的边长为4cm,动点P从点A出发,沿A→D→C的路径以每秒1cm 的速度运动(点P不与点A、点C重合),设点P运动时间为x秒,四边形ABCP的面积为ycm2,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.已知一组数据3、x、4、5、6的众数是6,则x的值是.12.若有意义,则字母x的取值范围是.13.定理“对角线互相平分的四边形是平行四边形”的逆定理是.14.将直线y=2x向上平移3个单位所得的直线解析式是.15.在正方形ABCD中,对角线AC=2cm,那么正方形ABCD的面积为.16.如图,已知等边三角形ABC边长为1,△ABC的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A5B5C5的周长为.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:18.已知矩形周长为18,其中一条边长为x,设另一边长为y.(1)写出y与x的函数关系式;(2)求自变量x的取值范围.19.如图,E、F分别平行四边形ABCD对角线BD上的点,且BE=DF.求证:∠DAF=∠BCE.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据:从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制如下:甲:78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙:93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40整理、描述数据按如下(表格)分数段整理、描述这两组样本数据:成绩x 人数部门40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲0011171乙100a b2(说明:成绩80分及以上为生产技能优秀,70﹣79分为生产技能良好,60﹣69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下(表格)表所示:部门平均数中位数众数甲78.377.575乙7880.581得出结论:(1)请补充表格1:a=,b=.(2)估计乙部门生产技能优秀的员工人数为;(3)可以推断出部门员工的生产技能水平较高,理由为:①;②.(从两个不同的角度说明你推断的合理性)21.如图,在△ABC中,E点是AC的中点,其中BD=2,DC=6,BC=,AD=,求DE的长.22.珠海长隆海洋王国暑假期间推出了两套优惠方案:①购买成人票两张以上(包括两张),则儿童票按6折出售;②成人票和儿童票一律按8.5折出售,已知成人票是350元/张,儿童票是240元/张,张华准备暑假期间带家人到长隆海洋王国游玩,准备购买8张成人票和若干张儿童票.(1)请分别写出两种优惠方案中,购买的总费用y(元)与儿童人数x(人)之间的函数关系式;(2)对x的取值情况进行分析,说明选择哪种方案购票更省钱.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.在矩形ABCD中,AB=8,BC=6,点E是AB边上一点,连接CE,把△BCE沿CE折叠,使点B落在点B′处.(1)当B′在边CD上时,如图①所示,求证:四边形BCB′E是正方形;(2)当B′在对角线AC上时,如图②所示,求BE的长.24.如图,一次函数y=kx+b的图象经过点A(0,4)和点B(3,0),以线段AB为边在第一象限内作等腰直角△ABC,使∠BAC=90°.(1)求一次函数的解析式;(2)求出点C的坐标;(3)点P是y轴上一动点,当PB+PC最小时,求点P的坐标.25.如图,菱形ABCD中,AB=6cm,∠ADC=60°,点E从点D出发,以1cm/s的速度沿射线DA运动,同时点F从点A出发,以1cm/s的速度沿射线AB运动,连接CE、CF和EF,设运动时间为t (s).(1)当t=3s时,连接AC与EF交于点G,如图①所示,则AG=cm;(2)当E、F分别在线段AD和AB上时,如图②所示,求证△CEF是等边三角形;(3)当E、F分别运动到DA和AB的延长线上时,如图③所示,若CE=cm,求t的值和点F到BC的距离.2019-2020学年广东省珠海市香洲区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的运算法则即可求出答案.【解答】解:(A)原式=2,故A不是最简二次根式;(C)原式=2,故C不是最简二次根式;(D)原式=,故D不是最简二次根式;故选:B.【点评】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.2.直角三角形的两条直角边长分别为a和b,斜边长为c,已知c=13,b=5,则a=()A.1B.5C.12D.25【分析】根据勾股定理计算即可.【解答】解:由勾股定理得,a==12,故选:C.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.3.矩形的对角线一定具有的性质是()A.互相垂直B.互相垂直且相等C.相等D.互相垂直平分【分析】根据矩形的性质即可判断;【解答】解:因为矩形的对角线相等且互相平分,所以选项C正确,故选:C.【点评】本题考查矩形的性质,解题的关键是记住矩形的性质,属于中考基础题.4.在今年的八年级期末考试中,我校(1)(2)(3)(4)班的平均分相同,方差分别为S12=20.8,S22=15.3,S32=17,S42=9.6,四个班期末成绩最稳定的是()A.(1)班B.(2)班C.(3)班D.(4)班【分析】直接根据方差的意义求解.【解答】解:∵S12=20.8,S22=15.3,S32=17,S42=9.6,∴S42<S22<S32<S12,则四个班期末成绩最稳定的是(4)班,故选:D.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.函数y=﹣2x+3的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【分析】直接根据一次函数的性质进行解答即可.【解答】解:∵一次函数y=﹣2x+3中,k=﹣2<0,b=3>0,∴此函数的图象经过一、二、四象限.故选:B.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.6.如图,下列哪组条件不能判定四边形ABCD是平行四边形()A.AB∥CD,AB=CD B.AB∥CD,AD∥BCC.OA=OC,OB=OD D.AB∥CD,AD=BC【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:根据平行四边形的判定,A、B、C均符合是平行四边形的条件,D则不能判定是平行四边形.故选:D.【点评】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.7.下列计算正确的是()A.B.C.D.【分析】根据二次根式的性质,化简计算后即可判断;【解答】解:A、正确;B、错误;(3)2=45;C、错误;3×=;D、错误;不是同类二次根式,不能合并;故选:A.【点评】本题考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算的法则,属于中考常考题型.8.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b <kx﹣1的解集在数轴上表示正确的是()A.B.C.D.【分析】观察函数图象得到当x<﹣1时,函数y=x+b的图象都在y=kx﹣1的图象下方,所以不等式x+b<kx﹣1的解集为x<﹣1,然后根据用数轴表示不等式解集的方法对各选项进行判断.【解答】解:当x<﹣1时,x+b<kx﹣1,即不等式x+b<kx﹣1的解集为x<﹣1.故选:C.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y =kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.9.如图,把一张正方形纸对折两次后,沿虚线剪下一角,展开后所得图形一定是()A.三角形B.菱形C.矩形D.正方形【分析】此类问题只有动手操作一下,按照题意的顺序折叠,剪开,观察所得的图形,可得正确的选项.【解答】解:由题意可得:四边形的四边形相等,故展开图一定是菱形.故选:B.【点评】此题主要考查了剪纸问题,对于一下折叠、展开图的问题,亲自动手操作一下,可以培养空间想象能力.10.如图,正方形ABCD的边长为4cm,动点P从点A出发,沿A→D→C的路径以每秒1cm 的速度运动(点P不与点A、点C重合),设点P运动时间为x秒,四边形ABCP的面积为ycm2,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.【分析】根据点P的路线,找到临界点为D点,则分段讨论P在边AD、边DC上运动时的y 与x的函数关系式.【解答】解:当0≤x≤4时,点P在AD边上运动则y=(x+4)4=2x+8当4≤x≤8时,点P在DC边上运动则y═(8﹣x+4)4=﹣2x+24根据函数关系式,可知D正确故选:D.【点评】本题为动点问题的函数图象探究题,考查了一次函数图象性质,应用了数形结合思想.二、填空题(本大题共6小题,每小题4分,共24分)11.已知一组数据3、x、4、5、6的众数是6,则x的值是6.【分析】根据众数的定义:一组数据中出现次数最多的数据即可得出答案.【解答】解:这组数据中的众数是6,即出现次数最多的数据为:6.故x=6.故答案为:6.【点评】本题考查了众数的知识,属于基础题,解答本题的关键是熟练掌握一组数据中出现次数最多的数据叫做众数.12.若有意义,则字母x的取值范围是x≥﹣5.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+5≥0,解得x≥﹣5.故答案为:x≥﹣5.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.13.定理“对角线互相平分的四边形是平行四边形”的逆定理是平行四边形是对角线互相平分的四边形.【分析】题设:四边形的对角线互相平分,结论:四边形是平行四边形.把题设和结论互换即得其逆定理.【解答】解:逆定理是:平行四边形是对角线互相平分的四边形.【点评】命题的逆命题是把原命题的题设和结论互换.原命题正确但逆命题不一定正确,所以并不是所有的定理都有逆定理.14.将直线y=2x向上平移3个单位所得的直线解析式是y=2x+3.【分析】根据“上加下减”的原则进行解答即可.【解答】解:直线y=2x向上平移3个单位所得的直线解析式是y=2x+3.故答案为y=2x+3.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.15.在正方形ABCD中,对角线AC=2cm,那么正方形ABCD的面积为2.【分析】根据正方形的面积公式可求正方形面积【解答】解:正方形面积==2故答案为2【点评】本题考查了正方形的性质,利用正方形的面积=对角线积的一半解决问题.16.如图,已知等边三角形ABC边长为1,△ABC的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A5B5C5的周长为.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出A1B1=AC,B1C1=AB,A1C1=BC,从而得到△A1B1C1是△ABC周长的一半,依此类推,下一个三角形是上一个三角形的周长的一半,根据此规律求解即可.【解答】解:∵△ABC的三条中位线组成△A1B1C1,∴A1B1=AC,B1C1=AB,A1C1=BC,∴△A1B1C1的周长=△ABC的周长=×3=,依此类推,△A2B2C2的周长=△A1B1C1的周长=×=,则△A5B5C5的周长为=,故答案为:.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半的性质,求出后一个三角形的周长等于前一个三角形的周长的一半是解题的关键.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:【分析】根据平方差公式和二次根式的加减法可以解答本题.【解答】解:=3﹣2+3+=1+4.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.18.已知矩形周长为18,其中一条边长为x,设另一边长为y.(1)写出y与x的函数关系式;(2)求自变量x的取值范围.【分析】(1)直接利用矩形周长求法得出y与x之间的函数关系式;(2)利用矩形的性质分析得出答案.【解答】解:(1)∵矩形周长为18,其中一条边长为x,设另一边长为y,∴2(x+y)=18,则y=9﹣x;(2)由题意可得:9﹣x>0,解得:0<x<9.【点评】此题主要考查了函数关系式以及自变量的取值范围,正确得出函数关系式是解题关键.19.如图,E、F分别平行四边形ABCD对角线BD上的点,且BE=DF.求证:∠DAF=∠BCE.【分析】只要证明△ADF≌△CBE即可解决问题;【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵DF=BE,∴△ADF≌△CBE,∴∠DAF=∠BCE.【点评】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据:从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制如下:甲:78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙:93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40整理、描述数据按如下(表格)分数段整理、描述这两组样本数据:成绩x 人数部门40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲0011171乙100a b2(说明:成绩80分及以上为生产技能优秀,70﹣79分为生产技能良好,60﹣69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下(表格)表所示:部门平均数中位数众数甲78.377.575乙7880.581得出结论:(1)请补充表格1:a=7,b=10.(2)估计乙部门生产技能优秀的员工人数为240;(3)可以推断出甲部门员工的生产技能水平较高,理由为:①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高.(从两个不同的角度说明你推断的合理性)【分析】(1)根据收集数据填写表格即可求解;(2)用乙部门优秀员工人数除以20乘以400即可得出答案;(3)根据情况进行讨论分析,理由合理即可.【解答】解:(1)由题意知a=7、b=10,故答案为:7、10;(2)故估计乙部门生产技能优秀的员工人数为×400=240(人).故答案为:240;(3)可以推断出甲部门员工的生产技能水平较高,理由为:①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高.【点评】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义以及用样本估计总体是解题的关键.21.如图,在△ABC中,E点是AC的中点,其中BD=2,DC=6,BC=,AD=,求DE的长.【分析】根据勾股定理的逆定理求出∠BDC=90°,求出线段AC长,根据直角三角形斜边上中线性质求出即可.【解答】解:∵BD2+CD2=22+62=(2)2=BC2,∴△BDC为直角三角形,∠BDC=90°,在Rt△ADC中,∵CD=6,AD=2,∴AC2=(2)2+62=60,∴AC=2,∵E点为AC的中点,∴DE=AC=.【点评】本题考查了勾股定理、勾股定理的逆定理、直角三角形斜边上中线性质等知识点,能求出△ADC是直角三角形是解此题的关键.22.珠海长隆海洋王国暑假期间推出了两套优惠方案:①购买成人票两张以上(包括两张),则儿童票按6折出售;②成人票和儿童票一律按8.5折出售,已知成人票是350元/张,儿童票是240元/张,张华准备暑假期间带家人到长隆海洋王国游玩,准备购买8张成人票和若干张儿童票.(1)请分别写出两种优惠方案中,购买的总费用y(元)与儿童人数x(人)之间的函数关系式;(2)对x的取值情况进行分析,说明选择哪种方案购票更省钱.【分析】(1)根据题意分别列出两种方案的收费方案的函数关系式;(2)由(1)找到临界点分类讨论即可.【解答】解:(1)当选择方案①时,y=350×8+0.6×240x=144x+2800当选择方案②时,y=(350×8+240)x×0.85=204x+2380(2)当方案①费用高于方案②时144x+2800>204x+2380解得x<7当方案①费用等于方案②时144x+2800=204x+2380解得x=7当方案①费用低于方案②时144x+2800<204x+2380解得x>7故当0<x<7时,选择方案②当x=7时,两种方案费用一样.当x>7时,选择方案①【点评】本题是一次函数实际应用问题,考查一次函数性质以及一元一次方程、不等式.解答关键是分类讨论.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.在矩形ABCD中,AB=8,BC=6,点E是AB边上一点,连接CE,把△BCE沿CE折叠,使点B落在点B′处.(1)当B′在边CD上时,如图①所示,求证:四边形BCB′E是正方形;(2)当B′在对角线AC上时,如图②所示,求BE的长.【分析】(1)由折叠可得BE=B'E,BC=B'C,∠BCE=∠B'CE,由∠DCB=90°=∠B可证四边形BCB′E是正方形(2)由折叠可得BC=B'C=6,则可求AB'=4,根据勾股定理可求B'E的长,即可得BE的长.【解答】证明:(1)∵△BCE沿CE折叠,∴BE=B'E,BC=B'C∠BCE=∠B'CE∵四边形ABCD是矩形∴∠DCB=90°=∠B∴∠BCE=45°且∠B=90°∴∠BEC=∠BCE=45°∴BC=BE∵BE=B'E,BC=B'C∴BC=BE=B'C=B'E∴四边形BCB'E是菱形又∵∠B=90°∴四边形BCB'E是正方形(2)∵AB=8,BC=6∴根据勾股定理得:AC=10∵△BCE沿CE折叠∴B'C=BC=6,BE=B'E∴AB'=4,AE=AB﹣BE=8﹣B'E在Rt△AB'E中,AE2=B'A2+B'E2∴(8﹣B'E)2=16+B'E2解得:BE'=3∴BE=B'E=3【点评】本题考查了折叠问题,正方形的判定,矩形的性质,勾股定理,根据勾股定理列出方程是本题的关键.24.如图,一次函数y=kx+b的图象经过点A(0,4)和点B(3,0),以线段AB为边在第一象限内作等腰直角△ABC,使∠BAC=90°.(1)求一次函数的解析式;(2)求出点C的坐标;(3)点P是y轴上一动点,当PB+PC最小时,求点P的坐标.【分析】(1)根据待定系数法确定函数解析式即可;(2)作CD⊥y轴于点D,由全等三角形的判定定理可得出△ABO≌△CAD,由全等三角形的性质可知OA=CD,故可得出C点坐标;(3)求得B点关于y轴的对称点B′的坐标,连接B′C与y轴的交点即为所求的P点,由B′、C坐标可求得直线B′C的解析式,则可求得P点坐标.【解答】解:(1)设AB直线的解析式为:y=kx+b,把(0,4)(3,0)代入可得:,解得:,所以一次函数的解析式为:y=﹣x+4;(2)如图,作CD⊥y轴于点D.∵∠BAC=90°,∴∠OAB+∠CAD=90°,又∵∠CAD+∠ACD=90°,∴∠ACD=∠BAO.在△ABO与△CAD中,∵,∴△ABO≌△CAD(AAS),∴OB=AD=3,OA=CD=4,OD=OA+AD=7.则C的坐标是(4,7).(3)如图2中,作点B关于y轴的对称点B′,连接CB′交x轴于P,此时PB+PC的值最小.∵B(3,0),C(4,7)∴B′(﹣3,0),把(﹣3,0)(4,7)代入y=mx+n中,可得:,解得:,∴直线CB′的解析式为y=x+3,令x=0,得到y=3,∴P(0,3).【点评】本题考查的是一次函数的综合题,根据待定系数法求一次函数的解析式、全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.25.如图,菱形ABCD中,AB=6cm,∠ADC=60°,点E从点D出发,以1cm/s的速度沿射线DA运动,同时点F从点A出发,以1cm/s的速度沿射线AB运动,连接CE、CF和EF,设运动时间为t (s).(1)当t=3s时,连接AC与EF交于点G,如图①所示,则AG=cm;(2)当E、F分别在线段AD和AB上时,如图②所示,求证△CEF是等边三角形;(3)当E、F分别运动到DA和AB的延长线上时,如图③所示,若CE=cm,求t的值和点F到BC的距离.【分析】(1)想办法证明CE=CF,AE=AF,推出AC垂直平分线段EF,即可解决问题;(2)如图②中,连接AC.只要证明△DCE≌△ACF即可解决问题;(3)如图③中,连接AC,作CH⊥AB于H,FM⊥BC交CB的延长线于M.解直角三角形求出AF,FM即可解决问题;【解答】(1)解:如图①中,∵四边形ABCD是菱形,∠ADC=60°,∴DA=DC=AB=BC,∴△ADC,△ABC第三等边三角形,当t=3时,AE=DE=3cm,AF=BF=3cm,∵CA=CD=CB,∴CE⊥AD,CF⊥AB,∵∠CAB=∠CAD,∴CF=CE,∵AE=AF,∴AC垂直平分线段EF,∴∠AGF=90°,∵∠FAG=60°,∴∠AFG=30°,∴AG=AF=cm,故答案为.(2)如图②中,连接AC.∵四边形ABCD是菱形,∠ADC=60°,∴DA=DC=AB=BC,∴△ADC,△ABC第三等边三角形,∴∠D=∠ACD=∠CAF=60°,DA=AC,∵DE=AF,∴△DCE≌△ACF,∴CE=CF,∠DCE=∠ACF,∴∠ECF=∠ACD=60°,∴△ECF是等边三角形.(3)如图③中,连接AC,作CH⊥AB于H,FM⊥BC交CB的延长线于M.由(2)可知:△ECF是等边三角形,∴CF=CE=3,在Rt△BCH中,∵BC=6,∠CBH=60°,∴BH=3,CH=3,在Rt△CFH中,HF==3,∴BF=3﹣3,AF=3+3,∴t=(3+3)s,在Rt△BFM中,∵∠FBM=∠ABC=60°,BF=3﹣3,∴FM=BF•sin60°=.【点评】本题考查四边形综合题、菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
珠海市精选八年级上期末考试数学试卷(含答案)
![珠海市精选八年级上期末考试数学试卷(含答案)](https://img.taocdn.com/s3/m/5025390ff5335a8102d22076.png)
广东省珠海市香洲区2019-2020第一学期期末考试八年级数学试卷一、选择题(每小题3分,共30分)1、下列四个手机APP 图标中,是轴对称图形的是()A 、B 、C 、D 、2、下列图形中具有稳定性的是()A 、正方形B 、长方形C 、等腰三角形D 、平行四边形 3、下列长度的三根木棒能组成三角形的是()A 、1 ,2 ,4B 、2 ,2 ,4C 、2 ,3 ,4D 、2 ,3 ,6 4、已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学计数法可表示为()A 、152×105米B 、1.52×10﹣5米C 、﹣1.52×105米D 、1.52×10﹣4米 5、下列运算正确的是()A 、(a +1)2=a 2+1B 、a 8÷a 2=a 4C 、3a ·(-a )2=﹣3a 3D 、x 3·x 4=x 7 6、如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是()A 、AB =2BD B 、AD⊥BC C、AD 平分∠BAC D、∠B=∠C第6题第8题7、如果(x +m )与(x -4)的乘积中不含x 的一次项,则m 的值为()A 、4B 、﹣4C 、0D 、18、如图,已知点A 、D 、C 、F 在同一直线上,AB =DE ,AD =CF ,且∠B=∠E=90°,判定△ABC≌△DEF 的依据是()A 、SASB 、ASAC 、AASD 、HL 9、分式2 +中的m 、n 的值同时扩大到原来的5倍,则此分式的值()A 、不变B 、是原来的15 C 、是原来的5倍 D 、是原来的10倍10、如图,在四边形ABCD 中,∠A+∠D=α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P=()A 、90°-12α B、12α C、90°+12α D、360°-α二、填空题(每小题4分,共24分) 11、若分式x x+2有意义,则x 的取值范围为。
珠海市香洲区2019-2020学年八年级上期末考试数学试卷含答案新人教版
![珠海市香洲区2019-2020学年八年级上期末考试数学试卷含答案新人教版](https://img.taocdn.com/s3/m/62e1cd38866fb84ae45c8dc6.png)
广东省珠海市香洲区2017-2018第一学期期末考试八年级数学试卷一、选择题(每小题3分,共30分)1、下列四个手机APP图标中,是轴对称图形的是()A B C D2、下列图形中具有稳定性的是()A、正方形B、长方形C、等腰三角形D、平行四边形3、下列长度的三根木棒能组成三角形的是()A、1 ,2 ,4B、2 ,2 ,4C、2 ,3 ,4D、2 ,3 ,64、已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学计数法可表示为()A、152×105米B、1.52×10﹣5米C、﹣1.52×105米D、1.52×10﹣4米5、下列运算正确的是()A、(a+1)2=a2+1B、a8÷a2=a4C、3a·(-a)2=﹣3a3D、x3·x4=x76、如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A、AB=2BDB、AD⊥BCC、AD平分∠BACD、∠B=∠C第6题第8题7、如果(x+m)与(x-4)的乘积中不含x的一次项,则m的值为()A、4B、﹣4C、0D、18、如图,已知点A、D、C、F在同一直线上,AB=DE,AD=CF,且∠B=∠E=90°,判定△ABC≌△DEF的依据是()A B、ASA C、AAS D、HL9中的m、n的值同时扩大到原来的5倍,则此分式的值()A、不变B C、是原来的5倍D、是原来的10倍10、如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P)A、90°B C、90°D、360°-α二、填空题(每小题4分,共24分) 11、若分式x 的取值范围为 。
12、分解因式:m 2-3m = 。
13、若点A (2,m )关于y 轴的对称点是B (n ,5),则mn 的值是 。
14、若正多边形的一个内角等于135°,那么这个正多边形的边数是 。
2019-2020学年珠海市香洲区八年级下期末数学试卷((有答案))(精校版)
![2019-2020学年珠海市香洲区八年级下期末数学试卷((有答案))(精校版)](https://img.taocdn.com/s3/m/92e7f691f705cc17552709a1.png)
广东省珠海市香洲区八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.直角三角形的两条直角边长分别为a和b,斜边长为c,已知c=13,b=5,则a=()A.1B.5C.12D.253.矩形的对角线一定具有的性质是()A.互相垂直B.互相垂直且相等C.相等D.互相垂直平分4.在今年的八年级期末考试中,我校(1)(2)(3)(4)班的平均分相同,方差分别为S12=20.8,S22=15.3,S32=17,S42=9.6,四个班期末成绩最稳定的是()A.(1)班B.(2)班C.(3)班D.(4)班5.函数y=﹣2x+3的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限6.如图,下列哪组条件不能判定四边形ABCD是平行四边形()A.AB∥CD,AB=CD B.AB∥CD,AD∥BCC.OA=OC,OB=OD D.AB∥CD,AD=BC7.下列计算正确的是()A.B.C.D.8.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b <kx﹣1的解集在数轴上表示正确的是()A.B.C.D.9.如图,把一张正方形纸对折两次后,沿虚线剪下一角,展开后所得图形一定是()A.三角形B.菱形C.矩形D.正方形10.如图,正方形ABCD的边长为4cm,动点P从点A出发,沿A→D→C的路径以每秒1cm 的速度运动(点P不与点A、点C重合),设点P运动时间为x秒,四边形ABCP的面积为ycm2,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.已知一组数据3、x、4、5、6的众数是6,则x的值是.12.若有意义,则字母x的取值范围是.13.定理“对角线互相平分的四边形是平行四边形”的逆定理是.14.将直线y=2x向上平移3个单位所得的直线解析式是.15.在正方形ABCD中,对角线AC=2cm,那么正方形ABCD的面积为.16.如图,已知等边三角形ABC边长为1,△ABC的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A5B5C5的周长为.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:18.已知矩形周长为18,其中一条边长为x,设另一边长为y.(1)写出y与x的函数关系式;(2)求自变量x的取值范围.19.如图,E、F分别平行四边形ABCD对角线BD上的点,且BE=DF.求证:∠DAF=∠BCE.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据:从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制如下:甲:78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙:93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40整理、描述数据按如下(表格)分数段整理、描述这两组样本数据:69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下(表格)表所示:=,=.(2)估计乙部门生产技能优秀的员工人数为;(3)可以推断出部门员工的生产技能水平较高,理由为:①;②.(从两个不同的角度说明你推断的合理性)21.如图,在△ABC中,E点是AC的中点,其中BD=2,DC=6,BC=,AD=,求DE的长.22.珠海长隆海洋王国暑假期间推出了两套优惠方案:①购买成人票两张以上(包括两张),则儿童票按6折出售;②成人票和儿童票一律按8.5折出售,已知成人票是350元/张,儿童票是240元/张,张华准备暑假期间带家人到长隆海洋王国游玩,准备购买8张成人票和若干张儿童票.(1)请分别写出两种优惠方案中,购买的总费用y(元)与儿童人数x(人)之间的函数关系式;(2)对x的取值情况进行分析,说明选择哪种方案购票更省钱.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.在矩形ABCD中,AB=8,BC=6,点E是AB边上一点,连接CE,把△BCE沿CE折叠,使点B落在点B′处.(1)当B′在边CD上时,如图①所示,求证:四边形BCB′E是正方形;(2)当B′在对角线AC上时,如图②所示,求BE的长.24.如图,一次函数y=kx+b的图象经过点A(0,4)和点B(3,0),以线段AB为边在第一象限内作等腰直角△ABC,使∠BAC=90°.(1)求一次函数的解析式;(2)求出点C的坐标;(3)点P是y轴上一动点,当PB+PC最小时,求点P的坐标.25.如图,菱形ABCD中,AB=6cm,∠ADC=60°,点E从点D出发,以1cm/s的速度沿射线DA运动,同时点F从点A出发,以1cm/s的速度沿射线AB运动,连接CE、CF和EF,设运动时间为t (s).(1)当t=3s时,连接AC与EF交于点G,如图①所示,则AG=cm;(2)当E、F分别在线段AD和AB上时,如图②所示,求证△CEF是等边三角形;(3)当E、F分别运动到DA和AB的延长线上时,如图③所示,若CE=cm,求t的值和点F到BC的距离.2019-2020学年广东省珠海市香洲区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的运算法则即可求出答案.【解答】解:(A)原式=2,故A不是最简二次根式;(C)原式=2,故C不是最简二次根式;(D)原式=,故D不是最简二次根式;故选:B.【点评】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.2.直角三角形的两条直角边长分别为a和b,斜边长为c,已知c=13,b=5,则a=()A.1B.5C.12D.25【分析】根据勾股定理计算即可.【解答】解:由勾股定理得,a==12,故选:C.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.3.矩形的对角线一定具有的性质是()A.互相垂直B.互相垂直且相等C.相等D.互相垂直平分【分析】根据矩形的性质即可判断;【解答】解:因为矩形的对角线相等且互相平分,所以选项C正确,故选:C.【点评】本题考查矩形的性质,解题的关键是记住矩形的性质,属于中考基础题.4.在今年的八年级期末考试中,我校(1)(2)(3)(4)班的平均分相同,方差分别为S12=20.8,S22=15.3,S32=17,S42=9.6,四个班期末成绩最稳定的是()A.(1)班B.(2)班C.(3)班D.(4)班【分析】直接根据方差的意义求解.【解答】解:∵S12=20.8,S22=15.3,S32=17,S42=9.6,∴S42<S22<S32<S12,则四个班期末成绩最稳定的是(4)班,故选:D.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.函数y=﹣2x+3的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【分析】直接根据一次函数的性质进行解答即可.【解答】解:∵一次函数y=﹣2x+3中,k=﹣2<0,b=3>0,∴此函数的图象经过一、二、四象限.故选:B.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.6.如图,下列哪组条件不能判定四边形ABCD是平行四边形()A.AB∥CD,AB=CD B.AB∥CD,AD∥BCC.OA=OC,OB=OD D.AB∥CD,AD=BC【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:根据平行四边形的判定,A、B、C均符合是平行四边形的条件,D则不能判定是平行四边形.故选:D.【点评】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.7.下列计算正确的是()A.B.C.D.【分析】根据二次根式的性质,化简计算后即可判断;【解答】解:A、正确;B、错误;(3)2=45;C、错误;3×=;D、错误;不是同类二次根式,不能合并;故选:A.【点评】本题考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算的法则,属于中考常考题型.8.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b <kx﹣1的解集在数轴上表示正确的是()A.B.C.D.【分析】观察函数图象得到当x<﹣1时,函数y=x+b的图象都在y=kx﹣1的图象下方,所以不等式x+b<kx﹣1的解集为x<﹣1,然后根据用数轴表示不等式解集的方法对各选项进行判断.【解答】解:当x<﹣1时,x+b<kx﹣1,即不等式x+b<kx﹣1的解集为x<﹣1.故选:C.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y =kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.9.如图,把一张正方形纸对折两次后,沿虚线剪下一角,展开后所得图形一定是()A.三角形B.菱形C.矩形D.正方形【分析】此类问题只有动手操作一下,按照题意的顺序折叠,剪开,观察所得的图形,可得正确的选项.【解答】解:由题意可得:四边形的四边形相等,故展开图一定是菱形.故选:B.【点评】此题主要考查了剪纸问题,对于一下折叠、展开图的问题,亲自动手操作一下,可以培养空间想象能力.10.如图,正方形ABCD的边长为4cm,动点P从点A出发,沿A→D→C的路径以每秒1cm 的速度运动(点P不与点A、点C重合),设点P运动时间为x秒,四边形ABCP的面积为ycm2,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.【分析】根据点P的路线,找到临界点为D点,则分段讨论P在边AD、边DC上运动时的y 与x的函数关系式.【解答】解:当0≤x≤4时,点P在AD边上运动则y=(x+4)4=2x+8当4≤x≤8时,点P在DC边上运动则y═(8﹣x+4)4=﹣2x+24根据函数关系式,可知D正确故选:D.【点评】本题为动点问题的函数图象探究题,考查了一次函数图象性质,应用了数形结合思想.二、填空题(本大题共6小题,每小题4分,共24分)11.已知一组数据3、x、4、5、6的众数是6,则x的值是6.【分析】根据众数的定义:一组数据中出现次数最多的数据即可得出答案.【解答】解:这组数据中的众数是6,即出现次数最多的数据为:6.故x=6.故答案为:6.【点评】本题考查了众数的知识,属于基础题,解答本题的关键是熟练掌握一组数据中出现次数最多的数据叫做众数.12.若有意义,则字母x的取值范围是x≥﹣5.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+5≥0,解得x≥﹣5.故答案为:x≥﹣5.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.13.定理“对角线互相平分的四边形是平行四边形”的逆定理是平行四边形是对角线互相平分的四边形.【分析】题设:四边形的对角线互相平分,结论:四边形是平行四边形.把题设和结论互换即得其逆定理.【解答】解:逆定理是:平行四边形是对角线互相平分的四边形.【点评】命题的逆命题是把原命题的题设和结论互换.原命题正确但逆命题不一定正确,所以并不是所有的定理都有逆定理.14.将直线y=2x向上平移3个单位所得的直线解析式是y=2x+3.【分析】根据“上加下减”的原则进行解答即可.【解答】解:直线y=2x向上平移3个单位所得的直线解析式是y=2x+3.故答案为y=2x+3.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.15.在正方形ABCD中,对角线AC=2cm,那么正方形ABCD的面积为2.【分析】根据正方形的面积公式可求正方形面积【解答】解:正方形面积==2故答案为2【点评】本题考查了正方形的性质,利用正方形的面积=对角线积的一半解决问题.16.如图,已知等边三角形ABC边长为1,△ABC的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A5B5C5的周长为.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出A1B1=AC,B1C1=AB,A1C1=BC,从而得到△A1B1C1是△ABC周长的一半,依此类推,下一个三角形是上一个三角形的周长的一半,根据此规律求解即可.【解答】解:∵△ABC的三条中位线组成△A1B1C1,∴A1B1=AC,B1C1=AB,A1C1=BC,∴△A1B1C1的周长=△ABC的周长=×3=,依此类推,△A2B2C2的周长=△A1B1C1的周长=×=,则△A5B5C5的周长为=,故答案为:.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半的性质,求出后一个三角形的周长等于前一个三角形的周长的一半是解题的关键.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:【分析】根据平方差公式和二次根式的加减法可以解答本题.【解答】解:=3﹣2+3+=1+4.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.18.已知矩形周长为18,其中一条边长为x,设另一边长为y.(1)写出y与x的函数关系式;(2)求自变量x的取值范围.【分析】(1)直接利用矩形周长求法得出y与x之间的函数关系式;(2)利用矩形的性质分析得出答案.【解答】解:(1)∵矩形周长为18,其中一条边长为x,设另一边长为y,∴2(x+y)=18,则y=9﹣x;(2)由题意可得:9﹣x>0,解得:0<x<9.【点评】此题主要考查了函数关系式以及自变量的取值范围,正确得出函数关系式是解题关键.19.如图,E、F分别平行四边形ABCD对角线BD上的点,且BE=DF.求证:∠DAF=∠BCE.【分析】只要证明△ADF≌△CBE即可解决问题;【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵DF=BE,∴△ADF≌△CBE,∴∠DAF=∠BCE.【点评】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据:从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制如下:甲:78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙:93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40整理、描述数据按如下(表格)分数段整理、描述这两组样本数据:69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下(表格)表所示:=,=.(2)估计乙部门生产技能优秀的员工人数为240;(3)可以推断出甲部门员工的生产技能水平较高,理由为:①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高.(从两个不同的角度说明你推断的合理性)【分析】(1)根据收集数据填写表格即可求解;(2)用乙部门优秀员工人数除以20乘以400即可得出答案;(3)根据情况进行讨论分析,理由合理即可.【解答】解:(1)由题意知a=7、b=10,故答案为:7、10;(2)故估计乙部门生产技能优秀的员工人数为×400=240(人).故答案为:240;(3)可以推断出甲部门员工的生产技能水平较高,理由为:①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高.【点评】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义以及用样本估计总体是解题的关键.21.如图,在△ABC中,E点是AC的中点,其中BD=2,DC=6,BC=,AD=,求DE的长.【分析】根据勾股定理的逆定理求出∠BDC=90°,求出线段AC长,根据直角三角形斜边上中线性质求出即可.【解答】解:∵BD2+CD2=22+62=(2)2=BC2,∴△BDC为直角三角形,∠BDC=90°,在Rt△ADC中,∵CD=6,AD=2,∴AC2=(2)2+62=60,∴AC=2,∵E点为AC的中点,∴DE=AC=.【点评】本题考查了勾股定理、勾股定理的逆定理、直角三角形斜边上中线性质等知识点,能求出△ADC是直角三角形是解此题的关键.22.珠海长隆海洋王国暑假期间推出了两套优惠方案:①购买成人票两张以上(包括两张),则儿童票按6折出售;②成人票和儿童票一律按8.5折出售,已知成人票是350元/张,儿童票是240元/张,张华准备暑假期间带家人到长隆海洋王国游玩,准备购买8张成人票和若干张儿童票.(1)请分别写出两种优惠方案中,购买的总费用y(元)与儿童人数x(人)之间的函数关系式;(2)对x的取值情况进行分析,说明选择哪种方案购票更省钱.【分析】(1)根据题意分别列出两种方案的收费方案的函数关系式;(2)由(1)找到临界点分类讨论即可.【解答】解:(1)当选择方案①时,y=350×8+0.6×240x=144x+2800当选择方案②时,y=(350×8+240)x×0.85=204x+2380(2)当方案①费用高于方案②时144x+2800>204x+2380解得x<7当方案①费用等于方案②时144x+2800=204x+2380解得x=7当方案①费用低于方案②时144x+2800<204x+2380解得x>7故当0<x<7时,选择方案②当x=7时,两种方案费用一样.当x>7时,选择方案①【点评】本题是一次函数实际应用问题,考查一次函数性质以及一元一次方程、不等式.解答关键是分类讨论.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.在矩形ABCD中,AB=8,BC=6,点E是AB边上一点,连接CE,把△BCE沿CE折叠,使点B落在点B′处.(1)当B′在边CD上时,如图①所示,求证:四边形BCB′E是正方形;(2)当B′在对角线AC上时,如图②所示,求BE的长.【分析】(1)由折叠可得BE=B'E,BC=B'C,∠BCE=∠B'CE,由∠DCB=90°=∠B可证四边形BCB′E是正方形(2)由折叠可得BC=B'C=6,则可求AB'=4,根据勾股定理可求B'E的长,即可得BE的长.【解答】证明:(1)∵△BCE沿CE折叠,∴BE=B'E,BC=B'C∠BCE=∠B'CE∵四边形ABCD是矩形∴∠DCB=90°=∠B∴∠BCE=45°且∠B=90°∴∠BEC=∠BCE=45°∴BC=BE∵BE=B'E,BC=B'C∴BC=BE=B'C=B'E∴四边形BCB'E是菱形又∵∠B=90°∴四边形BCB'E是正方形(2)∵AB=8,BC=6∴根据勾股定理得:AC=10∵△BCE沿CE折叠∴B'C=BC=6,BE=B'E∴AB'=4,AE=AB﹣BE=8﹣B'E在Rt△AB'E中,AE2=B'A2+B'E2∴(8﹣B'E)2=16+B'E2解得:BE'=3∴BE=B'E=3【点评】本题考查了折叠问题,正方形的判定,矩形的性质,勾股定理,根据勾股定理列出方程是本题的关键.24.如图,一次函数y=kx+b的图象经过点A(0,4)和点B(3,0),以线段AB为边在第一象限内作等腰直角△ABC,使∠BAC=90°.(1)求一次函数的解析式;(2)求出点C的坐标;(3)点P是y轴上一动点,当PB+PC最小时,求点P的坐标.【分析】(1)根据待定系数法确定函数解析式即可;(2)作CD⊥y轴于点D,由全等三角形的判定定理可得出△ABO≌△CAD,由全等三角形的性质可知OA=CD,故可得出C点坐标;(3)求得B点关于y轴的对称点B′的坐标,连接B′C与y轴的交点即为所求的P点,由B′、C坐标可求得直线B′C的解析式,则可求得P点坐标.【解答】解:(1)设AB直线的解析式为:y=kx+b,把(0,4)(3,0)代入可得:,解得:,所以一次函数的解析式为:y=﹣x+4;(2)如图,作CD⊥y轴于点D.∵∠BAC=90°,∴∠OAB+∠CAD=90°,又∵∠CAD+∠ACD=90°,∴∠ACD=∠BAO.在△ABO与△CAD中,∵,∴△ABO≌△CAD(AAS),∴OB=AD=3,OA=CD=4,OD=OA+AD=7.则C的坐标是(4,7).(3)如图2中,作点B关于y轴的对称点B′,连接CB′交x轴于P,此时PB+PC的值最小.∵B(3,0),C(4,7)∴B′(﹣3,0),把(﹣3,0)(4,7)代入y=mx+n中,可得:,解得:,∴直线CB′的解析式为y=x+3,令x=0,得到y=3,∴P(0,3).【点评】本题考查的是一次函数的综合题,根据待定系数法求一次函数的解析式、全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.25.如图,菱形ABCD中,AB=6cm,∠ADC=60°,点E从点D出发,以1cm/s的速度沿射线DA运动,同时点F从点A出发,以1cm/s的速度沿射线AB运动,连接CE、CF和EF,设运动时间为t (s).(1)当t=3s时,连接AC与EF交于点G,如图①所示,则AG=cm;(2)当E、F分别在线段AD和AB上时,如图②所示,求证△CEF是等边三角形;(3)当E、F分别运动到DA和AB的延长线上时,如图③所示,若CE=cm,求t的值和点F到BC的距离.【分析】(1)想办法证明CE=CF,AE=AF,推出AC垂直平分线段EF,即可解决问题;(2)如图②中,连接AC.只要证明△DCE≌△ACF即可解决问题;(3)如图③中,连接AC,作CH⊥AB于H,FM⊥BC交CB的延长线于M.解直角三角形求出AF,FM即可解决问题;【解答】(1)解:如图①中,∵四边形ABCD是菱形,∠ADC=60°,∴DA=DC=AB=BC,∴△ADC,△ABC第三等边三角形,当t=3时,AE=DE=3cm,AF=BF=3cm,∵CA=CD=CB,∴CE⊥AD,CF⊥AB,∵∠CAB=∠CAD,∴CF=CE,∵AE=AF,∴AC垂直平分线段EF,∴∠AGF=90°,∵∠FAG=60°,∴∠AFG=30°,∴AG=AF=cm,故答案为.(2)如图②中,连接AC.∵四边形ABCD是菱形,∠ADC=60°,∴DA=DC=AB=BC,∴△ADC,△ABC第三等边三角形,∴∠D=∠ACD=∠CAF=60°,DA=AC,∵DE=AF,∴△DCE≌△ACF,∴CE=CF,∠DCE=∠ACF,∴∠ECF=∠ACD=60°,∴△ECF是等边三角形.(3)如图③中,连接AC,作CH⊥AB于H,FM⊥BC交CB的延长线于M.由(2)可知:△ECF是等边三角形,∴CF=CE=3,在Rt△BCH中,∵BC=6,∠CBH=60°,∴BH=3,CH=3,在Rt△CFH中,HF==3,∴BF=3﹣3,AF=3+3,∴t=(3+3)s,在Rt△BFM中,∵∠FBM=∠ABC=60°,BF=3﹣3,∴FM=BF•sin60°=.【点评】本题考查四边形综合题、菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
珠海市2019—2020学年八年级数学上学期期末区统考试卷(人教版)
![珠海市2019—2020学年八年级数学上学期期末区统考试卷(人教版)](https://img.taocdn.com/s3/m/35891b38cc175527072208b6.png)
香洲区2019—2020学年度第一学期义务教育阶段质量检测八年级数学说明:1.全卷共4页。
满分120分,考试用时90分钟。
2.答案写在答题卷上,在试卷上作答无效。
3.用黑色字迹钢笔或签字笔按各题要求写在答题卷上,不能用铅笔和红色字迹的笔。
一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.下列交通标志图案是轴对称图形的是()2.如果一个三角形的两边长分别为1和6,则第三边长可能是()A .5B .6C .7D .83.下列计算正确的是()A .B .C .D .4.如图,P 是∠A O B 的平分线上的一点,P C ⊥O A ,P D ⊥O B ,垂足分别为C ,D .下列结论不一定成立的是()A .∠A O P =∠B OP B.P C =P D C .∠O P C =∠O P DD .O P =P C +P D 5.如图,在△A B C 中,DE 是A C 的垂直平分线,A B =6c m ,且△A B D 的周长为16c m ,则B C 的长为()A .8c mB .10c mC .14c mD .22c m 6.如图,△A B C ≌△A DE ,∠B =20°,∠C =110°,则∠E A D 的度数为()A .50°B .20°C .110°D .70°A .B .C .D .7.随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000034m ,用科学记数法表示0.0000034是()A .0.34×10-5B .3.4×106C .3.4×10-5D .3.4×10-68.若x +m 与x +2的乘积化简后的结果中不含x 的一次项,则m 的值为()A .2B .-2C .4D .-49.一个正方形的边长增加3c m ,它的面积就增加99c m 2,这个正方形的边长为()A .13c m B .14c m C .15c m D .16c m10.如图所示,正方形网格中,网格线的交点称为格点,已知点A ,B 是两个格点,如果点C 也是图中的格点,且使得△A B C 为等腰直角三角形,那么点C 的个数为()A .4B .5C .6D .7二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.因式分解:________________________.12.分式有意义的条件是_____________________.13.正六边形的每个内角的度数等于________________.14.在平面直角坐标系中,点P (-3,2)关于x 轴对称的点P 1的坐标是______________.15.已知a ,b 是一个等腰三角形的两边长,且满足a 2+b 2-6a -8b +25=0,则这个等腰三角形的周长为______________.16.如图,在△A B C 中,A B =A C ,∠B A C =30°,D 为BC 上任意一点,过点D 作DE ⊥A B ,DF ⊥A C ,垂足分别为E ,F ,且D E +D F =,5题图6题图A B 10题图连接A D,则A B=________.17.按一定规律排列的一列数依次为:…(a≠0),按此规律排列下去,这列数中的第n个数是___________.(n为正整数)三、解答题(一)(本大题3小题,每小题6分,共18分)18.计算:19.如图,以△A B C的顶点B为圆心,B A长为半径画弧,交B C边于点D,连接A D.若∠B=50°,∠C=36°,求∠D A C的度数.19题图20.化简求值:,其中x=3.四、解答题(二)(本大题3小题,每小题8分,共24分)21.珠海到韶关的距离约为360千米,小刘驾驶小轿车,小张驾驶大货车,两人都从珠海去韶关,小刘比小张晚出发90分钟,最后两车同时到达韶关,已知小轿车的速度是大货车速度的1.5倍.(1)分别求小轿车和大货车的速度;(2)当小刘行驶了2小时,此时两车相距多少千米?22.如图,在平面直角坐标系中,点A的坐标为(﹣1,5),点B的坐标为(﹣3,1).(1)在平面直角坐标系中作线段A B关于y轴对称的线段A1B1(A与A1,B与B1对应);(2)求△A A1B1的面积;(3)在y轴上存在一点P,使P A+P B的值最小,则点P的坐标为________.22题图23.如图,在等边三角形A B C中,点D在线段A B上,点E在C D的延长线上,连接A E,A E=A C,A F平分∠E A B,交C E于点F,连接B F.(1)求证:E F=B F;(2)猜想∠A F C的度数,并说明理由.23题图五、解答题(三)(本大题2小题,每小题10分,共20分)24.已知a,b,c,d都是互不相等的正数.(1)若则(用“>”,“<”或“=”填空);(2)若请判断和的大小关系,并证明;(3)令若分式的值为3,求t的值.25.如图,在平面直角坐标系中,O A=O B,A C=C D,已知两点A(4,0),C(0,7),点D在第一象限内,∠D C A=90°,点B在线段O C上,A B的延长线与D C的延长线交于点M,A C与B D交于点N.(1)点B的坐标为:;(2)求点D的坐标;(3)求证:C M=C N.25题图。
珠海市香洲区2019-2020学年八年级上期末数学试卷含答案解析
![珠海市香洲区2019-2020学年八年级上期末数学试卷含答案解析](https://img.taocdn.com/s3/m/544c71f52cc58bd63186bd53.png)
珠海市香洲区2019-2020学年八年级上期末数学试卷含答案解析一、选择题(共10小题,每小题3分,满分30分)1.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是( )A.B. C.D.2.下列计算正确的是( )A.x6÷x3=x8B.x3+x2=x6C.(x2)3=x5D.x2•x3=x53.下列各组长度线段能组成三角形的是( )A.1cm,3cm,5cm B.1cm,1cm,2cm C.1cm,2cm,3cm D.1cm,2cm,2cm4.已知等腰三角形中一个角等于100°,则这个等腰三角形的底角等于( )A.100°B.40°C.50°D.100°或40°5.以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是( ) A.B.C.D.6.一个多边形的内角和是720°,这个多边形的边数是( )A.4 B.5 C.6 D.77.如图,△ACB≌△A′CB′,∠A′CB=30°,∠A′CB′=70°,则∠ACA′的度数是( )A.20° B.30°C.35°D.40°8.若分式中的x、y的值都变为原来的3倍,则此分式的值( )A.不变B.是原来的3倍C.是原来的D.是原来的一半9.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式( ) A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)(a﹣2b)=a2﹣ab﹣2b210.如图,将三角尺的直角顶点放在直尺的一边上,∠1=20°,则∠2的度数等于( )A.50° B.30°C.20°D.15°二、填空题(共6小题,每小题4分,满分24分)11.在平面直角坐标系中,点M(1,2)关于y轴对称点的坐标为__________.12.当x__________时,分式有意义.13.分解因式:x3﹣xy2=__________.14.计算:2﹣2×46=__________.15.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为__________.16.如图,在△ABC中(AB<BC),在BC上截取BD=BA,作∠ABC的平分线与AD相交于点P,连接PC,若△ABC的面积为3,则△BPC的面积为__________.三、解答题(共9小题,满分66分)17.计算:(x+1)(x﹣1)+2x(x+1)﹣3x2.18.解方程:+=1.19.已知:如图,点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E、F,且BF=CE.求证:∠B=∠C.20.先化简,再求值:(1﹣)÷,其中x=3.21.如图,△ABC中,∠CAB=60°,∠B=30°.(1)作∠CAB的平分线与CB交于点D(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若CD=1,求DB的长.22.某超市购进草莓,第一次购进了1000元的草莓,很快售完,第二次又购进了800元的草莓,因为第二次购进的草莓个头小,所以单价只有第一次购进草莓的一半,但是质量比第一次多了30公斤,问这两次购进草莓的单价分别是多少?23.如图△ABC中,∠B=60°,∠C=78°,点D在AB边上,点E在AC边上,且DE∥BC,将△ADE沿DE折叠,点A对应点为F点.(1)若点A落在BC边上(如图1),求证:△BDF是等边三角形;(2)若点A落在三角形外(如图2),且CF∥AB,求△CEF各内角的度数.24.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2.上述解题候总用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x﹣y)+(x﹣y)2=__________.(2)因式分解:(a+b)(a+b﹣4)+4(3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.25.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:AE=AF.(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME,判断△DEM 的形状,并说明理由.-学年八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是( )A.B. C.D.【考点】轴对称图形.【分析】依据轴对称图形的定义,即一个图形沿某条直线对折,对折后的两部分能完全重合,则这条直线即为图形的对称轴,从而可以解答题目.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意.D、不是轴对称图形,不符合题意;故选:C.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列计算正确的是( )A.x6÷x3=x8B.x3+x2=x6C.(x2)3=x5D.x2•x3=x5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、x6÷x3=x6﹣3=x3,选项错误;B、不是同类项,不能合并,选项错误;C、(x2)3=x6,故选项错误;D、x2•x3=x5,故选项正确.故选D.【点评】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.3.下列各组长度线段能组成三角形的是( )A.1cm,3cm,5cm B.1cm,1cm,2cm C.1cm,2cm,3cm D.1cm,2cm,2cm【考点】三角形三边关系.【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【解答】解:根据三角形的三边关系,得A、1+3<5,不能组成三角形,故此选项错误;B、1+1=2,不能组成三角形,故此选项错误;C、1+2=3,不能组成三角形,故此选项错误;D、1+2>2,能够组成三角形,故此选项正确.故选:D.【点评】此题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4.已知等腰三角形中一个角等于100°,则这个等腰三角形的底角等于( )A.100°B.40°C.50°D.100°或40°【考点】等腰三角形的性质.【分析】先确定100°的内角是顶角,再根据等腰三角形两底角相等列式计算即可得解.【解答】解:根据三角形的内角和定理,100°的内角是顶角,所以,两个底角为:(180°﹣100°)=40°,故选B.【点评】本题考查了等腰三角形的性质,判断出100°的内角是顶角是解题的关键.5.以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是( )A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】找到经过顶点A且与BC垂直的AD所在的图形即可.【解答】解:A、没有经过顶点A,不符合题意;B、高AD交BC的延长线于点D处,符合题意;C、垂足没有在BC上,不符合题意;D、AD不垂直于BC,不符合题意.故选B.【点评】过三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫做高.6.一个多边形的内角和是720°,这个多边形的边数是( )A.4 B.5 C.6 D.7【考点】多边形内角与外角.【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故选C.【点评】本题主要考查了多边形的内角和定理即180°•(n﹣2),难度适中.7.如图,△ACB≌△A′CB′,∠A′CB=30°,∠A′CB′=70°,则∠ACA′的度数是( )A.20° B.30°C.35°D.40°【考点】全等三角形的性质.【分析】根据全等三角形的对应角相等求出∠ACB的度数,结合图形计算即可.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′=70°,∴∠ACA′=∠ACB﹣∠A′CB=40°故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键》8.若分式中的x、y的值都变为原来的3倍,则此分式的值( )A.不变B.是原来的3倍C.是原来的D.是原来的一半【考点】分式的基本性质.【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(或整式),结果不变,可得答案.【解答】解:分式中的x、y的值都变为原来的3倍,则此分式的值原来的,故选:C.【点评】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(或整式),结果不变.9.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式( )A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)(a﹣2b)=a2﹣ab﹣2b2【考点】平方差公式的几何背景.【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b 的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.10.如图,将三角尺的直角顶点放在直尺的一边上,∠1=20°,则∠2的度数等于( )A.50° B.30°C.20°D.15°【考点】平行线的性质.【分析】如图,由平行可知∠2=∠3,又可求得∠A=30°,结合外角的性质可求得∠2.【解答】解:如图所示,∵a∥b,∴∠3=∠2,∵∠B=60°,∴∠A=30°,∴∠3=∠1+∠A=20°+30°=50°,∴∠2=50°,故选A.【点评】本题主要考查平行线的性质及外角的性质,掌握两直线平行同位角相等是解题的关键.二、填空题(共6小题,每小题4分,满分24分)11.在平面直角坐标系中,点M(1,2)关于y轴对称点的坐标为(﹣1,2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2),故答案为:(﹣1,2).【点评】本题考查了关于y轴的对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.12.当x≠﹣2时,分式有意义.【考点】分式有意义的条件.【分析】根据分式的意义的条件:分母不等于0,就可以求解.【解答】解:根据题意得:x+2≠0,解得:x≠﹣2,故答案是:≠﹣2.【点评】本题主要考查了分式有意义的条件是分母不等于0.13.分解因式:x3﹣xy2=x(x+y)(x﹣y).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式x,进而利用平方差公式分解因式得出答案.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y).故答案为:x(x+y)(x﹣y).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.14.计算:2﹣2×46=1024.【考点】负整数指数幂.【专题】计算题;推理填空题.【分析】首先根据负整数指数幂的运算方法,求出2﹣2的值是多少;然后根据有理数的乘方的运算方法,求出算式2﹣2×46的值是多少即可.【解答】解:2﹣2×46=×46=1024.故答案为:1024.【点评】此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.15.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为8.【考点】多边形内角与外角.【分析】首先设正多边形的一个外角等于x°,由在正多边形中,一个内角的度数恰好等于它的外角的度数的3倍,即可得方程:x+3x=180,解此方程即可求得答案.【解答】解:设正多边形的一个外角等于x°,∵一个内角的度数恰好等于它的外角的度数的3倍,∴这个正多边形的一个内角为:3x°,∴x+3x=180,解得:x=45,∴这个多边形的边数是:360°÷45°=8.故答案为:8.【点评】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用.16.如图,在△ABC中(AB<BC),在BC上截取BD=BA,作∠ABC的平分线与AD相交于点P,连接PC,若△ABC的面积为3,则△BPC的面积为.【考点】角平分线的性质.【分析】根据等腰三角形三线合一的性质可得AP=PD,然后根据等底等高的三角形面积相等求出△BPC的面积等于△ABC面积的一半,代入数据计算即可得解.【解答】解:∵BD=BA,BP是∠ABC的平分线,∴AP=PD,∴S△BPD=S△ABD,S△CPD=S△ACD,∴S△BPC=S△BPD+S△CPD=S△ABD+S△ACD=S△ABC,∵△ABC的面积为3,∴S△BPC=×3=.故答案为:.【点评】本题考查了等腰三角形三线合一的性质,三角形的面积,利用等底等高的三角形的面积相等求出△BPC的面积与△ABC的面积的关系是解题的关键.三、解答题(共9小题,满分66分)17.计算:(x+1)(x﹣1)+2x(x+1)﹣3x2.【考点】整式的混合运算.【专题】计算题;整式.【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:原式=x2﹣1+2x2+2x﹣3x2=2x﹣1.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.18.解方程:+=1.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2+x(x+2)=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.已知:如图,点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E、F,且BF=CE.求证:∠B=∠C.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由中点的定义得出BD=CD,由HL证明Rt△BDF≌Rt△CDE,得出对应角相等即可.【解答】证明:∵点D是△ABC的边BC的中点,∴BD=CD,∵DE⊥AC,DF⊥AB,∴∠BFD=∠CED=90°,在Rt△BDF和Rt△CDE中,,∴Rt△BDF≌Rt△CDE(HL),∴∠B=∠C.【点评】本题考查了全等三角形的判定与性质、线段中点的定义;由HL证明Rt△BDF≌Rt△CDE是解决问题的关键.20.先化简,再求值:(1﹣)÷,其中x=3.【考点】分式的化简求值.【专题】计算题;分式.【分析】原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•(x﹣1)2+3x﹣4=(x﹣2)(x﹣1)+3x﹣4=x2﹣3x+2+3x﹣4=x2﹣2,当x=3时,原式=9﹣2=7.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.如图,△ABC中,∠CAB=60°,∠B=30°.(1)作∠CAB的平分线与CB交于点D(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若CD=1,求DB的长.【考点】作图—复杂作图.【分析】(1)首先以A为圆心,小于AC长为半径画弧,交AC、AB与于M、N,再分别以M、N长为半径画弧,两弧交于点E,再作射线AE,交BC于D;(2)利用三角形内角和定理可得∠C=90°,然后再根据直角三角形的性质:30°角所对的直角边等于斜边的一半可得AD=2CD,再根据等角对等边可得BD长.【解答】解:(1)如图所示:(2)∵∠CAB=60°,∠B=30°,∴∠C=90°,∵AD平分∠CAB,∴∠CAD=∠DAB=30°,∴AD=2CD=2,∠B=∠DAB,∴DB=2.【点评】此题主要考查了复杂作图,以及直角三角形的性质,关键是掌握角平分线的作法,以及30°角所对的直角边等于斜边的一半.22.某超市购进草莓,第一次购进了1000元的草莓,很快售完,第二次又购进了800元的草莓,因为第二次购进的草莓个头小,所以单价只有第一次购进草莓的一半,但是质量比第一次多了30公斤,问这两次购进草莓的单价分别是多少?【考点】分式方程的应用.【分析】设第一次购进的蓝莓的单价是x元,则第二次购进蓝莓的单价为0.5x元,根据第二次购买数量比第一次多了30公斤,可得出方程,解出即可.【解答】解:设第一次购进的蓝莓的单价是x元,则第二次购进蓝莓的单价为0.5x,由题意得+30=,解得:x=200经检验x=200是原分式方程的解.0.5x=100答:第一次购进的蓝莓的单价是200元,第二次购进蓝莓的单价为100元.【点评】本题考查了分式方程的应用,解答本题的关键是找到等量关系,注意分式方程要检验.23.如图△ABC中,∠B=60°,∠C=78°,点D在AB边上,点E在AC边上,且DE∥BC,将△ADE沿DE折叠,点A对应点为F点.(1)若点A落在BC边上(如图1),求证:△BDF是等边三角形;(2)若点A落在三角形外(如图2),且CF∥AB,求△CEF各内角的度数.【考点】翻折变换(折叠问题).【分析】(1)利用平行线的性质得出∠ADE=60°,再利用翻折变换的性质得出∠ADE=∠EDF=60°,进而得出∠BDF=60°即可得出答案;(2)利用平行线的性质结合(1)中所求得出∠2,∠5+∠6的度数即可得出答案.【解答】(1)证明:如图1,∵∠B=60°,DE∥BC,∴∠ADE=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠EDF=60°,∴∠BDF=60°,∴△BDF是等边三角形;(2)解:如图2,由(1)得:∠1=60°,∵CF∥AB,∴∠2+∠3=60°,∠B=∠6=60°,∵∠B=60°,∠C=78°,∴∠A=∠3=42°,∴∠2=60°﹣42°=18°,∴∠5+∠6=60°+78°=138°,∴∠4=∠180°﹣18°﹣138°=24°.【点评】此题主要考查了翻折变换的性质以及平行线的性质和等边三角形的判定以及三角形内角和定理等知识,正确利用翻折变换的性质得出∠ADE=∠EDF是解题关键.24.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2.上述解题候总用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x﹣y)+(x﹣y)2=(x﹣y+1)2.(2)因式分解:(a+b)(a+b﹣4)+4(3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.【考点】因式分解的应用.【分析】(1)把(x﹣y)看作一个整体,直接利用完全平方公式因式分解即可;(2)令A=a+b,代入后因式分解后代入即可将原式因式分解;(3)将原式转化为(n2+3n)[(n+1)(n+2)]+1,进一步整理为(n2+3n+1)2,根据n 为正整数得到n2+3n+1也为正整数,从而说明原式是整数的平方.【解答】解:(1)1+2(x﹣y)+(x﹣y)2=(x﹣y+1)2;(2)令A=a+b,则原式变为A(A﹣4)+4=A2﹣4A+4=(A﹣2)2,故(a+b)(a+b﹣4)+4=(a+b﹣2)2;(3)(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2,∵n为正整数,∴n2+3n+1也为正整数,∴代数式(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.【点评】本题考查了因式分解的应用,解题的关键是仔细读题,理解题意,掌握整体思想解决问题的方法.25.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:AE=AF.(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME,判断△DEM 的形状,并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据等腰直角三角形的性质求出∠B=∠ACB=45°,再求出∠ACF=45°,从而得到∠B=∠ACF,根据同角的余角相等求出∠BAE=∠CAF,然后利用“角边角”证明△ABE 和△ACF全等,根据全等三角形对应边相等即可得出结论;(2)过点E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM 是等腰直角三角形,得出∠DEM=90°即可;【解答】(1)证明:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)解:△DEM是直角三角形;理由如下:过点E作EH⊥AB于H,如图所示:则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴∠DEM=90°,∴△DEM是直角三角形.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线上的点到角的两边距离相等的性质;熟记性质并作辅助线构造出等腰直角三角形和全等三角形是解题的关键.。
2021-2022学年广东省珠海市香洲区八年级(上)期末数学试卷(附答案详解)
![2021-2022学年广东省珠海市香洲区八年级(上)期末数学试卷(附答案详解)](https://img.taocdn.com/s3/m/177a9f99dc88d0d233d4b14e852458fb770b38ce.png)
2021-2022学年广东省珠海市香洲区八年级(上)期末数学试卷1.下列几种著名的数学曲线中,不是轴对称图形的是()A. 笛卡尔爱心曲线B. 蝴蝶曲线C. 费马螺线曲线D. 科赫曲线2.某种新冠病毒的直径为0.0000076cm,将数字0.0000076用科学记数法表示为()A. 7.6×10−6B. 7.6×106C. 0.76×10−5D. 0.76×1073.下列哪个度数不可能是一个多边形的内角和()A. 360°B. 450°C. 900°D. 1800°4.下列运算正确的是()A. a3+a3=a6B. (a3)2=a6C. (ab)2=ab2D. 2a5⋅3a5=5a55.已知三角形中的两边长分别为3cm和7cm,则下列长度的四条线段中能作为第三边的是()A. 3cmB. 4cmC. 7cmD. 10cm6.已知图中的两个三角形全等,则∠1等于()A. 70°B. 68°C. 58°D. 52°7.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形。
根据图形的变化过程写出的一个正确的等式是()A. (a−b)2=a2−2ab+b2B. a(a−b)=a2−abC. (a−b)2=a2−b2D. a2−b2=(a+b)(a−b)AC的长为半径画弧交于两点,8.如图,在△ABC中,分别以点A和点C为圆心,大于12过这两点作直线交AC于点E,交BC于点D,连接AD.若△ADB的周长为15,AE=4,则△ABC的周长为()A. 17B. 19C. 21D. 239.已知A=2x+6,B是多项式,在计算B−A时,小海同学把B−A错看成了B÷A,结果得x,那么B−A的正确结果为()A. 2x2+4x−6B. 3x+6C. 2x2+6xD. 2x2+4x+610.我们称网格线的交点为格点.如图,在6行×5列的长方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,则满足条件的格点C的个数是()A. 3B. 4C. 5D. 611.3−2=______.12.如图,AB=CD,若要判定△ABD≌△CDB,则需要添加的一个条件是______.13.分解因式:3x2−6x+3=______.14.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S△ABC=21,DE=3,AB=9,则AC长是______.15.等腰三角形一腰上的高与另一腰的夹角为50°,则这个等腰三角形的一个底角的度数为______.16.按图所示的流程,若输出的A=−2,则输入的a的值为______.17.已知aa−4=2−bb−4,则a+b的值为______.18.计算:x(x+2)+(1+x)(1−x).19.如图,在△ABC中,CE平分∠ACB交AB于点E,AD是△ABC边BC上的高,AD与CE相交于点F,且∠ACB=80°,求∠AFE的度数.20.先化简,再求值:(1x−1−1)÷x2+2x+1x2−1,其中x=−2.21.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3),点B坐标为(2,1);(2)请画出△ABC关于y轴对称的图形△A1B1C1,并写出点B1的坐标为______;(3)P为y轴上一点,当PB+PC的值最小时,P点的坐标为______.22.某学校在疫情期间用3000元购进A、B两种洗手液共550瓶,购买A种洗手液与购买B种洗手液的费用相同,且A种洗手液的单价是B种洗手液单价的1.2倍.(1)求B种洗手液的单价是多少元?(2)学校计划用不超过9800元的资金再次购进A、B两种洗手液共1800瓶,求A种洗手液最多能购进多少瓶?23.如图,△ABC是等腰直角三角形,∠BAC=90°,△ACD是等边三角形,E为△ABC内一点,AC=CE,∠BAE=15°,AD与CE相交于点F.(1)求∠DFE的度数;(2)求证:AE=BE.24.根据材料完成问题:在含有两个字母的式子中,任意交换两个字母的位置,式子的值始终保持不变,像这样的式子我们称之为对称式,如:1a +1b,a2+b2,请解决下列问题:①a2−b2;②a2b2;③a2b2这3个式子中只有1个属于对称式:______(请填序号);(2)已知(x−a)(x−b)=x2+mx+n;①若m=1,n=−2,求对称式a2+b2的值;②若m=−3,n=1,当a2−ka +b2−kb>0时,求k的取值范围.25.如图,已知O为坐标原点,B(0,3),OB=CD,且OD=2OC,将△BOC沿BC翻折至△BEC,使得点E、O重合,点M是y轴正半轴上的一点且位于点B上方,以点B为端点作一条射线BA,使∠MBA=∠BCO,点F是射线BA上的一点.(1)请直接写出C、D两点的坐标:点C______,点D______;(2)当BF=BC时,连接FE.①求点F的坐标;②求此时△BEF的面积.答案和解析1.【答案】C【解析】解:选项A、B、D均能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;选项C不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;故选:C.根据轴对称图形的概念对各选项分析判断即可得解.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】A【解析】解:0.0000076=7.6×10−6.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.3.【答案】B【解析】解:因为n边形的内角和为(n−2)×180°,A、(n−2)×180°=360°,n=4,是四边形的内角和,故本选项不符合题意;B、(n−2)×180°=450°,n=27,边数不能为分数,故本选项符合题意;6C、(n−2)×180°=900°,n=7,是七边形的内角和,故本选项不符合题意;D、(n−2)×180°=1800°,n=12,是12边形的内角和,故本选项不符合题意;故选:B.根据n边形的内角和为(n−2)×180°,求出对应的n,即可得出选项.本题考查了多边形的内角和,熟记n边形的内角和为(n−2)×180°是解此题的关键.4.【答案】B【解析】解:A、a3+a3=2a3,故A不符合题意;B、(a3)2=a6,故B符合题意;C、(ab)2=a2b2,故C不符合题意;D、2a5⋅3a5=6a10,故D不符合题意;故选:B.利用合并同类项的法则,幂的乘方与积的乘方的法则,单项式乘单项式的法则对各项进行运算即可.本题主要考查合并同类项,幂的乘方与积的乘方,单项式乘单项式,解答的关键是对相应的运算法则的掌握.5.【答案】C【解析】解:设三角形的第三边是xcm.则7−3<x<7+3.即4<x<10,故选:C.根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围,然后由第三边长的范围来作出选择.此题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.6.【答案】C【解析】解:∵两三角形全等,∴∠1=180°−70°−52°=58°,故选C.先根据全等三角形的对应角相等得出对应角相等,再根据三角形的内角和定理求出即可.本题考查了全等三角形的性质和三角形的内角和定理的应用,注意:全等三角形的对应角相等.7.【答案】D【解析】【分析】本题主要考查了用图形的面积推导平方差公式。
2018-2019学年广东省珠海市香洲区八年级(上)期末数学试卷(解析版)
![2018-2019学年广东省珠海市香洲区八年级(上)期末数学试卷(解析版)](https://img.taocdn.com/s3/m/44ecf675192e45361166f526.png)
2018-2019学年广东省珠海市香洲区八年级(上)期末数学试卷一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项在只有一个是正确的,请把答题卡上对应题目所选的选修涂黑。
1.下列图形中,不是轴对称图形的是()A.B.C.D.2.下列长度的三条线段,能组成三角形的是()A.3,4,8B.6,7,8C.5,6,11D.1,4,73.点A(2,﹣1)关于x轴对称的点B的坐标为()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)4.若分式有意义,则x的取值范围是()A.x≠0B.x≠1C.x≠﹣1D.x取任意实数5.下列计算正确的是()A.a2+a3=a5B.(a2)3=a6C.a6÷a2=a3D.2a×3a=6a6.如图,AB=CD,AE⊥BC,DF⊥BC,垂足分别为E,F,CE=BF,下列结论错误的是()A.∠C=∠B B.DF∥AE C.∠A+∠D=90°D.CF=BE7.下列多项式能用完全平方公式进行因式分解的是()A.a2﹣1B.a2+4C.a2+2a+1D.a2﹣4a﹣48.如果把分式中的x,y都扩大3倍,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.扩大2倍9.如图,在△ABC中,∠B=50°,∠A=30°,CD平分∠ACB,CE⊥AB于点E,则∠DCE的度数是()A.5°B.8°C.10°D.15°10.如图,设k=(a>b>0),则有()A.0<k<B.<k<1C.0<k<1D.1<k<2二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上。
11.(4分)2﹣1=.12.(4分)如图,△ABC≌△DCB,∠DBC=35°,则∠AOB的度数为.13.(4分)因式分解:a2﹣2a=.14.(4分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC=度.15.(4分)已知(x+y)2=25,(x﹣y)2=9,则x2+y2=.16.(4分)如图,等边△ABC的周长为18cm,BD为AC边上的中线,动点P,Q分别在线段BC,BD上运动,连接CQ,PQ,当BP长为cm时,线段CQ+PQ的和为最小.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:(2x+y)(2x﹣y)+y(2x+y).18.(6分)如图,在Rt△ABC中,∠C=90°,∠A=30°.(1)尺规作图:作∠B的平分线BD交AC于点D;(不写作法,保留作图痕迹)(2)若DC=2,求AC的长.19.(6分)解方程:.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)先化简,再求值:÷(﹣1),其中x=﹣2018.21.(7分)如图,在△ABC中,点D在BC上,AB=AC=BD,AD=DC,将△ACD沿AD折叠至△AED,AE交BC于点F.(1)求∠C的度数;(2)求证:BF=CD.22.(7分)港珠澳大桥是世界最长的跨海大桥,连接香港大屿山、澳门半岛和广东省珠海市,其中珠海站到香港站全长约55千米,2018年10月24日上午9时正式通车.一辆观光巴士自珠海站出发,25分钟后,一辆小汽车从同一地点出发,结果同时到达香港站.已知小汽车的速度是观光巴士的1.6倍,求观光巴士的速度.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)观察下列式子:0×2+1=12……①1×3+1=22……②2×4+1=32……③3×5+1=42……④……(1)第⑤个式子,第⑩个式子;(2)请用含n(n为正整数)的式子表示上述的规律,并证明:(3)求值:(1+)(1+)(1+)(1+)…(1+).24.(9分)如图,在等腰△ABC中,AB=AC,过点B作BD⊥AB,过点C作CD⊥BC,两线相交于点D,AF平分∠BAC交BC于点E,交BD于点F.(1)若∠BAC=68°,则∠DBC=°;(2)求证:点F为BD中点;(3)若AC=BD,且CD=3,求四边形ABDC的面积.25.(9分)如图,在Rt△ABO中,∠BAO=90°,AO=AB,BO=8,点A的坐标(﹣8,0),点C在线段AO上以每秒2个单位长度的速度由A向O运动,运动时间为t秒,连接BC,过点A 作AD⊥BC,垂足为点E,分别交BO于点F,交y轴于点D.(1)用t表示点D的坐标;(2)如图1,连接CF,当t=2时,求证:∠FCO=∠BCA;(3)如图2,当BC平分∠ABO时,求t的值.2018-2019学年广东省珠海市香洲区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项在只有一个是正确的,请把答题卡上对应题目所选的选修涂黑。
【推荐】2019秋珠海市香洲区八年级上册期末考试数学试卷有答案.docx
![【推荐】2019秋珠海市香洲区八年级上册期末考试数学试卷有答案.docx](https://img.taocdn.com/s3/m/3ed89fb3d0d233d4b14e6982.png)
广东省珠海市香洲区第一学期期末考试八年级数学试卷一、选择题(每小题3分,共30分)1、下列四个手机APP图标中,是轴对称图形的是()A、B、C、D、2、下列图形中具有稳定性的是()A、正方形B、长方形C、等腰三角形D、平行四边形3、下列长度的三根木棒能组成三角形的是()A、1 ,2 ,4B、2 ,2 ,4C、2 ,3 ,4D、2 ,3 ,64、已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学计数法可表示为()A、152×105米B、1.52×10﹣5米C、﹣1.52×105米D、1.52×10﹣4米5、下列运算正确的是()A、(a+1)2=a2+1B、a8÷a2=a4C、3a·(-a)2=﹣3a3D、3·4=76、如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A、AB=2BDB、AD⊥BCC、AD平分∠BACD、∠B=∠C第6题第8题7、如果(+m)与(-4)的乘积中不含的一次项,则m的值为()A、4B、﹣4C、0D、18、如图,已知点A、D、C、F在同一直线上,AB=DE,AD=CF,且∠B=∠E=90°,判定△ABC≌△DEF的依据是()A、SASB、ASAC、AASD、HL9、分式中的m、n的值同时扩大到原的5倍,则此分式的值()+A、不变B、是原的C、是原的5倍D、是原的10倍10、如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A、90°-αB、αC、90°+αD、360°-α二、填空题(每小题4分,共24分)11、若分式有义,则的取值范围为。
12、分解因式:m2-3m=。
13、若点A(2,m)关于y轴的对称点是B(n,5),则mn的值是。
14、若正多边形的一个内角等于135°,那么这个正多边形的边数是。
2019-2020学年广东省珠海市香洲区八年级(上)期末数学试卷含答案
![2019-2020学年广东省珠海市香洲区八年级(上)期末数学试卷含答案](https://img.taocdn.com/s3/m/9e5f9b2ce97101f69e3143323968011ca300f714.png)
2019-2020学年广东省珠海市香洲区八年级(上)期末数学试卷一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)下列交通标志图案是轴对称图形的是()A.B.C.D.2.(3分)如果一个三角形的两边长分别为1和6,则第三边长可能是()A.5B.6C.7D.83.(3分)下列计算正确的是()A.3x﹣x=3B.2x+3x=5x2C.(2x)2=4x2D.(x+y)2=x2+y24.(3分)如图,P是∠AOB的平分线上的一点,PC⊥OA,PD⊥OB,垂足分别为C,D.下列结论不一定成立的是()A.∠AOP=∠BOP B.PC=PD C.∠OPC=∠OPD D.OP=PC+PD 5.(3分)如图,在△ABC中,DE是AC的垂直平分线,AB=6cm,且△ABD的周长为16cm,则BC的长为()A.8cm B.10cm C.14cm D.22cm6.(3分)如图,△ABC≌△ADE,∠B=20°,∠C=110°,则∠EAD的度数为()A.50°B.20°C.110°D.70°7.(3分)随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000034m,用科学记数法表示0.0000034是()A.0.34×10﹣5B.3.4×106C.3.4×10﹣5D.3.4×10﹣6 8.(3分)若x+m与x+2的乘积化简后的结果中不含x的一次项,则m的值为()A.2B.﹣2C.4D.﹣49.(3分)一个正方形的边长增加3cm,它的面积就增加99cm2,这个正方形的边长为()A.13cm B.14cm C.15cm D.16cm10.(3分)如图所示,正方形网格中,网格线的交点称为格点,已知点A,B是两个格点,如果点C也是图中的格点,且使得△ABC为等腰直角三角形,那么点C的个数为()A.4B.5C.6D.7二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)因式分解:m3﹣9m=.12.(4分)若分式有意义,则x.13.(4分)正六边形的每个内角的度数是度.14.(4分)在平面直角坐标系中,点M(﹣3,2)关于x轴对称的点的坐标是.15.(4分)已知a,b是一个等腰三角形的两边长,且满足a2+b2﹣6a﹣8b+25=0,则这个等腰三角形的周长为.16.(4分)如图,在△ABC中,AB=AC,∠BAC=30°,D为BC上任意一点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F,且DE+DF=,连接AD,则AB=.17.(4分)按一定规律排列的一列数依次为:﹣,,﹣,,…(a≠0),按此规律排列下去,这列数中的第n个数是.(n为正整数)三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)计算:﹣12+(π﹣3.14)0﹣()﹣2+|﹣3|.19.(6分)如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=50°,∠C=36°,求∠DAC的度数.20.(6分)先化简再求值:(1﹣)÷,其中x=3.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)珠海到韶关的距离约为360千米,小刘驾驶小轿车,小张驾驶大货车,两人都从珠海去韶关,小刘比小张晚出发90分钟,最后两车同时到达韶关,已知小轿车的速度是大货车速度的1.5倍.(1)分别求小轿车和大货车的速度;(2)当小刘行驶了2小时,此时两车相距多少千米?22.(8分)如图,在平面直角坐标系中,点A的坐标为(﹣1,5),点B的坐标为(﹣3,1).(1)在平面直角坐标系中作线段AB关于y轴对称的线段A1B1(A与A1,B与B1对应);(2)求△AA1B1的面积;(3)在y轴上存在一点P,使PA+PB的值最小,则点P的坐标为.23.(8分)如图,在等边三角形ABC中,点D在线段AB上,点E在CD的延长线上,连接AE,AE=AC,AF平分∠EAB,交CE于点F,连接BF.(1)求证:EF=BF;(2)猜想∠AFC的度数,并说明理由.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)已知a,b,c,d都是互不相等的正数.(1)若=2,=2,则,(用“>”,“<”或“=”填空);(2)若=,请判断和的大小关系,并证明;(3)令==t,若分式﹣+2的值为3,求t的值.25.(10分)如图,在平面直角坐标系中,OA=OB,AC=CD,已知两点A(4,0),C(0,7),点D在第一象限内,∠DCA=90°,点B在线段OC上,AB的延长线与DC的延长线交于点M,AC与BD交于点N.(1)点B的坐标为:;(2)求点D的坐标;(3)求证:CM=CN.2019-2020学年广东省珠海市香洲区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意.故选:D.2.【分析】根据三角形三边关系,两边之和大于第三边,两边之差小于第三边,求出第三边的取值范围,即可得出答案.【解答】解:设第三边长为x,则6﹣1<x<6+1,即5<x<7,∴第三边长可能是6.故选:B.3.【分析】直接利用合并同类项法则以及积的乘方运算法则、完全平方公式分别化简得出答案.【解答】解:A、3x﹣x=2x,故此选项错误;B、2x+3x=5x,故此选项错误;C、(2x)2=4x2,正确;D、(x+y)2=x2+2xy+y2,故此选项错误;故选:C.4.【分析】根据角平分线上的点到角的两边的距离相等可得PC=PD,然后利用“HL”证明Rt△OCP和Rt△ODP全等,根据全等三角形对应边相等,全等三角形对应角相等对各选项分析判断后利用排除法求解.【解答】解:∵P是∠AOB平分线上的一点,PC⊥OA,PD⊥OB,∴PC=PD,故A,B选项成立,在Rt△OCP和Rt△ODP中,,∴Rt△OCP≌Rt△ODP(HL),∴OC=OD,∠OPC=∠OPD,故C选项成立,OP=PC+PD无法证明,不一定成立.故选:D.5.【分析】根据线段的垂直平分线的性质得到DA=DC,根据三角形的周长公式计算即可.【解答】解:∵DE是AC的垂直平分线,∴DA=DC.∵AB=6cm,△ABD的周长为16cm,∴BC=16﹣6=10cm,故选:B.6.【分析】直接利用全等三角形的性质得出对应角进而得出答案.【解答】解:∵△ABC≌△ADE,∠B=20°,∠C=110°,∴∠D=∠B=20°,∠E=110°,∴∠EAD=180°﹣20°﹣110°=50°.故选:A.7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:用科学记数法表示0.0000034是3.4×10﹣6.故选:D.8.【分析】利用多项式乘以多项式法则计算,由结果不含x的一次项确定出m的值即可.【解答】解:根据题意得:(x+m)(x+2)=x2+(m+2)x+2m,由结果中不含x的一次项,得到m+2=0,解得:m=﹣2,故选:B.9.【分析】可根据:边长增加后的正方形的面积=原正方形的面积+99,列出方程,求出正方形的边长.【解答】解:设这个正方形的边长为x,则(x+3)2=x2+99,解得:x=15cm.故选:C.10.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【解答】解:如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有2个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.故选:C.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.【分析】原式提取m,再利用平方差公式分解即可.【解答】解:原式=m(m2﹣9)=m(m+3)(m﹣3),故答案为:m(m+3)(m﹣3).12.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意得:x﹣3≠0,解得:x≠3.故答案是:≠3.13.【分析】利用多边形的内角和为(n﹣2)•180°求出正六边形的内角和,再结合其边数即可求解.【解答】解:根据多边形的内角和定理可得:正六边形的每个内角的度数=(6﹣2)×180°÷6=120°.14.【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),据此即可求得点(﹣3,2)关于x轴对称的点的坐标.【解答】解:∵点(﹣3,2)关于x轴对称,∴对称的点的坐标是(﹣3,﹣2).故答案为(﹣3,﹣2).15.【分析】根据配方法把原式变形,根据非负数的性质分别求出a、b,分a是腰长、b是腰长两种情况计算,得到答案.【解答】解:a2+b2﹣6a﹣8b+25=0,a2﹣6a+9+b2﹣8b+16=0,(a﹣3)2+(b﹣4)2=0,解得,a=3,b=4,当a是腰长时,等腰三角形的周长=3+3+4=10,当b是腰长时,等腰三角形的周长=3+4+4=11,故答案为:10或11.16.【分析】如图,作BH⊥AC于H.根据S△ABC=S△ABD+S△ACD,DE⊥AB,DF⊥AC,列等式,由此即可解决问题.【解答】解:过B作BH⊥AC于H,∵∠BAC=30°,∴BH=AB,∵AB=AC,=S△ABD+S△ACD,∴S△ABC∵DE⊥AB,DF⊥AC,∴=,AB=AB(DE+DF),AB=DF+DF=,∴AB=,故答案为:17.【分析】先确定正负号与序号数的关系,再确定分母与序号数的关系,然后确定a的指数与序号数的关系.【解答】解:第1个数为(﹣1)1•,第2个数为(﹣1)2•,第3个数为(﹣1)3•,第4个数为(﹣1)4•,…,所以这列数中的第n个数是(﹣1)n•.故答案为(﹣1)n•.三、解答题(一)(本大题3小题,每小题6分,共18分)18.【分析】首先计算乘方和绝对值,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣12+(π﹣3.14)0﹣()﹣2+|﹣3|=﹣1+1﹣4+3=﹣119.【分析】根据题意和等腰三角形的性质,可以求得∠BAD和∠BDA的度数,再根据三角形外角和内角的关系,即可求得∠DAC的度数.【解答】解:由题意得:BA=BD,则∠BAD=∠BDA,∵∠B=50°,∴∠BAD=∠BDA=65°,∵∠BDA=∠DAC+∠C,∠C=36°,∴∠DAC=29°.20.【分析】根据分式的运算法则即可求出答案.【解答】解:当x=3时,原式=•==4四、解答题(二)(本大题3小题,每小题8分,共24分)21.【分析】(1)设货车的速度为x千米/时,则小轿车的速度为1.5x千米/时,根据题意可得等量关系:小张行驶360千米所用时间﹣小刘行驶360千米所用时间=90分钟,根据等量关系列出方程,再解即可;(2)计算小张行驶3.5小时所行驶路程和小刘行驶2小时所行驶路程差即可.【解答】解:(1)设货车的速度为x千米/时,依题得:,解得x=80,经检验x=80为原方程的解,∴1.5x=120,答:货车的速度为80千米/时,小汽车的速度为120千米/时.(2)3.5×80﹣2×120=40(千米),答:两车的距离是40千米.22.【分析】(1)利用关于y轴对称点的性质得出对应点位置进而得出答案;(2)利用三角形面积计算公式进行计算即可;(3)利用两点之间,线段最短,即可得到点P的位置,依据直线AB1解析式即可得出点P的坐标.【解答】解:(1)如图所示,线段A1B1即为所求;(2)∵A(﹣1,5),A1(1,5),∴AA1=2,∴△AA1B1的面积=;(3)如图所示,AB1与y轴的交点即为点P(0,4).故答案为:(0,4).23.【分析】(1)证明△AEF≌△ABF(SAS),即可得出结论;(2)在EC上截取CG=EF,连接AG,证明△AFG是等边三角形,即可得出结论.【解答】(1)证明:∵△ABC是等边三角形∴AB=AC,∠BAC=60°,∵AE=AC,∴AE=AB,∵AF平分∠EAB,∴∠EAF=∠DAF,在△AEF和△ABF中,∴△AEF≌△ABF(SAS),∴EF=BF;(2)解:∠AFC=60°,理由如下:在EC上截取CG=EF,连接AG,∵AE=AC,∴∠EAF=∠ACG,∵EF=CG,∴△AEF≌△ACG(SAS),∴AF=AG,∠CAG=∠EAF=∠DAF,∵∠BAG+∠CAG=60°,∴∠BAF+∠BAG=60°,∴∠FAG=60°,∴△AFG是等边三角形,∴∠AFC=60°.五、解答题(三)(本大题2小题,每小题10分,共20分)24.【分析】(1)根据=2,=2,可以求得所求式子之间的大小关系;(2)先判断和的大小关系,然后根据=,即可说明大小关系成立的理由;(3)根据==t,分式﹣+2的值为3,可以求得t的值.【解答】解:(1)∵=2,=2,∴=,=,a=2b,c=2d,∴=,==,故答案为:=,=;(2)=,理由如下:∵,∴ad=bc,∴﹣===0,∴=;(3)∵,∴a=ct,b=dt,∵2=3,∴,解得t=.25.【分析】(1)由A(4,0)和OA=OB即可得到结论;(2)过点D作DE⊥y轴,垂足为E,证明△DEC≌△COA,得出DE=OC=7,EC=OA=4,即可得到结论;(3)证明△DBE是等腰直角三角形,得到∠DBE=45°,从而得到∠DBA=90°.在△DNC和△ABN中,根据三角形内角和定理可得出∠CDN=∠BAN,从而证明△DCN≌△ACM,根据全等三角形对应边相等即可得出结论.【解答】解:(1)∵A(4,0),∴OA=OB=4,∴B(0,4),故答案为:(0,4).(2)∵C(0,7),∴OC=7,过点D作DE⊥y轴,垂足为E,∴∠DEC=∠AOC=90°,∵∠DCA=90°,∴∠ECD+∠BCA=∠ECD+∠EDC=90°∴∠BCA=∠EDC,∴△DEC≌△COA(AAS),∴DE=OC=7,EC=OA=4,∴OE=OC+EC=11,∴D(7,11);(3)证明:∵BE=OE﹣OB=11﹣4=7∴BE=DE,∴△DBE是等腰直角三角形,∴∠DBE=45°,∵OA=OB,∴∠OBA=45°,∴∠DBA=90°,∴∠BAN+∠ANB=90°,∵∠DCA=90°,∴∠CDN+∠DNC=90°,∵∠DNC=∠ANB,∴∠CDN=∠BAN,∵∠DCA=90°,∴∠ACM=∠DCN=90°,∴△DCN≌△ACM(ASA),∴CM=CN.。
八年级数学上册 2019-2020学年八年级(上)期末名校校考试卷及答案
![八年级数学上册 2019-2020学年八年级(上)期末名校校考试卷及答案](https://img.taocdn.com/s3/m/8e9bd1786c85ec3a86c2c525.png)
八年级数学上册2019-2020学年八年级(上)期末名校校考试卷及答案一、选择题(本题共10个小题)每小题均给出标号为A、B、C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号涂在答题卡上.1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.2.如图,▱ABCD的对角线交于点O,已知△OCD的面积等于3,则▱ABCD的面积等于()A.6B.12C.15D.243.正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°4.在某校“班级篮球联赛”中,全年级共有11个班级参加比赛,它们决赛的最终成绩各不相同,小芳向知道自己班能否进入前6名,不仅要了解自己班的成绩,还要了解这11个班级成绩的()A.众数B.方差C.平均数D.中位数5.对于一组统计数据:1,6,2,3,3,下列说法错误的是()A.平均数是3B.中位数是3C.众数是3D.方差是2.56.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()A.2x B.﹣4x C.4x4D.4x7.点M的坐标为(﹣2,3),点N的坐标为(3,b),若将线段MN平移至M'N'的位置,点M'的坐标为(a,﹣2),点N'的坐标为(4,﹣4),则a﹣b的值为()A.0B.﹣4C.﹣2D.68.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE9.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是()A.40×1.25x﹣40x=800B.﹣=40C.﹣=40D.﹣=4010.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2C.D.3二、填空题(本题共10个小题)11.某校规定学期综合成绩按照平日成绩20%、期中成绩30%、期末成绩50%计算,由此看出,期中成绩的权是.12.如图中的5个数据的标准差是.13.若无意义,且分式的值等于零,那么=.14.在平行四边形ABCD中,若∠A:∠B=2:3,则∠C=.15.如图,在四边形ABCD中,AB∥CD,E,F分别是AC,BD的中点,已知AB=12,CD=6,则EF=.16.依次连接任意四边形各边的中点,得到一个特殊图形,则这个图形一定是.17.如果,那么.18.已知关于的分式的解是非负数,则k的取值范围是.19.若,则K=.20.如图,小亮从A点出发,沿直线前进15米后向左转30°,再沿直线前进15米,又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了米.三、解答题(本大题共9个小题)21.分解因式(1)3a2(x+y)3﹣27a4(x+y)(2)(x2﹣9)2﹣14(x2﹣9)+4922.解方程:.23.先化简,再求值:÷(x﹣),其中x为0,﹣1,﹣3,1,2的极差.24.已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.25.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;(2)平移△ABC:若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(3)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.26.近年来“哈罗单车”和“哈啰助力车”在街头流行.随着市民对这两种车的使用率的提升,经营“哈罗单车”和“哈啰助力车”的两家公司也有了越来越高的收人.初三某班的实践小组对两家公司近10个周的收入进行了调查,就收入(单位:千元)情况制作了如下的统计图:根据以上信息,整理分析数据如下:(1)完成表格填空;(2)“哈罗单车”和“哈啰助力车”在该地各有500辆和300辆.从收入的情况看,上个周这2家公司都达到了近10个周的最高收人.已知每骑用一次“哈罗单车”和“哈啰助力车”,公司就分别收人1元和2元,通过计算在上周每辆车的周平均骑用次数,说明哪种车比较抢手?27.列方程解应用题:在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式,若一次性付款4200元购买这种篮球,则在B超市购买的数量比在A 超市购买的数量多5个.请求出这种篮球的标价.28.如图,O在等边△ABC内,∠BOC=150°,将△BOC绕点C顺时针旋转后,得△ADC,连接OD.(1)△COD是三角形.(2)若OB=5,OC=3,求OA的长.29.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.参考答案一、选择题(本题共10个小题)每小题均给出标号为A、B、C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号涂在答题卡上.1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.【考点】R5:中心对称图形.【专题】1:常规题型.【分析】直接利用中心对称图形的性质得出答案.【解答】解:A、新图形不是中心对称图形,故此选项错误;B、新图形是中心对称图形,故此选项正确;C、新图形不是中心对称图形,故此选项错误;D、新图形不是中心对称图形,故此选项错误;故选:B.2.如图,▱ABCD的对角线交于点O,已知△OCD的面积等于3,则▱ABCD的面积等于()A.6B.12C.15D.24【考点】K3:三角形的面积;L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】由▱ABCD的对角线相交于点O,可得OA=OC,OB=OD,然后根据三角形中线的性质,求得S△COD=S△AOD=S△AOB=3,继而求得答案.【解答】解:如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴S△BOC=S△COD=3,同理:S△COD=S△AOD=S△AOB=3,∴S▱ABCD=4S△COD=12.故选:B.3.正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°【考点】L3:多边形内角与外角.【专题】55:几何图形.【分析】利用正十边形的外角和是360度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出正十边形的每个内角的度数.【解答】解:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°﹣36°=144°;故选:D.4.在某校“班级篮球联赛”中,全年级共有11个班级参加比赛,它们决赛的最终成绩各不相同,小芳向知道自己班能否进入前6名,不仅要了解自己班的成绩,还要了解这11个班级成绩的()A.众数B.方差C.平均数D.中位数【考点】W A:统计量的选择.【专题】1:常规题型.【分析】11人成绩的中位数是第6名的成绩,要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有11个人,且他们的分数互不相同,第6名的成绩是中位数,要判断是否进入前6名,故应知道中位数的多少.故选:D.5.对于一组统计数据:1,6,2,3,3,下列说法错误的是()A.平均数是3B.中位数是3C.众数是3D.方差是2.5【考点】W1:算术平均数;W4:中位数;W5:众数;W7:方差.【专题】1:常规题型;542:统计的应用.【分析】根据平均数、中位数、众数和方差的定义逐一求解可得.【解答】解:A、平均数为=3,正确;B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为×[(1﹣3)2+(6﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2]=2.8,错误;故选:D.6.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()A.2x B.﹣4x C.4x4D.4x【考点】44:整式的加减;54:因式分解﹣运用公式法.【专题】1:常规题型.【分析】分①4x2是平方项,②4x2是乘积二倍项,③1是乘积二倍项,然后根据完全平方公式的结构解答.【解答】解:A、4x2+1+2x,无法运用完全平方公式分解因式,故此选项符合题意;B、4x2+1﹣4x=(2x﹣1)2,能运用完全平方公式分解因式,故此选项不符合题意;C、4x4+4x2+1=(2x2+1)2,能运用完全平方公式分解因式,故此选项不符合题意;D、4x2+1+4x=(2x+1)2,能运用完全平方公式分解因式,故此选项不符合题意;故选:A.7.点M的坐标为(﹣2,3),点N的坐标为(3,b),若将线段MN平移至M'N'的位置,点M'的坐标为(a,﹣2),点N'的坐标为(4,﹣4),则a﹣b的值为()A.0B.﹣4C.﹣2D.6【考点】Q3:坐标与图形变化﹣平移.【专题】558:平移、旋转与对称;69:应用意识.【分析】由题意可知平移后横坐标加1,纵坐标减5,由此求出a,b即可解决问题.【解答】解:由题意可知平移后横坐标加1,纵坐标减5,∴a=﹣1,b=1,∴a﹣b=﹣1﹣1=﹣2,故选:C.8.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE 【考点】JB:平行线的判定与性质;R2:旋转的性质.【专题】1:常规题型.【分析】利用旋转的性质得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通过判断△ABD为等边三角形得到AD=AB,∠BAD=60°,则根据平行线的性质可判断AD∥BC,从而得到∠DAC=∠C,于是可判断∠DAC=∠E,接着利用AD=AB,BE =BC可判断AD+BC=AE,利用∠CBE=60°,由于∠E的度数不确定,所以不能判定BC⊥DE.【解答】解:∵△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 的延长线上,∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,∴△ABD为等边三角形,∴AD=AB,∠BAD=60°,∵∠BAD=∠EBC,∴AD∥BC,∴∠DAC=∠C,∴∠DAC=∠E,∵AE=AB+BE,而AD=AB,BE=BC,∴AD+BC=AE,∵∠CBE=60°,∴只有当∠E=30°时,BC⊥DE.故选:C.9.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是()A.40×1.25x﹣40x=800B.﹣=40C.﹣=40D.﹣=40【考点】B6:由实际问题抽象出分式方程.【专题】1:常规题型.【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.【解答】解:小进跑800米用的时间为秒,小俊跑800米用的时间为秒,∵小进比小俊少用了40秒,方程是﹣=40,故选:C.10.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2C.D.3【考点】KJ:等腰三角形的判定与性质;KX:三角形中位线定理.【专题】17:推理填空题.【分析】证明△BNA≌△BNE,得到BA=BE,即△BAE是等腰三角形,同理△CAD是等腰三角形,根据题意求出DE,根据三角形中位线定理计算即可.【解答】解:∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中,∴△BNA≌△BNE,∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=19﹣BC=19﹣7=12,∴DE=BE+CD﹣BC=5,∴MN=DE=.故选:C.二、填空题(本题共10个小题)11.某校规定学期综合成绩按照平日成绩20%、期中成绩30%、期末成绩50%计算,由此看出,期中成绩的权是30%.【考点】W2:加权平均数.【专题】542:统计的应用;61:数感.【分析】根据权的表现形式,一种是比的形式,如4:3:2,另一种是百分比的形式,如平日成绩占20%,期中成绩占30%,期末成绩占50%等.【解答】解:根据加权平均数的定义可知:期中成绩的权为30%.故答案为30%.12.如图中的5个数据的标准差是0.【考点】W8:标准差.【专题】543:概率及其应用;65:数据分析观念.【分析】由图知5个数据均为3,从而得出这组数据没有波动,即可得出答案.【解答】解:由图知这5个数据均为3,∴这组数据的标准差为0,故答案为:0.13.若无意义,且分式的值等于零,那么=2.【考点】62:分式有意义的条件;63:分式的值为零的条件.【专题】513:分式;66:运算能力.【分析】直接利用分式的值为零的条件“分子为0且分母不为0”分析得出答案.【解答】解:∵无意义∴a+2=0,a=﹣2∵分式的值等于零,∴|b|﹣1=0,b﹣1≠0,∴b=﹣1,∴==2,故答案为2.14.在平行四边形ABCD中,若∠A:∠B=2:3,则∠C=72°.【考点】L5:平行四边形的性质.【分析】根据已知比例设∠A=2x,∠B=3x,再由两直线平行,同旁内角线补,可求角的度数.【解答】解:依题意设∠A=2x,∠B=3x,由平行四边形的性质,得∠A+∠B=180°,∴2x+3x=180°,解得x=36°,∴∠A=2x=72°,又∵∠A=∠C,∴∠C=72°.故答案为72°.15.如图,在四边形ABCD中,AB∥CD,E,F分别是AC,BD的中点,已知AB=12,CD=6,则EF=3.【考点】KX:三角形中位线定理.【专题】557:梯形;67:推理能力.【分析】连接CF并延长交AB于G,证明△FDC≌△FBG,根据全等三角形的性质得到BG=DC=6,CF=FG,求出AG,根据三角形中位线定理计算,得到答案.【解答】解:连接CF并延长交AB于G,∵AB∥CD,∴∠FDC=∠FBG,在△FDC和△FBG中,,∴△FDC≌△FBG(ASA)∴BG=DC=6,CF=FG,∴AG=AB﹣BG=12﹣6=6,∵CE=EA,CF=FG,∴EF=AG=3,故答案为:3.16.依次连接任意四边形各边的中点,得到一个特殊图形,则这个图形一定是平行四边形.【考点】LN:中点四边形.【专题】555:多边形与平行四边形;67:推理能力.【分析】首先根据题意画出图形,再连接AC,根据三角形的中位线得到HG∥AC,HG =AC,EF∥AC,EF=AC,可以推出EF=GH,EF∥GH,根据平行四边形的判定:一组对边平行且相等的四边形是平行四边形求出即可.【解答】解:这个图形一定是平行四边形,理由是:根据题意画出图形,如右图所示:连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=AC,EF∥AC,EF=AC,∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形.故答案为:平行四边形.17.如果,那么.【考点】RA:几何变换的类型.【专题】13:作图题;558:平移、旋转与对称;69:应用意识.【分析】观察图象的变化,根据旋转变换的性质轴对称的性质即可解决问题.【解答】解:由题意性质180,可得图形:18.已知关于的分式的解是非负数,则k的取值范围是k≤3且k≠1.【考点】B2:分式方程的解.【专题】522:分式方程及应用;66:运算能力.【分析】求出分式方程的解,根据解是非负数求出k的取值范围.【解答】解:去分母得:1+2(x﹣2)=x﹣k,解得:x=3﹣k,由题意得:3﹣k≥0,且3﹣k≠2,解得:k≤3且k≠1,∴k的取值范围是k≤3且k≠1,故答案为:k≤3且k≠1.19.若,则K=1.【考点】6B:分式的加减法.【专题】17:推理填空题;513:分式;66:运算能力.【分析】根据分式的加减和恒等关系即可求解.【解答】解:原式变形,得=∴3K=3,4K=4,解得K=1.故答案为1.20.如图,小亮从A点出发,沿直线前进15米后向左转30°,再沿直线前进15米,又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了180米.【考点】L3:多边形内角与外角.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了15×12=180(米).故答案为:180.三、解答题(本大题共9个小题)21.分解因式(1)3a2(x+y)3﹣27a4(x+y)(2)(x2﹣9)2﹣14(x2﹣9)+49【考点】55:提公因式法与公式法的综合运用.【专题】512:整式;66:运算能力.【分析】(1)先提公因式,然后根据平方差公式分解即可;(2)根据完全平方公式和平方差公式分解即可.【解答】解:(1)3a2(x+y)3﹣27a4(x+y)=3a2(x+y)[(x+y)2﹣9a2]=3a2(x+y)(x+y﹣3a)(x+y+3a);(2)(x2﹣9)2﹣14(x2﹣9)+49=(x2﹣9﹣7)2=(x2﹣16)2=(x+4)2(x﹣4)2.22.解方程:.【考点】B3:解分式方程.【专题】11:计算题;16:压轴题.【分析】观察可得最简公分母是(x﹣1)(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边都同乘以(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3,化简,得x+2=3,解得:x=1.检验:把x=1代入(x﹣1)(x+2)=0.∴x=1不是原方程的解,原分式方程无解.23.先化简,再求值:÷(x﹣),其中x为0,﹣1,﹣3,1,2的极差.【考点】6D:分式的化简求值;W6:极差.【专题】1:常规题型.【分析】先算括号内的减法,再把除法变成乘法,最后算乘法,再代入求出即可.【解答】解:原式=÷=•=,当x=2﹣(﹣3)=5时,原式==.24.已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.【考点】KD:全等三角形的判定与性质;L6:平行四边形的判定.【专题】16:压轴题.【分析】首先根据条件证明△AFD≌△CEB,可得到AD=CB,∠DAF=∠BCE,可证出AD∥CB,根据一条对边平行且相等的四边形是平行四边形可证出结论.【解答】解:结论:四边形ABCD是平行四边形,证明:∵DF∥BE,∴∠AFD=∠CEB,又∵AF=CE DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.25.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;(2)平移△ABC:若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(3)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为(,﹣1).【考点】Q4:作图﹣平移变换;R8:作图﹣旋转变换.【专题】13:作图题;558:平移、旋转与对称.【分析】(1)分别作出点A、B关于点C的对称点,再顺次连接可得;(2)由点A的对称点A2的位置得出平移方向和距离,据此作出另外两个点的对称点,顺次连接可得;(3)连接A1A2、B1B2,交点即为所求.【解答】解:(1)如图所示,△A1B1C即为所求;(2)如图所示,△A2B2C2即为所求;(3)如图所示,点P即为对称中心,其坐标为(,﹣1),故答案为:(,﹣1).26.近年来“哈罗单车”和“哈啰助力车”在街头流行.随着市民对这两种车的使用率的提升,经营“哈罗单车”和“哈啰助力车”的两家公司也有了越来越高的收人.初三某班的实践小组对两家公司近10个周的收入进行了调查,就收入(单位:千元)情况制作了如下的统计图:根据以上信息,整理分析数据如下:(1)完成表格填空;(2)“哈罗单车”和“哈啰助力车”在该地各有500辆和300辆.从收入的情况看,上个周这2家公司都达到了近10个周的最高收人.已知每骑用一次“哈罗单车”和“哈啰助力车”,公司就分别收人1元和2元,通过计算在上周每辆车的周平均骑用次数,说明哪种车比较抢手?【考点】W2:加权平均数;W4:中位数;W5:众数;W7:方差.【专题】542:统计的应用;66:运算能力.【分析】(1)根据加权平均数、中位数、众数、方差的定义即可求解;(2)根据方差的结果进行判断即可.【解答】解:(1)7×20%+8×10%+4×10%+5×20%+6×(1﹣20%﹣10%﹣10%﹣20%)=6(千克);(4+5)÷2=4.5(千克);×[5×(6﹣4)2+2(6﹣5)2+2×(9﹣6)2+(12﹣6)2]=7.6(千克).故答案为6、4.5、7.6.(2)因为两家的平均周收入相同,周收入中位数和众数“哈罗单车”都大于“哈罗助力车”,而方差“哈罗单车”小于“哈罗助力车”,比较稳定.答:“哈罗单车”比较抢手.27.列方程解应用题:在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式,若一次性付款4200元购买这种篮球,则在B超市购买的数量比在A 超市购买的数量多5个.请求出这种篮球的标价.【考点】B7:分式方程的应用.【专题】34:方程思想;522:分式方程及应用;69:应用意识.【分析】设这种篮球的标价为x元,根据数量=总价÷单价结合在B超市购买的数量比在A超市购买的数量多5个,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设这种篮球的标价为x元,依题意,得:﹣=5,解得:x=50,经检验,x=50是原方程的解,且符合题意.答:这种篮球的标价为50元.28.如图,O在等边△ABC内,∠BOC=150°,将△BOC绕点C顺时针旋转后,得△ADC,连接OD.(1)△COD是等边三角形.(2)若OB=5,OC=3,求OA的长.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质;KQ:勾股定理;R2:旋转的性质.【专题】553:图形的全等;554:等腰三角形与直角三角形;558:平移、旋转与对称;67:推理能力.【分析】(1)由旋转的性质可得CO=CD,AD=BO,∠ACB=∠DCO=60°,可证△COD是等边三角形;(2)由等边三角形的性质可得OD=OC=3,∠CDO=60°,可得∠ADO=90°,由勾股定理可求OA的长.【解答】解:(1)∵将△BOC绕点C顺时针旋转后,得△ADC,∴△BOC≌△ADC,∴CO=CD,AD=BO=5,∠ACB=∠DCO=60°,∠BOC=∠ADC=150°,∴△COD是等边三角形,故答案为:等边;(2)∵△COD是等边三角形,∴OD=OC=3,∠CDO=60°,∴∠ADO=ADC﹣∠ODC=90°,∴AO2=AD2+OD2=9+25=34,∴AO=.29.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.【考点】KJ:等腰三角形的判定与性质;L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】(1)由平行四边形的性质和角平分线证出∠BAE=∠E.得出AB=BE,即可得出结论;(2)同(1)证出DA=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】(1)证明:∵AE为∠ADB的平分线,∴∠DAE=∠BAE.∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB.∴∠DAE=∠E.∴∠BAE=∠E.∴AB=BE.∴CD=BE.(2)解:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠BAF=∠DF A.∴∠DAF=∠DF A.∴DA=DF.∵F为DC的中点,AB=4,∴DF=CF=DA=2.∵DG⊥AE,DG=1,∴AG=GF.∴AG=.∴AF=2AG=2.在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).∴AF=EF,∴AE=2AF=4.。
人教版2019-2020学年度第一学期期末测试八年级数学试卷及答案
![人教版2019-2020学年度第一学期期末测试八年级数学试卷及答案](https://img.taocdn.com/s3/m/b40201fe710abb68a98271fe910ef12d2af9a952.png)
13.如图,在△ABC 中,∠B=63º,∠C=45º,DE⊥AC 于 E,DF⊥AB 于 F,那么
∠EDF=___________.
A
B
B
F
E
C
P
M P
B
D
CO
第13题图
D 第14题图
AO
N
A
第16题图
14.如图,OP 平分∠AOB,∠AOP=15º,PC∥OA,PD⊥OA 于 D,PC=10,则 PD=_________.
24. (9 分) 已知:△ABC 是边长为 3 的等边三角形,以 BC 为底边作一个顶角为 120º 等腰△BDC.点 M、点 N 分别是 AB 边与 AC 边上的点,并且满足∠MDN=60º. (1)如图 1,当点 D 在△ABC 外部时,求证:BM+CN=MN; (2)在(1)的条件下求△AMN 的周长; (3)当点 D 在△ABC 内部时,其它条件不变,请在图 2 中补全图形,
同理 ∠ABD=90º
∴∠DCE=180º-∠ACD=180º-90º=90º
∴∠DBM=∠DCE
……………………………………1 分
∴在△DBM 和△DCE 中
DB DC DBM DCE BM CE
∴△DBM≌△DCE
……………………………………2 分
∴DM=DE,∠BDM=∠CDE
∵∠BDC=∠BDM+∠MDN+∠DNC=120º
∴OH=AH= 1 OA 1 8 4 ,∠HCO= 1 ACO 1 90 45
111
(2)将△A B C 沿 x 轴方向向左平移 3 个单位后得到△A B C ,画出图形,并写出 A ,B ,C 的坐标.
111
广东省珠海香洲区四校联考2019年数学八上期末试卷
![广东省珠海香洲区四校联考2019年数学八上期末试卷](https://img.taocdn.com/s3/m/d0a07b4d1711cc7931b716ef.png)
广东省珠海香洲区四校联考2019年数学八上期末试卷一、选择题1.已知:112a b -=,则2227a ab b a b ab ---+的值等于( ) A .-43 B .43 C .215D .- 272.小明步行到距家2km 的图书馆借书,然后骑共享单车返家,骑车的平均速度比步行的平均速度每小时快8km ,若设步行的平均速度为xkm/h ,返回时间比去时省了20min ,则下面列出的方程中正确的是( )A .212103x x =⨯+ B .12238x x ⨯=+ C .21283x x+=+ D .21283x x -=+ 3.正常情况下,一个成年人的一根头发大约是0.0000012千克,用科学记数法表示应该是( ) A .1.2×10﹣5B .1.2×10﹣6C .0.12×10﹣5D .0.12×10﹣6 4.下列计算正确的是( )A .(﹣ab 3)2=ab 6B 2=-C .a 2•a 5=a 10D .(a ﹣b )2=a 2﹣b 2 5.若1a b -=,2213a b +=,则ab 的值为( ) A .6 B .7 C .8 D .96.根据图①的面积可以说明多项式的乘法运算(2a+b )(a+b )=2a 2+3ab+b 2,那么根据图②的面积可以说明多项式的乘法运算是( )A .(a+3b )(a+b )=a 2+4ab+3b 2B .(a+3b )(a+b )=a 2+3b 2C .(b+3a )(b+a )=b 2+4ab+3a 2D .(a+3b )(a ﹣b )=a 2+2ab ﹣3b 2 7.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )A .B .C .D .8.在△ABC 中,∠C =90°,AB =c ,∠A =30°,则AC =( )A .12cBC .2cD 9.如图,△ABC 中,∠BAC=90°,AD ⊥BC ,∠ABC 的平分线BE 交AD 于点F ,AG 平分∠DAC .给出下列结论:①∠BAD=∠C ; ②∠AEF=∠AFE ; ③∠EBC=∠C ;④AG ⊥EF .正确结论有( )A .4个B .3个C .2个D .1个10.如图,AD 为∠CAF 的角平分线,BD=CD ,∠DBC=∠DCB ,∠DCA=∠ABD ,过D 作DE ⊥AC 于E ,DF ⊥AB 交BA 的延长线于F ,则下列结论:①△CDE ≌△BDF ;②CE=AB+AE ;③∠BDC=∠BAC ;④∠DAF=∠CBD.其中正确的结论有( )A.4个B.3个C.2个D.1个11.如图,△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N 作直线MN ,交BC 于点D ,连结AD ,则∠BAD 的度数为( )A.65°B.60°C.55°D.45° 12.如图,OP 平分∠AOB ,点C ,D 分别在射线OA ,OB 上,添加下列条件,不能判定△POC ≌△POD 的是( )A .OC =ODB .∠CPO =∠DPOC .PC =PDD .PC ⊥OA ,PD ⊥OB 13.一个多边形的内角和与它的外角和相等,这个多边形的边数是( ) A .3B .4C .5D .6 14.在实际生活中,我们经常利用一些几何图形的稳定性或不稳定性,下列实物图中利用了稳定性的是( )A .电动伸缩门B .升降台C .栅栏D .窗户15.三角形的三边长分别是3,1﹣2a ,8.则数a 的取值范围是( )A .﹣5<a <﹣2B .﹣5<a <2C .5<a <11D .0<a <2 二、填空题16.已知关于x 的方程23x m x +-=3的解是非负数,则m 的取值范围是________. 17.如图∠AOP=∠BOP=22.5°,PC ∥OA ,PD ⊥OA 于点D ,若PD=1,则PC 等于_____.18.已知x+y=5,xy=3,则x 2+y 2的值是 _______.【答案】1919.如图,△ABC 中,点D 在BC 上,且,点E 是AC 中点,若△CDE 面积为1,则△ABC 的面积为____.20.如图,在Rt △ABC 中,∠ACB =90°,CD 为AB 边上的中线,过点A 作AE ⊥CD 交BC 于点E ,如果AC =2,BC =4,那么cot ∠CAE =_____.三、解答题21.计算(1(0221-+-. (2)()()()()221222x x x x ⎡⎤+--+⨯⎣⎦. 22.计算:(1);(2);(3);(4)(利用乘法公式计算). 23.如图,在△ABC 中,AB=AC=2,∠B=∠C=40°,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=______°,∠DEC=______°;点D从B向C运动时,∠BDA逐渐变______(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.24.综合与探究数学课上,老师让同学们利用三角形纸片进行操作活动,探究有关线段之间的关系.问题情境:如图1,三角形纸片ABC中,∠ACB=90°,AC=BC.将点C放在直线l上,点A,B位于直线l的同侧,过点A作AD⊥l于点D.初步探究:(1)在图1的直线l上取点E,使BE=BC,得到图2.猜想线段CE与AD的数量关系,并说明理由;变式拓展:(2)小颖又拿了一张三角形纸片MPN继续进行拼图操作,其中∠MPN=90°,MP=NP.小颖在图 1 的基础上,将三角形纸片MPN的顶点P放在直线l上,点M与点B重合,过点N作NH⊥l于点 H.请从下面 A,B 两题中任选一题作答,我选择_____题.A.如图3,当点N与点M在直线l的异侧时,探究此时线段CP,AD,NH之间的数量关系,并说明理由.B.如图4,当点N与点M在直线l的同侧,且点P在线段CD的中点时,探究此时线段CD,AD,NH之间的数量关系,并说明理由.25.将一个直角三角形纸板ABC放置在锐角△PMN上,使该直角三角形纸板的两条直角边AB,AC分别经过点M,N.(发现)(1)如图1,若点A在△PMN内,当∠P=30°时,则∠PMN+∠PNM=______°,∠AMN+∠ANM=______°,∠PMA+∠PNA=______°.(2)如图2,若点A在△PMN内,当∠P=50°时,∠PMA+∠PNA=______°.(探究)(3)若点A在△PMN内,请你判断∠PMA,∠PNA和∠P之间满足怎样的数量关系,并写出理由.(应用)(4)如图3,点A在△PMN内,过点P作直线EF∥AB,若∠PNA=16°,则∠NPE=______.【参考答案】***一、选择题16.m≥﹣9且m≠﹣617.18.无19.620.2三、解答题21.(1)124;(2)32820x x22.(1);(2);(3);(4).23.(1)25°,115°,小;(2)当DC=2时,△ABD≌△DCE,理由见解析;(3)见解析.【解析】【分析】(1)根据∠BDA=115°以及∠ADE=40°,即可得出∠EDC=180°-∠ADB-∠ADE,进而求出∠DEC的度数,(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE,(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.【详解】解:(1)∠EDC=180°-∠ADB-∠ADE=180°-115°-40°=25°,∠DEC=180°-∠EDC-∠C=180°-40°-25°=115°,∠BDA逐渐变小;故答案为:25°,115°,小;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,∴△ABD≌△DCE(AAS),(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,理由:∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∠AED=∠C+∠EDC=30°+40°=70°,∴∠DAC=∠AED,∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴∠DAC=∠ADE,∴△ADE的形状是等腰三角形.【点睛】此题主要考查了等腰三角形的性质以及全等三角形的判定等知识,熟练地应用等腰三角形的性质是解决问题的关键.24.(1)CE=2AD;(2)A题:CP=AD+NH;B题:NH=12CD+AD.【解析】【分析】(1) 过点B 作BF ⊥l 于点F ,通过已知条件证得△ACD ≌△CBF ,再通过等腰三角形性质即可求解.(2) ①过点B 作BF ⊥l 于点F ,通过已知条件△ACD ≌△CBF 证得△BFP ≌△PHN ,即可得出边边之间关系.②过点B 作BF ⊥l 于点F ,通过已知条件△ACD ≌△CBF 证得△BFP ≌△PHN ,再通过边边转化即可求解.【详解】(1)CE =2AD ,理由如下:过点B 作BF ⊥l 于点F ,易得∠CFB =90°∵AD ⊥l∴∠ADC =90°,∠CAD+∠DCA =90°∴∠ADC =∠CFB∵∠ACB =90°∴∠DCA+∠BCF =90°∴∠CAD =∠BCF在△ACD 和△CBF 中ADC CFB CAD BCF AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBF(AAS)∴AD =CF∵BE =BC ,BF ⊥l∴CF =EF∴CE =2CF =2AD(2)A.CP =AD+NH ,理由如下:过点B 作BF ⊥l 于点F ,易得∠BFP =90°,由(1)可得:△ACD ≌△CBF∴AD =CF∵NH ⊥l∴∠PHN =90°,∠HNP+∠HPN =90°∴∠BFP =∠PHN∵∠MPN =90°∴∠HPN+∠FPB =90°∴∠HNP =∠FPB在△BFP 和△PHN 中BFP PHN HNP FPB MP NP ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BFP ≌△PHN(AAS)∴NH =PF∵CP =CF+PF∴CP =AD+NHB.NH =12CD+AD ,理由如下: 过点B 作BF ⊥l 于点F ,易得∠BFC =90°,由(1)可得:△ACD ≌△CBF∴AD =CF∵NH ⊥l∴∠PHN =90°,∠HNP+∠HPN =90°∴∠BFP =∠PHN∵∠MPN =90°∴∠HPN+∠FPB =90°∴∠HNP =∠FPB在△BFP 和△PHN 中BFP PHN HNP FPB MP NP ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BFP ≌△PHN(AAS)∴NH =PF∵点P 在线段CD 的中点∴CP =DP =12CD由图得:PF=PC+CF∴NH=12CD+AD【点睛】本题主要考查了全等三角形判定定理,边边转化是解题关键.25.(1)150,90,60;(2)40;(3)∠PMA+PNA+∠P=90°;(4)106°。
2019-2020学年广东省珠海市香洲区七年级(上)期末数学试卷解析版
![2019-2020学年广东省珠海市香洲区七年级(上)期末数学试卷解析版](https://img.taocdn.com/s3/m/7fb09270f12d2af90242e6c9.png)
2019-2020学年广东省珠海市香洲区七年级(上)期末数学试卷一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)﹣7的倒数()A.﹣B.7C.﹣7D.2.(3分)2019年10月1日,天安门广场迎来新中国成立以来的第15次国庆阅兵.据统计,截止至当天下午6点,央视新闻置顶的“国庆阅兵”阅读数已超过34亿.数据34亿用科学记数法表示为()A.0.34×1010B.3.4×109C.3.4×108D.34×1083.(3分)物体的形状如图所示,则从上面看此物体得到的平面图形是()A.B.C.D.4.(3分)如图,某同学家在A处,现在该同学要去位于D处的同学家,请帮助他选择一条最近的路线是()A.A→B→M→D B.A→B→F→D C.A→B→E→F→D D.A→B→C→D5.(3分)下列去括号正确的是()A.a﹣(3b﹣c)=a﹣3b﹣c B.a+3(2b﹣3c)=a﹣6b﹣9cC.a+(b﹣3c)=a﹣b+3c D.a﹣2(2b﹣3c)=a﹣4b+6c6.(3分)若x=1是方程2x+m﹣6=0的解,则m的值是()A.﹣4B.﹣8C.4D.87.(3分)下列各等式的变形中,等式的性质运用正确的是()A.由=0,得x=2B.由x﹣1=4,得x=5C.由2a=3,得a=D.由a=b,得=8.(3分)如图,点A在点O的北偏西60°的方向上,点B在点O的南偏东20°的方向上,那么∠AOB的大小为()A.110°B.120°C.140°D.170°9.(3分)有理数a,b在数轴上的位置如图所示,以下说法正确的是()A.|b|<|a|B.a>b C.ab>0D.a+b=010.(3分)把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是()A.a+2b B.a+b C.3a+b D.a+3b二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)比较大小:﹣2﹣3.12.(4分)若单项式3x2y3与单项式﹣2x2y n﹣1是同类项,则n的值是.13.(4分)若∠A=34°,则∠A的余角的度数为度.14.(4分)若|x﹣2|+(y+3)2=0,则x+y=.15.(4分)若x2+2xy=﹣2,xy﹣y2=4,则x2+xy+y2的值是.16.(4分)商家把某商品的进价增加20%定为售价出售,后因库存积压降价出售,结果还盈利8%,则这种商品按原售价的折出售.17.(4分)设x、y是任意两个有理数,规定x与y之间的一种运算“⊕”为:若对任意有理数x、y(x≠y),x⊕y=,若2⊕a=0,则a的值是.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)计算:(﹣1)4+4÷(﹣0.25)﹣|﹣3|.19.(6分)解方程:=1﹣.20.(6分)如图,点M为AB中点,BN=AN,MB=3cm,求AB和MN的长.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)如图是一个长方体纸盒的表面展开图,已知纸盒中相对两个面上的数互为相反数.(1)填空:a=,b=;(2)先化简,再求值:(2a2﹣5b)﹣3(a2﹣b).22.(8分)的士司机李师傅从上午9:00~10:15在东西方向的九洲大道上营运,共连续运载八批乘客.若规定向东为正,向西为负,李师傅营运八批乘客里程如下:(单位:千米)+2,﹣3,+3,﹣4,+5,+4,﹣7,﹣2.(1)将最后一批乘客送到目的地时,李师傅位于第一批乘客出发地的东面还是西面?距离出发地多少千米?(2)若的士的收费标准为:起步价10元(不超过2.5千米),超过2.5千米,超过部分每千米2.6元.则李师傅在上午9:00~10:15一共收入多少元?(精确到1元)23.(8分)某小组6名同学参加一次知识竞赛,共答20道题,每题分值相同,答对得分,答错或不答扣分,下面是前5名同学的得分情况(如表):序号答对题数答错或不答题数得分118284217m76320010041919251010n(1)表中的m=,n=;(2)该小组第6名同学说:“这次知识竞赛我得了0分”,请问他的说法是否正确?如果正确,请求出这位同学答对了多少题;如果不正确,请说明理由.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)已知点O为直线AB上一点,将一个直角三角板COD的直角顶点放在点O处,并使OC边始终在直线AB的上方,OE平分∠BOC.(1)如图1,若∠DOE=70°,则∠AOC=°;(2)如图1,若∠DOE=α,求∠AOC的度数;(用含α的式子表示)(3)如图2,在(2)的条件下,若在∠AOC的内部有一条射线OF,满足∠BOE=(∠AOF﹣∠DOE),试确定∠AOF与∠DOE之间的数量关系,并说明理由.25.(10分)如图1,已知数轴上有三点A,B,C.点A,C对应的数分别是﹣40和20,点B是AC的中点.(1)请直接写出点B对应的数:;(2)如图2,动点P,Q分别从A,C两点同时出发向左运动,点P,Q的速度分别为2个单位长度/秒,3个单位长度/秒,点E为线段PQ的中点.设运动的时间为t秒(t>0).①当t为何值时,点B与点E的距离是5个单位长度?②当点E在点A的右侧时,m▪AE+QC的值不随时间的变化而改变,请求出m的值.2019-2020学年广东省珠海市香洲区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.【解答】解:﹣7的倒数是﹣,故选:A.2.【解答】解:34亿=3400000000=3.4×109.故选:B.3.【解答】解:该几何体从上面看到的平面图有两层,第一层一个正方形,第二层有3个正方形.故选:C.4.【解答】解:根据两点之间的线段最短,可得D、B两点之间的最短距离是线段DB的长度,所以想尽快赶到同学家玩,一条最近的路线是:A→B→F→D.故选:B.5.【解答】解:A、原式=a﹣3b+c,故本选项不符合题意.B、原式=a+6b﹣9c,故本选项不符合题意.C、原式=a+b﹣3c,故本选项不符合题意.D、原式=a﹣4b+6c,故本选项符合题意.故选:D.6.【解答】解:把x=1代入方程得:2+m﹣6=0,解得:m=4,故选:C.7.【解答】解:由=0,得x=0,故选项A错误;由x﹣1=4,得x=5,故选项B正确;由2a=3,得a=,故选项C错误;由a=b,得=(c≠0),故选项D错误;故选:B.8.【解答】解:如图,∵点A在点O北偏西60°的方向上,∴OA与西方的夹角为90°﹣60°=30°,又∵点B在点O的南偏东20°的方向上,∴∠AOB=30°+90°+20°=140°.故选:C.9.【解答】解:由数轴上点的位置得:a<0<b,且|a|>|b|,∴ab<0,a+b<0,故选:A.10.【解答】解:设小正方形的边长为x,则a﹣2x=b+2x,则4x=a﹣b,所以大正方形的周长﹣小正方形的周长=4(a﹣2x)﹣4x=4a﹣12x=4a﹣3a+3b=a+3b.故选:D.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.【解答】解:在两个负数中,绝对值大的反而小,可求出﹣2>﹣3.故答案为:>.12.【解答】解:∵单项式3x2y3与单项式﹣2x2y n﹣1是同类项,∴n﹣1=3,解得n=4.故答案为:413.【解答】解:∠A的余角=90°﹣34°=56°.14.【解答】解:∵|x﹣2|与+(y+3)2=0,∴|x﹣2|=0,(y+3)2=0,∴x=2,y=﹣3,∴x+y=2+(﹣3)=﹣1.故填﹣1.15.【解答】解:x2+2xy=﹣2①,xy﹣y2=4②,①﹣②得:x2+2xy﹣(xy﹣y2)=﹣2﹣4,x2+2xy﹣xy+y2=﹣6,x2+xy+y2=﹣6,故答案为:﹣6.16.【解答】解:设每件进价为a元,按原售价的x折出售.由题意,得(1+20%)a×0.1x﹣a=8%a解得x=9.答:按原售价的9折出售.故答案是:9.17.【解答】解:根据题意得:当a<2时,4+3a﹣7=0,即a=1;当a>2时,﹣6+2a﹣7=0,即a=,综上,a的值是1或,故答案为:1或三、解答题(一)(本大题3小题,每小题6分,共18分)18.【解答】解:原式=1+(﹣16)﹣31﹣19=﹣18.19.【解答】解:去分母得:2(4x+1)=6﹣3(2x﹣1),去括号得:8x+2=6﹣6x+3,移项合并得:14x=7,解得:x=0.5.20.【解答】解:∵点M为AB中点,∴AB=2MB=6cm,∴AN+NB=6cm,∵BN=AN,∴2BN+NB=6cm∴NB=2cm∴MN=MB﹣NB=1cm.四、解答题(二)(本大题3小题,每小题8分,共24分)21.【解答】解:(1))∵纸盒中相对两个面上的数互为相反数,∴观察图形可知,a=﹣1,b=3.故答案为:a=﹣1,b=3;(2)原式=2a2﹣5b﹣3a2+3b=﹣a2﹣2b当a=﹣1,b=3时原式=﹣(﹣1)2﹣2×3=﹣7.22.【解答】解:(1)(+2)+(﹣3)+(+3)+(﹣4)+(+5)+(+4)+(﹣7)+(﹣2)=﹣2答:李师傅距第一批乘客出发地的西面,距离出发地2千米.(2)(3﹣2.5)+(3﹣2.5)+(4﹣2.5)+(5﹣2.5)+(4﹣2.5)+(7﹣2.5)=11(千米)10+10+(10×6+11×2.6)=108.6≈109(元)答:李师傅上午9:00~10:15一共收入约109元.23.【解答】(1)由于共有20道题,m=20﹣17=3,∴由同学3可知:答对一题可得5分,由第3位同学可知答对一题得5,设答错或不答扣x分,则从第1位同学可列方程:18×5﹣2x=84,解得:x=3,n=10×5﹣3×10=20,故答案为:(1)3,20(2)设这位同学答对y道题,则他答错或不答(20﹣y)题,则5y﹣3(20﹣y)=0,解得:y=,因为m不是整数,所以这位同学的说法不正确.五、解答题(三)(本大题2小题,每小题10分,共20分)24.【解答】解:(1)∵∠DOE=70°,∠COD=90°∴∠COE=90°﹣70°=20°,∵OE平分∠BOC.∴∠COE=∠BOE=20°∴∠AOC=180°﹣2∠COE=140°,故答案为:140.(2)解:∠DOE=α,∠COD=90°∴∠COE=90°﹣α,∵OE平分∠BOC∴∠BOC=2∠COE=180°﹣2α,∴∠AOC=180°﹣∠BOC=180°﹣(180°﹣2α)=2α;(3)∠AOF+∠DOE=180°,∵∠BOE=(∠AOF﹣∠DOE),∴2∠BOE=∠AOF﹣∠DOE,∴∠BOC=∠AOF﹣∠DOE,∴180°﹣∠AOC=∠AOF﹣∠DOE,∵∠DOE=α,∠AOC=2α,∴∠AOC=2∠DOE,∴180°﹣2∠DOE=∠AOF﹣∠DOE,∴∠AOF+∠DOE=180°,即∠AOF与∠DOE互补.25.【解答】解:(1)点B对应的数是﹣10;故答案为:﹣10(2)①PB=AB+AP=﹣10﹣(﹣40)+2t=30+2tPQ=20﹣(﹣40)+2t﹣3t=60﹣t,∵E是PQ的中点,∴PE=PQ=(60﹣t)=30﹣t当E在B的左侧时,BE=PB﹣PE=30+2t﹣(30﹣)=BE=t=5,∴t=2,当E在B的右侧时∴BE=PE﹣PB=30﹣t﹣(30+2t)=t∴BE=t=5,∴t=﹣2答:当t=2时,点B与点E的距离是5个单位长度.②依题意,得:AE=+40=30﹣t,QC=3t,∴mAE+QC=m(30﹣t)+3t=30m+(m+3)t,∵mAE+QC的值不随时间的变化而改变∴m+3=0,解得:m=;,答:当m=时,mAE+QC的值不随时间的变化而改变。
2019-2020学年广东省珠海市香洲区七年级(上)期末数学试卷(解析版)
![2019-2020学年广东省珠海市香洲区七年级(上)期末数学试卷(解析版)](https://img.taocdn.com/s3/m/fcea5332bb68a98271fefa4a.png)
2019-2020学年广东省珠海市香洲区七年级(上)期末数学试卷一、选择题(本大题10小题,每小题3分,共30分.每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.如果零上2℃记作+2℃,那么零下3℃记作()A.﹣3℃B.﹣2℃C.+3℃D.+2℃2.港珠澳大桥全长约为55000米,将数据55000科学记数法表示为()A.0.55×105B.5.5×104C.55×103D.550×102 3.如图所示的几何体从上面看得到的图形是()A.B.C.D.4.若x﹣3=2y,则x﹣2y的值是()A.2B.﹣2C.3D.﹣35.下列计算中,正确的是()A.x+x2=x3B.2x2﹣x2=1C.x2y﹣xy2=0D.x2﹣2x2=﹣x26.商店对某种手机的售价作了调整,按原售价的8折出售,此时的利润率为14%,若此种手机的进价为1200元,设该手机的原售价为x元,则下列方程正确的是()A.0.8x﹣1200=1200×14%B.0.8x﹣1200=14%xC.x﹣0.8x=1200×14%D.0.8x﹣1200=14%×0.8x7.若一个角等于它的补角,则这个角的度数为()A.90°B.60°C.45°D.30°8.下列图形可以作为一个正方体的展开图的是()A.B.C.D.9.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品按220元销售,可获利10%,则这件商品的进价为()A.240元B.200元C.160元D.120元10.如图所示的运算程序中,若开始输入的x值为18,我们发现第一次输出的结果为9,第二次输出的结果为12,……,则第10次输出的结果为()A.0B.3C.5D.6二、填空题(本大题6小题,每小题4分,共24分请将下列各题的正确答案填写在答题卡相应的位置上)11.某天上午的气温是6℃,夜晚下降了10℃,则夜晚的气温为℃.12.将57000用科学记数法表示为.13.若关于x的方程ax=6﹣2x的解是x=2,则a=.14.计算:90°﹣53°17′=.15.对于有理数a、b,定义a*b=3a+2b,化简x*(x﹣y)=.16.如图,两个正方形边长分别为2、a(a>2),图中阴影部分的面积为.三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:﹣22÷×+|﹣|18.解方程:+1=19.如图,以直线AB上的点O为端点作射线OC、OD,满足∠AOC=54°,∠BOD=∠BOC,求∠BOD的度数.(二)(本大题3小题,每小题7分,共21分)20.先化简,再求值:,其中x=2,y=3.21.如图,已知线段a、b(a>b).(1)求作一条线段AB,使AB=2a﹣b(不写作法,不要求证明,但要保留作图痕迹);(2)在(1)的条件下,如果a=4,b=2,且点C为AB的中点,求线段BC的长.22.某食品厂从生产的袋装食品中抽出样品若干袋,用以检测每袋的质量是否符合标准,超过或不足标准质量的部分用正数或负数来表示(单位:克),记录如下表:(1)若表中的一个数据不小心被墨水涂污了,请求出这个数据;(2)若每袋的标准质量为50克,每克的生产成本2元,求这批样品的总成本.(三)(本大题3小题,每小题9分,共27分)23.以下是两张不同类型火车的车票:(“D×××次”表示动车,“G×××次”表示高铁):(1)根据车票中的信息填空:两车行驶方向,出发时刻(填“相同”或“不同”);(2)已知该动车和高铁的平均速度分别为200km/h,300km/h,如果两车均按车票信息准时出发,且同时到达终点,求A,B两地之间的距离;(3)在(2)的条件下,请求出在什么时刻两车相距100km?24.已知点O为直线AB上一点,将直角三角板MON的直角顶点放在点O处,并在∠MON内部作射线OC.(1)如图1,三角板的一边ON与射线OB重合,且∠AOC=150°.若以点O为观察中心,射线OM表示正北方向,求射线OC表示的方向;(2)如图2,将三角板放置到如图位置,使OC恰好平分∠MOB,且∠BON=2∠NOC,求∠AOM 的度数;(3)若仍将三角板按照如图2的方式放置,仅满足OC平分∠MOB,试猜想∠AOM与∠NOC之间的数量关系,并说明理由.25.已知多项式3x6﹣2x2﹣4的常数项为a,次数为b.(1)设a与b分别对应数轴上的点A、点B,请直接写出a=,b=,并在数轴上确定点A、点B的位置;(2)在(1)的条件下,点P以每秒2个单位长度的速度从点A向B运动,运动时间为t秒:①若PA﹣PB=6,求t的值,并写出此时点P所表示的数;②若点P从点A出发,到达点B后再以相同的速度返回点A,在返回过程中,求当OP=3时,t为何值?2019-2020学年广东省珠海市香洲区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分.每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.【分析】根据倒数的定义求解即可.【解答】解:﹣2得到数是﹣,故选:C.【点评】本题考查了倒数,分子分母交换位置是求一数的倒数的关键.2.【分析】根据长方形的周长=2(长+宽)先列出代数式,再化简即可.【解答】解:∵长方形的周长=2(长+宽)=2[(a+b)+a]=2(2a+b)=4a+2b.故选:B.【点评】本题考查了列代数式和整式的化简.掌握长方形的周长和边间关系是解决本题的关键.3.【分析】根据两点之间,线段最短解答即可.【解答】解:某同学沿直线将三角形的一个角(阴影部分)剪掉后,发现剩下部分的周长比原三角形的周长小,能较好地解释这一现象的数学知识是两点之间线段最短.故选:D.【点评】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.4.【分析】根据同类项的定义和合并同类项的法则解答.【解答】解:A、2a与3b不是同类项,不能合并,故本选项错误.B、2a3与3a2不是同类项,不能合并,故本选项错误.C、原式=0,故本选项正确.D、原式=2a2,故本选项错误.故选:C.【点评】考查了合并同类项,明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的.5.【分析】根据等式的性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.3+x=5,等式两边同时减去3得:x=5﹣3,A项错误,B.3x﹣(1+x)=0,去括号得:3x﹣1﹣x=0,B项正确,C.y=0,等式两边同时乘以2得:y=0,C项错误,D.7x=﹣4,等式两边同时除以7得:x=﹣,D项错误,故选:B.【点评】本题考查了等式的性质,正确掌握等式的性质是解题的关键.6.【分析】根据数轴得出a<0<b,|a|>|b|,进而可得出ab<0,a+b<0,﹣a>0,对比后即可得出选项.【解答】解:从数轴可知:a<0<b,|a|>|b|,∴ab<0,a+b<0,﹣a>0,即选项A,B,C均正确;选项D错误,故选:D.【点评】本题考查了数轴和有理数的运算,能根据数轴得出a<0<b和|a|>|b是解此题的关键.7.【分析】根据互补的两个角的和等于180°解答.【解答】解:设这个角的度数是x,则它的补角为:180°﹣x,∵这一个角等于它的补角,∴180°﹣x=x,解得:x=90°,即这个角的度数为90°.故选:A.【点评】本题考查了互为补角的定义,熟记概念是解题的关键.8.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A、不能作为一个正方体的展开图,故本选项错误;B、不能作为一个正方体的展开图,故本选项错误;C、能作为一个正方体的展开图,故本选项正确;D、不能作为一个正方体的展开图,故本选项错误;故选:C.【点评】本题考查了几何体的展开图,属于基础题,注意培养自己的空间想象能力.9.【分析】这件商品的进价为x元,根据利润=销售价格﹣进价,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:这件商品的进价为x元,根据题意得:220﹣x=10%x,解得:x=200.故选:B.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.10.【分析】根据运算程序可推出第三次输出的结果为6,第四次输出的结果为3,第五次输出的结果为6,第六次输出的结果为3,…,依此类推,即可推出从第三次开始,第偶数次输出的为3,第奇数次输出的为6,可得第10此输出的结果为3.【解答】解:∵第二次输出的结果为12,∴第三次输出的结果为6,第四次输出的结果为3,第五次输出的结果为6,第六次输出的结果为3,…,∴从第三次开始,第偶数次输出的为3,第奇数次输出的为6,∴第10次输出的结果为3.故选:B.【点评】本题主要考查了有理数的乘法和加法运算,关键在于每次输出的结果总结出规律.二、填空题(本大题6小题,每小题4分,共24分请将下列各题的正确答案填写在答题卡相应的位置上)11.【分析】气温下降用减法,上升用加法,列式计算即可.【解答】解:∵上午的气温是6℃,夜晚下降了10℃,∴夜晚的气温为:6﹣10=﹣4(℃).故答案为:﹣4.【点评】本题主要考查有理数的加减法,减法法则:减去一个数等于加上这个数的相反数.12.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将57000用科学记数法表示为:5.7×104.故答案为:5.7×104.【点评】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.【分析】把x=2代入方程ax=6﹣2x,得到关于a的一元一次方程,解之即可.【解答】解:把x=2代入方程ax=6﹣2x得:2a=6﹣2×2,解得:a=1,故答案为:1.【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.14.【分析】根据1°=60′进行解答.【解答】解:原式=36°43′.故答案是:36°43′.【点评】考查了度分秒的换算.度、分、秒之间也是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.同时,在进行度、分、秒的运算时也应注意借位和进位的方法.15.【分析】原式利用题中的新定义化简即可得到结果.【解答】解:根据题中的新定义得:原式=3x+2(x﹣y)=3x+2x﹣2y=5x﹣2y,故答案为:5x﹣2y【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.16.【分析】利用阴影部分的面积等于两个正方形的面积减去两个三角形的面积得到阴影部分的面积=【解答】解:阴影部分的面积=【点评】本题考查了整式的混合运算:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.三、解答题(一)(本大题3小题,每小题6分,共18分)17.【分析】先算乘除,再算加减即可解答本题.【解答】解:﹣22÷×+|﹣|=﹣4×=﹣6+=﹣5.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算顺序.18.【分析】依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:去分母得:3(x﹣1)+12=4x,去括号得:3x﹣3+12=4x,移项得:3x﹣4x=3﹣12,合并同类项得:﹣x=﹣9,系数化为1得:x=9.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.19.【分析】依据邻补角的定义,即可得到∠BOC的度数,再根据∠BOD=∠BOC,即可得到∠BOD的度数.【解答】解:∵∠AOC=54°,∴∠BOC=180°﹣∠AOC=126°,又∵∠BOD=∠BOC,∴∠BOD=×126°=42°.【点评】本题主要考查了角的计算,解决问题的关键是利用邻补角的定义求得∠BOC的度数.(二)(本大题3小题,每小题7分,共21分)20.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=x﹣2x+y2+y2﹣3x=﹣4x+y2,当x=2,y=3时,原式=﹣8+9=1,【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.21.【分析】(1)在射线AP上依次截取AE=EF=a,在EF上截取FB=b,则线段AB满足条件;(2)先计算出AB的长,然后根据线段中点的定义得到BC的长.【解答】解:(1)如图,AB为所作;(2)∵a=4,b=2,∴AB=2×4﹣2=6,∵点C为AB的中点,∴BC=AB=3.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22.【分析】(1)设被墨水涂污了的数据为x,根据题意列方程,即可得到结论;(2)根据题意计算计算即可.【解答】解:(1)设被墨水涂污了的数据为x,则0.5×2+0.8×1+0.6×3+(﹣0.4)×2+(﹣0.7)x=1.4,解得:x=2,故这个数据为2;(2)[50+1.4÷(2+1+3+2+2)]×(2+1+3+2+2)×2=1002.8元,答:这批样品的总成本是1002.8元.【点评】本题考查了正数和负数,利用有理数的加法运算是解题关键.(三)(本大题3小题,每小题9分,共27分)23.【分析】(1)根据车票中的信息即可看到两张票都是从A地到B地,所以方向相同,但出发时间分别是20:00与21:00,所以出发时刻不同;(2)可设A,B两地之间的距离为s,而两车同时到达终点,于是可列方程﹣1=,解方程即可求出两地距离;(3)两车相距100km可以分追及之前与追及之后两种情况为考虑,但同时也要考虑两种情况的存在性.【解答】解:(1)车票中的信息即可看到两张票都是从A地到B地,所以方向相同;两车出发时间分别是20:00与21:00,所以出发时刻不同;故答案为相同,不同.(2)设A ,B 两地之间的距离为s ,根据题意可得﹣1=解得s =600答:A ,B 两地之间的距离为600km .(3)设在高铁出发t 小时后两车相距100km ,分追及前与追及后两种情况①200(t +1)﹣300t =100 解得 t =1;②300t ﹣200(t +1)=100 解得t =3但是在(2)的条件下,600÷300=2即高铁仅需2小时可到达B 地,所以第②种情况不符合实际,应该舍去.答:在(2)的条件下,在高铁出发1h 时两车相距100km .【点评】本题考查的是一元二次方程在行程问题中的应用,根据题意准确列出方程是解题的关键.24.【分析】(1)根据∠MOC =∠AOC ﹣∠AOM 代入数据计算,即得出射线OC 表示的方向; (2)根据角的倍分关系以及角平分线的定义即可求解;(3)令∠NOC 为β,∠AOM 为γ,∠MOC =90°﹣β,根据∠AOM +∠MOC +∠BOC =180°即可得到∠AOM 与∠NOC 满足的数量关系.【解答】解:(1)∵∠MOC =∠AOC ﹣∠AOM =150°﹣90°=60°,∴射线OC 表示的方向为北偏东60°;(2)∵∠BON =2∠NOC ,OC 平分∠MOB ,∴∠MOC =∠BOC =3∠NOC ,∵∠MOC +∠NOC =∠MON =90°,∴3∠NOC +∠NOC =90°,∴4∠NOC =90°,∴∠BON =2∠NOC =45°,∴∠AOM =180°﹣∠MON ﹣∠BON =180°﹣90°﹣45°=45°;(3)∠AOM=2∠NOC.令∠NOC为β,∠AOM为γ,∠MOC=90°﹣β,∵∠AOM+∠MOC+∠BOC=180°,∴γ+90°﹣β+90°﹣β=180°,∴γ﹣2β=0,即γ=2β,∴∠AOM=2∠NOC.【点评】此题考查了角的计算,余角和补角,本题难度较大,关键是熟练掌握角的和差倍分关系.25.【分析】(1)根据多项式的常数项与次数的定义分别求出a,b的值,然后在数轴上表示即可;(2)①根据PA﹣PB=6列出关于t的方程,解方程求出t的值,进而得到点P所表示的数;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)P在原点右边;(Ⅱ)P在原点左边.分别求出点P运动的路程,再除以速度即可.【解答】解:(1)∵多项式3x6﹣2x2﹣4的常数项为a,次数为b,∴a=﹣4,b=6.如图所示:故答案为﹣4,6;(2)①∵PA=2t,AB=6﹣(﹣4)=10,∴PB=AB﹣PA=10﹣2t.∵PA﹣PB=6,∴2t﹣(10﹣2t)=6,解得t=4,此时点P所表示的数为﹣4+2t=﹣4+2×4=4;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)如果P在原点右边,那么AB+BP=10+(6﹣3)=13,t=;(Ⅱ)如果P在原点左边,那么AB+BP=10+(6+3)=19,t=.【点评】本题考查了一元一次方程的应用,路程、速度与时间关系的应用,数轴以及多项式的有关定义,理解题意利用数形结合是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年广东省珠海市香洲区八年级(上)期末数学试卷一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)下列交通标志图案是轴对称图形的是( )A .B .C .D .2.(3分)如果一个三角形的两边长分别为1和6,则第三边长可能是( )A .5B .6C .7D .83.(3分)下列计算正确的是( )A .33x x -=B .2235x x x +=C .22(2)4x x =D .222()x y x y +=+4.(3分)如图,P 是AOB ∠的平分线上的一点,PC OA ⊥,PD OB ⊥,垂足分别为C ,D .下列结论不一定成立的是( )A .AOP BOP ∠=∠B .PC PD = C .OPC OPD ∠=∠ D .OP PC PD =+5.(3分)如图,在ABC ∆中,DE 是AC 的垂直平分线,6AB cm =,且ABD ∆的周长为16cm ,则BC 的长为( )A .8cmB .10cmC .14cmD .22cm6.(3分)如图,ABC ADE ∆≅∆,20B ∠=︒,110C ∠=︒,则EAD ∠的度数为( )A .50︒B .20︒C .110︒D .70︒7.(3分)随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000034m ,用科学记数法表示0.0000034是( )A .50.3410-⨯B .63.410⨯C .53.410-⨯D .63.410-⨯8.(3分)若x m +与2x +的乘积化简后的结果中不含x 的一次项,则m 的值为( )A .2B .2-C .4D .4-9.(3分)一个正方形的边长增加3cm ,它的面积就增加299cm ,这个正方形的边长为( )A .13cmB .14cmC .15cmD .16cm10.(3分)如图所示,正方形网格中,网格线的交点称为格点,已知点A ,B 是两个格点,如果点C 也是图中的格点,且使得ABC ∆为等腰直角三角形,那么点C 的个数为( )A .4B .5C .6D .7二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)因式分解:39m m -= .12.(4分)若分式23x -有意义,则x . 13.(4分)正六边形的每个内角的度数是 度.14.(4分)在平面直角坐标系中,点(3,2)M -关于x 轴对称的点的坐标是 .15.(4分)已知a ,b 是一个等腰三角形的两边长,且满足2268250a b a b +--+=,则这个等腰三角形的周长为 . 16.(4分)如图,在ABC ∆中,AB AC =,30BAC ∠=︒,D 为BC 上任意一点,过点D 作DE AB ⊥,DF AC ⊥,垂足分别为E ,F ,且73DE DF +=,连接AD ,则AB = .17.(4分)按一定规律排列的一列数依次为:22a -,55a ,810a -,1117a ,(0)a ⋯≠,按此规律排列下去,这列数中的第n 个数是 .(n 为正整数)三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)计算:20211( 3.14)()|3|2π--+--+-. 19.(6分)如图,以ABC ∆的顶点B 为圆心,BA 长为半径画弧,交BC 边于点D ,连接AD . 若50B ∠=︒,36C ∠=︒,求DAC ∠的度数.20.(6分)先化简再求值:22144(1)11x x x x -+-÷--,其中3x =. 四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)珠海到韶关的距离约为360千米,小刘驾驶小轿车,小张驾驶大货车,两人都从珠海去韶关,小刘比小张晚出发90分钟,最后两车同时到达韶关,已知小轿车的速度是大货车速度的1.5倍.(1)分别求小轿车和大货车的速度;(2)当小刘行驶了2小时,此时两车相距多少千米?22.(8分)如图,在平面直角坐标系中,点A 的坐标为(1,5)-,点B 的坐标为(3,1)-.(1)在平面直角坐标系中作线段AB 关于y 轴对称的线段11(A B A 与1A ,B 与1B 对应);(2)求△11AA B 的面积;(3)在y 轴上存在一点P ,使PA PB +的值最小,则点P 的坐标为 .23.(8分)如图,在等边三角形ABC 中,点D 在线段AB 上,点E 在CD 的延长线上,连接AE ,AE AC =,AF 平分EAB ∠,交CE 于点F ,连接BF .(1)求证:EF BF =;(2)猜想AFC ∠的度数,并说明理由.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)已知a ,b ,c ,d 都是互不相等的正数.(1)若2a b =,2c d =,则b a d c ,a c b d (用“>”,“ <”或“=”填空); (2)若a c b d =,请判断b a b +和d c d +的大小关系,并证明; (3)令a b t c d ==,若分式232a c b d a c b d++-+--的值为3,求t 的值. 25.(10分)如图,在平面直角坐标系中,OA OB =,AC CD =,已知两点(4,0)A ,(0,7)C ,点D 在第一象限内,90DCA ∠=︒,点B 在线段OC 上,AB 的延长线与DC 的延长线交于点M,AC与BD交于点N.(1)点B的坐标为:;(2)求点D的坐标;(3)求证:CM CN.2019-2020学年广东省珠海市香洲区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)下列交通标志图案是轴对称图形的是( )A .B .C .D .【解答】解:A 、不是轴对称图形,故本选项不合题意;B 、不是轴对称图形,故本选项不合题意;C 、不是轴对称图形,故本选项不合题意;D 、是轴对称图形,故本选项符合题意.故选:D .2.(3分)如果一个三角形的两边长分别为1和6,则第三边长可能是( )A .5B .6C .7D .8【解答】解:设第三边长为x ,则6161x -<<+,即57x <<,∴第三边长可能是6.故选:B .3.(3分)下列计算正确的是( )A .33x x -=B .2235x x x +=C .22(2)4x x =D .222()x y x y +=+【解答】解:A 、32x x x -=,故此选项错误;B 、235x x x +=,故此选项错误;C 、22(2)4x x =,正确;D 、222()2x y x xy y +=++,故此选项错误;故选:C .4.(3分)如图,P 是AOB ∠的平分线上的一点,PC OA ⊥,PD OB ⊥,垂足分别为C ,D .下列结论不一定成立的是( )A .AOP BOP ∠=∠B .PC PD = C .OPC OPD ∠=∠ D .OP PC PD =+【解答】解:P Q 是AOB ∠平分线上的一点,PC OA ⊥,PD OB ⊥,PC PD ∴=,故A ,B 选项成立,在Rt OCP ∆和Rt ODP ∆中,OP OP PC PD =⎧⎨=⎩, Rt OCP Rt ODP(HL)∴∆≅∆,OC OD ∴=,OPC OPD ∠=∠,故C 选项成立,OP PC PD =+无法证明,不一定成立.故选:D .5.(3分)如图,在ABC ∆中,DE 是AC 的垂直平分线,6AB cm =,且ABD ∆的周长为16cm ,则BC 的长为( )A .8cmB .10cmC .14cmD .22cm【解答】解:DE Q 是AC 的垂直平分线,DA DC ∴=.6AB cm =Q ,ABD ∆的周长为16cm ,16610BC cm ∴=-=,故选:B .6.(3分)如图,ABC ADE ∆≅∆,20B ∠=︒,110C ∠=︒,则EAD ∠的度数为( )A .50︒B .20︒C .110︒D .70︒【解答】解:ABC ADE ∆≅∆Q ,20B ∠=︒,110C ∠=︒,20D B ∴∠=∠=︒,110E ∠=︒,1802011050EAD ∴∠=︒-︒-︒=︒.故选:A .7.(3分)随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000034m ,用科学记数法表示0.0000034是( )A .50.3410-⨯B .63.410⨯C .53.410-⨯D .63.410-⨯【解答】解:用科学记数法表示0.0000034是63.410-⨯.故选:D .8.(3分)若x m +与2x +的乘积化简后的结果中不含x 的一次项,则m 的值为( )A .2B .2-C .4D .4-【解答】解:根据题意得:2()(2)(2)2x m x x m x m ++=+++,由结果中不含x 的一次项,得到20m +=,解得:2m =-,故选:B .9.(3分)一个正方形的边长增加3cm ,它的面积就增加299cm ,这个正方形的边长为( )A .13cmB .14cmC .15cmD .16cm【解答】解:设这个正方形的边长为x ,则22(3)99x x +=+,解得:15x cm =.故选:C .10.(3分)如图所示,正方形网格中,网格线的交点称为格点,已知点A ,B 是两个格点,如果点C 也是图中的格点,且使得ABC ∆为等腰直角三角形,那么点C 的个数为( )A .4B .5C .6D .7【解答】解:如图:分情况讨论:①AB 为等腰直角ABC ∆底边时,符合条件的C 点有2个;②AB 为等腰直角ABC ∆其中的一条腰时,符合条件的C 点有4个.故选:C .二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)因式分解:39m m -= (3)(3)m m m +- .【解答】解:原式2(9)m m =-(3)(3)m m m =+-,故答案为:(3)(3)m m m +-.12.(4分)若分式23x -有意义,则x 3≠ . 【解答】解:根据题意得:30x -≠,解得:3x ≠.故答案是:3≠.13.(4分)正六边形的每个内角的度数是 120 度.【解答】解:根据多边形的内角和定理可得:正六边形的每个内角的度数(62)1806120=-⨯︒÷=︒.14.(4分)在平面直角坐标系中,点(3,2)M -关于x 轴对称的点的坐标是 (3,2)-- .【解答】解:Q 点(3,2)-关于x 轴对称, ∴对称的点的坐标是(3,2)--. 故答案为(3,2)--.15.(4分)已知a ,b 是一个等腰三角形的两边长,且满足2268250a b a b +--+=,则这个等腰三角形的周长为 10或11 .【解答】解:2268250a b a b +--+=, 22698160a a b b -++-+=, 22(3)(4)0a b -+-=,解得,3a =,4b =,当a 是腰长时,等腰三角形的周长33410=++=, 当b 是腰长时,等腰三角形的周长34411=++=, 故答案为:10或11.16.(4分)如图,在ABC ∆中,AB AC =,30BAC ∠=︒,D 为BC 上任意一点,过点D 作DE AB ⊥,DF AC ⊥,垂足分别为E ,F ,且73DE DF +=,连接AD ,则AB = 143.【解答】解:过B 作BH AC ⊥于H ,30BAC ∠=︒Q ,12BH AB ∴=, AB AC =Q ,ABC ABD ACD S S S ∆∆∆∴=+,DE AB ⊥Q ,DF AC ⊥, ∴111222AC BH AB DE AC DF =+g g g , 1()2AB AB AB DE DF =+g , 1723AB DF DF =+=, 143AB ∴=, 故答案为:143 17.(4分)按一定规律排列的一列数依次为:22a -,55a ,810a -,1117a ,(0)a ⋯≠,按此规律排列下去,这列数中的第n 个数是 312(1)1n na n --+g .(n 为正整数) 【解答】解:第1个数为31112(1)11a ⨯--+g , 第2个数为23122(1)21a ⨯--+g , 第3个数为33132(1)31a ⨯--+g , 第4个数为34142(1)41a ⨯--+g , ⋯,所以这列数中的第n 个数是312(1)1n na n --+g . 故答案为312(1)1n na n --+g . 三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)计算:20211( 3.14)()|3|2π--+--+-. 【解答】解:20211( 3.14)()|3|2π--+--+- 1143=-+-+1=-19.(6分)如图,以ABC ∆的顶点B 为圆心,BA 长为半径画弧,交BC 边于点D ,连接AD . 若50B ∠=︒,36C ∠=︒,求DAC ∠的度数.【解答】解:由题意得:BA BD =,则BAD BDA ∠=∠,50B ∠=︒Q ,65BAD BDA ∴∠=∠=︒,BDA DAC C ∠=∠+∠Q ,36C ∠=︒,29DAC ∴∠=︒.20.(6分)先化简再求值:22144(1)11x x x x -+-÷--,其中3x =. 【解答】解:当3x =时,原式22(1)(1)1(2)x x x x x -+-=--g 12x x +=- 4=四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)珠海到韶关的距离约为360千米,小刘驾驶小轿车,小张驾驶大货车,两人都从珠海去韶关,小刘比小张晚出发90分钟,最后两车同时到达韶关,已知小轿车的速度是大货车速度的1.5倍.(1)分别求小轿车和大货车的速度;(2)当小刘行驶了2小时,此时两车相距多少千米?【解答】解:(1)设货车的速度为x 千米/时,依题得: 360360901.560x x -=, 解得80x =,经检验80x =为原方程的解,1.5120x ∴=,答:货车的速度为80千米/时,小汽车的速度为120千米/时.(2)3.580212040⨯-⨯=(千米),答:两车的距离是40千米.22.(8分)如图,在平面直角坐标系中,点A 的坐标为(1,5)-,点B 的坐标为(3,1)-.(1)在平面直角坐标系中作线段AB 关于y 轴对称的线段11(A B A 与1A ,B 与1B 对应);(2)求△11AA B 的面积;(3)在y 轴上存在一点P ,使PA PB +的值最小,则点P 的坐标为 (0,4) .【解答】解:(1)如图所示,线段11A B 即为所求;(2)(1,5)A -Q ,1(1,5)A ,12AA ∴=,∴△11AA B 的面积12442=⨯⨯=; (3)如图所示,1AB 与y 轴的交点即为点(0,4)P .故答案为:(0,4).23.(8分)如图,在等边三角形ABC 中,点D 在线段AB 上,点E 在CD 的延长线上,连接AE ,AE AC =,AF 平分EAB ∠,交CE 于点F ,连接BF .(1)求证:EF BF =;(2)猜想AFC ∠的度数,并说明理由.【解答】(1)证明:ABC ∆Q 是等边三角形AB AC ∴=,60BAC ∠=︒,AE AC =Q ,AE AB ∴=,AF Q 平分EAB ∠,EAF DAF ∴∠=∠,在AEF ∆和ABF ∆中,AE AB EAF BAF AF AF =⎧⎪∠=∠⎨⎪=⎩()AEF ABF SAS ∴∆≅∆,EF BF ∴=;(2)解:60AFC ∠=︒,理由如下:在EC 上截取CG EF =,连接AG ,AE AC =Q ,EAF ACG ∴∠=∠,EF CG =Q ,()AEF ACG SAS ∴∆≅∆,AF AG ∴=,CAG EAF DAF ∠=∠=∠,60BAG CAG ∠+∠=︒Q ,60BAF BAG ∴∠+∠=︒,60FAG ∴∠=︒,AFG ∴∆是等边三角形,60AFC ∴∠=︒.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)已知a ,b ,c ,d 都是互不相等的正数.(1)若2a b =,2c d =,则b a = d c ,a c b d (用“>”,“ <”或“=”填空); (2)若a cb d =,请判断b a b +和dcd +的大小关系,并证明; (3)令a b t c d ==,若分式232a c b d a c b d++-+--的值为3,求t 的值. 【解答】解:(1)Q2a b =,2c d =,∴12b a =,12d c =,2a b =,2c d =, ∴b d a c =,22a b b c d d==, 故答案为:=,=;(2)b d a b c d=++, 理由如下:Qa cb d =, ad bc ∴=,∴()()0()()()()b d b c d d a b bc bd ad bd a b c d a b c d a b c d +-++---===++++++, ∴b d a b c d=++; (3)Qa b t c d ==, a ct ∴=,b dt =,Q2323a c b d a c b d ++-+=--, ∴2131111t t t t ++-=--, 解得12t =. 25.(10分)如图,在平面直角坐标系中,OA OB =,AC CD =,已知两点(4,0)A ,(0,7)C ,点D 在第一象限内,90DCA ∠=︒,点B 在线段OC 上,AB 的延长线与DC 的延长线交于点M ,AC 与BD 交于点N .(1)点B 的坐标为: (0,4) ;(2)求点D 的坐标;(3)求证:CM CN =.【解答】解:(1)(4,0)Q,A∴==,4OA OB∴,(0,4)B故答案为:(0,4).(2)(0,7)CQ,OC∴=,7过点D作DE y⊥轴,垂足为E,∴∠=∠=︒,90DEC AOC∠=︒Q,DCA90ECD BCA ECD EDC∴∠+∠=∠+∠=︒90∴∠=∠,BCA EDC∴∆≅∆,DEC COA AAS()==,EC OA∴==,47DE OC∴=+=,11OE OC EC∴;D(7,11)(3)证明:1147=-=-=QBE OE OB∴=,BE DE∴∆是等腰直角三角形,DBE∴∠=︒,DBE45Q,OA OB=OBA∴∠=︒,45∴∠=︒,90DBA90∴∠+∠=︒,BAN ANB∠=︒Q,DCA90CDN DNC∴∠+∠=︒,90 Q,∠=∠DNC ANB∴∠=∠,CDN BANQ,90∠=︒DCA∴∠=∠=︒,ACM DCN90∴∆≅∆,DCN ACM ASA()∴=.CM CN。