纳 米 技 术 专 题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米技术专题——综述
一门前途无量的新兴技术-纳米技术
前言
提到从九十年代初起,纳米技术(Nanotechnology)得到迅速发展,显示出勃勃生机。它是信息技术、生命科学技术和许多其它技术能够进一步发展的共同基础,将对人类未来产生深远的影响,并且孕育着巨大的商机。
提到本文将根据收集到的国内外资料,对纳米技术进行介绍,以飧读者。
一、纳米技术的由来和发展
提到提到纳米技术,首先要了解纳米这一长度单位。一纳米是十亿分之一米,或千分之一微米。直观上讲,人的头发直径一般为20-50微米,单个细菌用显微镜测出直径为5微米,而1纳米大体上相当于4个原子的直径。传统的特性理论和设备操作的模型和材料是基于临界范围普遍大于100纳米的假设,当材料的颗粒缩小到只有几纳米到几十纳米时,材料的性质发生了意想不到的变化。由于组成纳米材料的超微粒尺度,其界面原子数量比例极大,一般占总原子数的40%-50%左右,使材料本身具有宏观量子隧道、表面和界面等效应,从而具有许多与传统材料不同的物理、化学性质,这些性质不能被传统的模式和理论所解释。
提到纳米技术就是研究结构尺寸在0.1至100纳米(有些资料为1至100纳米)范围内材料的性质和应用。它的本质是一种可以在分子水平上,一个原子、一个原子地来创造具有全新分子形态的结构的手段,使人类能在原子和分子水平上操纵物质;它的目标是通过在原子、分子水平上控制结构来发现这些特性,学会有效的生产和运用相应的工具,合成这些纳米结构,最终直接以原子和分子来构造具有特定功能的产品。
提到因而,各个不同学科的科学家潜心研制和分析纳米结构,试图发现单个分子、原子在纳米级范围内不能被传统的模式和理论所解释的现象以及众多分子下这些现象的发展,他们的工作奠定了纳米技术的基础,推动了纳米技术的发展。
提到让我们简单回顾一下它的历史:
提到1959年,著名物理学家、诺贝尔奖获得者理查德·费曼在美国加州理工学院召开的美国物理学会年会上预言:如果人们可以在更小尺度上制备并控制材料的性质,将会打开一个崭新的世界。这一预言被科学界视为纳米材料萌芽的标志。
提到1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。70年代美国康奈尔大学格兰维斯特和布赫曼利用气相凝集的手段制备纳米颗粒,开始了人工合成纳米材料。
提到1982年,研究纳米的重要工具-扫描隧道显微镜被发明。
提到1989年德国教授格雷特利用惰性气体凝集的方法制备出纳米颗粒,从理论及性能上全面研究了相关材料的试样,提出了纳米晶体材料的概念,成为纳米材料的创始人。
提到1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举行。
提到1991年,碳纳米管被发现,它的质量只有同体积钢的六分之一,强度却是钢的十倍。
提到1992年开始,两年一届的世界纳米材料会议分别在墨西哥、德国、美国夏威夷、瑞典举行。
提到1993年,继1989年美国斯坦福大学搬走原子团“写”下斯坦福大学英文名字、1990年美国国际商用机器公司在镍表面用36个氙原子排出“IBM”之后,中科院北京真空物理实验室操纵原子成功写出“中国”二字。
提到1997年,美国科学家首次成功地用单电子移动单电子,利用这种技术可望在20年后研制成功速度和存储容量比现有计算机提高成千上万倍的量子计算机。
提到1999年,巴西和美国科学家发明了世界上最小的“秤”,可称量十亿分之一克的物体,相当于一个病毒的重量;此后不久,德国科学家研制出能称量单个原子重量的“秤”。
提到到1999年,全球纳米产品的年营业额达到500亿美元。
提到由于纳米技术不可估量的经济效益和社会效益,包括为信息产业的电子、光电子的继续发展和提高;为制造业、国防、航空和环境应用提供更物美价廉的材料;为医疗、医药和农业上加速生物进步将起的作用,人类可以预计到21世纪,纳米科学和技术将会改变人造物体的特性,产生工业革命。IBM的前首席科学家约翰·阿姆斯特朗在1991年写道"我相信纳米科学和技术将会是下一个信息时代中心,就像在七十年代的微米引起的革命一样"。
二、纳米技术的学科领域
提到纳米技术的发展使新名词、新概念不断涌现,象纳米材料学、纳米机械学、纳米生物学和纳米药物学、纳米电子学、纳米化学等等,而且仍在不断扩大。现将几个主要的学科领域介绍如下。
提到纳米材料学观测和研究纳米材料所具有的特殊结构,包括表面粗糙度、表面结构、颗粒大小、缺陷和材料制备。在纳米尺度下,物质中电子的量子力学性质和原子的相互作用将受到尺度大小的影响,从而使其具有许多与传统材料不同的物理、化学性质。科学实验证明一克具有纳米尺寸的微粒,其表面积可达几万平方米,由于表面积增大,活性就增强;五颜六色的金属,由于吸光能力增加而一律变成黑体,熔点也随之降低。而且纳米铁材料的断裂应力比常规材料高12倍;气体通过纳米材料的扩散速度比一般材料快几千倍;纳米铜材料比常规铜材料的热扩散增强了近一倍。铜到纳米级就不再导电,纳米铜的膨胀系数比普通铜成倍增加。绝缘的二氧化硅、晶体等,在20纳米就开始导电成为导体。人们还发现,纳米颗粒的外形会逐渐变化,粒度越小,变化越强;纳米材料中有大颗粒“并吞”小颗粒的现象,
纳米颗粒与生物细胞膜的物化作用很强,因而能被细菌吞噬而产生特殊的生化效应。正由于纳米材料这些奇特的力、电、光、磁、吸收、催化、敏感等性能而使之具有广泛而诱人的应用前景。如能得到纳米尺度的结构,就可能控制材料的基本性质如熔点、磁性、电容甚至颜色,而不改变物质的化学成份,最终实现根据材料的性能要求,设计、合成纳米复合材料。
提到纳米动力学主要是微机械和微电机,或称为微型电动机械系统(MEMS),是指集微型传感器、微型执行器以及信号处理和控制电路、接口电路、通信和电源于一体的完整微型机电系统。用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等。微电子技术在许多领域引发了一场微小型化革命,以加工微米、纳米结构和系统为目的的微米、纳米技术在此背景下应运而生,人们利用精细加工手段加工出微米、纳米级结构,组成MEMS,将电子系统和外部世界有机地联系起来,它不仅可以感受运动、光、声、热、磁等自然界信号,并将这些信号转换成电子系统可以认识的电信号,而且还可以通过电子系统控制这些信号,进而发出指令,控制执行部件完成所需要的操作。MEMS技术的目标是通过系统的微型化、集成化来探索具有新原理、新功能的元件和系统。它不仅可以降低机电系统的成本,而且还可以完成许多大尺寸机电系统无法完成的任务。例如尖端直径为5微米的微型镊子可以夹起一个红细胞;制造出3毫米大小的能够开动的小汽车;可以在磁场中飞行的象蝴蝶大小的飞机等。MEMS技术的发展开辟了技术全新的领域和产业,具有许多传统传感器无法比拟的优点,因此在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们接触到的所有领域中都有着十分广阔的应用前景。
提到纳米生物学和纳米药物学首先要介绍一下DNA芯片。DNA芯片或称作基因芯片实质上是一种高密度的寡核苷酸(DNA探针)阵列。它采用在位组合合成化学和微电子芯片的光刻技术或其它方法将大量特定序列的DNA片段(探针)有序地固化在玻璃或硅衬底上,构成储存有大量生命信息的DNA芯片。DNA芯片有可能首次将人类的全部基因(约10万个)集约化地固化在1平方厘米的芯片上,目前已达到的密度是40万种探针/芯片,每种探针间的空间尺度是12~20微米。在与待测样品DNA作用后,即可检测到大量相应的生命信息,包括:基因识别、鉴定、基因突变和基因表达等等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件构成新的材料。药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。目前,DNA芯片不作为分子的电子器件,也不作为DNA计算机用,主要起生命信息的储存和处理的功能。但正是基于它的对生命信息进行平行处理的原理,利用DNA芯片可快速、高效、同时地获取空前规模的生命信息,DNA芯片很有可能成为今后生命科学研究和医学诊断中革命性的新方法。它将改变生命科学的研究方式,将革新医学诊断和治疗,极大地提高我们的人口素质和健康水平。总之,纳米技术在生物学和药物学的深入发展和广泛应用,将开辟一个生命信息研究和应用的新纪元。
提到纳米电子学包括基于量子效应的纳米电子器件,纳米结构的光、电性质,纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷,也就是说空间体积要小,响应速度要快,单个器件的功耗要少。扫描探针显微镜就是为实现这一目标而诞生的,作为一种简单、直接而强有力的观察工具,一经问世立即被用于微电子器件的制造过程中。尤其是扫描探针显微镜中的激光力显微镜,它能在不接触表面的情况下绘制出电子元件表面图象。基于扫描探针显微镜的纳米刻蚀技术,可以实现在纳米尺度上制备产品,应用于微电子的工作介质上就有可能制造出高密度的存储器,其记录密度为目前磁盘的数千倍至上亿倍。通过极小的晶体管和记忆芯片几百万倍的提高电脑速度和效