人教版数学中考复习《反比例函数》过关检测(含答案)

合集下载

中考数学复习《反比例函数》专项测试卷(带答案)

中考数学复习《反比例函数》专项测试卷(带答案)

中考数学复习《反比例函数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,2A x ,()2,1B x -和()3,4C x 都在反比例函数8y x=的图像上,则1x ,2x 和3x 的大小关系是( ) A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<2.若点()26-,在反比例函数ky x=的图象上,则下列说法正确的是( ) A.该函数的图象经过点()34--,B.该函数的图象位于第一、三象限C.当0x >时,y 的值随x 值的增大而增大D.当1x >-时,4y >3.如图,在同一平面直角坐标系中函数y ax a =+与函数ay x=的图象可能是( ) A. B. C. D.4.如图,点A 是双曲线()160y x x =-<上的一点,点B 是双曲线()60y x x=-<上的一点,AB 所在直线垂直x 轴于点C ,点M 是y 轴上一点,连接MA 、MB ,则MAB △的面积为( )A.5B.6C.10D.165.如图,点A ,B 为反比例函数()0ky x x=>的图象上的两点,且满足45AOB ∠=︒,若点A 的坐标为()3,5,则点B 的坐标是( ).A.15215,2⎛⎫ ⎪ ⎪⎝⎭B.1010,2⎛ ⎝⎭C.()8,2D.()8,36.如图,已知点A 、B 分别在反比例函数y =1x (x >0),y =-4x(x >0)的图象上,且OA⊥OB ,则OBOA的值为( )A.4B.2C.14D.127.如图,在ABC 中2AC BC == 90ACB ∠=︒ AC x ∥轴 点D 是AB 的中点 点C 、D 在(k 0,x 0)ky x=≠>的图象上 则k 的值为( )A.1-B.2-C.1D.28.已知蓄电池的电压为定值(电压三星近总度阻) 使用蓄电池时 电流(单位:A )与电阻尺(单位:Ω)是反比例函数关系 它的图象如图所示 下列说法不正确的是( )A.函数解析式为60I R=B.蓄电池的电压是C.当6ΩR =时 8A I =D.当10A I ≤时 6R ≥Ω9.如图 在平面直角坐标系中直线24y x =-+与x 轴、y 轴分别交于A 、B 两点 以AB 为边在第一象限作正方形ABCD 点D 在双曲线()0ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后 点C 恰好落在该双曲线上 则a 的值( )A.1B.2C.3D.410.如图 直线22y x =-与x 轴 y 轴分别交于点A B 与反比例函数()0ky k x=>图像交于点C .点D 为x 轴上一点(点D 在点A 右侧) 连接BD 以BA BD 为边作ABDE E 点刚好在反比例函数图像上 设(),E m n 连接EC DC 若1()2ACED S AD AD n =+四边形 则k 的值为( )A.8B.10C.12D.1611.如图 直线y kx =与双曲线3y x -=在同一坐标系中如图所示 则不等式3x-<的解集为( )A.01x <<B.1x <-C.1x <-或01x <<D.10x -<<或1x >12.智能手机已遍及生活中的各个角落 手机拍照功能也越来越强 高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值 也可计算为像距与物距的比值) 小明用某透镜进行了模拟成像实验 得到如图所示的像距v 随物距u 变化的关系图像 下列说法不正确的是( )A.当物距为45.0cm 时 像距为13.0cmB.当像距为15.0cm 时 透镜的放大率为2C.物距越大 像距越小D.当透镜的放大率为1时 物距和像距均为20cm13.某商家设计了一个水箱水位自动报警仪 其电路图如图1所示 其中定值电阻110ΩR =2R 是一个压敏电阻 用绝缘薄膜包好后放在一个硬质凹形绝缘盒中放入水箱底部 受力面水平 承受水压的面积S 为0.012m 压敏电阻的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深 压力F 越大) 电源电压保持6V 不变 当电路中的电流为0.3A 时 报警器(电阻不计)开始报警 水的压强随深度变化的关系图象如图3所示(参考公式:UI R=1000Pa 1kPa =).则下列说法中不正确的是( )2R F pS =A.当水箱未装水()时 压强p 为0kPaB.当报警器刚好开始报警时 水箱受到的压力F 为40NC.当报警器刚好开始报警时 水箱中水的深度h 是0.8mD.若想使水深1m 时报警 应使定值电阻1R 的阻值为 二、填空题14.一个圆柱形蓄水池的底面半径为x cm 蓄水池的侧面积为40π2cm 则这个蓄水池的高h (cm )与底面半径x (cm )之间的函数关系式为_____.15.在反比例函数12my x-=的图象上的图象在二、四象限 则m 的取值范围是_______. 16.若点()11,A y -、21,4B y ⎛⎫- ⎪⎝⎭、()31,C y 都在反比例函数21x k y +=(k 为常数)的图象上 则1y 、2y 、3y 的大小关系为_____.17.如图 点(3,1)P -是反比例函数m y x =的图象上的一点 设直线y kx =与双曲my x=的两个交点分别为P 和P 当mkx x>时 写出x 的取值范围_____.18.如图 在平面直角坐标系xOy 中正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10 点D 是边AB 上靠近点A 的三等分点 将⊥OAD 沿直线OD 折叠后得到⊥OA ′D 若反比例函数y kx=(k ≠0)的图象经过A ′点 则k 的值为_____. 0m h =12Ω19.如图 在平面直角坐标系中直线12y k x =+与x 轴交于点A 与y 轴交于点B 与双曲线2(0)k y x x=>交于点C 连接OC .若52,sin 5OBC S BOC =∠=△ 则12k +的值是______.20.如图 点1A 2A 3A …在反比例函数()10y x x=>的图象上 点1B 2B 3B … n B 在y 轴上 且11212323B OA B B A B B A ∠=∠=∠=直线y x =与双曲线1y x=交于点1A 111B A OA ⊥ 2221B A B A ⊥ 3323B A B A ⊥ … 则2023B 的坐标是________.三、解答题21.如图所示 一次函数y kx b =+的图象与反比例函数my x=的图象相交于两点(1),A n (2,1)B -- 与y 轴相交于点C .(1)求反比例函数和一次函数解析式; (2)直接写出:不等式mkx b x+>解集是______; (3)依据相关数据求AOB 的面积.22.如图 菱形OABC 的边OA 在y 轴正半轴上 点B 的坐标为()48,.反比例函数11k y x=的图象经过菱形对角线AC OB ,的交点D 设直线OC 的解析式为22y k x =.(1)求反比例函数的解析式; (2)求菱形OABC 的边长;(3)请结合图象直接写出不等式120k k x x-<的解集. 23.如图▱OABC 的顶点O 与坐标原点重合 边OA 在x 轴正半轴上 60AOC ∠=︒2OC = 反比例函数()0ky x x=>的图像经过顶点C 与边AB 交于点D.(1)求反比例函数的表达式.(2)尺规作图:作OCB ∠的平分线交x 轴于点E.(保留作图痕迹 不写作法) (3)在(2)的条件下 连接DE 若DE CE ⊥ 求证:AD AE =. 24.如图 已知一次函数26y x =+与反比例函数()0ky x x=>的图象交于点()1,A m 与x 轴交于点B .(1)填空:m 的值为______ 反比例函数的解析式为______; (2)直接写出当0x >时 26kx x+<的解集; (3)点P 是线段AB 上一动点(不与A 、B 点重合) 过P 作直线PM x ∥轴交反比例函数的图象于点M 连接BM .若PMB △的面积为S 求S 的取值范围.25.如图 已知抛物线2y x bx =+与x 轴交于O (4,0)A 两点 点B 的坐标为(0,3)-. (1)求抛物线的对称轴;(2)已知点P 在抛物线的对称轴上 连接OP BP .若要使OP BP +的值最小 求出点P 的坐标;(3)将抛物线在x 轴下方的部分沿x 轴翻折 其余部分保持不变 得到一个新的图象.当直线(0)y x m m =+≠与这个新图象有两个公共点时 在反比例函数y mx=的图象中y 的值随x 怎样变化?判断并说明理由.26.如图 在平面直角坐标系中正六边形ABCDEF 的对称中心P 在反比例函数()10,0ky k x x=>>的图象上 边AB 在x 轴上 点F 在y 轴上 已知23AB =.(1)判断点E 是否在该反比例函数的图象上 请说明理由;(2)求出直线EP :()20y ax b a =+≠的解析式 并根据图象直接写出当0x >时 不等式kax b x+>的解集. 27.如图① 有一块边角料ABCDE 其中AB BC DE EA 是线段 曲线CD 可以看成反比例函数图象的一部分.测量发现:90A E ∠=∠=︒ 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4.(1)小宁把A B C D E 这5个点先描到平面直角坐标系上 记点A 的坐标为()1,0-;点B 的坐标为()1,1-.请你在图②中补全平面直角坐标系并画出图形ABCDE ; (2)求直线BC 曲线CD 的函数表达式;(3)小宁想利用这块边角料截取一个矩形MNQP 其中M N 在AE 上(点M 在点N 左侧)点P 在线段BC 上 点Q 在曲线CD 上.若矩形的面积是53则=_________.参考答案1.答案:B解析:将三点坐标分别代入函数解析式8y x=得: 182x = 解得14x =; 28-1x =解得28x =-; 384x =解得; 824-<<故选:B. 2.答案:C解析:⊥点()26-,在函数ky x=的图象上 ⊥2(6)120k =⨯-=-< ⊥函数ky x=位于第二、四象限 在每个象限内 y 的值随x 的增大增大 ⊥()341212-⨯-=≠-⊥该函数的图象不经过点()34--,把=1x -代入12y x=求得12y = ⊥当10x -<<时 12y > 综上 只有选项C 说法正确 故选:C. 3.答案:A解析:当0a >时 一次函数图像经过第一、二、三象限 反比例函数图像位于一、三象限 可知A 符合题意;32x =231x x x ∴<<当0a <时 一次函数图像经过第二、三、四象限 反比例函数图像位于二、四象限 可知B C D 不符合题意.故选:A.4.答案:A解析:如图所示 作MN BA ⊥交BA 的延长线于N则12AMB S BA MN =⋅设点A 的坐标为16a a ⎛⎫- ⎪⎝⎭, <0aAB 所在直线垂直x 轴于点CB ∴点坐标为6a a ⎛⎫- ⎪⎝⎭,16610AB a a a ⎛⎫∴=---=- ⎪⎝⎭ MN a =()11101105222ABM S AB MN a a a a ⎛⎫⎛⎫∴=⋅=⨯-⨯=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭故选:A.5.答案:A解析:将OA 绕O 点顺时针旋转90︒到OC 连接AB 、CB作AM y ⊥轴于MCN x ⊥轴于N点A 的坐标为()3,53AM ∴= 5OM =45AOB ∠=︒45BOC ∠=︒∴在AOB 和COB △中OA OC AOB COBOB OB =⎧⎪∠=∠⎨⎪=⎩(SAS)AOB COB ∴△≌△AB CB ∴=90AOM AON CON AON ∠+∠=︒=∠+∠AOM CON ∴∠=∠ 在AOM 和CON 中AOM CON AMO ONCOA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩ (AAS)AOM CON ∴△≌△3CN AM ∴== 5ON OM == (5,3)C ∴-点A 为反比例函数(0)k y x x=>图象上的点 3515k ∴=⨯= 15y x ∴=设B 点的坐标为15(,)m m AB CB =22221515(3)(5)(5)(3)m m m m ∴-+-=-++解得215m =(负数舍去)15215,B ⎛∴ ⎝⎭故选A.6.答案:B解析:作AC y ⊥轴于C BD y ⊥轴于D 如图点A 、B 分别在反比例函数1(0)y x x => 4(0)y x x=->的图象上 11122OAC S ∆∴=⨯= 1|4|22OBD ∆=⨯-=OA OB ⊥90AOB ∠=︒∴90AOC BOD ∴∠+∠=︒AOC DBO ∴∠=∠Rt AOC Rt OBD ∴∆∆∽ ∴212()2AOC OBD S OA S OB ∆∆== ∴12OA OB =. ∴2OB OA=. 故答案为B. 7.答案:B解析:设(0,)A b 根据题意(2,)C b - (2,2)B b -+点D 是AB 的中点(1,1)D b ∴-+点C 、D 在(k 0,x 0)k y x=≠>的图象上 2(1)k b b ∴=-=-+解得1b =22k b ∴=-=-故选:B.8.答案:C解析:设图象过蓄电池的电压是A 、B 选项正确 不符合题意;当=6ΩR 时 (A 6010)6I ==∴C 选项错误 符合题意;当10I =时 6R =由图象知:当10A I ≤时 6R ≥Ω∴D 选项正确 不符合题意;故选:C.9.答案:B解析:作CE y ⊥轴于点E 交双曲线于点G 作DF x ⊥轴于点F在24y x =-+中令0x = 解得4y =∴B 的坐标是(0,4)令0y = 解得2x =∴A 的坐标是(2,0)kI R =(5,12)60k ∴=60I R ∴=∴60V ∴4OB ∴= 2OA =90BAD ∠=︒90BAO DAF ∴∠+∠=︒直角ABO △中90BAO OBA ∠+∠=︒DAF OBA ∴∠=∠在OAB △和FDA △中DAF OBA BOA AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)OAB FDA ∴≌△△同理 OAB FDA BEC ≌≌△△△ 4AF OB EC ∴=== 2DF OA BE ===∴D 的坐标是(6,2) C 的坐标是(4,6)点D 在双曲线(0)k y k x=≠上 6212k ∴=⨯=∴函数的解析式是:12y x =把6y =代入12y x=得:2x = 422a ∴=-=故选B.10.答案:C解析:直线与x 轴 y 轴分别交于点A B(1,0)A ∴ (0,2)B -作EF x ⊥轴于F 如图所示:22y x =-四边形是平行四边形在和中E 点刚好在反比例函数图像上设C 的纵坐标为hABDE AE BD ∴=//DE AB DAE ADB ∴∠=∠AEF △DBO △EAF BDO AFE DOB AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)AEF DBO ∴≌△△2EF OB ∴==AF OD =1DF OA ∴==(,)E m n 2m AD ∴=+2n =2(2)k mn AD ∴==+122AD k ∴=-//DE BC AED CED S S ∴=△△()11122222ACD CED ACD AED ACED S S S S S AD h AD AD h ∴=+=+=⋅+⋅=+四边形△△△△()12ACED S AD AD n =+四边形122h AD k ∴==-C 的纵坐标为代入得解得反比例函数图像经过点C 解得 20k =(舍去) 12k∴=故选:C.11.答案:D解析:有题意可知 当3y =时 33x= 解得=1x - ∴直线y kx =与双曲线3y x=在第二象限交点的坐标为1,3)- 由中心对称可得 直线y kx =与双曲线3y x=在第四象限交点的坐标为3)- ∴观察图象可得 不等式3kx x<的解集为10x <<或1x >. 故选:D.12.答案:B解析:由函数图象可知:当物距为45.0cm 时 像距为13.0cm 故选项A 说法正确;由函数图象可知:当像距为15.0cm 时 物距为300cm . 放大率为15.00.530.0= 故选项B 说法错误;由函数图象可知:物距越大 像距越小 故选项C 说法正确;由题意可知:当透镜的放大率为1时 物距和像距均为20cm 故选项D 说法正确 故选:B.13.答案:B解析:A.由图3得:当0h =时 0p = 故此项说法正确;122-22y x =-12222x -=-14x k =11(,2)42C k k ∴-(0)k y k x=>11(2)42k k k ∴-=112k =B.当报警器刚好开始报警时 260.310R =+ 解得210R =Ω 由图2可求得:2800R F =80010F∴= 解得80F N = 故此项说法错误; C.当报警器刚好开始报警时 由上得80F N = 则有800.01p =⨯ 8P p k a ∴= 由图3求得10p h = 810h = 解得:0.8h = 故此项说法正确;D.当报警器刚好开始报警时:1260.3R R =+ 1220R R ∴+=Ω 当1h =时 10110kPa p =⨯= 100000.01100F N ∴=⨯= 28008100R ==Ω 120812R ∴=-=Ω 故此项说法正确. 故选:B.14.答案:20h x = 解析:根据题意 得240x h ππ⋅= ⊥20h x=. 故答案为:20h x=. 15.答案:12m > 解析:由题意得 反比例函数12m y x -=的图象在二、四象限内 则120m -< 解得12m >. 故答案为12m >. 16.答案:213y y y << 解析:反比例函数2(1k k y x+=为常数) 210k +> ∴该函数图象在第一、三象限 在每个象限内y 随x 的增大而减小点1(1,)A y -、1(4B 2)y 、3(1,)C y 都在反比例函数2(1k k y x +=为常数)的图象上 114-<- 点A 、B 在第三象限 点C 在第一象限213y y y ∴<<故答案为:213y y y <<.17.答案:-3<x <0或x >3 解析:⊥直线y =kx 与双曲线y =m x的两个交点分别为P 和P ′ P (-3 1) ⊥P ′的坐标为(3 -1)当mx >kx 时 x 的取值范围为-3<x <0或x >3故答案为:-3<x <0或x >3. 18.答案:48解析:如图所示:过A '作EF OC ⊥于F 交AB 于E⊥90OA D '∠=︒90OA F DA E ∴∠'+∠'=︒⊥90A F AOF O ∠'+∠'=︒D AOF AE ∴'=∠'∠D A FO AE '=∠∠'A OF DA E ∴''∠△△设A '(m n )OF m ∴= A F n '=.正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10点D 是边AB 上靠近点A 的三等分点∴ 103DE m = 10A E n '=-.310103m n m m ==-- 解得:m =6 n =8. ∴A '(6,8) ∴ 反比例函数中k =xy (0k ≠)=48 故答案为:48.19.答案:9解析:据题意可知(0,2)B 设(,)Cx y 52,sin OBC S BOC =∠=△1222x ∴⨯= 52xOC = 解得2,25x OC ==2225OC x y =+=即2425y +=得4y = 故(2,4)C 将(2,4)C 代入直线12y k x =+ 双曲线2(0)k y x x => 得到 121,8k k == 故12189k k +=+= 故答案为:9.20.答案:(0,22023解析:联立1y xy x =⎧⎪⎨=⎪⎩解得1x =由题意可知145AOB ∠=︒111B A OA ⊥11OA B ∴△为等腰直角三角形1122OB OA ∴==过2A 作22A H OB ⊥交y 轴于H 则容易得到21A H B H = 设21A H B H x == 则()2,2A x x +()21x x ∴+=解得121x = 221x =-(舍去)2121A H B H ∴== 1212222B B B H ==2222222OB ∴=+=同理可得323OB =则2n OB n =即(0,2n B n(20230,22023B ∴故答案为:(0,22023. 21.答案:(1)2y x = 1y x =+ (2)1x >或20x -<<(3)32解析:(1)反比例函数m y x =的图象过(2,1)--∴反比例函数的解析式为:2y x = 点(1),A n 在反比例函数图象上∴12n ⨯=∴2n =∴点A 的坐标为(1,2)将点A B 坐标代入一次函数y kx b =+中得221k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩∴一次函数的解析式为:1y x =+.(2)根据图象可知 不等式0m kx b x+>>的解集是:1x >或20x -<<. 故答案为:1x >或20x -<<; (3)过点A 作AG y ⊥轴于点G 过点B 作BH y ⊥轴于点H 如下图所示:一次函数1y x =+与y 轴相交于点C∴C 点坐标为(0,1)∴1OC =A 点坐标为(1,2)∴1AG =B 点坐标为(2,1)--∴2BH =∴11123222AOB AOC BOC S S S ⨯⨯=+=+=△△△. 22.答案:(1)18y x = (2)5 (3)463x <或63x << 解析:(1)⊥菱形OABC 的对角线交于点D⊥OD DB =⊥点B 的坐标为()48,⊥点D 的坐标为()24, 又⊥反比例函数11k y x=经过点D ⊥1248k =⨯= ⊥18y x =; (2)过点B 作BE y ⊥轴于点E设OA AB a == 则8AE a =- 4BE =在Rt ABE 中222BE AE AB += 即()22248x x +-= 解得:5x =⊥菱形OABC 的边长为5;(3)⊥点B 的坐标为()48, 5BC =⊥点C 的坐标为()43,代入22y k x =得:234k = 解得:234k =⊥234y x =令1y y = 则834x x = 解得:63x =±结合图象 不等式120k k x x -<的解集为463x <或463x <<.23.答案:(1))30y x =>(2)见解析(3)见解析解析:(1)过点C 作CF OA ⊥于点F 如解图所示.在Rt COF △中2OC = 60COF ∠=︒30sin 6023CF C ∴=⋅==︒1cos60212OF OC =⋅︒=⨯=.(1,3C ∴. 把(3C 代入反比例函数()0ky x x =>中得3k =∴反比例函数的表达式为)30y x =>.(2)如解图所示 所作射线CE 即为所求.(3)证明:在OABC 中//OC AB //CB OA .60AOC ∠=︒120OCB OAB ∴∠=∠=︒. CE 平分OCB ∠60OCE BCE OEC ∴∠=∠=∠=︒.DE CE ⊥90CED ∴∠=︒.180609030AED ∴∠=︒-︒-︒=︒.1801203030ADE ∴∠=︒-︒-︒=︒.AED ADE ∴∠=∠.AD AE ∴=.24.答案:(1)8 8y x= (2)01x << (3)S 的取值范围是2504S <≤ 解析:(1)⊥一次函数26y x =+的图象经过点()1,A m ⊥268m =+=⊥点()18A ,⊥反比例函数()0k y x x =>的图象经过点()18A , ⊥188k =⨯=⊥反比例函数的解析式为8y x=; 故答案为:8 8y x =;(2)观察图象得 26k x x+<的解集为1x <<; (3)设点P 的纵坐标为n ⊥点P 在线段AB 上 点M 在8y x =的图象上 ⊥0n << 点P 的横坐标为62n -⊥PM x ∥轴⊥点M 的坐标为8n n ⎛⎫ ⎪⎝⎭, ⊥862n MP n -=. ⊥()21186125322244PMBn S MP n n n n -⎛⎫=⨯⨯=⨯-⨯=--+ ⎪⎝⎭. ⊥08n << 且104-<⊥当03n <<时 S 随n 的增大而增大 当38n ≤<时 S 随n 的增大而减小. ⊥当3n =时 △的面积最大 最大值为254 ⊥S 的取值范围是2504S <≤. 25.答案:(1)抛物线的对称轴为直线2x =(2)点P 的坐标为32,2⎛⎫- ⎪⎝⎭ (3)y 的值随x 的增大而增大解析:(1)由题意得:2440b +=4b ∴=-∴函数关系式为:24y x x =-∴对称轴为:4222b x a -=-=-=; (2)由题意得:OP PB +的值最小 实际就是在同一直线一旁有两点 在直线上求点只要取O 点关于直线2x =对称的点 过AB 的直线与直线的交点就是点P设过AB 的直线为 由在上()4,0A 2x =3y kx =-()4,0B 3y kx =-得34k =334AB y x =-P 在直线2x =上332342y ∴=⨯-=-32,2P ⎛⎫∴- ⎪⎝⎭; (3)24y x x =-在x 轴下方的部分沿x 轴翻转当直线()0y x m m =+≠有两个不相同的解0∴∆> 2340m -⨯> 得94m <又0> 904m ∴<< 在反比例函数m y x=中 904m k <=< y 随x 的增大而减小. 26.答案:(1)点E 在该反比例函数的图象上 理由见解析(2)39y x =+ 323x <<解析:(1)六边形ABCDEF 为正六边形 23AB =23AB AF ∴== 60FAO =︒cos 603OA AF ∴=⋅︒= sin603AF =⋅︒=()0,3F ∴ )3,0A 连接PF PA六边形ABCDEF 为正六边形PE PF PA PB ∴=== 60EPF FPA APB ∠=∠=∠=︒EFP ∴△ FAP △ ABP △为等边三角形23AF PF ∴==()23,3P ∴ 把()23,3P 代入1k y x =得:23=解得:63k =043k ∴=-∴反比例函数表达式为163y x=. EFP △ FAP △为等边三角形∴点E 和点A 关于PF 对称)3,6E ∴ 把3x =代入163y x =得:13663y == ∴点E 在该反比例函数的图象上; (2)把()3,6E ()23,3P 代入()20y ax b a =+≠得: 6333a b a b ⎧=+⎪⎨=+⎪⎩ 解得:39a b ⎧=-⎪⎨=⎪⎩∴直线EP 的解析式为:39y x =+()3,6E ()23,3P由图可知 当323x <<时 k b x +>. 27.答案:(1)见解析(2)直线BC 的函数表达式3522y x =曲线的函数表达式4y x= (3)72 解析:(1)根据点A 的坐标为()1,0- 点B 的坐标为()1,1- 补全x 轴和y 轴 90A E ∠︒∠== 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4 ()1,4C ∴ ()4,1D根据AB BC DE EA 是线段 曲线CD 是反比例函数图象的一部分 画出图形ABCDE如图所示 (2)设线段BC 的解析式为y kx b =+ 把()1,1B - ()1,4C 代入得 14k b k b -+=⎧⎨+=⎩解得 3252k b ⎧=⎪⎪⎨⎪=⎪⎩3522y x ∴=+设曲线CD 的解析式为'k y x =把()1,4C 代入得 '41k = '4= 4y x ∴=; (3)设(),0M m 则35,22P m m ⎛⎫+ ⎪⎝⎭ 435,352222Q m m ⎛⎫ ⎪+ ⎪ ⎪+⎝⎭3522PM m ∴=+ 43522m m =-+354352222PM PQ m m m ⎛⎫ ⎪⎛⎫⋅=+- ⎪ ⎪⎝⎭ ⎪+⎝⎭23554223m m ∴--= 2915140m m ∴+-= 23m ∴= 或73m =-(舍去) 32572322PM ∴=⨯+=. 故答案为:72.。

中考数学《反比例函数》专项复习综合练习题-附含答案

中考数学《反比例函数》专项复习综合练习题-附含答案

中考数学《反比例函数》专项复习综合练习题-附含答案一、单选题1.已知反比例函数y=- 12x,则()A.y随x的增大而增大B.当x>-3且x≠0时,y>4C.图象位于一、三象限D.当y<-3时,0<x<42.甲、乙、丙三位同学分别正确指出了某一个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:每第一个象限内 y值随x值的增大而减小.根据他们的描述这个函数表达式可能是()A.y=2x B.y= 2x C.y=﹣1xD.y=2x23.反比例函数y=kx(k>0)在第一象限内的图象如图,点M是图象上一点 MP垂直x轴于点P 如果△MOP 的面积为1 那么k的值是( )A.1 B.2 C.4 D.√24.如图,反比例函数y=kx(x<0)交边长为10的等边△ OAB的两边于C、D两点,OC=3BD,则k的值()A.−9√3B.9√3C.-10√3D.10√35.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y= a+b+cx在同一坐标系内的图象大致为()A.B.C.D.√3 6.如图,点D是▱OABC内一点,AD与x轴平行,BD与y轴平行,BD=√3∠BDC=120°S△BCD=92 (x<0)的图象经过C、D两点,则k的值是()若反比例函数y=kxA.−6√3B.-6 C.−12√3D.-127.如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y=1(x<0)图象上一点,AO的延长x(x>0 k是不等于0的常数)的图象于点C,点A关于y轴的对称点为A′,点C关于x 线交函数y=k2x轴的对称点为C′,交于x轴于点B 连结AB AA′、 A′C′.若△ABC的面积等于6,则由线段AC CC′C′A′ A′A所围成的图形的面积等于()A.8 B.10 C.3√10D.4√68.如图,反比例函数y=kx与一次函数y=kx﹣k+2在同一直角坐标系中的图象相交于A B两点其中A(﹣1 3)直线y=kx﹣k+2与坐标轴分别交于C D两点下列说法:①k<0;②点B的坐标为(3 ﹣1);③当x<﹣1时kx <kx﹣k+2;④tan∠OCD=﹣1k其中正确的是()A.①③B.①②④C.①③④D.①②③④二、填空题9.已知反比例函数y=﹣2x若y≤1,则自变量x的取值范围是.10.在平面直角坐标系中若一条平行于x轴的直线l分别交双曲线y=﹣6x 和y= 2x于A B两点 P是x轴上的任意一点,则△ABP的面积等于11.如图,在平面直角坐标系中正方形ABCD的面积为20 顶点A在y轴上顶点C在x轴上顶点D在双曲线y=kx(x>0)的图象上边CD交y轴于点E 若CE=ED,则k的值为.12.如图,点 P 是反比例函数图象上的一点 过点 P 向 x 轴作垂线 垂足为 M 连结 PO 若阴影部分面积为 6 ,则这个反比例函数的关系式是 .13.如图,已知A ( 12 y 1) B (2 y 2)为反比例函数y = 1x 图象上的两点 动点P (x 0)在x 轴正半轴上运动 当线段AP 与线段BP 之差达到最大时 点P 的坐标是 .三、解答题14.如图,反比例函数y =kx (x >0)的图像分别交正方形OABC 的边AB 、BC 于点D 、E 若A 点坐标为(1,0) 若△ODE 是等边三角形 求k 的值.15.某水果生产基地在气温较低时 用装有恒温系统的大棚栽培一种新品种水果 如图是试验阶段的某天恒温系统从开启到关闭后 大棚内的温度y(℃)与时间x(ℎ)之间的函数关系 其中线段AB 、BC 表示恒温系统开启后阶段 双曲线的一部分CD 表示恒温系统关闭阶段........... 请根据图中信息解答下列问题:(1)这个恒温系统设定的恒定温度为多少℃;(2)求全天的温度y(℃)与时间x(ℎ)之间的函数表达式;(3)若大棚内的温度低于10℃时 蔬菜会受到伤害.问:这天内恒温系统最多可以关闭多少小时 才能避免水果生长受到影响?16.如图,已知点A在反比函数y=kx(k<0)的图象上点B在直线y=x−3的图象上点B的纵坐标为-1 AB⊥x轴且S△OAB=4.(1)求点A的坐标和k的值;(2)若点P在反比例函数y=kx(k<0)的图象上点Q在直线y=x−3的图象上P、Q两点关于y轴对称设点P的坐标为(m,n)求nm +mn的值.17.如图,点A在反比例函数y=kx(x>0)的图象上AB⊥x轴于点B AB的垂直平分线PD交双曲线与点P.(1)若点A的坐标为(1 8),则点P的坐标为.(2)若AP⊥BP点A的横坐标为m.①求k与m之间的关系式;②连接OA OP若△AOP的面积为6 求k的值.18.如图,一次函数y=k1x+b与反比例函数y=k2x的图象交于A(2 m) B(n ﹣2)两点.过点B作BC⊥x轴垂足为C 且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件请直接写出不等式k1x+b>k2x的解集;(3)若P(p y1) Q(﹣2 y2)是函数y=k2x 图象上的两点且y1≥y2求实数p的取值范围.答案1.D 2.B 3.B 4.A 5.D 6.C 7.B 8.C9.x ≤﹣2或x >0 10.4 11.4 12.y =−12x 13.(52, 0)14.解:由题意可得△OAD ≅△OCE 设AD =x ,则:DB =EB =1−x 因为OD 2=x 2+1 且△ODE 是等边三角形所以 x 2+1=(1−x)2+(1−x)2 x 1=2+√3 x 2=2−√3 2+√3>1舍去 所以x =2−√3则K =1∗(2−√3)=2−√315.(1)解:设线段AB 表达式为y =kx +b(k ≠0) ∵线段AB 过点(0,10) (2,14)∴{b =102k +b =14解得{b =10k =2∴线段AB 的表达式为:y =2x +10(0≤x ≤5) 当x =5时 y =2×5+10=20 ∴恒定温度为:20℃; (2)解:由(1)可知:线段AB 的表达式为:y =2x +10(0≤x ≤5) B 坐标为(5,20) ∴根据图象可知线段BC 的表达式为:y =20(5<x ≤10)设双曲线CD 解析式为:y =m x(m ≠0)∵C(10,20)∴可得:m10=20 解得:m =200∴双曲线CD 的解析式为:y =200x(10<x ≤24)∴y 关于x 的函数表达式为:y ={2x +10(0≤x ≤5)20(5<x ≤10)200x (10<x ≤24);(3)解:把y =10代入y =200x中得10=200x解得:x =20∴20−10=10(小时)∴恒温系统最多可以关闭10小时. 16.(1)解:由题意B(2,−1)∵12×2×AB =4 ∴AB =4∵AB//y 轴∴A(2,−5)∵A(2,−5)在y =kx 的图象上 ∴k =−10.(2)解:设P(m ,−10m ),则Q(−m ,−10m ) ∵点Q 在y =x −3上∴−10m=−m −3 整理得:m 2+3m −10=0 解得m =−5或2 当m =−5 n =2时 n m +m n =−2910 当m =2 n =−5时 nm +m n=−2910故n m +m n=−2910.17.(1)(2 4)(2)解:①由题意得 点A 的纵坐标为km 即AB =km ∵PD 垂直平分AB ∴PA =PB ∵AP ⊥BP∴△PAB 是等腰直角三角形 ∴∠PAB =∠PBA =45° ∵PD ⊥AB∴△DAP 和△DBP 是等腰直角三角形 ∴DA =DB =DP =k2m ∴P (m +k2m ,k 2m )将P (m +k2m ,k2m )代入y =kx 可得:(m +k2m )⋅k2m =k 整理得:k =2m 2;②过点P 作PC ⊥x 轴于点C ,则四边形PABC 是梯形∵S △AOB =S △POC =k2 ∴S △AOE =S 四边形PEBC ∴S △AOP =S 梯形PABC =6 ∴(k 2m +k m )⋅k2m2=6 整理得:k 2=16m 2∵k =2m 2 ∴k 2=8k解得:k =8或k =0(舍去) ∴k =8.18.(1)把 A(2,m) B(n ,−2) 代入 y =k 2x得: k 2=2m =−2n即m=−n则A(2,−n)过A作AE⊥x轴于E过B作BF⊥y轴于F延长AE、BF交于D ∵A(2,−n)B(n,−2)∴BD=2−n AD=−n+2BC=|−2|=2∵SΔABC=12·BC·BD∴12×2×(2−n)=5解得:n=−3即A(2,3)B(−3,−2)把A(2,3)代入y=k2x得:k2=6即反比例函数的解析式是y=6x;把A(2,3)B(−3,−2)代入y=k1x+b得:{3=2k1+b−2=−3k1+b解得:k1=1b=1即一次函数的解析式是y=x+1;(2)∵A(2,3)B(−3,−2)∴不等式k1x+b>k2x的解集是−3<x<0或x>2;(3)分为两种情况:当点P在第三象限时要使y1⩾y2实数p的取值范围是p⩽−2当点P在第一象限时要使y1⩾y2实数p的取值范围是p>0即P的取值范围是p⩽−2或p>0。

人教版九年级数学中考反比例函数专项练习及参考答案

人教版九年级数学中考反比例函数专项练习及参考答案

人教版九年级数学中考反比例函数专项练习命题点1 图象与性质1.一台印刷机每年可印刷的书本数量 y(万册)与它的使用时间x(年)成反比例关系,当x =2时,y =20.则y 与x 的函数图象大致是(C)A B C D2.反比例函数y =mx 的图象如图所示,以下结论:①常数m <-1;②在每个象限内,y 随x的增大而增大;③若A(-1,h),B(2,k)在图象上,则h <k ;④若P(x ,y)在图象上,则P ′(-x ,-y)也在图象上.其中正确的是(C)A .①②B .②③C .③④D .①④3.如图,函数y =⎩⎪⎨⎪⎧1x (x >0),-1x (x <0)的图象所在坐标系的原点是(A)A .点MB .点NC .点PD .点Q4.定义新运算:a ⊕b =⎩⎪⎨⎪⎧ab(b >0),-ab(b <0). 例如:4⊕5=45,4⊕(-5)=45.则函数y =2⊕x(x≠0)的图象大致是(D)A B C D5.如图,若抛物线y =-x2+3与x 轴围成的封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数y =kx(x >0)的图象是(D)A B CD命题点2 反比例函数、一次函数与几何图形综合6.如图,四边形ABCD 是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y =mx (x>0)的图象经过点D ,点P 是一次函数y =kx +3-3k(k ≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算说明一次函数y =kx +3-3k(k ≠0)的图象一定经过点C ;(3)对于一次函数y =kx +3-3k(k ≠0),当y 随x 的增大而增大时,确定点P 横坐标的取值范围.(不必写出过程)解:(1)∵B(3,1),C(3,3),四边形ABCD 是平行四边形, ∴AD =BC =2,AD ∥BC ,BC ⊥x 轴.∴AD ⊥x 轴. 又∵A(1,0),∴D(1,2).∵点D 在反比例函数y =mx 的图象上,∴m =1×2=2.∴反比例函数的解析式为y =2x .(2)当x =3时,y =kx +3-3k =3,∴一次函数y =kx +3-3k(k ≠0)的图象一定过点C. (3)设点P 的横坐标为a ,则23<a <3.命题点3 反比例函数的实际应用(8年2考)7.(2019·杭州)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v 关于t 的函数解析式;(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围;②方方能否在当天11点30分前到达B 地?说明理由.解:(1)∵vt =480,且全程速度限定为不超过120千米/小时,∴v 关于t 的函数解析式为v =480t(t ≥4).(2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时.将t =6代入v =480t ,得v =80;将t =245代入v =480t,得v =100.∴小汽车行驶速度v 的范围为80≤v ≤100.②方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480t ,得v =9607.∵9607>120,超速了. 故方方不能在当天11点30分前到达B 地.基础训练1.(2019·柳州)反比例函数y =2x的图象位于(A)A .第一、三象限B .第二、三象限C .第一、二象限D .第二、四象限2.(2019·哈尔滨)点(-1,4)在反比例函数y =kx 的图象上,则下列各点在此函数图象上的是(A)A .(4,-1)B .(-14,1)C .(-4,-1)D .(14,2)3.(2019·邢台模拟)已知甲圆柱型容器的底面积为30 cm 2,高为8 cm ,乙圆柱型容器底面积为x cm 2.若将甲容器装满水,全部倒入乙容器中(乙容器没有水溢出),则乙容器水面高度y(cm)与x(cm 2)之间的大致图象是(C)A B C D4.(2019·唐山乐亭县模拟)若点(x 1,y 1),(x 2,y 2)都是反比例函数y =-6x 图象上的点,并且y 1<0<y 2,则下列结论中正确的是(A)A .x 1>x 2B .x 1<x 2C .y 随x 的增大而减小D .两点有可能在同一象限5.(2019·唐山滦南县一模)如图,正比例函数y =x 与反比例函数y =4x 的图象交于A ,B 两点,其中A(2,2),当y =x 的函数值大于y =4x的函数值时,x 的取值范围为(D)A .x >2B .x <-2C .-2<x <0或0<x <2D .-2<x <0或x >26.(2019·石家庄模拟)已知反比例函数y =kx 的图象过第二、四象限,则一次函数y =kx +k的图象大致是(B)A B C D7.(2019·唐山路北区模拟)已知点P(m ,n)是反比例函数y =-3x 图象上一点,当-3≤n <-1时,m 的取值范围是(A)A .1≤m <3B .-3≤m <-1C .1<m ≤3D .-3<m ≤-18.(原创)(2017·河北T15变式)将九年级某班40名学生的数学测试成绩分为5组,第1~4组的频率分别为0.3,0.25,0.15,0.2,第5组的频数记为k ,则反比例y =kx (x >0)的图象是(D)A B C D9.(原创)(2019·河北T12变式)如图,函数y =⎩⎪⎨⎪⎧m x (x >0),-m x (x<0)的图象如图所示,以下结论:①常数m >0;②在每个象限内,y 随x 增大而减小;③若点A(-2,a),B(3,b)在图象上,则a <b ;④若P(x ,y)在图象上,则P ′(-x ,y)也在图象上,其中正确的是(D)A .①②B .②③C .③④D .①④10.(2019·兰州)如图,矩形OABC 的顶点B 在反比例函数y =kx (x >0)的图象上,S矩形OABC=6,则k =6.11.(2019·北京)在平面直角坐标系xOy 中,点A(a ,b)(a >0,b >0)在双曲线y =k 1x 上,点A 关于x 轴的对称点B 在双曲线y =k 2x,则k 1+k 2的值为0.12.(2019·盐城)如图,一次函数y =x +1的图象交y 轴于点A ,与反比例函数y =kx (x >0)的图象交于点B(m ,2).(1)求反比例函数的解析式; (2)求△AOB 的面积.解:(1)∵点B(m ,2)在直线y =x +1上, ∴2=m +1,解得m =1. ∴点B 的坐标为(1,2).∵点B(1,2)在反比例函数y =kx (x >0)的图象上,∴2=k1,解得k =2.∴反比例函数的解析式是y =2x.(2)将x =0代入y =x +1,得y =1,则点A 的坐标为(0,1). ∵点B 的坐标为(1,2), ∴△AOB 的面积为12×1×1=12.能力提升13.(2019·石家庄新华区模拟)如图,在平面直角坐标系中,点A(0,2),点P 是双曲线y =kx (x >0)上的一个动点,作PB ⊥x 轴于点B ,当点P 的横坐标逐渐减小时,四边形OAPB 的面积将会(C)A .逐渐增大B .不变C .逐渐减小D .先减小后增大14.(2019·陕西)如图,D 是矩形AOBC 的对称中心,A(0,4),B(6,0).若一个反比例函数的图象经过点D ,交AC 于点M ,则点M 的坐标为(32,4).16.(2019·秦皇岛海港区模拟)如图,在平面直角坐标系中,▱ABCD 的顶点A(1,b),B(3,b),D(2,b +1).(1)点C 的坐标是(4,b +1)(用b 表示);(2)双曲线y =kx 过▱ABCD 的顶点B 和D ,求该双曲线的解析式;(3)如果▱ABCD 与双曲线y =4x(x >0)总有公共点,求b 的取值范围.解:(2)∵双曲线y =kx 过▱ABCD 的顶点B(3,b)和D(2,b +1),∴3b =2(b +1),解得b =2,即B(3,2),D(2,3). 则该双曲线解析式为y =6x .(3)将A(1,b)代入y =4x,得b =4;将C(4,b +1)代入y =4x,得b +1=1,即b =0.则▱ABCD 与双曲线y =4x(x >0)总有公共点时,b 的取值范围为0≤b ≤4.17.如图为某公园“水上滑梯”的侧面图,其中BC 段可看成是一段双曲线,建立如图的直角坐标系后,其中,矩形AOEB 为向上攀爬的梯子,OA =5米,进口AB ∥OD ,且AB =2米,出口C 点距水面的距离CD 为1米,则B ,C 之间的水平距离DE 的长度为(D)A .5米B .6米C .7米D .8米18.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由.(2)结论应用:①如图2,点M ,N 在反比例函数y =kx (x >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F ,试证明:MN ∥EF ;②若①中的其他条件不变,只改变点M ,N 的位置,如图3所示,请判断MN 与EF 是否平行?解:(1)AB ∥CD.理由:过点C 作CG ⊥AB 于点G ,过点D 作DH ⊥AB 于点H , ∴∠CGA =∠DHB =90°.∴CG ∥DH. ∵△ABC 和△ABD 的面积相等, ∴CG =DH.∴四边形CGHD 是矩形.∴AB ∥CD.(2)①证明:连接MF ,NE ,设M(x 1,y 1),N(x 2,y 2),∵点M ,N 在反比例函数y =kx (x >0)的图象上,∴x 1y 1=k ,x 2y 2=k. ∵ME ⊥y 轴,NF ⊥x 轴,∴EM =x 1,OE =y 1,OF =x 2,NF =y 2. ∴S △EFM =12x 1·y 1=12k ,S △EFN =12x 2y 2=12k.∴S △EFM =S △EFN ,由(1)中的结论可知,MN ∥EF.②MN ∥EF ,理由:连接MF ,NE ,设M(x 1,y 1),N(x 2,y 2). ∵M ,N 在反比例函数y =kx (k >0)的图象上,∴x 1y 1=k ,x 2y 2=k.∵ME ⊥y 轴,NF ⊥x 轴,∴EM =x 1,OE =y 1,OF =-x 2,NF =-y 2. ∴S △EFM =12x 1·y 1=12k ,S △EFN =12(-x 2)(-y 2)=12k.∴S △EFM =S △EFN .由(1)中的结论可知,MN ∥EF.反比例函数中的面积问题1.(2019·枣庄)如图,在平面直角坐标系中,等腰Rt △ABC 的顶点A ,B 分别在x 轴、y 轴的正半轴上,∠ABC =90°,CA ⊥x 轴,点C 在函数y =kx (x >0)的图象上.若AB =1,则k的值为(A)A .1 B.22C. 2 D .22.如图,A ,B 两点在双曲线y =4x(x >0)上,分别经过A ,B 两点向x 轴作垂线段,已知S阴影=1,则S 1+S 2=(D)A .3B .4C .5D .63.(2019·黄冈)如图,一直线经过原点O ,且与反比例函数y =kx (k>0)相交于点A ,B ,过点A 作AC ⊥y 轴,垂足为C ,连接BC.若△ABC 面积为8,则k =8.4.如图,A ,B 是反比例函数y =2x 的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则(B)A .S =2B .S =4C .2<S <4D .S >45.(2019·郴州)如图,点A ,C 分别是正比例函数y =x 与反比例函数y =4x 的图象的交点,过A 点作AD ⊥x 轴于点D ,过C 点作CB ⊥x 轴于点B ,则四边形ABCD 的面积为8.6.如图,AB 是反比例函数y =3x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是1和3,则S △AOB =4.7.(2019·鸡西)如图,在平面直角坐标系中,点O 为坐标原点,▱OABC 的顶点A 在反比例函数y =1x (x >0)的图象上,顶点B 在反比例函数y =5x (x >0)的图象上,点C 在x 轴的正半轴上,则▱OABC 的面积是(C)A.32B.52C .4D .68.如图,在平面直角坐标系中,点A 是x 轴上任意一点,BC 平行于x 轴,分别交反比例函数y =3x (x >0),y =kx(x <0)的图象于B ,C 两点.若△ABC 的面积为2,则k 的值为-1.9.(2019·株洲)如图所示,在平面直角坐标系xOy 中,点A ,B ,C 为反比例函数y =k x (k >0)图象上不同的三点,连接OA ,OB ,OC ,过点A 作AD ⊥y 轴于点D ,过点B ,C 分别作BE ,CF 垂直x 轴于点E ,F ,OC 与BE 相交于点M ,记△AOD ,△BOM ,四边形CMEF 的面积分别为S 1,S 2,S 3,则(B)A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 2310.(2019·本溪)如图,在平面直角坐标系中,等边△OAB 的边OA 和菱形OCDE 的边OE 都在x 轴上,点C 在OB 边上,S △ABD =3,反比例函数y =kx (x >0)的图象经过点B ,则k 的值为3.。

人教版初三数学9年级下册 第26章(反比例函数)同步训练题(含答案)

人教版初三数学9年级下册 第26章(反比例函数)同步训练题(含答案)

第26章《反比例函数》同步训练人教版九年级数学下册一、单选题1.下列图象中是反比例函数图象的是( ).A .B .C .D .2.在第一象限内各反比例函数的图像分别如图中①②③所示,则相应各反比例函数的比例系数1k ,2k ,3k 的大小关系是( )A .123k k k <<B .132k k k <<C .321k k k <<D .213k k k <<3.下列问题情景中的两个变量成反比例函数关系的是( )A .汽车沿一条公路从A 地驶往B 地所需的时间t 与平均速度v B .圆的周长l 与圆的半径r C .圆的面积s 与圆的半径rD .在电阻不变的情况下,电流强度I 与电压U4.已知y 与x 成反比例函数,且2x =时,3y =,则该函数表达式是( )A .6y x=B .16y x=C .6y x=D .61y x =-5.已知反比例函数ky x=,当2x =时,3y =-,则k =( )236.若点()111,P x y ,()222,P x y 在反比例函数(0)ky k x=>的图像上,且12x x =-,则( )A .11y y <B .12y y =C .12y y >D .12y y =-7.如图,原点为圆心的圆与反比例函数3y x=的图像交于A 、B 、C 、D 四点,已知点A 的横坐标为1-,则点C 的横坐标为( )A .4B .3C .2D .18.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压()kPa P 是气体体积()3m V 的反比例函数,其图象如图所示,当气球内的气压大于120kPa 时,气球将爆炸,为了安全起见,气球的体积应( ).A .不小于35m4B .小于35m4C .不小于34m5D .小于34m59.某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气球体积V 的反比例函数,其图象如图所示,当气球内的气压大于160 kPa 时,气球将爆炸,为了安全,气球的体积应该( )A .不大于53m 3B .小于53m 3C .不小于35m 3D .小于35m 310.如图,将质量为10kg 的铁球放在不计重力的木板OB 上的A 处,木板左端O 处可自由转动,在B 处用力F 竖直向上抬着木板,使其保持水平,已知OA 的长为1m ,OB 的长为xm ,g 取10N/kg ,则F 关于x 的函数解析式为( )A .100F x=B .90F x=C .9F x=D .10F x=二、填空题11.反比例函数3y x=的图象与坐标轴有______个交点,当0x >时,y 随x 的增大而________.12.已知A 是直线2y x =与曲线1m y x-=(m 为常数)一支的交点,过点A 作x 轴的垂线,垂足为B ,且2OB =,则m 的值为________.13.如图,(1,6)A -是双曲线(0)ky x x=<上的一点,P 为y 轴正半轴上的一点,将A 点绕P 点逆时针旋转90︒,恰好落在双曲线上的另一点B ,则点B 的坐标为__________.14.如图所示,反比例函数ky x=(0k ≠,0x >)的图像经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为8,则k 的值为________.15.如图,点A 在曲线y =3x(x >0)上,过点A 作AB ⊥x 轴,垂足为B ,OA 的垂直平分线交OB 、OA 于点C 、D ,当AB =1时,△ABC 的周长为_____.三、解答题16.已知y 与2x 成反比例,并且当3x =时,4y =.(1)写出y 关于x 的函数解析式;(2)当 1.5x =时,求y 的值;(3)当6y =时,求x 的值.17.如图,OPQ △是边长为2的等边三角形,若反比例函数的图象过点P ,求它的解析式.18.某农业大学计划修建一块面积为62210m ⨯的矩形试验田.(1)试验田的长y (单位:m )关于宽x (单位:m )的函数解析式是什么?(2)如果试验田的长与宽的比为2:1,那么试验田的长与宽分别为多少?19.已知点(3,2)P 、点(2,)Q a -都在反比例函数ky x=图象上.过点P 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为1S ;过点Q 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为2S .求a ,12,S S 的值.20.如图.正方形的中心在直角坐标系的原点,正方形的边与坐标轴平行,点()3,P a a 是正方形与反比例函数图象的一个交点,已知图中阴影部分的面积等于9,求这个反比例函数的表达式.21.某空调生产厂的装配车间计划在一段时期内组装9000台空调.(1)在这段时期内,每天组装的数量m (台/天)与组装的时间t (天)之间有怎样的函数关系?(2)原计划用2个月时间(每月按30天计算)完成这一任务,但由于气温提前升高,厂家决定这批空调提前10天完成组装,那么装配车间每天至少要组装多少台空调?比原计划多多少?22.心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课的变化而变化.经过实验分析可知,学生的注意力指标数y 随时间x (分钟)的变化规律如图所示(其中AB ,BC 分别为线段,CD 为双曲线的一部分).(1)分别求出线段AB 和曲线CD 的函数关系式;(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?23.如图,点A为双曲线2yx=(0x>)上一点,//AB x轴且交直线y x=-于点B.(1)若点B的纵坐标为2,比较线段AB和OB的大小关系;(2)当点A在双曲线图像上运动时,代数式“22AB OA-”的值会发生变化吗?请你作出判断,并说明理由.参考答案1.C 2.C 3.A 4.C 5.C 6.D 7.B 8.C 9.C 10.A 11.0 减小12.913.(3,2)-或(2,3)-14.215.416.解:(1)根据题意,设y 关于x 的函数解析式2k y x =,将3x =,4y =代入,得:243k =,解得:k =36,∴y 关于x 的函数解析式为236y x =;(2)当 1.5x =时,236=16(1.5)y =;(3)当y =6时,由2366x=得:26x =,解得:x =17.解:过点P 作PD ⊥x 轴于点D ,∵△OPQ 是边长为2的等边三角形,∴OD =12OQ =12×2=1,在Rt △OPD 中,∵OP =2,OD =1,∴PD ==∴P (1,设反比例函数为:y =kx (k ≠0),因为反比例函数的图象过点P ,所以k所以所求解析式为:y 18.解:(1) 由题意得,xy = 2×106,所以y =6210x⨯∴故试验田的长y (单位:m)关于宽x (单位:m)的函数解析式是y =6210x ⨯ (2)设试验田的宽为x m ,则长为2x m 由题意得,2x ·x = 2 ×106,解得x =±103 (负值舍去),∴试验田长与宽分别为2 ×103m 、103m .19.解:∵点P (3,2)、点Q (−2,a )都在反比例函数ky x=的图象上,∴k =3×2=−2×a ,∴k =6,a =−3,∵过点P 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为S 1;过点Q 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为S 2,∴S 1=S 2=|6|=6.20.解: 反比例函数的图象关于原点对称,∴阴影部分的面积和正好为正方形面积的14,设正方形的边长为b ,则2194b =,解得6b =,正方形的中心在原点O ,∴直线AB 的解析式为:3x =, 点(3,)P a a 在直线AB 上,如下图:33a ∴=,解得1a =,(3,1)P ∴,点P 在反比例函数(0)ky k x=>的图象上,3k ∴=,∴此反比例函数的解析式为:3y x=.21.解:(1)每天组装的台数m (单位:台/天)与生产时间t (单位:天)之间的函数关系:9000m t=;(2)当50t =时,900018050m ==.所以,这批空调提前10天上市,那么原装配车间每天至少要组装180台空调,原计划用2个月时间(每月按30天计算)完成这一任务,则每天组装150台,即比原计划多:18015030-=台.22.解:(1)设线段AB 所在直线的解析式为1120y k x =+,把点(10,40)B 代入,得12k =,∴1220y x =+;设C 、D 所在双曲线的解析式为22k y x=,把点(25,40)C 代入,得21000k =,∴21000y x=;(2)当15=x 时,1252030y =⨯+=,当230x =时,21000100303y ==,∴12y y <,∴第30分钟时注意力更集中.23.解:(1)∵点B 的纵坐标为2,//AB x 轴,∴(1,2)A ,(2,2)B -,∴3AB =,OB ==∵3>∴AB OB >;(2)代数式22AB OA -不会发生变化.理由:设(,)A a b ,∵A 为双曲线2(0)y x x=>上一点,∴2ab =,∵//AB x 轴且交直线y x =-于点B ,∴点B 纵坐标为b ,∴(,)B b b -,∴()22222()24AB OA a b a b ab -=+-+==,∴代数式“22AB OA -”的值恒定不变.。

中考数学总复习《反比例函数》专项测试卷及答案

中考数学总复习《反比例函数》专项测试卷及答案

中考数学总复习《反比例函数》专项测试卷及答案(测试时长:60分钟;总分:100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共8小题,共40分)1.已知点(﹣2,a)(2,b)(3,c)在函数y=kx(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a2.已知反比例函数6yx=,则下列描述不正确的是()A.图象位于第一,第三象限B.图象必经过点3 4,2⎛⎫ ⎪⎝⎭C.图象不可能与坐标轴相交D.y随x的增大而减小3.在反比例函数2yx=中,当1x=-时,y的值为()A.2 B.2-C.12D.12-4.反比例函数y=kx 与一次函数y=815x+1615的图形有一个交点B(12,m),则k的值为()A.1 B.2 C.23D.435.如图,在同一平面直角坐标系中,直线y=t(t为常数)与反比例函数y14x=,y21x=-的图象分别交于点A,B,连接OA,OB,则△OAB的面积为()A.5t B.52tC.52D.56.关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.甲:函数图像经过点(1,1)-;乙:函数图像经过第四象限;丙:当0x >时,y 随x 的增大而增大.则这个函数表达式可能是( ) A .y x =-B .1y x=C .2yx D .1y x=-7.如图,O 是坐标原点,点B 在x 轴上,在OAB 中,AO =AB =5,OB =6,点A 在反比例函数y =kx(k ≠0)图象上,则k 的值( )A .﹣12B .﹣15C .﹣20D .﹣308.如图,在平面直角坐标系中,直线y =x 与反比例函数y =4x(x >0)的图象交于点A ,将直线y =x 沿y 轴向上平移b 个单位长度,交y 轴于点B ,交反比例函数图象于点C .若OA =2BC ,则b 的值为( )A .1B .2C .3D .4二、填空题(本题共5小题,每空3分,共15分)9.如图,在平面直角坐标系中,点A 的坐标为()3,2,AB x ⊥轴于点B ,点C 是线段OB 上的点,连结AC .点P 在线段AC 上,且2=AP PC .函数()0k y x x=>的图象经过点P .当点C 在线段OB 上运动时,k 的取值范围是_________.10.已知点()1,A a y ,()21,B a y +在反比例函数21m y x+=(m是常数)的图象上,且12y y <,则a 的取值范围是__________.11.以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D ,则正方形ABCD 的面积是_________.12.如图,在平面直角坐标系中,O 是坐标原点,在OAB 中,,AO AB AC OB =⊥于点C ,点A 在反比例函数(0)ky k x=≠的图象上,若OB =4,AC =3,则k 的值为__________.13.如图,在直角坐标系xOy 中,点A ,B 分别在x 轴和y 轴,=.∠AOB 的角平分线与OA 的垂直平分线交于点C ,与AB 交于点D ,反比例函数y=的图象过点C .当以CD 为边的正方形的面积为时,k 的值是_________.三、解答题(本题共4小题,共45分)14.一次函数y 1=k 1x +b(k 1≠0)的图象与反比例函数y 2=k 2x(k 2≠0)的图象相交于点A(2,−1),B(1,n)两点.(1)分别求出一次函数和反比例函数的解析式,并在给出的平面直角坐标系中,直接画出一次函数和反比例函数的图象;(2)连接AO 并延长交双曲线于点C ,连接BC ,求△ABC 的面积; (3)直接写出当y 1>y 2时,x 的取值范围.15.如图,在平面直角坐标系中,直线11y k x b =+与双曲线22k y x=相交于()()2,3,,2A B m --两点.(1)求12,y y 对应的函数表达式;(2)过点B 作//BP x 轴交y 轴于点P ,求ABP △的面积; (3)根据函数图象,直接写出关于x 的不等式21k k x b x+<的解集.16.如图,一次函数()1y kx b k 0=+≠的图象与反比例函数()2my m 0x=≠的图象交于()1,A n -,()3,2B -两点.(1)求一次函数和反比例函数的解析式;(2)点P 在x 轴上,且满足ABP △的面积等于4,请直接写出点P 的坐标.17.如图,在平面直角坐标系xoy 中,函数(0)ky x x=<的图象经过点(-6,1),直线y mx m =+与y 轴交于点(0,-2).(1)求k ,m 的值;(2)过第二象限的点P(n ,-2n )作平行于x 轴的直线,交直线y =mx+m 于点A ,交函数(0)ky x x=<的图象于点B . ①当n =-1时,判断线段PA 与PB 的数量关系,并说明理由; ②若PB ≥2PA ,结合函数的图象,直接写出n 的取值范围.参考答案:1.C2.D3.B4.C5.C6.D7.A8.C9.232k ≤≤10.10a -<< 11.12 12.6 13.714.(1)解:把A(2,−1)代入y 2=k 2x得k =−2∴反比例函数的解析式为y 2=−2x . 当x=1时,y =−2; ∴B(1,−2)把A(2,−1),B(1,−2)代入y 1=k 1x +b 得{2k 1+b =−1k 1+b =−2解得{k 1=1b =−3∴一次函数的解析式为y 1=x −3 图象如图所示(2)解:如图,设BC 交y 轴于点D ,连接AD∵A ,C 关于原点对称∴C(−2,1) ∵B(1,−2)设直线BC 的解析式为y =kx +b 则{−2=k +b 1=−2k +b 解得{k =−1b =−1∴直线BC 的解析式为y =−x −1 令x =0,则y =−1∴D(0,−1) ∵A(2,−1)∴AD ⊥x 轴∴S △ABC =S △ABD +S △ADC =12AD ×|y C −y B |=12×2×(1+2)=3(3)解:根据函数图象可知,当y 1>y 2时 15. (1)11y x =-+ 26y x=-;(2)152ABPS=;(3)20x -<<或3x > 16. (1)124y x =-+ 26y x=-;(2)(1,0)或(3,0) 17.解:(1)∵函数(0)ky x x=<图象经过点(-6,1) ∴k=-6×1=-6∵直线y mx m =+与y 轴交于点(0,-2) ∴m=-2;(2)①PB=2PA,理由如下:当n=-1时,点P坐标为(-1,2)∴点A坐标为(-2,-2),点B坐标为(-3,-2)∴PA=1,PB=2∴PB=2PA;②∵点P坐标为(n,-2n),PA平行于x轴把y=-2n分别代入6(0)y xx=-<和y=-2x-2得点B坐标为3,2nn⎛⎫-⎪⎝⎭,点A坐标为(n-1,-2n)∴PA=n-(n-1)=1,PB=3 nn -当PB=2PA时,则32 nn-=如图1,当32nn-=解得121,3x x=-=(不合题意,舍去)如图2,当32nn-=解得123,1x x=-=(不合题意,舍去)∴PB≥2PA时,3-10n n≤-≤<或.。

人教中考数学专题《反比例函数》综合检测试卷含答案

人教中考数学专题《反比例函数》综合检测试卷含答案

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,点A在函数y= (x>0)图象上,过点A作x轴和y轴的平行线分别交函数y= 图象于点B,C,直线BC与坐标轴的交点为D,E.(1)当点C的横坐标为1时,求点B的坐标;(2)试问:当点A在函数y= (x>0)图象上运动时,△ABC的面积是否发生变化?若不变,请求出△ABC的面积,若变化,请说明理由.(3)试说明:当点A在函数y= (x>0)图象上运动时,线段BD与CE的长始终相等.【答案】(1)解:∵点C在y= 的图象上,且C点横坐标为1,∴C(1,1),∵AC∥y轴,AB∥x轴,∴A点横坐标为1,∵A点在函数y= (x>0)图象上,∴A(1,4),∴B点纵坐标为4,∵点B在y= 的图象上,∴B点坐标为(,4);(2)解:设A(a,),则C(a,),B(,),∴AB=a﹣ = a,AC= ﹣ = ,∴S△ABC= AB•AC= × × = ,即△ABC的面积不发生变化,其面积为;(3)解:如图,设AB的延长线交y轴于点G,AC的延长线交x轴于点F,∵AB∥x轴,∴△ABC∽△EFC,∴ = ,即 = ,∴EF= a,由(2)可知BG= a,∴BG=EF,∵AE∥y轴,∴∠BDG=∠FCE,在△DBG和△CFE中∴△DBG≌△CEF(AAS),∴BD=EF.【解析】【分析】(1)由条件可先求得A点坐标,从而可求得B点纵坐标,再代入y= 可求得B点坐标;(2)可设出A点坐标,从而可表示出C、B的坐标,则可表示出AB和AC的长,可求得△ABC的面积;(3)可证明△ABC∽△EFC,利用(2)中,AB和AC的长可表示出EF,可得到BG=EF,从而可证明△DBG≌△CFE,可得到DB=CF.2.如图,已知直线y=ax+b与双曲线y= (x>0)交于A(x1, y1),B(x2, y2)两点(A与B不重合),直线AB与x轴交于P(x0,0),与y轴交于点C.(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明).【答案】(1)解:∵直线y=ax+b与双曲线y= (x>0)交于A(1,3),∴k=1×3=3,∴y= ,∵B(3,y2)在反比例函数的图象上,∴y2= =1,∴B(3,1),∵直线y=ax+b经过A、B两点,∴解得,∴直线为y=﹣x+4,令y=0,则x=4,∴P(4,O)(2)解:如图,作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG 交于H,则AD∥BG∥x轴,AE∥BF∥y轴,∴= ,= = ,∵b=y1+1,AB=BP,∴= ,= = ,∴B(,y1)∵A,B两点都是反比例函数图象上的点,∴x1•y1= • y1,解得x1=2,代入= ,解得y1=2,∴A(2,2),B(4,1)(3)解:根据(1),(2)中的结果,猜想:x1, x2, x0之间的关系为x1+x2=x0【解析】【分析】(1)先把A(1,3)),B(3,y2)代入y= 求得反比例函数的解析式,进而求得B的坐标,然后把A、B代入y=ax+b利用待定系数法即可求得直线的解析式,继而即可求得P的坐标;(2)作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG交于H,则AD∥BG∥x轴,AE∥BF∥y轴,得出 = , = = ,根据题意得出 = , = = ,从而求得B(, y1),然后根据k=xy得出x1•y1= • y1,求得x1=2,代入 = ,解得y1=2,即可求得A、B的坐标;(3)合(1),(2)中的结果,猜想x1+x2=x0.3.已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.例如:如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;(2)若某函数是反比例函数y= (k>0),他的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标________,写出符合题意的其中一条抛物线解析式________,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数________.【答案】(1)解:如图1,当点A在x轴正半轴,点B在y轴负半轴上时,∵OC=0D=1,∴正方形ABCD的边长CD= ;∠OCD=∠ODC=45°,当点A在x轴负半轴、点B在y轴正半轴上时,设小正方形的边长为a,易得CL=小正方形的边长=DK=LK,故3a=CD= .解得a= ,所以小正方形边长为,∴一次函数y=x+1图象的伴侣正方形的边长为或(2)解:如图2,作DE,CF分别垂直于x、y轴,易知△ADE≌△BAO≌△CBF此时,m<2,DE=OA=BF=m,OB=CF=AE=2﹣m,∴OF=BF+OB=2,∴C点坐标为(2﹣m,2),∴2m=2(2﹣m),解得m=1.反比例函数的解析式为y= .(3)(3,4);y=﹣ x2+ ;偶数【解析】【解答】解:(3)实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合①当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点为(4,1),对应的函数解析式是y=﹣ x2+ ;②当点A在x 轴正半轴上,点 B在 y轴正半轴上,点D 坐标为(3,4)时:不存在,③当点A 在 x 轴正半轴上,点 B在 y轴负半轴上,点C 坐标为(3,4)时:不存在④当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点C为(﹣1,3),对应的函数的解析式是y= x2+ ;⑤当点A在x轴负半轴上,点B在y轴负半轴上,点D坐标为(3,4)时,另一个顶点C的坐标是(7,﹣3)时,对应的函数解析式是y=﹣;⑥当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(﹣4,7)时,对应的抛物线为y= x2+ ;∵由抛物线的伴侣正方形的定义知,一条抛物线有两个伴侣正方形,是成对出现的,∴所求出的任何抛物线的伴侣正方形个数为偶数.【分析】解答此题时,要特别注意认真读题,分析题意,注意已知条件点A,B分别是x 轴、y轴上的动点,点C,D是某个函数图象上的点。

中考数学总复习《反比例函数的性质》练习题及答案

中考数学总复习《反比例函数的性质》练习题及答案

中考数学总复习《反比例函数的性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.对于反比例函数y=2x,下列说法正确是()A.图象经过点(2,﹣1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大2.对于反比例函数y=2x,下列说法不正确的是()A.当x<0时,y随x的增大而减小B.点(-2,-1)在它的图象上C.它的图象在第一、三象限D.当x>0时,y随x的增大而增大3.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数y=4x和y=2x的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3B.4C.5D.64.已知反比例函数y=k x的图象如图所示,则一次函数y=kx+k的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限5.若点M(﹣3,a),N(4,﹣6)在同一个反比例函数的图象上,则a的值为()A.8B.﹣8C.﹣7D.56.函数y=1x+√x的图象在()A.第一象限B.第一、三象限C.第二象限D.第二、四象限7.图所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大。

D.当y增大时,BE·DF的值不变。

8.已知函数y=−k 2+1x的图象经过点P1(x1,y1),P2(x2,y2),如果x2<0<x1,那么()A.0<y2<y1B.y1>0>y2C.y2<y1<0D.y1<0<y29.已知双曲线y=k−1x向右平移2个单位后经过点(4,1),则k的值等于()A.1B.2C.3D.510.对于反比例函数y=k x(k≠0),下列说法正确的是()A.当k>0时,y随x增大而增大B.当k<0时,y随x增大而增大C.当k>0时,该函数图象在二、四象限D.若点(1,2)在该函数图象上,则点(2,1)也必在该函数图象上11.下列关于反比例函数y=8x的描述,正确的是()A.它的图象经过点(12,4)B.图象的两支分别在第二、四象限C.当x>2时,0<y<4D.x>0时,y随x的增大而增大12.反比例函数y= 1x的图象的两个分支分别位于()象限.A.一、二B.一、三C.二、四D.一、四二、填空题13.如图,已知点A、B在双曲线y= k x(x>0)上,AC△x轴于点C,BD△y轴于点D,AC与BD 交于点P,P是AC的中点,若△ABP的面积为3,则k=.14.如图,矩形ABCD的顶点A和对称中心在反比例函数y=k x(k≠0,x>0)的图象上,若矩形ABCD的面积为16,则k的值为.15.已知反比例函数y= k x(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.16.若反比例函数y=﹣mx的图象经过点(﹣3,﹣2),则当x<0时,y随x的增大而.17.若点(4,m)与点(5,n)都在反比例函数y=8x(x≠0)的图象上,则m n(填>,<或=).18.如图,A(1,1),B(2,2),双曲线y= k x与线段AB有公共点,则k的取值范围是。

2024年人教版九年级数学中考专题训练:反比例函数(含解析)

2024年人教版九年级数学中考专题训练:反比例函数(含解析)

2024年人教版九年级数学中考专题训练:反比例函数1.如图,在平面直角坐标系中,一次函数y =﹣x+m 的图象与反比例函数y=(x >0)的图象交于A 、B 两点,已知A (1,2)(1)求一次函数和反比例函数的解析式;(2)连接AO 、BO ,求△AOB 的面积.2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压是气体体积的反比例函数.已知当时,.(1)求出这个函数的表达式;(2)当气球内的气压大于时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?3.如图,反比例函数与一次函数的图像在第一象限交于、两点.(1)则 ,  , (2)观察图像,请直接写出满足的取值范围.(3)若Q 为y 轴上的一点,使最小,求点Q 的坐标.4.如图,在平面直角坐标系中,一次函数的图象分别交x 轴,y 轴正半轴于点A ,B ,内切于,反比例函数的图象经过点P ,交直线于点C ,D (C 在点D 的左侧).kx()P kPa ()3mV 30.8m V =120kPa P =128kPa ()10ky k x=≠2y x b =-+()13A ,()3B n ,k =b =n =12y y ≥QA QB +364y x =-+P ABO ()0ky x x=>AB(1)求反比例函数的解析式;(2)过点C ,D 分别作x 轴,y 轴的平行线交于点E ,求的面积.5.如图1,点A (1,0),B (0,m )都在直线y =﹣2x+b 上,四边形ABCD 为平行四边形,点D 在x轴上,AD=3,反比例函数(x>0)的图象经过点C .(1)求k 的值;(2)将图1的线段CD 向右平移n 个单位长度(n≥0),得到对应线段EF ,线段EF 和反比例函数(x>0)的图象交于点M .①在平移过程中,如图2,若点M 为EF 的中点,求△ACM 的面积;②在平移过程中,如图3,若AM ⊥EF ,求n 的值.6.如图,点A 是反比例函数图象上的点,AB 平行于y 轴,且交x 轴于点,点C 的坐标为,AC 交y 轴于点D ,连接BD ,(1)求反比例函数的表达式;(2)设点P 是反比例函数图象上一点,点Q 是直线AC 上一点,若以点O ,P ,D ,Q CDE ky x=ky x=()0ky k x=>()10B ,()10-,AD =()0ky x x=>为顶点的四边形是平行四边形,求点Q 的坐标; (3)若点是该反比例函数图象上的点,且满足∠MDB>∠BDC ,请直接写a 的取值范围.7.某种商品上市之初采用了大量的广告宣传,其销售量与上市的天数之间成正比,当广告停止后,销售量与上市的天数之间成反比(如图),现已知上市30天时,当日销售量为120万件.(1)写出该商品上市以后销售量y (万件)与时间x (天数)之间的表达式;(2)求上市至第100天(含第100天),日销售量在36万件以下(不含36万件)的天数;(3)广告合同约定,当销售量不低于100万件,并且持续天数不少于12天时,广告设计师就可以拿到“特殊贡献奖”,那么本次广告策划,设计师能否拿到“特殊贡献奖”?8.在学习反比例函数后,小华在同一个平面直角坐标系中画出了(x>0)和的图象,两个函数图象交于A (x 1,y 2),B (x 2,y 2)两点,在线段AB 上选取一点P ,过点P 作y 轴的平行线交反比例函数图象于点 O (如图1).在点P 移动的过程中,发现PO 的长度随着点P 的运动而变化.为了进一步研究 PO 的长度与点P 的横坐标之间的关系,小华提出了下列问题∶(1)设点P 的横坐标为x ,PQ 的长度为y ,则y 与x 之间的函数关系式为 (x 1<x<x 2);(2)为了进一步的研究(1)中的函数关系,决定运用列表,描点,连线的方法绘制函数的图象;①列表∶()M a b ,ky x=1y x=5y x =-+x 1234ym3n表中 m = ,n =;②描点∶根据上表中的数据,在图2中描出各点;③连线∶请在图2中画出该函数的图象.观察函数图象,当x =时,y 的最大值为;(3)应用∶已知某矩形的一组邻边长分别为m ,n ,且该矩形的周长 W 与n 存在函数关系,求 m 取最大值时矩形的对角线长.9.如图,点P 为函数与函数图象的交点,点P 的纵坐标为4,轴,垂足为点B .(1)求m 的值;(2)点M 是函数图象上一动点,过点M 作于点D ,若,求点M 的坐标.10.若关于x 的函数y ,当时,函数y 的最大值为M ,最小值为N ,令函数,我们不妨把函数h 称之为函数y 的“共同体函数”.(1)①若函数,当时,求函数y 的“共同体函数”h 的值;②若函数(,k ,b 为常数),求函数y 的“共同体函数”h 的解析式;(2)若函数,求函数y 的“共同体函数”h 的最大值;(3)若函数,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数”h 的最小值.若存在,求出k 的值;若不存在,请说明理由.11.已知一块矩形草坪的两边长分别是2米与3米,现在要把这个矩形按照如图1的方式扩大到面积为1x 13122x 535234220W n=-+1y x =+()0my x x=>PB x ⊥()0m y x x =>MD BP ⊥12tan PMD ∠=1122t x t -≤≤+2M Nh -=4044y x =1t =y kx b =+0k ≠21y x x=≥()24y x x k =-++原来的2倍,设原矩形的一边加长a 米,另一边长加长b 米,可得a 与b 之间的函数关系式b=﹣2.某班“数学兴趣小组”对此函数进一步推广,得到更一般的函数y =﹣2,现对这个函数的图象和性质进行了探究,研究过程如下,请补充完整:(1)类比反比例函数可知,函数y =﹣2的自变量x 的取值范围是 ,这个函数值y 的取值范围是  .(2)“数学兴趣小组”进一步思考函数y =|﹣2|的图象和性质,请根据函数y =﹣2的图象,画出函数y =|﹣2|的图象;(3)结合函数y =|﹣2|的图象解答下列问题:①求出方程|﹣2|=0的根;②如果方程|﹣2|=a 有2个实数根,请直接写出a 的取值范围.12.如图,抛物线与x 轴交于两点(在的左边),与y 轴交于C ,;双曲线经过抛物线的顶点,点的横坐标为1.123a +123x +123x +123x +123x +123x +123x +123x +123x +23y ax bx =++A B 、A B 3tan CAB ∠=(0)ky k x=≠23y ax bx =++D D(1)求抛物线和双曲线的解析式.(2)点P 为抛物线上一动点,且在第一象限,连接,求当四边形取得最大值时,点P 的坐标,并求出这个最大值.(3)若在此抛物线和双曲线上存在点Q ,使得,请求出点Q 的坐标.13.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于,两点.(1)分别求一次函数及反比例函数的表达式;(2)在第三象限内的B 点右侧的反比例函数图象上取一点P ,连接且满足.i )求点P 的坐标;ii )过点A 作直线,在直线l 上取一点Q ,且点Q 位于点A 的左侧,连接,试问:能否与相似?若能,求出此时点Q 的坐标;若不能,请说明理由.14.定义:函数图象上到两坐标轴的距离都不大于的点叫做这个函数图象的“n 阶方点”.例如,点是函数图像的“阶方点”;点是函数图像的“2阶方点”.(1)在①;②;③三点中,是反比例函数图像的“1阶方点”的有 (填序号);(2)若y 关于x 的一次函数图像的“2阶方点”有且只有一个,求a 的值;(3)若y 关于x 的二次函数图像的“n 阶方点”一定存在,请直接写出n 的取值范围.15.如图1,已知反比例函数的图象与一次函数的图象相交于A (2,a ),B 两点.BP CP 、ABPC QB QC =xOy y kx b =+my x=(14)A ,(4)B n -,PA PB ,15PAB S = l PB BQ QAB ABP (0)n n ≥1133⎛⎫⎪⎝⎭,y x =12(21),2y x =122⎛⎫-- ⎪⎝⎭,(11)--,(11),1y x=31y ax a =-+2()21y x n n =---+(0)ky k x=≠1y x =-(1)求反比例函数的表达式及A ,B 两点的坐标;(2)M 是x 轴上一点,N 是y 轴上一点,若以A ,B ,M ,N 为顶点的四边形是以为边的平行四边形,求点M 的坐标;(3)如图2,反比例函数的图象上有P ,Q 两点,点P 的横坐标为,点Q 的横坐标与点P 的横坐标互为相反数,连接,,,.若的面积是的面积的3倍,求m 的值.16.如图,直线AC 与双曲线交于A (m ,6),B (3,n )两点,与x 轴交于点C ,直线AD 与x 轴交于点D (-11,0),(1)请直接写出m ,n 的值;(2)若点E 在x 轴上,若点F 在y 轴上,求的最小值;(3)P 是直线AD 上一点,Q 是双曲线上一点,是否存在点P ,Q ,使得四边形ACQP 是正方形?若存在,求出点P ,Q 的坐标;若不存在,请说明理由.17.在平面直角坐标系中,将一点(横坐标与纵坐标不相等)横坐标与纵坐标互换后得到的点叫这一点的“H 点”,如(2,-3)与(-3,2)是一对“H 点”.(1)点 和它的“H 点”均在直线 上,求k 的值;AB ky x=(2)m m >AP AQ BP BQ ABQ ABP ()60y k x=≠AF EF BE ++()m n ,y kx a =+(2)若直线 经过的A ,B 两点恰好是一对“H 点”,其中点A 还在反比例函数 的图象上,一条抛物线 也经过A ,B 两点,求该抛物线的解析式;(3)已知 ,B 为抛物线 上的一对“H 点”,且满足:, ,点P 为抛物线上一动点,若该抛物线上有且仅存在3个点P 满足△PAB 的面积为16,求 的值.18.已知:如图,一次函数y =-2x+10的图象与反比例函数y=的图象相交于A 、B 两点(A 在B 的右侧),点A 横坐标为4.(1)求反比例函数解析式及点B 的坐标;(2)观察图象,直接写出关于x 的不等式-2x+10->0的解集;(3)反比例函数图象的另一支上是否存在一点P ,使△PAB 是以AB 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.19.如图,反比例函数与一次函数相交于点A (1,4)和点B (4,1),直线 的图象与y 轴和x 轴分别相交于点C 和点D ;(1)请直接写出当时自变量x 的取值范围;(2)将一次函数向下平移8个单位长度得到直线EF ,直线EF 与x 和y 轴分别交于点E 和点F ,抛物线过点A 、D 、E 三点,求该抛物线的函数解析式(也称函数表达式);3y kx =+2y x=2y x bx c =++()()A m n m n <,()20y ax bx c a =++≠2m n +=3mn =-a b c ++kxkx()110k y x x=>22y k x n =+2y 12y y ≥22y k x n =+2y ax bx c =++(3)在(2)抛物线的对称轴上是否存在一点P ,使得△PBF 是以BF 为斜边的直角三角形,若存在,请用尺规作图(圆规和无刻度直尺)画出点P 所在位置,保留作图痕迹,并直接写出点P 的坐标;若不存在,请说明理由.20.如图1,平面直角坐标系中,,反比例函数的图象分别交矩形的两边、于E 、F (E 、F 不与A 重合),沿着将矩形折叠使A 、D 重合.(1)当点E 为中点时,求点F 的坐标,并直接写出与对角线的关系;(2)如图2,连接.①的周长是否有最小值,若有,请求出最小值;若没有,请说明理由;②当平分时,直接写出k 的值.21.如图1,四边形为正方形,点A 在y 轴上,点B 在x 轴上,且,,反比例函数在第一象限的图象经过正方形的顶点C .(1)求点C 的坐标和反比例函数的关系式;(2)如图,将正方形沿x 轴向右平移m 个单位长度得到正方形A ′B ′C ′D ′,点A ′恰好落在反比例函数的图象上,求n 值.(3)在(2)的条件下,坐标系内是否存在点P ,使以点O ,A ′,B ′,P 为顶点的四边形为平行四边形,若存在,请直接写出点P的坐标,若不存在,请说明理由.xOy (43)A -,(0)ky k x=<ABOC AC AB EF ABOC AC EF BC CD CDE CD ACO ∠ABCD 4OA =2OB =()0ky k x=≠2ABCD22.如图,在平面直角坐标系中,A (8,0)、B (0,6)是矩形OACB 的两个顶点,双曲线y=(k≠0,x >0)经过AC 的中点D ,点E 是矩形OACB 与双曲线y =的另一个交点.(1)点D 的坐标为 ,点E 的坐标为 ;(2)动点P 在第一象限内,且满足S △PBO =S △ODE .①若点P 在这个反比例函数的图象上,求点P 的坐标;②若点Q 是平面内一点,使得以A 、C 、P 、Q 为顶点的四边形是菱形,请你直接写出满足条件的所有点Q 的坐标.23.如图,一次函数的图像与反比例函数的图像交于,两点.(,,为常数)(1)求一次函数和反比例函数的解析式;(2)将一次函数向下平移个单位后与反比例函数的图像有且只有一个公共点,求的值;(3)为轴上一点,若的面积为,求点的坐标.24.如图,一次函数的图象与反比例函数(k 为常数且)的图象交于A ,B 两点,其中,直线与y 轴、x 轴分别交于C ,D 两点.kxkx561y k x b =+2k y x=()41A -,()4B m ,1k 2k b 1y k x b =+m 2k y x=m P y PAB 3P 4y x =+ky x=0k ≠()13A -,4y x =+(1)求反比例函数的表达式;(2)在x 轴上找一点P ,使的值最小,并求满足条件的点P 的坐标;(3)在坐标平面中是否存在点Q ,使得以Q ,A ,B 为顶点的三角形与相似?如果存在,请直接写出所有满足条件的点Q的坐标.PA PB COD答案解析部分1.【答案】(1)解:把点A (1,2)代入y =-x+m ,得-1+m =2,∴m =3,∴一次函数解析式为y =﹣x+3;把点A (1,2)代入y =,∴k =1×2=2,∴反比例函数解析式为y =;(2)解:联立方程组{y =−x +3y =2x , 解得或,∴B (2,1),设直线y =﹣x+3与y 轴的交点为C ,∴C (0,3),∴S △AOB =S △COB -S △COA =×3×2-×3×1=1.5.【解析】【分析】(1)利用待定系数法求出一次函数的解析式和反比例函数的解析式即可;(2)先求出点B 的坐标,再求出直线与y 轴的交点C 的坐标,再利用S △AOB =S △COB -S △COA ,根据三角形的面积公式进行计算即可.2.【答案】(1)解:设P 与V 之间的函数表达式为,当时,,所以,∴,∴P 与V 之间的函数表达式为;(2)解:当时,,∴,∴为确保气球不爆炸,气球的体积应不小于.【解析】【分析】(1)由题意可设,把V=0.8,P=120代入解析式计算可求得F 的值,则解析式可k x 2x12x y =⎧⎨=⎩21x y =⎧⎨=⎩1212F P V=0.8V =120P =1200.8F =96F =96P V =128P ≤96128V ≤0.75V ≥30.75m F P V=求解;(2)由题意可得关于V 的不等式,解这个不等式可求解.3.【答案】(1)3;4;1(2)解:0<x≤1或x≥3(3)解:作A 关于y 轴的对称点,连接,如图,∵,∴A 关于y 轴的对称点A ′(−1,3).设直线的解析式为,将A ′(−1,3),代入可得:∴,解得:.∴直线的解析式为,令,则,∴.【解析】【解答】(1)解:∵反比例函数与一次函数的图像在第一象限交于、两点,∴,,∴,,∴反比例函数和一次函数的表达式分别为:,;将点代入得;故答案为:3,4,1(2)解:由图像可得:满足的取值范围是或;A 'A B '()13A ,A B 'y ax c =+()31B ,331a c a c -+=⎧⎨+=⎩1252a c ⎧=-⎪⎪⎨⎪=⎪⎩A B '1522y x =-+0x =52y =502Q ⎛⎫ ⎪⎝⎭,()10k y k x=≠2y x b =-+()13A ,()3B n ,3k =31b =-+3k =4b =13y x =24y x =-+()3B n ,13y x=1n =12y y ≥01x <≤3x ≥【分析】(1)将点A 、B 的坐标代入求出k 、n 的值,再将点A 的坐标代入求出b 的值即可; (2)结合函数图象,利用函数值大的图象在上方的原则求解即可;(3)作A 关于y 轴的对称点,连接,利用待定系数法求出直线的解析式,再将代入解析式求出y 的值,可得点Q 的坐标。

人教版数学九年级下册第二十六章《反比例函数》测试卷(含答案)

人教版数学九年级下册第二十六章《反比例函数》测试卷(含答案)

人教版数学九年级下册第二十六章《反比例函数》测试卷[时间:100分钟满分:120分]一、选择题(每小题3分,共30分)1. 下列函数中,y是x的反比例函数的是()A. y=-12xB. y=-29xC. y=86xD. y=1-6x2.反比例函数y=5nx的图象经过点(2,3),则n的值是()A. -2B. -1C. 0D. 13. 反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于()A. 第二、三象限B. 第一、三象限C. 第三、四象限D. 第二、四象限4.已知反比例函数y=3x,下列结论中不正确的是()A. 图象经过点(-1,-3)B. 图象在第一、三象限C. 当x>1时,0<y<3D. 当x<0时,y随着x的增大而增大5. 已知反比例函数y=-10x的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A. y1<y2<0B. y1<0<y2C. y1>y2>0D. y1>0>y26.如图所示,直线y=x+2与双曲线y=kx相交于点A,点A的纵坐标为3,则k的值为()A. 1B. 2C. 3D. 4第6题第7题7.已知二次函数y=-(x-a)2-b的图象如图所示,则反比例函数y=abx与一次函数y=ax+b的图象可能是()A B C D8. 在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图所示,当V =10 m 3时,气体的密度是( )A. 1 kg/m 3B. 2 kg/m 3C. 100 kg/m 3D. 5 kg/m 3第8题 第9题9.如图,A ,B 两点在反比例函数y =1k x 的图象上,C ,D 两点在反比例函数y =2kx的图象上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC =2,BD =3,EF =103,则k 2-k 1的值为( )A. 4B.143 C. 163D. 6 10. 某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,则服药一次治疗疾病有效的时间为( )A. 16小时B. 1578小时C. 151516小时 D. 17小时二、填空题(每小题3分,共24分)11.请写出一个图象在第二、四象限的反比例函数的解析式:.12. 若反比例函数y=(m-1)x|m|-2,则m的值是.13.若函数y=2mx的图象在每个象限内y的值随x值的增大而增大,则m的取值范围为.14. 如图,Rt△ABC的两个锐角顶点A,B在函数y=kx(x>0)的图象上,AC∥x轴,AC=2.若点A的坐标为(2,2),则点B的坐标为.15.已知反比例函数y=4x,当函数值y≥-2时,自变量x的取值范围是________.16.若变量y与x成反比例,且当x=3时,y=-3,则y与x之间的函数关系式是________,在每个象限内函数值y随x的增大而________.17.某闭合电路,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.如图表示的是该电路中电流I与电阻R之间的函数关系的图象,当电阻R为6 Ω时,电流I为________A.第17题第18题18. 如图,四边形OABC是矩形,ADEF是正方形,点A,D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=kx的图象上,OA=1,OC=6,则正方形ADEF的边长为________.三、解答题(共66分)19. (8分)已知y与x-1成反比例,且当x=-5时,y=2.(1)求y与x的函数关系式;(2)当x=5时,求y的值.20. (8分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示.(1)写出y与S的函数关系式;(2)当面条粗为1.6 mm2时,求面条总长度.21. (12分)已知反比例函数y=4 x .(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;(2)如图,反比例函数y=4x(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移到C2处所扫过的面积.22. (12分)如图,一次函数y=kx+b的图象分别与反比例函数y=ax的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=ax的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.23. (12分)如图,在平面直角坐标系xOy中,直线y=x-2与y轴相交于点A,与反比例函数y=kx在第一象限内的图象相交于点B(m,2).(1)求该反比例函数的关系式;(2)若直线y=x-2向上平移后与反比例函数y=kx在第一象限内的图象相交于点C,且△ABC的面积为18,求平移后的直线对应的函数关系式.24. (14分)为了预防流行性感冒,某学校对教室采用药熏消毒法进行消毒.已知药物燃烧时室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物燃烧后,y与x成反比例(如图所示).请根据图中提供的信息,解答下列问题:(1)药物燃烧后y与x的函数关系式为;(2)当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室;(3)当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?。

人教版初中数学九年级数学下册第一单元《反比例函数》检测(含答案解析)

人教版初中数学九年级数学下册第一单元《反比例函数》检测(含答案解析)

一、选择题1.正比例函数1y 的图像与反比例函数2y 的图像相交于点(2,4)A ,下列说法正确的是( )A .反比例函数2y 的解析式是28y x=-B .两个函数图像的另一个交点坐标为(2,4)C .当2x <-或02x <<时,12y y <D .正比例函数1y 与反比例函数2y 都随x 的增大而增大2.下列函数中,y 总随x 的增大而减小的是( ) A .4y x =-B .4y x =-C .4y x=D .4y x=-3.函数y a x a =+与(0)ay a x=≠在同一直角坐标系中的图像可能是( ) A . B . C .D .4.在同一坐标系中,y kx k =-与()0ky k x=≠的图象大致是( ) A . B .C .D .5.与点()2,3-在同一反比例函数图象上的点是( ) A .()1.5,4- B .()1,6--C .()6,1D .()2,3--6.反比例函数y =kx的图象经过点A (﹣2,3),则此图象一定经过下列哪个点( ) A .(3,2)B .(﹣3,﹣2)C .(﹣3,2)D .(﹣2,﹣3)7.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为(﹣1,1),点B 在x 轴正半轴上,点D 在第三象限的双曲线y =8x上,过点C 作CE ∥x 轴交双曲线于点E ,则CE 的长为( )A .85B .235C .3.5D .58.若反比例函数()2221m y m x -=-的图象在第二、四象限,则m 的值是( )A .-1或1B .小于12的任意实数 C .-1D .不能确定9.已知电压U 、电流I 、电阻R 三者之间的关系式为:U IR =(或者UI R=),实际生活中,由于给定已知量不同,因此会有不同的可能图象,图象不可能是( )A .B .C .D .10.如图,在平面直角坐标系中,直线y x =-与双曲线ky x=交于A 、B 两点,P 是以点(2,2)C 为圆心,半径长1的圆上一动点,连结AP ,Q 为AP 的中点.若线段OQ 长度的最大值为2,则k 的值为( )A .12-B .32-C .2-D .14-11.如图,函数y =kx (k >0)与函数2y x=的图象相交于A ,C 两点,过A 作AB ⊥y 轴于B ,连结BC ,则三角形ABC 的面积为( )A .1B .2C .k 2D .2k 212.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x 轴交反比例函数3y x =-的图象于点B ,以AB 为边作ABCD ,其中C 、D 在x 轴上,则ABCDS为( )A .2.5B .3.5C .4D .5二、填空题13.如图,在平面直角坐标系中,反比例函数(0)ky x x=>经过矩形ABOC 的对角线OA 的中点M ,己知矩形ABOC 的面积为24,则k 的值为___________14.如图,在平面直角坐标系中,点(6,0)A 、(3,4)B ,点C 是OB 上一点,D 为AC 的中点,若反比例函数(0)ky x x=>过C 、D 两点,则k 的值为______.15.如图,Rt △AOB 的一条直角边OB 在x 轴上,双曲线()0ky x x=>经过斜边OA 的中点C ,与另一直角边交于点D ,若3ABOS=,则k 的值为______.16.如图,点P ,Q 在反比例函数y=kx(k>0)的图像上,过点P 作PA ⊥x 轴于点A ,过点Q 作QB ⊥y 轴于点B .若△POA 与△QOB 的面积之和为4,则k 的值为_________.17.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为________.(无需确定x的取值范围)18.如图,四边形OABC 和ADEF 均为正方形,反比例函数8y x=的图象分别经过AB 的中点M 及DE 的中点N ,则正方形ADEF 的边长为___19.如图,△DEF 的三个顶点分别在反比例函数=xy n 与()0,0xy m x m n =>>>的图象上,若DB ⊥x 轴于B 点,FE ⊥x 轴于C 点,若B 为OC 的中点,△DEF 的面积为6,则m 与n 的关系式是____.20.如图,已知反比例函数y =kx(x >0)与正比例函数y =x (x ≥0)的图象,点A (1,4),点A '(4,b )与点B '均在反比例函数的图象上,点B 在直线y =x 上,四边形AA 'B 'B 是平行四边形,则B 点的坐标为______.三、解答题21.在同一平面直角坐标系中,设一次函数1y mx n =+(m ,n 为常数,且0,m m n ≠≠-)与反比例函数2m ny x+=. (1)若1y 与2y 的图象有交点()1,5,且4n m =, ①求:m 、n 的值;②当15y ≥时,2y 的取值范围;(2)若1y 与2y 的图象有且只有一个交点,求mn的值. 22.如图,已知(4,)A n -,(1,4)B -是一次函数y kx b =+的图象和反比例函数m y x=的图象的两个交点.(1)求反比例函数和一次函数的解析式.(2)求直线AB 与x 轴的交点C 的坐标及AOB 的面积.(3)求不等式0mkx b x+-<的解集(请直接写出答案). 23.小明根据学习函数的经验,对函数y =x+1x的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y =x+1x的自变量x 的取值范围是 .(2)如表列出了y 与x 的几组对应值,请写出m ,n 的值:m = ,n = .(3)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象. (4)结合函数的图象,请完成: ①当y =52时,x = ; ②写出该函数的一条性质 ; ③若方程x+1x=t 有两个相等的实数根,则t 的值是 . x … ﹣3﹣2﹣112- 13-13121 2 3 4 …y …103-52- ﹣252-103- m52 2 52 n 174…24.如图,直线AC 与函数()0ky x x=<的图象相交于点()1,6A -,与x 轴交于点C ,且45ACO ∠=︒,点D 是线段AC 上一点. (1)求k 的值;(2)若DOC △与OAC 的面积比为2∶3,求点D 的坐标; (3)将OD 绕点O 逆时针旋转90°得到OD ',点D 恰好落在函数()0ky x x=<的图象上,求点D 的坐标.25.已知y 是x 的反比例函数,并且当x=2时,y=4, (1)求y 关于x 的函数解析式; (2)当x=6时,求y 的值. 26.如图,直线y=k 1x+b 与双曲线y=2k x相交于A (1,2)、B (m ,﹣1)两点.(1)求直线和双曲线的解析式;(2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系式; (3)观察图象,请直接写出不等式k 1x+b >2k x的解集.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由题意可求正比例函数解析式和反比例函数解析式,由正比例函数和反比例函数的性质可分别进行判断求解,即可得出结论.【详解】解:∵正比例函数y1的图象与反比例函数y2的图象相交于点A(2,4),∴正比例函数12y x=,反比例函数28yx=,∴两个函数图象的另一个交点为(−2,−4),∴A,B选项错误;∵正比例函数12y x=中,y随x的增大而增大,反比例函数28yx=中,在每个象限内y随x的增大而减小,∴D选项错误;∵当x<−2或0<x<2时,y1<y2,∴选项C正确;故选:C.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练运用反比例函数与一次函数的性质解决问题是本题的关键.2.A解析:A【分析】根据正比例函数的性质,可判断A;根据一次函数的性质,可判断B;根据反比例函数的性质,可判断C、D.【详解】A选项:y随x的增大而减小,符合题意,故A正确;B选项:y随x的增大而增大,不符合题意,故B错误;C选项:在每个象限内y随x的增大而减小,不符合题意,故C错误;D选项:在每个象限内y随x的增大而增大,不符合题意,故D错误.故选:A.【点睛】本题主要考查了反比例函数的增减性,关键是要注意反比例函数在叙述增减性时必须强调在每个象限内.3.B解析:B 【分析】分a >0与a <0两种情况,根据一次函数和反比例函数的图象与性质解答即可. 【详解】解:当a >0时,y =|a |x +a =ax +a 的图象在第一、二、三象限,ay x=的图象在第一、三象限,此时选项B 正确;当a <0时,y =|a |x +a =﹣ax +a 的图象在第一、三、四象限,ay x=的图象在第二、四象限,此时没有正确选项; 故选:B . 【点睛】本题考查了一次函数与反比例函数的图象与性质,属于常考题型,熟练掌握上述知识是解题关键.4.D解析:D 【分析】根据一次函数和反比例函数的图象与性质即可得. 【详解】对于一次函数y kx k =-, 当1x =时,0y k k =-=, 则直线y kx k =-经过定点(1,0),A 、由一次函数的图象得:0k <,由反比例函数的图象得:0k >,两者不一致,此项不符题意;B 、由一次函数的图象得:0k >,由反比例函数的图象得:0k <,两者不一致,此项不符题意;C 、一次函数的图象不经过定点(1,0),此项不符题意;D 、由一次函数的图象得:0k <,且经过定点(1,0),由反比例函数的图象得:0k <,两者一致,此项符合题意; 故选:D . 【点睛】本题考查了反比例函数与一次函数的综合,熟练掌握一次函数和反比例函数的图象与性质是解题关键.5.A解析:A【分析】根据在同一反比例函数图象上的点的横纵坐标之积相等即可解答. 【详解】 解:∵点()2,3- ∴k=2×(-3)=-6∴只有A 选项:-1.5×4=-6. 故答案为A . 【点睛】本题考查了反比例函数图像的性质,掌握同一反比例函数图象上的点的横纵坐标之积相等是解答本题的关键.6.C解析:C 【分析】根据反比例函数图象上点的坐标特征即可求解. 【详解】解:∵反比例函数y =kx的图象经过点A (﹣2,3), ∴k =﹣2×3=﹣6,将四个选项代入反比例函数y =kx的解析式,只有C 选项符合题意, 故选:C . 【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是根据A 点的坐标求出k 值.7.B解析:B 【分析】 设点D (m ,8m),过点D 作x 轴的垂线交CE 于点G ,过点A 过x 轴的平行线交DG 于点H ,过点A 作AN ⊥x 轴于点N ,根据AAS 先证明△DHA ≌△CGD 、△ANB ≌△DGC 可得AN =DG =1=AH ,据此可得关于m 的方程,求出m 的值后,进一步即可求得答案. 【详解】 解:设点D (m ,8m),过点D 作x 轴的垂线交CE 于点G ,过点A 过x 轴的平行线交DG 于点H ,过点A 作AN ⊥x 轴于点N ,如图所示:∵∠GDC +∠DCG =90°,∠GDC +∠HDA =90°,∴∠HDA =∠GCD ,又AD =CD ,∠DHA =∠CGD =90°,∴△DHA ≌△CGD (AAS),∴HA =DG ,DH =CG ,同理△ANB ≌△DGC (AAS),∴AN =DG =1=AH ,则点G (m ,8m﹣1),CG =DH , AH =﹣1﹣m =1,解得:m =﹣2,故点G (﹣2,﹣5),D (﹣2,﹣4),H (﹣2,1),则点E (﹣85,﹣5),GE =25, CE =CG ﹣GE =DH ﹣GE =5﹣25=235, 故选B .【点睛】 本题考查了正方形的性质、反比例函数图象上点的坐标特点和全等三角形的判定与性质,构造全等、充分运用正方形的性质是解题的关键.8.C解析:C【分析】根据反比例函数的定义列出方程221m -=-且210m -<求解即可.【详解】解:22(21)m y m x -=-是反比例函数, ∴221m -=-,210m -≠,解之得1m =±.又因为图象在第二,四象限,所以210m -<,解得12m <,即m 的值是1-. 故选:C . 【点睛】 对于反比例函数()0k y k x=≠.(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.9.A解析:A【分析】在实际生活中,电压U 、电流I 、电阻R 三者之中任何一个不能为负,依此可得结果.【详解】A 图象反映的是U I R=,但自变量R 的取值为负值,故选项A 错误;B 、C 、D 选项正确,不符合题意.故选:A .【点睛】此题主要考查了现实生活中函数图象的确立,注意自变量取值不能为负是解答此题的关键. 10.A解析:A【分析】连接BP ,证得OQ 是△ABP 的中位线,当P 、C 、B 三点共线时PB 长度最大,PB=2OQ=4,设 B 点的坐标为(x ,-x ),根据点(2,2)C ,可利用勾股定理求出B 点坐标,代入反比例函数关系式即可求出k 的值.【详解】解:连接BP ,∵直线y x =-与双曲线k y x=的图形均关于直线y=x 对称, ∴OA=OB ,∵点Q 是AP 的中点,点O 是AB 的中点∴OQ 是△ABP 的中位线,当OQ 的长度最大时,即PB 的长度最大,∵PB≤PC+BC ,当三点共线时PB 长度最大,∴当P 、C 、B 三点共线时PB=2OQ=4,∵PC=1,∴BC=3,设B 点的坐标为(x ,-x ),则()()22BC=2-23x x ++=, 解得1222,22x x ==-(舍去) 故B 点坐标为22,22⎛⎫- ⎪ ⎪⎝⎭,代入k y x=中可得:12k =-, 故答案为:A .【点睛】本题考查三角形中位线的应用和正比例函数、反比例函数的性质,结合题意作出辅助线是解题的关键.11.B解析:B【分析】设点A 坐标2,x x ⎛⎫ ⎪⎝⎭,根据点A ,C 关于原点对称,可得出点C 坐标,最后根据三角形的面积计算即可.【详解】设点A 坐标2,x x ⎛⎫ ⎪⎝⎭,则点C 坐标2,x x ⎛⎫--⎪⎝⎭, ∵AB ⊥y 轴,∴()114222ABC A C S AB y y x x=⋅-=⋅=, 故选B .【点睛】本题考查反比例函数图象上点的坐标特征,熟练掌握双曲线是关于原点对称,两个分支上的点也是关于原点对称是解题的关键.12.D解析:D【分析】过点B作BH⊥x轴于H,根据坐标特征可得点A和点B的纵坐标相同,由题意可设点A的坐标为(2a,a),点B的坐标为(3a-,a),即可求出BH和AB,最后根据平行四边形的面积公式即可求出结论.【详解】解:过点B作BH⊥x轴于H∵四边形ABCD为平行四边形∴//AB x轴,CD=AB∴点A和点B的纵坐标相同由题意可设点A的坐标为(2a,a),点B的坐标为(3a-,a)∴BH=a,CD=AB=2a -(3a-)=5a∴ABCDS=BH·CD=5故选D.【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.二、填空题13.6【分析】设A(ab)由矩形的面积求得ab再根据中点定义求得M点坐标进而用待定系数法求得k【详解】解:设A(ab)则ab=24∵点M是OA的中点∴∵反比例函数经过点M∴故答案为:6【点睛】本题主要考解析:6【分析】设A(a,b),由矩形的面积求得ab,再根据中点定义求得M点坐标,进而用待定系数法求得k.【详解】解:设A(a,b),则ab=24,∵点M是OA的中点,∴1122M a b⎛⎫⎪⎝⎭,,∵反比例函数(0)k y x x =>经过点M , ∴1111•2462244k a b ab =⨯===, 故答案为:6【点睛】本题主要考查了矩形的性质,反比例函数的图象与性质,关键是通过A 点坐标与已知矩形面积和未知k 联系起来.14.【分析】首先求出直线OB 的解析式设点C 的坐标为D 点坐标为分别代入求出k 的值即可【详解】解:设直线OB 的解析式为∵∴解得:∴直线的解析式为设则即则经检验t=是原方程的解故答案为:【点睛】此题主要考查了 解析:163【分析】 首先求出直线OB 的解析式,设点C 的坐标为(6,8)C t t ,D 点坐标为6608,22t t D ++⎛⎫⎪⎝⎭,分别代入(0)k y x x=>,求出k 的值即可. 【详解】解:设直线OB 的解析式为y kx =,∵(3,4)B∴3=4k ,解得:43k = ∴直线OB 的解析式为43y x =设(6,8)C t t ,则6608,22t t D ++⎛⎫ ⎪⎝⎭即(33,4)t t +, 则86433k t t k t t ⎧=⎪⎪⎨⎪=⎪+⎩, 16313k t ⎧=⎪⎪∴⎨⎪=⎪⎩. 经检验,t=13是原方程的解. 故答案为:163.【点睛】此题主要考查了求反比例函数解析式,设出点C 的坐标,求出点D 的坐标是解答此题的关键.15.【分析】设点B 的坐标为先根据三角形的面积公式可得从而可得点A 的坐标为再根据线段中点的定义可得点C 的坐标为然后将点C 的坐标代入双曲线的解析式即可得【详解】设点B 的坐标为则解得点C 是OA 的中点即又点在双 解析:32【分析】设点B 的坐标为(,0)(0)a a >,先根据三角形的面积公式可得6AB a=,从而可得点A 的坐标为6(,)A a a ,再根据线段中点的定义可得点C 的坐标为3(,)2a C a,然后将点C 的坐标代入双曲线的解析式即可得.【详解】设点B 的坐标为(,0)(0)a a >,则OB a =, 132ABC S OB AB =⋅=, 32a AB ∴⋅=,解得6AB a=, 6(,)A a a∴, 点C 是OA 的中点,600(,)22a a C ++∴,即3(,)2a C a , 又点3(,)2a C a在双曲线上, 3322a k a ∴=⋅=, 故答案为:32. 【点睛】 本题考查了反比例函数的几何应用,熟练掌握反比例函数的图象与性质是解题关键. 16.4【分析】根据反比例函数的性质确定△POA 与△QOB 的面积均为2然后根据反比例函数的比例系数的几何意义确定其值即可【详解】根据题意得:点P 和点Q 关于原点对称所以△POA 与△QOB 的面积相等∵△POA解析:4【分析】根据反比例函数的性质确定△POA 与△QOB 的面积均为2,然后根据反比例函数的比例系数的几何意义确定其值即可.【详解】根据题意得:点P 和点Q 关于原点对称,所以△POA 与△QOB 的面积相等,∵△POA 与△QOB 的面积之和为4,∴△POA 与△QOB 的面积均为2, ∴2k=2,∴|k|=4,∵反比例函数的图象位于一、三象限,∴k=4,故答案为4.【点睛】此题考查了反比例函数的比例系数的几何意义及反比例函数的图象上点的坐标特征的知识,解题的关键是求得△POA 与△QOB 的面积,难度不大.17.【解析】根据题意得xy =025×400=100∴ 解析:100y x =【解析】根据题意得xy =0.25×400=100,∴100y x=. 18.【分析】设正方形的边长为正方形的边长为再由是的中点是的中点可知再代入反比例函数求出的值即可【详解】解:设正方形的边长为正方形的边长为是的中点是的中点反比例函数的图象分别经过的中点及的中点解得故答案为解析:2-+【分析】设正方形OABC 的边长为a ,正方形ADEF 的边长为b ,再由M 是AB 的中点,N 是DE 的中点可知(,)2a M a ,(,)2b N ab ,再代入反比例函数8y x=求出b 的值即可. 【详解】 解:设正方形OABC 的边长为a ,正方形ADEF 的边长为b ,M 是AB 的中点,N 是DE 的中点, (,)2a M a ,(,)2b N a b . 反比例函数8y x=的图象分别经过AB 的中点M 及DE 的中点N , ∴82aa ,82b a b ,解得4a =,225b .故答案为:2-+【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.19.【分析】设点D 点坐标根据B 是OC 的中点求出E 点坐标进而得到F 点坐标在根据梯形DFCB 的面积减去梯形DECB 的面积即可列出等量关系求解【详解】解:∵∴DE 所在的反比例函数是设由B 是OC 的中点可知E 点坐 解析:24-=m n【分析】设点D 点坐标,根据B 是OC 的中点,求出E 点坐标,进而得到F 点坐标,在根据梯形DFCB 的面积减去梯形DECB 的面积即可列出等量关系求解.【详解】解:∵n m <∴D 、E 所在的反比例函数是=xy n 设(,)n D a a ,由B 是OC 的中点可知E 点坐标为:(2,)2n a a,又F 点和E 点横坐标相同,且F 在=xy m 上, 故F 点坐标为:(2,)2m a a又11==()()22梯形梯形DECB ∆-+-+DEF DFCB S S S DB FC BC DB EC BC 111()()=()22224=+-+-n m n n a a m n a a a a 又∵△DEF 的面积为6 ∴1()64-=m n ∴24-=m n .故答案为:24-=m n【点睛】 本题考查了反比例函数上点的坐标运算,当两点在反比例函数上时,设其中一个点的坐标,则另一个点的坐标根据题中给定的等量关系用设好的坐标的代数式表示.20.【分析】先根据点A 的坐标求出反比例函数的解析式然后求出点的坐标由点B 在直线上设出点B 的坐标为(aa )从而利用平行四边形的性质可得到的坐标因为在反比例函数图象上将点代入反比例函数解析式中即可求出a 的值解析:【分析】先根据点A 的坐标求出反比例函数的解析式,然后求出点A '的坐标,由点B 在直线上,设出点B 的坐标为(a,a ),从而利用平行四边形的性质可得到B '的坐标,因为B '在反比例函数图象上,将点B '代入反比例函数解析式中即可求出a 的值,从而可确定点B 的坐标.【详解】∵反比例函数y =k x (x >0)过点A (1,4), ∴k =1×4=4,∴反比例函数解析式为:y =4x. ∵点A '(4,b )在反比例函数的图象上,∴4b =4,解得:b =1,∴A '(4,1).∵点B 在直线y =x 上,∴设B 点坐标为:(a ,a ).∵点A (1,4),A '(4,1),∴A 点向下平移3个单位,再向右平移3个单位,即可得到A '点.∵四边形AA 'B 'B 是平行四边形,∴B 点向下平移3个单位,再向右平移3个单位,即可得到B '点(a +3,a ﹣3).∵点B '在反比例函数的图象上,∴(a +3)(a ﹣3)=4,解得:a =或a =舍去),故B 点坐标为:.故答案为:.【点睛】本题主要考查反比例函数与几何综合,掌握待定系数法,平行四边形的性质,点的平移规律和一元二次方程的解法是解题的关键.三、解答题21.(1)①1,4m n ==;②205y <≤;(2)12m n =- 【分析】(1)①将点()1,5代入一次函数解析式得5m n +=,结合4n m =,即可求出m 、n 的值;②由①已经得到一次函数和反比例函数的解析式,根据15y ≥求出x 的取值范围,再根据反比例函数的性质求出2y 的取值范围;(2)根据题意,1y 与2y 的图象有且只有一个交点,即方程m n mx n x+=+有且只有一解,根据根的判别式即可求出结果.【详解】(1)①把()1,5代入1y mx n =+,得5m n +=,∵4n m =,∴1,4m n ==;②由①得:1254,y x y x =+=, ∴当15y ≥时,45x +≥,∴1≥x ,∵反比例函数25y x=在第一象限内y 随着x 的增大而减小, ∴当1≥x 时,2y 的取值范围是205y <≤;(2)令m n mx n x+=+, 得2()0mx nx m n +-+=, 由题意得,22Δ4()(2)0n m m n m n +=+=+=即20m n +=, ∴12m n =-. 【点睛】 本题考查一次函数和反比例函数,以及一元一次方程根的判别式,解题的关键是掌握函数解析式的求解方法,理解函数图象的交点对应方程的解.22.(1)3y x =--,4y x =-;(2)(3,0)C -,152;(3)40x -<<或1x >. 【分析】(1)将(1,4)B -代入m y x=,即可得到m ,从而得到反比例函数解析式,然后将A 、B 代入y kx b =+,即可得到一次函数的解析式;(2)在一次函数上,当0y =时,即可得到C 的坐标,从而得到OC 的长,然后由AOB AOC COB S S S =+求出AOB 的面积;(3)根据图象即可求出m kx b x +<的解析,即不等式0m kx b x +-<的解集. 【详解】(1)反比例函数m y x=经过点(1,4)B -, 1(4)4m ∴=⨯-=-,4y x∴=-, 将4x =-,y n =代入反比例解析式得:1n =,(4,1)A ∴-,∴将A 与B 坐标代入一次函数解析式得:441k b k b +=-⎧⎨-+=⎩, 解得:13k b =-⎧⎨=-⎩, 3y x ∴=--.(2)在直线3y x =--中,当0y =时,3x =-,(3,0)C ∴-,即3OC =, 115(3134)22AOB AOC COB S S S∴=+=⨯+⨯=. (3)由两函数交点A 与B 的横坐标,m kx b x+<, 利用图象即可求出不等式0m kx b x+-<的解集是40x -<<或1x >. 【点睛】 本题考查了一次函数和反比例函数的综合问题,以及和不等式相结合的问题,正确理解函数的图象的坐标,函数与自变量的关系是解决本题的关键.23.(1)x≠0;(2)103;103;(3)画图见解析;(4)①x 1=﹣2,x 2=﹣12;②函数图象在第一、三象限且关于原点对称;③t<-2或t >2.【分析】(1)由x 在分母上,可得出x≠0;(2)代入x=13、3求出m 、n 的值; (3)连点成线,画出函数图象; (4)①代入y=52,求出x 值; ②观察函数图象,写出一条函数性质; ③观察函数图象,找出当x+1x =t 有两个相等的实数根时t 的取值范围(亦可用根的判别式去求解).【详解】解:(1)∵x 在分母上,∴x≠0.故答案为:x≠0.(2)当13x =时,1103y x x =+=;当x =3时,1103y x x =+=. 故答案为:103,103. (3)连点成线,画出函数图象.(4)①当52y =-时,有152x x +=-, 解得:x 1=﹣2,x 2=12-, 经检验,x 1=﹣2,x 2=12-是原方程的根. 故答案为:-2,12-. ②观察函数图象,可知:函数图象在第一、三象限且关于原点对称.故答案为:函数图象在第一、三象限且关于原点对称.③∵1x t x+=有两个不相等的实数根, ∴t <﹣2或t >2.故答案为:t=-2或t=2.【点睛】 本题考查了反比例函数的性质、反比例函数的图象、正比例函数的性质以及正比例函数图象,数形结合解题的关键24.(1)k=-6;(2)(1,4);(3)(3,2)或(2,3)【分析】(1)将点()1,6A -代入反比例函数解析式中即可求出k 的值;(2)过点D 作DM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N ,根据三角形的面积比可得23DM AN =,再根据点A 的坐标即可求出DM ,然后证出ACN 和DCM 都是等腰直角三角形,即可求出OM ,从而求出结论;(3)过点D 作DM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N ,过点D 作D G ⊥x 轴于G ,设点D 的纵坐标为a (a >0),即DM=a ,然后用a 表示出OM ,利用AAS 证出△G D O ≌△MOD ,即可用a 表示出点D 的坐标,将D 的坐标反比例函数解析式中即可求出a 的值,从而求出点D 的坐标.【详解】解:(1)将点()1,6A -代入k y x =中,得61k =- 解得k=-6;(2)过点D 作DM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N∵DOC △与OAC 的面积比为2∶3∴122132OC DM OC AN = ∴23DM AN = ∵()1,6A -∴AN=6,ON=1∴DM=4∵45ACO ∠=︒∴ACN 和DCM 都是等腰直角三角形∴CN=AN=6,CM=DM=4∴OM=CN -CM -ON=1∴点D 的坐标为(1,4);(3)过点D 作DM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N ,过点D 作D G ⊥x 轴于G设点D 的纵坐标为a (a >0),即DM=a∵ACN 和DCM 都是等腰直角三角形∴CN=AN=6,CM=DM=a∴OM=CN -CM -ON=5-a∴点D 的坐标为(5-a ,a )∵∠D GO=∠OMD=∠D OD=90°∴∠G D O +∠D OG=90°,∠MOD +∠D OG=90°,∴∠G D O=∠MOD由旋转的性质可得D O=OD∴△G D O ≌△MOD∴G D =OM=5-a ,OG=DM=a∴D 的坐标为(-a ,5-a )由(1)知,反比例函数解析式为()06y x x=-< 将D 的坐标代入,得 56a a-=-- 解得:122,3a a ==∴点D 的坐标为(3,2)或(2,3).【点睛】此题考查的是反比例函数与几何图形的综合大题,掌握利用待定系数法求反比例函数解析式、等腰直角三角形的判定及性质、全等三角形的判定及性质和旋转的性质是解题关键. 25.(1)8y x =;(2)43. 【分析】(1)利用待定系数法即可得;(2)将6x =代入(1)的结论即可得.【详解】(1)∵y 是x 的反比例函数, ∴设(0)k y k x=≠, ∵当2x =时,4y =, ∴42k =, 解得8k ,故y 关于x 的函数解析式为8y x =; (2)将6x =代入8y x =得:8463y ==,即y 的值为43. 【点睛】 本题考查了利用待定系数法求反比例函数的解析式、已知自变量的值求函数值,熟练掌握待定系数法是解题关键.26.(1)双曲线的解析式为:y=2x 直线的解析式为:y=x+1(2)y 2<y 1<y 3(3),x >1或﹣2<x <0【分析】(1)将点A (1,2)代入双曲线y=2k x,求出k 2的值,将B (m ,﹣1)代入所得解析式求出m 的值,再用待定系数法求出k 1x 和b 的值,可得两函数解析式.(2)根据反比例函数的增减性在不同分支上进行研究.(3)根据A 、B 点的横坐标结合图象找出直线在双曲线上方时x 的取值即可.【详解】解:(1)∵双曲线y=2k x 经过点A (1,2),∴k 2=2,∴双曲线的解析式为:y=2x. ∵点B (m ,﹣1)在双曲线y=2x上,∴m=﹣2,则B (﹣2,﹣1). 由点A (1,2),B (﹣2,﹣1)在直线y=k 1x+b 上,得 11k +b=2{2k +b=1--,解得1k =1{b=1. ∴直线的解析式为:y=x+1.(2)∵双曲线y=2x在第三象限内y 随x 的增大而减小,且x 1<x 2<0,∴y 2<y 1<0, 又∵x 3>0,∴y 3>0.∴y 2<y 1<y 3.(3)由图可知,x >1或﹣2<x <0.。

人教备战中考数学专题《反比例函数》综合检测试卷含详细答案

人教备战中考数学专题《反比例函数》综合检测试卷含详细答案

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,已知一次函数y= x+b的图象与反比例函数y= (x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.(1)当△ABC的周长最小时,求点C的坐标;(2)当 x+b<时,请直接写出x的取值范围.【答案】(1)解:作点A关于y轴的对称点A′,连接A′B交y轴于点C,此时点C即是所求,如图所示.∵反比例函数y= (x<0)的图象过点A(﹣1,2),∴k=﹣1×2=﹣2,∴反比例函数解析式为y=﹣(x<0);∵一次函数y= x+b的图象过点A(﹣1,2),∴2=﹣ +b,解得:b= ,∴一次函数解析式为y= x+ .联立一次函数解析式与反比例函数解析式成方程组:,解得:,或,∴点A的坐标为(﹣1,2)、点B的坐标为(﹣4,).∵点A′与点A关于y轴对称,∴点A′的坐标为(1,2),设直线A′B的解析式为y=mx+n,则有,解得:,∴直线A′B的解析式为y= x+ .令y= x+ 中x=0,则y= ,∴点C的坐标为(0,)(2)解:观察函数图象,发现:当x<﹣4或﹣1<x<0时,一次函数图象在反比例函数图象下方,∴当 x+ <﹣时,x的取值范围为x<﹣4或﹣1<x<0【解析】【分析】(1)作点A关于y轴的对称点A′,连接A′B交y轴于点C,此时点C即是所求.由点A为一次函数与反比例函数的交点,利用待定系数法和反比例函数图象点的坐标特征即可求出一次函数与反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点A、B的坐标,再根据点A′与点A关于y轴对称,求出点A′的坐标,设出直线A′B的解析式为y=mx+n,结合点的坐标利用待定系数法即可求出直线A′B的解析式,令直线A′B解析式中x为0,求出y的值,即可得出结论;(2)根据两函数图象的上下关系结合点A、B的坐标,即可得出不等式的解集.2.如图,在平面直角坐标系中,反比例函数y= 的图象与一次函数y=ax+b的图象交于点A(﹣2,3)和点B(m,﹣2).(1)求反比例函数和一次函数的解析式;(2)直线x=1上有一点P,反比例函数图象上有一点Q,若以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,直接写出点Q的坐标.【答案】(1)解:∵点A(﹣2,3)在反比例函数y= 的图形上,∴k=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣,∵点B在反比例函数y=﹣的图形上,∴﹣2m=﹣6,∴m=3,∴B(3,﹣2),∵点A,B在直线y=ax+b的图象上,∴,∴,∴一次函数的解析式为y=﹣x+1(2)解:∵以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,∴AB=PQ,AB∥PQ,设直线PQ的解析式为y=﹣x+c,设点Q(n,﹣),∴﹣ =﹣n+c,∴c=n﹣,∴直线PQ的解析式为y=﹣x+n﹣,∴P(1,n﹣﹣1),∴PQ2=(n﹣1)2+(n﹣﹣1+ )2=2(n﹣1)2,∵A(﹣2,3).B(3,﹣2),∴AB2=50,∵AB=PQ,∴50=2(n﹣1)2,∴n=﹣4或6,∴Q(﹣4. )或(6,﹣1)【解析】【分析】(1)先利用待定系数法求出反比例函数解析式,进而求出点B的坐标,再用待定系数法求出直线解析式;(2)先判断出AB=PQ,AB∥PQ,设出点Q的坐标,进而得出点P的坐标,即可求出PQ,最后用PQ=AB建立方程即可得出结论.3.如图直角坐标系中,矩形ABCD的边BC在x轴上,点B,D的坐标分别为B(1,0),D(3,3).(1)点C的坐标________;(2)若反比例函数y= (k≠0)的图象经过直线AC上的点E,且点E的坐标为(2,m),求m的值及反比例函数的解析式;(3)若(2)中的反比例函数的图象与CD相交于点F,连接EF,在直线AB上找一点P,使得S△PEF= S△CEF,求点P的坐标.【答案】(1)(3,0)(2)解:∵AB=CD=3,OB=1,∴A的坐标为(1,3),又C(3,0),设直线AC的解析式为y=ax+b,则,解得:,∴直线AC的解析式为y=﹣ x+ .∵点E(2,m)在直线AC上,∴m=﹣ ×2+ = ,∴点E(2,).∵反比例函数y= 的图象经过点E,∴k=2× =3,∴反比例函数的解析式为y=(3)解:延长FC至M,使CM= CF,连接EM,则S△EFM= S△EFC, M(3,﹣0.5).在y= 中,当x=3时,y=1,∴F(3,1).过点M作直线MP∥EF交直线AB于P,则S△PEF=S△MEF.设直线EF的解析式为y=a'x+b',∴,解得,∴y=﹣ x+ .设直线PM的解析式为y=﹣ x+c,代入M(3,﹣0.5),得:c=1,∴y=﹣ x+1.当x=1时,y=0.5,∴点P(1,0.5).同理可得点P(1,3.5).∴点P坐标为(1,0.5)或(1,3.5).【解析】【解答】解:(1)∵D(3,3),∴OC=3,∴C(3,0).故答案为(3,0);【分析】(1)由D的横坐标为3,得到线段OC=3,即可确定出C的坐标;(2)由矩形的对边相等,得到AB=CD,由D的纵坐标确定出CD的长,即为AB的长,再由B的坐标确定出OB的长,再由A为第一象限角,确定出A的坐标,由A与C的坐标确定出直线AC的解析式,将E坐标代入直线AC解析式中,求出m的值,确定出E的坐标,代入反比例解析式中求出k的值,即可确定出反比例解析式;(3)延长FC至M,使CM=CF,连接EM,则S△EFM=S△EFC, M(3,﹣0.5).求出F(3,1),过点M作直线MP∥EF交直线AB于P,利用平行线间的距离处处相等得到高相等,再利用同底等高得到S△PEF=S△MEF.此时直线EF与直线PM的斜率相同,由F的横坐标与C横坐标相同求出F 的横坐标,代入反比例解析式中,确定出F坐标,由E与F坐标确定出直线EF斜率,即为直线PM的斜率,再由M坐标,确定出直线PM解析式,由P横坐标与B横坐标相同,将B横坐标代入直线PM解析式中求出y的值,即为P的纵坐标,进而确定出此时P的坐标.4.如图,一次函数y=kx+b的图象交反比例函数y= (x>0)的图象于A(4,-8)、B (m,-2)两点,交x轴于点C.(1)求反比例函数与一次函数的关系式;(2)根据图象回答:当x为何值时,一次函数的值大于反比例函数的值?(3)以O、A、B、P为顶点作平行四边形,请直接写出点P的坐标.【答案】(1)解:∵反比例函数y= (x>0)的图象于A(4,-8),∴k=4×(-8)=-32.∵双曲线y= 过点B(m,-2),∴m=16.由直线y=kx+b过点A,B得:,解得,,∴反比例函数关系式为,一次函数关系式为(2)解:观察图象可知,当0<x<4或x>16时,一次函数的值大于反比例函数的值(3)解:∵O(0,0),A(4,-8)、B(16,-2),分三种情况:①若OB∥AP,OA∥BP,∵O(0,0),A(4,-8),∴由平移规律,点B(16,-2)向右平移4个单位,向下平移8个单位得到P点坐标为(20,-10);②若OP∥AB,OA∥BP,∵A(4,-8),B(16,-2),∴由平移规律,点O(0,0)向右平移12个单位,向上平移6个单位得到P点坐标为(12,6);③若OB∥AP,OP∥AB,∵B(16,-2),A(4,-8),∴由平移规律,点O(0,0)向左平移12个单位,向下平移6个单位得到P点坐标为(-12,-6);∴以O,A,B,P为顶点作平行四边形,第四个顶点P的坐标为(12,6)或(-12,-6)或(20,-10)【解析】【分析】(1)将点A(4,-8),B(m,-2)代入反比例函数y= (x>0)中,可求k、a;再将点A(4,-8),B(m,-2)代入y=kx+b中,列方程组求k、b即可;(2)根据两函数图象的交点,图象的位置可确定一次函数的值大于反比例函数的值时x的范围;(3)根据平行四边形的性质,即可直接写出.5.如图,点A是反比例函数y1= (x>0)图象上的任意一点,过点A作AB∥x轴,交另一个比例函数y2= (k<0,x<0)的图象于点B.(1)若S△AOB的面积等于3,则k是=________;(2)当k=﹣8时,若点A的横坐标是1,求∠AOB的度数;(3)若不论点A在何处,反比例函数y2= (k<0,x<0)图象上总存在一点D,使得四边形AOBD为平行四边形,求k的值.【答案】(1)﹣4(2)解:∵点A的横坐标是1,∴y= =2,∴点A(1,2),∵AB∥x轴,∴点B的纵坐标为2,∴2=﹣,解得:x=﹣4,∴点B(﹣4,2),∴AB=AC+BC=1+4=5,OA= = ,OB= =2 ,∴OA2+OB2=AB2,∴∠AOB=90°;(3)解:假设y2= 上有一点D,使四边形AOBD为平行四边形,过D作DE⊥AB,过A作AC⊥x轴,∵四边形AOBD为平行四边形,∴BD=OA,BD∥OA,∴∠DBA=∠OAB=∠AOC,在△AOC和△DBE中,,∴△AOC≌△DBE(AAS),设A(a,)(a>0),即OC=a,AC= ,∴BE=OC=a,DE=AC= ,∴D纵坐标为,B纵坐标为,∴D横坐标为,B横坐标为,∴BE=| ﹣ |=a,即﹣ =a,∴k=﹣4.【解析】【解答】解:如图1,设AB交y轴于点C,∵点A是反比例函数y1= (x>0)图象上的任意一点,且AB∥x轴,∴AB⊥y轴,∴S△AOC= ×2=1,∵S△AOB=3,∴S△BOC=2,∴k=﹣4;故答案为:﹣4;【分析】(1)首先设AB交y轴于点C,由点A是反比例函数y1图象上的任意一点,AB∥x轴,可求得△AOC的面积,又由△AOB的面积等于3,即可求得△BOC的面积,继而求得k的值;(2)由点A的横坐标是1,可求得点A的坐标,继而求得点B的纵坐标,则可求得点B的坐标,则可求得AB,OA,OB的长,然后由勾股定理的逆定理,求得∠AOB的度数;(3)假设y2上有一点D,使四边形AOBD为平行四边形,过D作DE⊥AB,过A作AC⊥x 轴,由四边形AOBD为平行四边形,利用平行四边形的对边平行且相等,利用AAS得到△AOC与△DBE全等,利用全等三角形对应边相等得到BE=OC,DE=AC,设出A点的坐标,表示出OC,AC的长,得出D与B纵坐标,进而表示出D与B横坐标,两横坐标之差的绝对值即为BE的长,利用等式,即可求出k的值.6.已知一次函数y1=x+m的图象与反比例函数y2= 的图象交于A、B两点,已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的函数表达式;(2)已知反比例函数在第一象限的图象上有一点C到x轴的距离为2,求△ABC的面积.【答案】(1)解:∵当x>1时,y1>y2;当0<x<1时,y1<y2,∴点A的横坐标为1,代入反比例函数解析式,=y,解得y=6,∴点A的坐标为(1,6),又∵点A在一次函数图象上,∴1+m=6,解得m=5,∴一次函数的解析式为y1=x+5(2)解:∵第一象限内点C到x轴的距离为2,∴点C的纵坐标为2,∴2= ,解得x=3,∴点C的坐标为(3,2),过点C作CD∥x轴交直线AB于D,则点D的纵坐标为2,∴x+5=2,解得x=﹣3,∴点D的坐标为(﹣3,2),∴CD=3﹣(﹣3)=3+3=6,点A到CD的距离为6﹣2=4,联立,解得(舍去),,∴点B的坐标为(﹣6,﹣1),∴点B到CD的距离为2﹣(﹣1)=2+1=3,S△ABC=S△ACD+S△BCD= ×6×4+ ×6×3=12+9=21.【解析】【分析】(1)首先根据x>1时,y1>y2,0<x<1时,y1<y2确定点A的横坐标,然后代入反比例函数解析式求出点A的纵坐标,从而得到点A的坐标,再利用待定系数法求直线解析式解答;(2)根据点C到x轴的距离判断出点C的纵坐标,代入反比例函数解析式求出横坐标,从而得到点C的坐标,过点C作CD∥x轴交直线AB于D,求出点D 的坐标,然后得到CD的长度,再联立一次函数与双曲线解析式求出点B的坐标,然后△ABC的面积=△ACD的面积+△BCD的面积,列式进行计算即可得解.7.如图,在菱形ABCD中,, ,点E是边BC的中点,连接DE,AE.(1)求DE的长;(2)点F为边CD上的一点,连接AF,交DE于点G,连接EF,若 ,①求证:△△;②求DF的长.【答案】(1)解:连结BD(2)解:①②【解析】【分析】(1)连结BD ,根据菱形的性质及等边三角形的判定方法首先判定出△CDB是等边三角形,根据等边三角形的性质得出DE⊥BC,CE=2,然后利用勾股定理算出DE的长;(2)①首先判断出△AGD∽△EGF,根据相似三角形对应边成比例得出,又∠AGE=∠DGF,故△AGE∽△DGF;②根据相似三角形的性质及含30°直角三角形的边之间的关系及勾股定理得出EF的长,然后过点E作EH⊥DC于点H,在Rt△ECH中,利用勾股定理算出FH的长,从而根据线段的和差即可算出答案.8.如图,二次函数(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A,B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图象上,CD∥AB,连接AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为F.探索:在x轴的负半轴上是否存在点G,连接CF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.【答案】(1)解:将C(0,-3)代入函数表达式得,,∴(2)证明:如答图1,过点D、E分别作x轴的垂线,垂足为M、N.由解得x1=-m,x2=3m.∴A(-m,0),B(3m,0).∵CD∥AB,∴点D的坐标为(2m,-3).∵AB平分∠DAE.∴∠DAM=∠EAN.∵∠DMA=∠ENA=900,∴△ADM∽△AEN, ∴ .设点E的坐标为(x, ),∴ ,∴x=4m.∴为定值.(3)解:存在,如答图2,连接FC并延长,与x轴负半轴的交点即为所求点G.由题意得:二次函数图像顶点F的坐标为(m,-4),过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH中,∵tan∠CGO= , tan∠FGH= , ∴ = .∴OG="3m,"由勾股定理得,GF= ,AD=∴ .由(2)得,,∴AD∶GF∶AE=3∶4∶5.∴以线段GF、AD、AE的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.【解析】【分析】1)将C点代入函数解析式即可求得.(2)令y=0求A、B的坐标,再根据,CD∥AB,求点D的坐标,由△ADM∽△AEN,对应边成比例,将求的比转化成求比,结果不含m即为定值.(3)连接FC并延长,与x轴负半轴的交点即为所求点G..过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH中根据同角的同一个三角函数相等,可求OG(用m表示),然后利用勾股定理求GF和AD(用m表示),并求其比值,由(2)是定值,所以可得AD∶GF∶AE=3∶4∶5,由此可根据勾股定理逆定理判断以线段GF、AD、AE的长度为三边长的三角形是直角三角形,直接得点G的横坐标.9.已知如图,二次函数的图象经过A(3,3),与x轴正半轴交于B 点,与y轴交于C点,△ABC的外接圆恰好经过原点O.(1)求B点的坐标及二次函数的解析式;(2)抛物线上一点Q(m,m+3),(m为整数),点M为△ABC的外接圆上一动点,求线段QM长度的范围;(3)将△AOC绕平面内一点P旋转180°至△A'O'C'(点O'与O为对应点),使得该三角形的对应点中的两个点落在的图象上,求出旋转中心P的坐标.【答案】(1)解:如图,过点A作AD⊥y轴于点D,AE⊥x轴于点E,∴∠ADC=∠AEB=90°∵二次函数与y轴交于点C,点C坐标为(0,2)∵点A坐标(3,3)∴DA=AE=3∵∠DAC+∠CAE=90°∠EAB+∠CAE=90°∴∠DAC=∠EAB∴△ACD≌△ABE∴EB=CD=3-2=1OB=3+1=4∴点B的坐标为(4,0)将A(3,3)B(4,0)代入二次函数中得:解得:二次函数的解析式为:(2)解:将点Q(m,m+3)代入二次函数解析式得:m1=1;m2= (舍)∴m=1∴点Q坐标为(1,4)由勾股定理得:BC=2设圆的圆心为N∵圆经过点O,且∠COB=90°∴BC是圆N的直径,∴圆N的半径为,N的坐标为(2,1)由勾股定理得,QN=半径r= ,则≤QM≤(3)解:当点A的对称点,点O的对称点在抛物线上时,如图设点的横坐标为m,则点的横坐标为m-3得:解得:∴的坐标为()∴旋转中心P的坐标为当点A的对称点,点C的对称点在抛物线上时,如图设点的横坐标为m,则点的横坐标为m-3得:解得:∴的坐标为()∴旋转中心P的坐标为综上所述,旋转中心P的坐标为或【解析】【分析】(1)过点A作AD⊥y轴于点D,AE⊥x轴于点E,求证△ACD≌△ABE,进而求得点B坐标,再将A、B两点坐标代入二次函数解析式,即可解答;(2)将点Q (m,m+3)代入二次函数解析式,求得m的值,进而且得点Q坐标,根据圆的性质得到BC是圆N的直径,利用勾股定理即可求得BC,进而求得N的坐标,再利用勾股定理求得QN的长,确定取值范围即可;(3)分两种情况:当点A的对称点,点O的对称点在抛物线上时,利用旋转180°可知,∥,设点的横坐标为m,则点的横坐标为m-3,利用列出式子,即可求得m的值,利用旋转中心和线段中点的特点,即可求得旋转中心P的坐标;当点A的对称点,点C的对称点在抛物线上时,设点的横坐标为m,则点的横坐标为m-3,同理可求得m的值以及旋转中心P 的坐标.10.已知抛物线的顶点坐标为,经过点 .(1)求抛物线的解析式;(2)如图1,直线交抛物线于,两点,若,求的值;(3)如图2,将抛物线向下平移个单位长度得到抛物线,抛物线的顶点为,交轴的负半轴于点,点在抛物线上.①求点的坐标(用含的式子表示);②若,求,的值.【答案】(1)解:已知抛物线的顶点坐标为,∴设抛物线的解析式为,把代入得:6=16a-2,解得:,∴抛物线的解析式为(2)解:设直线交轴点,则点的坐标,∴ .∵,∴ .∴ .由得,∴,,∴,∴,∵,∴ .(3)解:①依题意得抛物线的解析式为 . 点在抛物线上,∴,∴顶点的坐标为,令,即 .∴,(舍去),∴点的坐标为 .②作轴于点,∵E(2-a,0),F(a,2a-2),∴,∴,又,∴,∵FH//y轴,∴∠FPO=∠PFH=22.5°,∴∠FPO=∠EFP,∴PD=FD,设交轴于点,过D作DG⊥FH于G,则DG=OH,∵∠EFH=45°,∴,∵∠FEH=45°,a>2,∴OD=OE=a-2,∴PD=a-2- = ,∵HO=a,∴,∴,(舍去),∴ .【解析】【分析】(1)观察函数图像可知抛物线关于y轴对称,可得到点A时抛物线的顶点坐标,因此设函数解析式为y=ax2-2,再将点B的坐标代入求出a的值,即可得到抛物线C的解析式。

中考数学复习《反比例函数》专题练习-附带参考答案

中考数学复习《反比例函数》专题练习-附带参考答案

中考数学复习《反比例函数》专题练习-附带参考答案一、选择题1.下列函数关系式中,y 是x 的反比例函数的是( )A .y =x +3B .y =x 3C .y =3x 2D .y =3x 2.若反比例函数y=6x 的图像经过点(﹣2,a ),则a 的值是( )A .6B .﹣2C .﹣3D .3 3.已知反比例函数y =−1x ,下列结论不正确...的是( ) A .该函数图象经过点(−1,1)B .该函数图象位于第二、四象限C .y 的值随着x 值的增大而增大D .该函数图象关于原点成中心对称 4.反比例函数(其中),当时,y 随x 的增大而增大,那么m 的取值范围是( ) A . B .C .D . 5.在同一直角坐标系中,函数y =−kx +k 与y =k x (k ≠0)的大致图象可能为( )A .B .C .D .6.反比例函数y =6x 图象上有三个点(x 1,y 1),(x 2,y 2),(x 3,y 3)其中y 1<y 2<0<y 3,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 3<x 1<x 2C .x 2<x 1<x 3D .x 3<x 2<x 1 7.如图,A 、B 是第二象限内双曲线y =k x 上的点,A 、B 两点的横坐标分别是a ,3a ,线段AB 的延长线交x轴于点C ,S △AOC =12.则k 的值为( )A .﹣6B .﹣5C .﹣4D .﹣38.如图,矩形OABC与反比例函数y1=k1x(k1是非零常数,x>0)的图象交于点M,N,与反比例函数y2=k2x(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1﹣k2=()A.3 B.﹣3 C.32D.−32二、填空题9.已知点A(−3,2)在反比例函数y=kx的图象上,则k的值为.10.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=kx(k<0)的图象上,则m n.(填“>”,“<”或“=”)11.正比例函数y=k1x(k1≠0)和反比例函数y= k2x(k2≠0)的一个交点为(m,n),则另一个交点为12.如图,在平面直角坐标系中,点A是x轴上任意一点,BC∥x轴,分别交y=2x (x>0),y=kx(x<0)的图象于B,C两点,若△ABC的面积是3,则k的值为.13.如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=4x的图象交于A,B两点,则四边形MAOB的面积为.三、解答题14.如图,一次函数的图象与反比例函数的图象在第一象限交于点,与轴的负半轴交于点,且.(1)求一次函数与反比例函数的表达式;(2)请直接写出不等式的解集.15.1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“嗐转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径y/米是其两腿迈出的步长之差x/厘米(x>0)的反比例函数,y与x之间有如表关系:请根据表中的信息解决下列问题:(1)求出y与x之间的函数解析式;(2)若某人蒙上眼睛走出的大圆圈的半径为35米,则其两腿迈出的步长之差是多少厘米?(k>0).16.如图,设反比例函数的解析式为y=3kx(1)若反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若反比例函数的图象与过点M (﹣2,0)的直线l :y =kx+b 的图象交于A 、B 两点,如图,当△ABO 的面积为12时,求直线l 的解析式.17.某医药研究所研制了一种新药,在试验药效时发现:成人按规定剂量服用后,检测到从第10分钟起每分钟每毫升血液中含药量增加0.3微克,第100分钟达到最高,接着开始衰退.血液中含药量y (微克)与时间x (分钟)的函数关系如图,并发现衰退时y 与x 成反比例函数关系.(1) ; (2)分别求出当和时,y 与x 之间的函数关系式; (3)如果每毫升血液中含药量不低于12微克时是有效的,求一次服药后的有效时间是多少分钟?18.如图,一次函数 y ax b =+ 的图象与反比例函数 k y x=的图象交于第一象限C ,D 两点,坐标轴交于A 、B 两点,连结OC ,OD (O 是坐标原点).(1)利用图中条件,求反比例函数的解析式和m 的值;(2)求△DOC 的面积.(3)双曲线上是否存在一点P ,使得△POC 和△POD 全等?若存在,给出证明并求出点P 的坐标;若不存在,说明理由.参考答案1.B2.C3.C4.A5.D6.C7.A8.B9.k=-610.>11.(-m,-n).12.−413.1014.(1)解:点在反比例函数的图象上反比例函数解析式为;OA=OB,点在轴负半轴上点.把点、代入中得解得:一次函数的解析式为;(2) 15.(1)解:设y 与x 之间的函数解析式为y =k x 将(2,7)代入得7=k 2∴k =14∴y 与x 之间的函数解析式为y =14x . (2)解:当y =35时,即14x =35,解得x =0.4∴某人蒙上眼睛走出的大圆圈的半径为35米,其两腿迈出的步长之差是0.4厘米.16.(1)解:∵反比例函数与正比例函数y =2x 的图象有一个交点的纵坐标为2 把y =2代入y =2x 求得x =1∴反比例函数与正比例函数y =2x 的图象交点的坐标为(1,2)把(1,2)代入y =3k x (k >0),得到3k =2 ∴k =23;(2)解:把M (﹣2,0)代入y =kx+b ,可得b =2k∴y =kx+2k解{y =3k x y =kx +2k 得{x =−3y =−k 或{x =1y =3k∴B (﹣3,﹣k ),A (1,3k )∵△ABO 的面积为12∴12•2•3k+12•2•k =12解得k =3∴直线l 的解析式为y =3x+6.17.(1)27(2)解:当时,设y 与x 之间的函数关系式为∵经过点 ∴解得:,∴解析式为;当时,y 与x 之间的函数关系式为∵经过点∴解得:∴函数的解析式为; (3)解:令解得:令,解得:∴分钟 ∴服药后能持续175分钟.18.(1)∵点C (1,2)在反比例函数 图象上 ∴k=2∴反比例函数解析式为 2y x= ∵点B (2,m )在反比例函数 图象上 ∴m= 22=1. (2)如图,过点C 作⊥OA 于E ,过点D 作DF ⊥OA 于 Fk y x =2y x =∵C (1,2),D (2,1)∴CE=2,DF=1∵C 、D 在一次函数 的图象上∴221a b a b +=⎧⎨+=⎩解得: 13a b =-⎧⎨=⎩∴一次函数解析式为y=-x+3当y=0时,x=3∴A 点坐标为(3,0)∴OA=3∴DOC S =S △AOC -S △AOD = 1122OA CE OA DF ⋅-⋅ = 11323122⨯⨯-⨯⨯ =1.5.(3)设点P 坐标为(n , 2n )∵C (2,1),D (1,2)∴OC=OD∵△POC 和△POD 全等∴PC=PD ∴222222(1)(2)(2)(1)n n n n -+-=-+-解得: 2n =∴P (, )或P ( 2 , ) ∴双曲线上存在一点P ,使得△POC 和△POD 全等,P ( , )或P ( , ). y ax b =+222-2222。

中考数学总复习《反比例函数》练习题(附答案)

中考数学总复习《反比例函数》练习题(附答案)

中考数学总复习《反比例函数》练习题(附答案)班级:___________姓名:___________考号:_____________一、单选题1.一次函数y1=k1x+b(k1≠0)与反比例函数y2=k2x(k2≠0)的图象交于点A(−1,−2),点B(2,1).当y1<y2时,x的取值范围是()A.x<−1B.−1<x<0或x>2 C.0<x<2D.0<x<2或x<−12.关于函数y=−2x,下列说法中正确的是()A.图像位于第一、三象限B.图像与坐标轴没有交点C.图像是一条直线D.y的值随x的值增大而减小3.如图,在直角坐标系中,点A是双曲线y= 3x(x>0)上的一个动点,点B是x轴正半轴上的一个定点,当点A的横坐标逐渐增大时,△OAB的面积将会()A.逐渐减小B.不变C.逐渐增大D.先减小后增大4.在同一平面直角坐标系中,反比例函数y=-8x与一次函数y=-x+2交于A,B两点,O为坐标原点,则△AOB的面积为()A.2B.6C.10D.85.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y= k x在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤166.如图,过反比例函数y= 1x(x>0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得()A.S1>S2B.S1=S2C.S l<S2D.大小关系不能确定7.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷8.在同一直角坐标系中,函数y=kx+1与y=−k x(k≠0)的图象大致是()A.B.C.D.9.如图,在平面直角坐标系xOy中,函数y=kx+b(k≠0)与y= mx(m≠0)的图象相交于点A(-2,3),B(6,-1),则不等式kx+b>mx的解集为()A.x<−2B.−2<x<0或x>6 C.x<6D.0<x<6或x<−210.已知两个函数y1=k1x+b与y2= k2x的图象如图所示,其中A(-1,2),B(2,-1),则不等式k1x+b>k2x的解集为()A.x<−1或x>2B.x<−1或0<x<2 C.−1<x<2D.−1<x<0或0<x<211.在反比例函数y=−3x图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<0<x2<x3,则下列结论正确的是()A.y3<y2<y1B.y1<y3<y2C.y2<y3<y1D.y3<y1<y2 12.图所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大。

(人教版)哈尔滨市九年级数学下册第一单元《反比例函数》检测(含答案解析)

(人教版)哈尔滨市九年级数学下册第一单元《反比例函数》检测(含答案解析)

一、选择题1.一次函数y kx b =+和反比例函数xby k =的部分图象在同一坐标系中可能为( ) A . B . C . D .2.已知()()()112233,,,,,A x y B x y C x y 是反比例函数2y x=上的三点,若123x x x <<,213y y y <<,则下列关系式不正确的是 ( )A .120x x <B .130x x <C .230x x <D .120x x +<3.如图,已知在平面直角坐标系中,Rt ABC 的顶点()0,3A ,()3,0B ,90ABC ∠=︒,函数()40y x x=>的图象经过点C ,则AC 的长为( )A .32B .5C .26D 264.与点()2,3-在同一反比例函数图象上的点是( ) A .()1.5,4-B .()1,6--C .()6,1D .()2,3--5.规定:如果关于x 的一元二次方程ax 2+bx+c =0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”现有下列结论 ①方程x 2+2x ﹣8=0是倍根方程;②若关于x 的方程x 2+ax+2=0是倍根方程,则a =±3; ③若(x ﹣3)(mx ﹣n )=0是倍根方程,则n =6m 或3n =2m ; ④若点(m ,n )在反比例函数y =2x的图象上,则关于x 的方程mx 2﹣3x+n =0是倍根方程.上述结论中正确的有( ) A .①②B .③④C .②③D .②④6.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,∠ABC=90°,CA ⊥x 轴,点C 在函数y=kx(x >0)的图象上,若AB=2,则k 的值为( )A .4B .22C .2D .27.下列函数是y 关于x 的反比例函数的是( ) A .y =11x + B .y =21xC .y =﹣12xD .y =﹣2x 8.同一坐标系中,函数()1y k x +=与ky x=的图象正确的是( ) A . B .C .D .9.如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数ky x=在第一象限内的图象经过点D ,交BC 于点E .若4AB =,2CE BE =,34AD OA =,则线段BC 的长度为( )A .1B .32C .2D .2310.如图直线y 1=x+1与双曲线y 2=kx交于A (2,m )、B (﹣3,n )两点.则当y 1>y 2时,x 的取值范围是( )A .x >﹣3或0<x <2B .﹣3<x <0或x >2C .x <﹣3或0<x <2D .﹣3<x <211.已知点11(,)x y ,22(,)x y 均在双曲线1y x=-上,下列说法中错误的是( ) A .若12x x =,则12y y = B .若12x x =-,则12y y =- C .若120x x <<,则12y y <D .若120x x <<,则12y y >12.在平面直角坐标系中,对于不在坐标轴上的任意一点P (x ,y ),我们把的P '(1x,1y )称为点P 的“倒影点”.直线y =﹣2x +1上有两点A 、B ,它们的倒影点A '、B '均在反比例函数y kx=的图象上,若AB 5=,则k 的值为( )A .83-B .43-C .5D .10二、填空题13.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y =3x的图象经过A 、B 两点,则菱形ABCD 的面积是_____;14.有5张正面分别有数字-1,14-,0,1,3的卡片,它们除数字不同外全部相同,将它们背面朝上,洗匀后从中随机的抽取一张.记卡片上的数字为a ,则使以x 为自变量的反比例函数37a y x-=经过二、四象限,且关于x 的一元二次方程2230ax x -+=有实数解的概率是__________.15.如图,已知双曲线()0ky x x=>经过矩形OABC 边BC 的中点E ,与AB 交于点F ,且四边形OEBF 的面积为3,则k=________.16.如图,点A 是一次函数13y x =(0)x ≥图像上一点,过点A 作x 轴的垂线l ,点B 是l上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数ky x =(0)x >的图像过点B 、C ,若OAB ∆的面积为8,则ABC ∆的面积是_________.17.如果一个正比例函数的图像与反比例函数-1y x=交于A (x 1,y 1),B (x 2,y 2),那么(x 1-x 2)(y 1-y 2)=____________.18.如图,△DEF 的三个顶点分别在反比例函数=xy n 与()0,0xy m x m n =>>>的图象上,若DB ⊥x 轴于B 点,FE ⊥x 轴于C 点,若B 为OC 的中点,△DEF 的面积为6,则m 与n 的关系式是____.19.如图,已知双曲线(0)ky x x=>经过矩形OABC 边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为2,则k =_______.20.如图,直线y =ax 经过点A (4,2),点B 在双曲线y =kx(x >0)的图象上,连结OB 、AB ,若∠ABO =90°,BA =BO ,则k 的值为_____.三、解答题21.在同一平面直角坐标系中,设一次函数1y mx n =+(m ,n 为常数,且0,m m n ≠≠-)与反比例函数2m ny x+=. (1)若1y 与2y 的图象有交点()1,5,且4n m =, ①求:m 、n 的值;②当15y ≥时,2y 的取值范围;(2)若1y 与2y 的图象有且只有一个交点,求mn的值. 22.如图,为某公园“水上滑梯”的侧面图,其中BC 段可看成是一段双曲线,建立如图的坐标系后,其中,矩形AOEB 为向上攀爬的梯子,OA=5米,进口//O AB D ,且AB=2米,出口C 点距水面的距离CD 为1米,B 、C 之间的水平距离DE 的长度为多少米?23.如图,已知函数()0ky x x=>的图象经过点,,A B 点A 的坐标为()1,2.过点A 作//AC y 轴,1AC =(点C 位于点A 的下方),过点C 作//CD x 轴,与函数的图象交于点D ,过点B 作BE CD ⊥,垂足E 在线段CD 上,连接,OC OD .()1求OCD ∆的面积;()2当12BE AC =时,求CE 的长.24.如图,直线y mx n =+与双曲线ky x=相交于()1,2,(2,)A B b -两点,与x 轴交于点E ,与y 轴相交于点C .(1)求m n ,的值;(2)若点D 与点C 关于x 轴对称,求ABD ∆的面积;(3)在坐标轴上是否存在异于D 点的点,P 使得PAB DAB S S ∆∆=?若存在,直接写出Р点坐标;若不存在,说明理由.25.已知反比例函数k1yx-=(k为常数,k≠1).(1)若点A(1,2)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而减小,求k的取值范围.26.已知反比例函数y=12mx-(m为常数)的图象在第一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD的顶点D,点A,B的坐标分别为(0,3),(﹣2,0),求出该反比例函数的解析式;(3)若E(x1,y1),F(x2,y2)都在该反比例函数的图象上,且x1>x2>0,则y1和y2有怎样的大小关系?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】运用一次函数和反比例函数的图象性质逐项分析即可.先观察反比函数看k、b是同号还是异号,再由一次函数图象判断k、b是同号还是异号,如果两者相一致就是正确选项,否则是错误选项.【详解】选项逐项分析正误A 由反比例函数的性质知k、b同号,由一次函数图象得k>0,b<0,得k、b异号.两者不一致误B 由反比例函数的性质知k、b同号,由一次函数图象得k<0,b=0,两者不一致误【点睛】此题考查反比例函数和一次函数的图象特点.其关键是要弄清图象特点与关系式中k 、b 同号还是异号.2.A解析:A 【分析】根据反比例函数2y x=和x 1<x 2<x 3,y 2<y 1<y 3,可得点A ,B 在第三象限,点C 在第一象限,得出x 1<x 2<0<x 3,再选择即可. 【详解】解:∵反比例函数2y x=中,2>0, ∴在每一象限内,y 随x 的增大而减小, ∵x 1<x 2<x 3,y 2<y 1<y 3,∴点A ,B 在第三象限,点C 在第一象限, ∴x 1<x 2<0<x 3,∴x 1•x 2>0,x 1•x 3<0,x 2•x 3<0,x 1+x 2<0, 故选:A . 【点睛】本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.3.B解析:B 【分析】如图(见解析),先根据点A 、B 的坐标可得3,45OA OB OBA ==∠=︒,从而可得45CBD ∠=︒,再根据等腰直角三角形的判定与性质可得BD CD =,设BD CD a ==,从而可得点C 的坐标为(3,)C a a +,然后利用反比例函数的解析式可求出a 的值,最后利用两点之间的距离公式即可得. 【详解】如图,过点C 作CD x ⊥轴于点D ,()()0,3,3,0A B ,3OA OB ∴==,Rt AOB ∴是等腰直角三角形,45OBA ∠=︒,90ABC ∠=︒,18045CBD OBA ABC ∠=︒-∠-∠=∴︒, Rt BCD ∴是等腰直角三角形, BD CD ∴=,设BD CD a ==,则3OD OB BD a =+=+,(3,)C a a ∴+,将(3,)C a a +代入()40y x x =>得:43a a=+, 解得1a =或40a =-<(不符题意,舍去),(4,1)C ∴,由两点之间的距离公式得:22(40)(13)25AC =-+-=, 故选:B .【点睛】本题考查了反比例函数的几何应用、等腰直角三角形的判定与性质、两点之间的距离公式等知识点,熟练掌握等腰直角三角形的判定与性质是解题关键.4.A解析:A 【分析】根据在同一反比例函数图象上的点的横纵坐标之积相等即可解答. 【详解】 解:∵点()2,3- ∴k=2×(-3)=-6∴只有A 选项:-1.5×4=-6. 故答案为A . 【点睛】本题考查了反比例函数图像的性质,掌握同一反比例函数图象上的点的横纵坐标之积相等是解答本题的关键.5.D解析:D 【分析】】①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设x 2=2x 1,得到x 1•x 2=2x 12=2,得到当x 1=1时,x 2=2,当x 1=-1时,x 2=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论; ④若点(m ,n )在反比例函数y =2x的图象上,得到mn=2,然后解方程mx 2-3x+n=0即可得到正确的结论; 【详解】解:①∵方程x 2+2x-8=0的两个根是x 1=-4,x 2=2,则2×2≠-4, ∴方程x 2+2x-8=0不是倍根方程,故①错误; ②若关于x 的方程x 2+ax+2=0是倍根方程,则2x 1=x 2, ∵x 1+x 2=-a ,x 1•x 2=2, ∴2x 12=2,解得x 1=±1, ∴x 2=±2,∴a=±3,故②正确;③解方程(x-3)(mx-n )=0得,123,n x x m==, 若(x-3)(mx-n )=0是倍根方程,则6n m =或23nm⨯=, ∴n=6m 或3m=2n ,故③错误; ④∵点(m ,n )在反比例函数y =2x的图象上, ∴mn=2,即2n m=, ∴关于x 的方程为2230mx x m-+=, 解方程得1212,x x m m==, ∴x 2=2x 1,∴关于x 的方程mx 2-3x+n=0是倍根方程,故④正确; 故选D . 【点睛】本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.6.A解析:A【解析】【分析】作BD ⊥AC 于D ,如图,先利用等腰直角三角形的性质得到AC=2AB=22,BD=AD=CD=2,再利用AC ⊥x 轴得到C (2,22),然后根据反比例函数图象上点的坐标特征计算k 的值.【详解】作BD ⊥AC 于D ,如图,∵△ABC 为等腰直角三角形, ∴AC=2AB=22,∴BD=AD=CD=2,∵AC ⊥x 轴,∴C (2,22),把C (2,22)代入y=k x得k=2×22=4, 故选A .【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=k x(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k 是解题的关键. 7.C解析:C【分析】直接利用反比例函数的定义分别判断得出答案.【详解】解:A 、y =11x 是y 与x+1成反比例,故此选项不合题意; B 、y =21x,是y 与x 2成反比例,不符合反比例函数的定义,故此选项不合题意; C 、y =﹣12x ,符合反比例函数的定义,故此选项符合题意; D 、y =﹣2x 是正比例函数,故此选项不合题意. 故选:C .【点睛】本题考查了反比例函数的定义,正确把握定义是解题的关键.8.D解析:D【分析】先根据四个选项的共同点确定k 的符号,再根据各函数图象的性质确定图象所在的象限即可.【详解】解:A 、反比例函数图象位于一、三象限,0k >,则一次函数图象应该交y 轴于正半轴,故本选项错误;B 、反比例函数图象位于二、四象限,k 0<,则一次函数图象应该交y 轴于负半轴,故本选项错误;C 、反比例函数图象位于二、四象限,k 0<,则一次函数应该是个减函数,故本选项错误;D 、反比例函数图象位于一、三象限,0k >,则一次函数图象应该交y 轴于正半轴,故本选项正确;故选:D .【点睛】此题考查反比例函数的图象性质和一次函数的图象性质,解题关键是由k 的取值确定函数所在的象限.9.B解析:B【分析】设OA 为4a ,则根据题干中的比例关系,可得AD=3a ,CE=2a ,BE=a ,从而得出点D 和点E 的坐标(用a 表示),代入反比例函数可求得a 的值,进而得出BC 长.【详解】设OA=4a 根据2CE BE =,34AD OA =得:AD=3a ,CE=2a ,BE=a ∴D(4a ,3a),E(4a+4,a)将这两点代入解析得; 3444k a a k a a ⎧=⎪⎪⎨⎪=⎪+⎩解得:a=12∴BC=AD=32 故选:B本题考查反比例函数和矩形的性质,解题关键是用含有字母的式子表示出点D 、E 的坐标,然后代入解析式求解.10.B解析:B【分析】当y 1>y 2时,x 的取值范围就是y 1的图象落在y 2图象的上方时对应的x 的取值范围.【详解】根据图象可得当y 1>y 2时,x 的取值范围是:﹣3<x <0或x >2.故选:B .【点睛】本题考查了反比例函数与一次函数图象的交点问题,“数形结合”是解题的关键. 11.D解析:D【分析】先把点A (x 1,y 1)、B (x 2,y 2)代入双曲线1y x =-,用y 1、y 2表示出x 1,x 2,据此进行判断.【详解】∵点(x 1,y 1),(x 2,y 2)均在双曲线1y x =-上, ∴111y x =-,221y x =-. A 、当x 1=x 2时,-11x =-21x ,即y 1=y 2,故本选项说法正确; B 、当x 1=-x 2时,-11x =21x ,即y 1=-y 2,故本选项说法正确; C 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当0<x 1<x 2时,y 1<y 2,故本选项说法正确; D 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当x 1<x 2<0时,y 1>y 2,故本选项说法错误;故选:D .【点睛】 本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.A【分析】设点A (a ,-2a+1),B (b ,-2b+1)(a <b ),则A '(1a ,112a -),B '(1b ,112b -),由AB =b=a+1,再根据反比例函数图象上点的坐标特征即可得出关于k 、a 、b 的方程组,解之即可得出k 值.【详解】设点A (a ,﹣2a +1),B (b ,﹣2b +1)(a <b ),则A '(1a ,112a -),B '(1b ,112b-).∵AB===(b ﹣a )=∴b ﹣a =1,即b =a +1.∵点A ',B '均在反比例函数y k x =的图象上, ∴k 1a =•1112a b =-•112b-, 解得:k 83=-. 故选:A .【点睛】此题考查反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及两点间的距离公式,根据反比例函数图象上点的坐标特征列出关于k 、a 、b 的方程组是解题的关键.二、填空题13.【分析】作AH ⊥BC 交CB 的延长线于H 根据反比例函数解析式求出A 的坐标点B 的坐标求出AHBH 根据勾股定理求出AB 根据菱形的面积公式计算即可【详解】作AH ⊥BC 交CB 的延长线于H ∵反比例函数y =的图象解析:【分析】作AH ⊥BC 交CB 的延长线于H ,根据反比例函数解析式求出A 的坐标、点B 的坐标,求出AH 、BH ,根据勾股定理求出AB ,根据菱形的面积公式计算即可.【详解】作AH ⊥BC 交CB 的延长线于H ,∵反比例函数y =3x的图象经过A 、B 两点,A 、B 两点的横坐标分别为1和3, ∴A 、B 两点的纵坐标分别为3和1,即点A 的坐标为(1,3),点B 的坐标为(3,1), ∴AH =3﹣1=2,BH =3﹣1=2,由勾股定理得,AB 2222+ =2,∵四边形ABCD 是菱形,∴BC =AB =2∴菱形ABCD 的面积=BC×AH =2故答案为2【点睛】本题考查的是反比例函数的系数k 的几何意义、菱形的性质,根据反比例函数解析式求出A 的坐标、点B 的坐标是解题的关键.14.【分析】根据反比例函数图象经过第二四象限关于x 的一元二次方程ax2-2x+3=0有实数解列出不等式求出a 的取值范围从而确定出a 的值再根据概率公式计算即可【详解】解:∵反比例函数图象经过第二四象限∴3 解析:25【分析】根据反比例函数图象经过第二、四象限,关于x 的一元二次方程ax 2-2x+3=0有实数解,列出不等式求出a 的取值范围,从而确定出a 的值,再根据概率公式计算即可.【详解】解:∵反比例函数图象经过第二、四象限,∴3a-7<0,解得73a < 关于x 的一元二次方程ax 2-2x+3=0有实数解,则△=4-12a≥0,且a≠0,解得:,a≤13,且(a≠0),综上,a≤13,且(a≠0), ∴ a 可取-1,-14, ∴使以x 为自变量的反比例函数37a y x -=经过二、四象限,且关于x 的一元二次方程ax 2-2x+3=0有实数解的概率是25. 故答案为:25. 【点睛】 本题考查了概率公式,用到的知识点是反比例函数图象的性质、根的判别式、概率公式,熟记性质以及判别式求出a 的值是解题的关键.15.3【分析】设表示点B 坐标再根据四边形OEBF 的面积为3列出方程从而求出k 的值【详解】设则均在反比例函数图象上解得故答案为:3【点睛】本题的难点是根据点E 的坐标得到其他点的坐标准确掌握反比例函数k 值的 解析:3【分析】设(),E a b ,表示点B 坐标,再根据四边形OEBF 的面积为3,列出方程,从而求出k 的值.【详解】设(),E a b ,则k ab =,()2,B a b ,F E 、均在反比例函数图象上,2COE AOF k S S ∴==△△, COE AOF OABC OEBF S S S S =--△△矩形四边形,2OABC S OA AB ab ==矩形3222k k k ∴=--,解得3k =, 故答案为:3.【点睛】本题的难点是根据点E 的坐标得到其他点的坐标,准确掌握反比例函数k 值的几何意义是解决本题的关键.16.【分析】过作轴于交于设根据直角三角形斜边中线是斜边一半得:设则因为都在反比例函数的图象上列方程可得结论【详解】如图过作轴于交于∵轴∴∵是等腰直角三角形∴设则设则∵在反比例函数的图象上∴解得∵∴∴∴∵ 解析:163【分析】过C 作CD y ⊥轴于D ,交AB 于E ,设2AB a =,根据直角三角形斜边中线是斜边一半得:BE AE CE a ===,设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭,因为B .C 都在反比例函数的图象上,列方程可得结论.【详解】如图,过C 作CD y ⊥轴于D ,交AB 于E .∵AB x ⊥轴∴CD AB ⊥,∵ABC ∆是等腰直角三角形,∴BE AE CE ==,设2AB a =,则BE AE CE a ===, 设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭, ∵B ,C 在反比例函数的图象上, ∴112()33x x a x a x a ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭, 解得32x a =, ∵112822OAB S AB DE a x ∆=⋅=⋅⋅=, ∴8ax =, ∴2382a =, ∴2163a =, ∵211222ABC S AB CE a a a ∆=⋅=⋅⋅= 163= 故答案为:163. 【点睛】本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.17.-4【分析】由AB 为正比例函数的图像与反比例函数的交点则其坐标关于原点对称所以可得x1=-x2y1=-y2最后替换后计算即可【详解】解:∵A (x1y1)B(x2y2)为上的点∴x1y1=-1x2y2解析:-4【分析】由A 、B 为正比例函数的图像与反比例函数-1y x =的交点,则其坐标关于原点对称,所以可得x 1=-x 2,y 1=-y 2,最后替换后计算即可.【详解】解:∵A (x 1,y 1),B (x 2,y 2)为-1y x =上的点 ∴x 1y 1=-1, x 2y 2=-1,∵正比例函数的图像与反比例函数-1y x=的两交点A (x 1,y 1),B (x 2,y 2) ∴A 、B 关于原点对称,∴x 1=-x 2,y 1=-y 2,∴(x 1-x 2)(y 1-y 2)=(-x 2-x 2)(-y 2-y 2)=-2 x 2 (-2 y 2)=4 x 2y 2=-4故答案为-4.【点睛】本题考查了反比例函数与正比例函数的交点问题,掌握正比例函数与反比例函数的两交点坐标关于原点对称是解答本题的关键. 18.【分析】设点D 点坐标根据B 是OC 的中点求出E 点坐标进而得到F 点坐标在根据梯形DFCB 的面积减去梯形DECB 的面积即可列出等量关系求解【详解】解:∵∴DE 所在的反比例函数是设由B 是OC 的中点可知E 点坐 解析:24-=m n【分析】设点D 点坐标,根据B 是OC 的中点,求出E 点坐标,进而得到F 点坐标,在根据梯形DFCB 的面积减去梯形DECB 的面积即可列出等量关系求解.【详解】解:∵n m <∴D 、E 所在的反比例函数是=xy n 设(,)n D a a ,由B 是OC 的中点可知E 点坐标为:(2,)2n a a,又F 点和E 点横坐标相同,且F 在=xy m 上, 故F 点坐标为:(2,)2m a a又11==()()22梯形梯形DECB ∆-+-+DEF DFCB S S S DB FC BC DB EC BC 111()()=()22224=+-+-n m n n a a m n a a a a 又∵△DEF 的面积为6 ∴1()64-=m n ∴24-=m n .故答案为:24-=m n【点睛】 本题考查了反比例函数上点的坐标运算,当两点在反比例函数上时,设其中一个点的坐标,则另一个点的坐标根据题中给定的等量关系用设好的坐标的代数式表示.19.2【分析】如果设F (xy )表示点B 坐标再根据四边形OEBF 的面积为2列出方程从而求出k 的值【详解】解:∵双曲线经过矩形边的中点设F (xy )E (ab )那么B (x2y )∵点E 在反比例函数解析式上∴S △C解析:2【分析】如果设F (x ,y ),表示点B 坐标,再根据四边形OEBF 的面积为2,列出方程,从而求出k 的值.【详解】解:∵双曲线(0)k y x x=>经过矩形OABC 边AB 的中点F 设F (x ,y ),E (a ,b ),那么B (x ,2y ),∵点E 在反比例函数解析式上,∴S △COE =12ab=12k , ∵点F 在反比例函数解析式上, ∴S △AOF =12xy=12k ,即xy=k ∵S 四边形OEBF =S 矩形ABCO -S △COE -S △AOF ,且S 四边形OEBF =2,∴2xy-12k-12xy=2, ∴2k-12k-12k=2, ∴k=2.故答案为:2.【点睛】本题的难点是根据点F 的坐标得到其他点的坐标.在反比例函数上的点的横纵坐标的积等于反比例函数的比例系数.20.3【分析】作BC ⊥x 轴于CAD ⊥BC 于D 易证得△BOC ≌△ABD 得出OC=BDBC=AD 设B 的坐标为(mn )则OC=mBC=n 根据线段相等的关系得到解得求得B 的坐标然后代入y=(x >0)即可求得k 的解析:3.【分析】作BC ⊥x 轴于C ,AD ⊥BC 于D ,易证得△BOC ≌△ABD ,得出OC=BD ,BC=AD ,设B 的坐标为(m ,n ),则OC=m ,BC=n ,根据线段相等的关系得到24m n n m -⎧⎨-⎩== ,解得13m n ⎧⎨⎩== ,求得B 的坐标,然后代入y=k x(x >0)即可求得k 的值. 【详解】解:作BC ⊥x 轴于C ,AD ⊥BC 于D ,则∠COB+∠OBC=90°,∵∠ABO=90°,∴∠OBC+∠ABD=90°,∴∠COB=∠ABD ,在△BOC 和△ABD 中COB ABD OCB BDA OB AB ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△BOC ≌△ABD (AAS ),∴OC=BD ,BC=AD ,设B 的坐标为(m ,n ),则OC=m ,BC=n ,∵点A (4,2),∴24m n n m -⎧⎨-⎩== ,解得, ∴B 的坐标为(1,3),∵点B 在双曲线y=k x (x >0)的图象上,∴k=1×3=3,故答案为3.【点睛】此题考查反比例函数图象上点的坐标特征,三角形全等的判定和性质,得出相等线段列出关于m 、n 的方程组是解题的关键.三、解答题21.(1)①1,4m n ==;②205y <≤;(2)12m n =- 【分析】(1)①将点()1,5代入一次函数解析式得5m n +=,结合4n m =,即可求出m 、n 的值;②由①已经得到一次函数和反比例函数的解析式,根据15y ≥求出x 的取值范围,再根据反比例函数的性质求出2y 的取值范围;(2)根据题意,1y 与2y 的图象有且只有一个交点,即方程m n mx n x +=+有且只有一解,根据根的判别式即可求出结果.【详解】(1)①把()1,5代入1y mx n =+,得5m n +=,∵4n m =,∴1,4m n ==;②由①得:1254,y x y x =+=, ∴当15y ≥时,45x +≥,∴1≥x ,∵反比例函数25y x=在第一象限内y 随着x 的增大而减小, ∴当1≥x 时,2y 的取值范围是205y <≤;(2)令m n mx n x+=+,得2()0mx nx m n +-+=,由题意得,22Δ4()(2)0n m m n m n +=+=+=即20m n +=, ∴12m n =-. 【点睛】 本题考查一次函数和反比例函数,以及一元一次方程根的判别式,解题的关键是掌握函数解析式的求解方法,理解函数图象的交点对应方程的解.22.8【分析】根据矩形的性质得到BE=OA=5,AB=2,求得B (2,5),设双曲线BC 的解析式为y=k x ,代入B 点坐标,得到k=10,然后求出D 点横坐标,最后用OD-OE 即可求解.【详解】∵四边形AOEB 是矩形∴BE=OA=5,AB=2∴B(2,5)设双曲线的解析式为y=k x ,将点B 的坐标代入,5=k 2 ∴k=10∴y=10x∵CD 为1∴当y=1时,x=10∴OD=10∴DE 的长=OD-OE=10−2=8∴B 、C 之间的水平距离DE 的长度为8米.【点睛】本题考查反比例函数的应用,矩形的性质,解题突破口是设双曲线BC 的解析式为y=k x . 23.(1)12;(2)13【分析】(1)根据点A 坐标求出函数表达式及点C 坐标,再求出点D 坐标,然后根据坐标计算面积即可;(2)先求出BE 得到点B 的纵坐标,再利用表达式求出横坐标,从而计算即可.【详解】解:(1)∵函数()0k y x x =>的图象经过点A(1,2),∴21k =,即2k =, ∴2y x=, ∵//AC y 轴,1AC =,∴点C 的坐标为(1,1),∵//CD x 轴,点D 在函数图象上,∴点D 的坐标为(2,1),∴CD=1, ∴111122OCD S =⨯⨯=△; (2)∵12BE AC =, ∴12BE =, ∵BE CD ⊥,∴点B 的纵坐标是32, ∴点B 的横坐标是43, ∴41133CE =-=. 【点睛】本题考查了反比例函数的应用,熟练掌握待定系数法求表达式及特殊点的坐标特征是解题的关键.24.(1)1,1m n =-=;(2)3;(3)P 点坐标为(-1,0)或(3,0)或(0,3)【分析】(1)利用待定系数法求出m ,n 的值;(2)根据关于x 轴对称的点的坐标特征求出点D 的坐标,利用三角形面积公式计算即可;(3)分点P 在x 轴上和点P 在y 轴上两种情况,利用三角形面积公式计算即可.【详解】(1)∵点A (-1,2)在双曲线k y x =上, ∴-12k =, 解得,2k =-,∴反比例函数解析式为:2y x=-,∵(2,)B b ∴212b =-=-, 则点B 的坐标为(2,-1),把()1,2,(2,1)A B --代入y mx n =+得:122m n m n-=+⎧⎨=-+⎩, 解得11m n =-⎧⎨=⎩; (2)对于y=-x+1,当x=0时,y=1,∴点C 的坐标为(0,1),∵点D 与点C 关于x 轴对称,∴点D 的坐标为(0,-1),∴△ABD 的面积=12×2×3=3; (3)对于y=-x+1,当y=0时,x=1,∴直线y=-x+1与x 轴的交点坐标为(0,1),当点P 在x 轴上时,设点P 的坐标为(a ,0),S △PAB=12×|1-a|×2+12×|1-a|×1=3, 解得,a=-1或3,此时P 点坐标为(-1,0)或(3,0)当点P 在y 轴上时,设点P 的坐标为(0,b ),S △PAB=12×|1-b|×2+12×|1-b|×1=3, 解得,b=-1或3,∵D (0,-1)∴此时P 点坐标为(0,3)∴P 点坐标为(-1,0)或(3,0)或(0,3).【点睛】本题考查的是反比例函数与一次函数的交点问题,掌握待定系数法求函数解析式的一般步骤、函数图象上点的坐标特征是解题的关键.25.(1)3k =;(2)1k >.【分析】(1)根据反比例函数图象上点的坐标特征得到k-1=1×2,然后解方程即可;(2)根据反比例函数的性质得k-1>0,然后解不等式即可.【详解】(1)根据题意得112k -=⨯,解得:3k =;(2)因为反比例函数k1 yx-=,在这个函数图象的每一分支上,y随x的增大而减小,所以10k->,解得:1k>.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数kyx=(k为常数,0k≠)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy k=.也考查了反比例函数的性质.26.(1)m<12;(2)该反比例函数的解析式为y=6x;(3)y1<y2.【分析】(1)由图象在第一、三象限可得关于m的不等式,然后解不等式即可;(2)先根据平行四边形的性质求出D点的坐标,然后将D点的坐标代入y=12mx-可求得1-2m的值即可;(3)利用反比例函数的增减性解答即可.【详解】解:(1)∵y=12mx-的图象在第一、三象限,∴1﹣2m>0,∴m<12;(2)∵四边形ABOD为平行四边形,∴AD∥OB,AD=OB=2,∴D点坐标为(2,3),∴1﹣2m=2×3=6,∴该反比例函数的解析式为y=6x;(3)∵x1>x2>0,∴E,F两点都在第一象限,又∵该反比例函数在每一个象限内,函数值y都随x的增大而减小,∴y1<y2.【点睛】本题考查了反比例函数的解析式、反比例函数的性质以及反比例函数与几何的综合,掌握反比例函数的定义及性质是解答本题的关键.。

(完整word)人教版九年级下册数学《反比例函数》检测卷含答案,推荐文档

(完整word)人教版九年级下册数学《反比例函数》检测卷含答案,推荐文档

人教版九年级下册数学《反比例函数》检测卷(含答案)2018年人教版九年级数学下册第二十六章《反比例函数》达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下面的函数是反比例函数的是()A.y=3x-1B.y=x2C.y=13xD.y=2x-132.若在同一直角坐标系中,正比例函数y=k1x与反比例函数y=k2x的图象无交点,则有()A.k1+k2>0B.k1+k2<0C.k1k2>0D.k1k2<03.已知点A(-1,y1),B(2,y2)都在双曲线y=3+mx 上,且y1y2,则m的取值范围是()A.m0B.m0C.m-3D.m-34.如图,在直角坐标系中,直线y=6-x与函数y=4x(x>0)的图象相交于点A,B,设点A的坐标为(x1,y1),那么长为y1、宽为x1的矩形的面积和周长分别为()A.4,12B.8,12C.4,6D.8,65.函数y=kx与y=kx+k(k为常数且k≠0)在同一平面直角坐标系中的图象可能是()6.如图,在矩形ABCD中,AB=4,BC=3,点F在DC边上运动,连接AF,过点B作BE⊥AF于E.设BE=y,AF=x,则能反映y与x之间函数关系的大致图象是()(第6题)7.反比例函数y=kbx的图象如图所示,则一次函数y=kx+b(k≠0)的图象大致是()8.一次函数y=kx+b(k≠0)的图象经过A(-1,-4),B(2,2)两点,P为反比例函数y=kbx图象上一动点,O 为坐标原点,过点P作y轴的垂线,垂足为C,则△PCO 的面积为()A.2B.4C.8D.不确定9.(2016菏泽)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=6x在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC -S△BAD为()A.36B.12C.6D.310.(2017滨州)在平面直角坐标系内,直线AB垂直x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=1x相交于点A,B,且AC+BC=4,则△OAB的面积为()A.23+3或23-3B.2+1或2-1C.23-3D.2-1二、填空题(共24分)11.一个反比例函数的图象过点A(-2,-3),则这个反比例函数的表达式是________.12.南宁市五象新区有长24000m的新道路要铺上沥青,则铺路所需时间t(天)与铺路速度v(m/天)的函数关系式是________.13.点(2,y1),(3,y2)在函数y=-2x的图象上,则y1________y2(填“”“”或“=”).14.若反比例函数y=kx的图象与一次函数y=mx的图象的一个交点的坐标为(1,2),则它们另一个交点的坐标为________.15.如图,反比例函数y=2x的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为6;菏泽)直线y=kx(k0)与双曲线y=6x交于A(x1,y1)和B(x2,y2)两点,则3x1y2-9x2y1的值为_;济南)如图,过点O的直线AB与反比例函数y=kx的图象相交于A,B两点,A(2,1),直线BC∥y轴,与反比例函数y=-3kx(x0)的图象交于点C,连接AC,则△ABC的面积是___.18.(2017西宁)如图,点A在双曲线y=3x(x>0)上,过点A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于点B,当AC=1时,△ABC的周长为_________.19.如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A,C分别在x轴,y轴上,反比例函数的图象与正方形的两边AB,BC分别交于点M,N,ND⊥x轴,垂足为D,连接OM,ON,MN.下列结论:①△OCN≌△OAM;②ON=MN;③四边形DAMN与△MON面积相等;④若∠MON =45°,MN=2,则点C的坐标为(0,2+1).其中正确结论的序号是____________.三、解答题,(共66分)20.已知反比例函数y=kx,当x=-13时,y=-6. (1)这个函数的图象位于哪些象限?y随x的增大如何变化?(2)当12<x<4时,求y的取值范围.21.已知点A(-2,0)和B(2,0),点P在函数y=-1x的图象上,如果△PAB的面积是6,求点P的坐标.22.如图,一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数y=-8x的图象交于A(-2,b),B两点.(第22题)(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后,与反比例函数的图象有且只有一个公共点,求m的值.23如图,一次函数y=kx+b与反比例函数y=ax的图象在第一象限交于A,B两点,B点的坐标为(3,2),连接OA,OB,过B作BD⊥y轴,垂足为D,交OA于C,若OC =CA.(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积.(第23题)24.教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20℃,接通电源后,水温y(℃)和通电时间x(min)之间的关系如图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的函数关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40℃的开水,则他需要在什么时间段内接水?(第24题)25.如图,正比例函数y=2x的图象与反比例函数y=kx的图象交于A,B两点,过点A作AC垂直x轴于点C,连接BC,若△ABC的面积为2.(1)求k的值.(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.(第25题)答案一、1.C2.A3.B点拨:∵点A(a,b)在反比例函数y=2x的图象上,∴ab=2.∴ab-4=2-4=-2.4.C5.D点拨:若k1,k2同正或同负其图象均有交点.6.D点拨:由题意知,反比例函数图象在第二、四象限,所以3+m0,即m-3.7.A点拨:由反比例函数y=kx(k≠0)中的比例系数k的几何意义知矩形的面积为|k|,即为4;因为A(x1,y1)在第一象限,即x1>0,y1>0,由直线y=6-x得x1+y1=6,所以矩形的周长为2(x1+y1)=12.8.A9.C点拨:连接BF,则可知S△AFB=12xy=12×4×3,故y=12x,其自变量的取值范围是3≤x≤5,对应的函数值的范围为125≤y≤4,故选C.10.A点拨:分别过点A,B作AC⊥x轴,BD⊥x轴,垂足分别为点C,D.易知∠AOC+∠BOD=90°,∠BOD+∠OBD=90°,∴∠OBD=∠AOC.又∠BDO=∠OCA=90°.∴△ODB∽△=2.设点A的坐标是(m,n),∵点A在反比例函数y=1x的图象上,∴mn=1.易知AC=n,OC=m,∴BD=2m,OD=2n.∴B点的坐标是(-2n,2m).∵点B在反比例函数y=kx的图象上,∴2m =k-2n,即k=-4mn=-4.二、11.y=6x12.t=24000v(v0)13.14.(-1,-2)点拨:因为反比例函数y=kx的图象关于原点成中心对称,一次函数y=mx的图象经过原点,且关于原点成中心对称,所以它们的交点也关于原点成中心对称.又点(1,2)关于原点成中心对称的点为(-1,-2),所以它们另一个交点的坐标为(-1,-2).15.y=12x点拨:连接OA,则△ABP与△ABO的面积都等于6,所以反比例函数的表达式是y=12x.16.12点拨:将矩形ABCD沿x轴向右平移后,过点M作ME⊥AB于点E,则AE=12AB=32,ME=12BC=12.设OA=m,则OE=OA+AE=m+32,∴Mm+32,12.∵点M在反比例函数y=1x的图象上,∴12=1m+32,解得m=12.17.y2=4x18.①③④三、19.解:∵直线y=x向上平移1个单位长度得到直线l,∴直线l对应的函数表达式是y=x+1.∵直线l与反比例函数y=k-1x的图象的一个交点为(a,2),∴2=a+1.∴a=1.∴这个交点坐标是(1,2).把点(1,2)的坐标代入y=k-1x,得2=k-11,∴k=3.20.解:(1)把x=-13,y=-6代入y=kx中,得-6=k-13,则k=2,即反比例函数的表达式为y=2x.因为k>0,所以这个函数的图象位于第一、第三象限,在每个象限内,y随x的增大而减小.(2)将x=12代入表达式中得y=4,将x=4代入表达式中得y=12,所以y的取值范围为12<y<4.21.解:∵点A(-2,0)和B(2,0),∴AB=4.设点P坐标为(a,b),则点P到x轴的距离是|b|,又△PAB的面积是6,∴12×4|b|=6.∴|b|=3.∴b=±3.当b=3时,a=-13;当b=-3时,a=13.∴点P的坐标为-13,3或13,-3.22.解:(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得b=-2k+5,b=-8-2.解得b=4,k=12.所以一次函数的表达式为y=12x+5.(2)将直线AB向下平移m(m>0)个单位长度后,直线AB 对应的函数表达式为y=12x+5-m.由y=-8x,y=12x +5-m得,12x2+(5-m)x+8=0.Δ=(5-m)2-4×12×8=0,解得m=1或9.23.解:(1)由题意易得点M的纵坐标为2.将y=2代入y=-12x+3,得x=2.∴M(2,2).把点M的坐标代入y=kx,得k=4,∴反比例函数的表达式是y=4x.(2)由题意得S△OPM=12OPAM,∵S四边形BMON=S矩形OABC-S△AOM-S△CON=4×2-2-2=4,S△OPM=S四边形BMON,∴12OPAM=4.又易知AM=2,∴OP=4.∴点P的坐标是(0,4)或(0,-4).24.解:(1)当0≤x≤8时,设y=k1x+b,将(0,20),(8,100)的坐标分别代入y=k1x+b,可求得k1=10,b=20.∴当0≤x≤8时,y=10x+20.当8<x≤a时,设y=k2x,将(8,100)的坐标代入y=k2x,得k2=800.∴当8x≤a时,y=800x.综上,当0≤x≤8时,y=10x+20;当8<x≤a时,y=800x.(2)将y=20代入y=800x,解得x=40,即a=40.(3)当y=40时,x=80040=20.∴要想喝到不低于40℃的开水,x需满足8≤x≤20,即李老师要在7:38到7:50之间接水.25.解:(1)∵正比例函数图象与反比例函数图象的两个交点关于原点对称,∴S△AOC=S△BOC=12S△ABC=1.又∵AC垂直于x轴,∴k=2.(2)假设存在这样的点D,设点D的坐标为(m,0).由y=2x,y=2x解得x1=1,y1=2,x2=-1,y2=-2.∴A(1,2),B(-1,-2).∴AD=(1-m)2+22,BD=(m+1)2+22,AB=(1+1)2+(2+2)2=25.当D为直角顶点时,∵AB=25,∴OD=12AB=5.∴D的坐标为(5,0)或(-5,0).当A为直角顶点时,由AB2+AD2=BD2,得(25)2+(1-m)2+22=(m+1)2+22,解得m=5,即D(5,0).当B为直角顶点时,由BD2+AB2=AD2,得(m+1)2+22+(25)2=(1-m)2+22,解得m=-5,即D(-5,0).∴存在这样的点D,使△ABD为直角三角形,点D的坐标为(5,0)或(-5,0)或(5,0)或(-5,0).。

人教版九年级数学下册通关宝典(1) 26.1 反比例函数的概念(含答案)

人教版九年级数学下册通关宝典(1) 26.1 反比例函数的概念(含答案)

人教版九年级数学下册通关宝典(1) 26.1 反比例函数的概念(含答案) 一、选择题(共6小题;共24分)1. 下列关系式中,哪个等式表示是的反比例函数A. B. C. D.2. 矩形的面积一定,则它的长和宽是下列哪种函数关系?A. 正比例函数B. 一次函数C. 反比例函数D. 二次函数3. 若函数是反比例函数,且它的图象在第一、三象限,则的值为A. B. C. D.4. 函数是反比例函数,则的值是A. B. C. D.5. 下列数表中分别给出了变量与之间的对应关系,其中是反比例函数关系的是A. B. C. D.6. 下列各变量之间的关系属于反比例函数关系的有①当路程一定时,汽车行驶的平均速度与行驶时间之间的关系;②当电压一定时,电路中的电阻与通过的电流强度之间的函数关系;③当矩形面积一定时,矩形的两边与之间的函数关系;④当受力一定时,物体所受到的压强与受力面积之间的函数关系.A. ①②③B. ②③④C. ①③④D.①②③④二、填空题(共4小题;共16分)7. 反比例函数中,比例系数,当时,.8. 设三角形的底边、对应高、面积分别为,,.(1)当时,与的关系式为,是函数;(2)当时,与的关系式为,是函数;9. 若函数是反比例函数,则.10. 已知反比例函数的图象在所在的每一个象限内随着的增大而增大,则.三、解答题(共6小题;共60分)11. 已知与成反比例,且时,,当时,求的值.12. 已知:与成反比例.且当时.(1)求与之间的函数关系式.(2)求当时,的值.13. 已知,与成正比例,与成反比例,且当时,,当时,.求与的函数关系式.14. 已知是反比例函数,求的值.15. (1)①京沪线铁路全程为,某列车平均速度为,全程运行时间为,那么是的反比例函数吗?②京沪线铁路全程为,某列车平均速度为,列车运行时的路程为,那么是的反比例函数吗?(2)在以上两个题目中涉及,,,你是否发现在什么情况下,有两个变量成正比例函数关系?又在什么情况下,有两个变量成反比例函数关系?请你再举一个类似的例子.16. 已知关于的一元二次方程.(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为,(其中),设,试探究与之间的函数关系.答案第一部分1. D2. C3. A 【解析】是反比例函数,且它的图象在第一、三象限,解得:.4. D 【解析】函数是反比例函数,,.解得.5. D6. D第二部分7. ,8. ,正比例,,反比例.9.10.第三部分11. 由与成反比例,可设解析式为:.时,,,即..当时,.12. (1)设,把,代入得:,则即.(2)把代入解析式得:.13. 与成正比例,设,与成反比例,设,,,时,,当时,.解得:与的函数关系式为.14. 若是反比例函数,则有解得.15. (1)①,是的反比例函数;②,不是的反比例函数.(2)当一定时,是的正比例函数;当一定时,是的反比例函数.16. (1),,,方程有两个不相等的实数根.(2),由求根公式有,或.又,,,,故是的反比例函数.人教版九年级数学下第26章 反比例函数单元测试题及答案一、选择题(每小题3分,共30分)1、下列函数中 y 是x 的反比例函数的是( )A 21x y =B xy=8C 52+=x yD 53+=x y2、反比例函数y =xn 5+图象经过点(2,3),则n 的值是( ).A 、-2B 、-1C 、0D 、1 3、函数与在同一平面直角坐标系中的图像可能是( )。

〖2020中高考复习精品〗新人教版九年级数学下册试题数学反比例函数综合检测题(含答案)

〖2020中高考复习精品〗新人教版九年级数学下册试题数学反比例函数综合检测题(含答案)

反比例函数综合检测题A (八年级下)一、选择题(每小题3分,共30分) 1、反比例函数y =xn 5+图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、12、若反比例函数y =xk(k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ). A 、(2,-1) B 、(-21,2) C 、(-2,-1) D 、(21,2)3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )4、若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ).A 、成正比例B 、成反比例C 、不成正比例也不成反比例D 、无法确定 5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小 C 、图象分布在第一、三象限 D 、图象分布在第二、四象限6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂线PQ 交双曲线y =x1于点Q ,连结OQ ,点P 沿x 轴正方向运动时,Rt △QOP 的面积( ). A 、逐渐增大 B 、逐渐减小 C 、保持不变 D 、无法确定7、在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的 密度ρ也随之改变.ρ与V 在一定范围内满足ρ=Vm,它的图象如图所示,则该气体的质量m 为( ).A 、1.4kgB 、5kgC 、6.4kgD 、7kg8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( ).A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 1<y 3<y 2 9、已知反比例函数y =xm21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ).A 、m <0B 、m >0C 、m <21 D 、m >21 Q pxyot /h Ot /h O t /hO t /h v /(km/h) O A . B . C . .10、如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( ).A 、x <-1B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2 二、填空题(每小题3分,共30分)11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 . 12、已知反比例函数xky =的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”). 13、若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6, 则b = .14、反比例函数y =(m +2)x m2-10的图象分布在第二、四象限内,则m 的值为 .15、有一面积为S 的梯形,其上底是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是 . 16、如图,点M 是反比例函数y =xa(a ≠0)的图象上一点,过M 点作x 轴、y 轴的 平行线,若S 阴影=5,则此反比例函数解析式为 . 17、使函数y =(2m 2-7m -9)x m2-9m +19是反比例函数,且图象在每个象限内y 随x 的增大而减小,则可列方程(不等式组)为 .18、过双曲线y =xk(k ≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______. 19. 如图,直线y =kx(k >0)与双曲线xy 4=交于A (x 1,y 1),B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.20、如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为 B (-320,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落 在对角线OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析 式是 .三、解答题(共60分) 21、(8分)如图,P 是反比例函数图象上的一点,且点P 到x 轴的距离为3, 到y 轴的距离为2,求这个反比例函数的解析式. 22、(9分)请你举出一个生活中能用反比例函数关系描述的实例,写出其函数表达式,并画出函数图象.举例: 函数表达式:23、(10分)如图,已知A (x 1,y 1),B (x 2,y 2)是双曲线y =xk在第一象限内的分支上的两点,连结OA 、OB . (1)试说明y 1<OA <y 1+1y k ; (2)过B 作BC ⊥x 轴于C ,当m =4时,求△BOC 的面积.24、(10分)如图,已知反比例函数y =-x8与一次函数y =kx +b 的图象交于A 、B 两点, 且点A 的横坐标和点B 的纵坐标都是-2.求:(1)一次函数的解析式; (2)△AOB 的面积.25、(11分)如图,一次函数y =ax +b 的图象与反比例函数y =xk的图象交于M 、N 两点. (1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.26、(12分)如图, 已知反比例函数y =xk的图象与一次函数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点. (1)求这两个函数的解析式; (2)求△MON 的面积;(3)请判断点P (4,1)是否在这个反比例函数的图象上,并说明理由.参考答案:一、选择题1、D ;2、A ;3、C ;4、B ;5、D ;6、C7、D ;8、B ;9、D ; 10、D . 二、填空题 11、y =x 1000; 12、减小; 13、5 ; 14、-3 ;15、y =x s 23 ; 16、y =-x5; 17、⎩⎨⎧---=+-0972119922>m m m m ; 18、|k|; 19、 20; 20、y =-x 12. 三、解答题 21、y =-x6. 22、举例:要编织一块面积为2米2的矩形地毯,地毯的长x (米)与宽y (米)间函数关系式为y =x2(x >0). x (2)1 1 232 …y…4234 1…(只要是生活中符合反比例函数关系的实例均可)画函数图象如右图所示.23、(1)过点A 作AD ⊥x 轴于D ,则OD =x 1,AD =y 1,因为点A (x 1,y 1)在双曲线y =xk上,故x 1=1y k ,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+1y k; (2)△BOC 的面积为2. 24、(1)由已知易得A (-2,4),B (4,-2),代入y =kx +b 中,求得y =-x +2; (2)当y =0时,x =2,则y =-x +2与x 轴的交点M (2,0),即|OM|=2,于是S △AOB =S △AOM +S △BOM =21|OM|·|y A |+21|OM|·|y B |=21×2×4+21×2×2=6.25、(1)将N (-1,-4)代入y =x k ,得k =4.∴反比例函数的解析式为y =x 4.将M (2,m )代入y =x4,得m =2.将M (2,2),N (-1,-4)代入y =ax +b ,得⎩⎨⎧-=+-=+.b a ,b a 422解得⎩⎨⎧-==.b ,a 22∴一次函数的解析式为y =2x -2. (2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值. 26、解(1)由已知,得-4=1-k ,k =4,∴y =x 4.又∵图象过M (2,m )点,∴m =24=2,∵y =a x +b 图象经过M 、N 两点,∴,422⎩⎨⎧-=+-=+b a b a 解之得,22⎩⎨⎧-==b a ∴y =2x -2.(2)如图,对于y =2x -2,y =0时,x =1,∴A (1,0),OA =1,∴S △MON =S △MOA +S △NOA =21OA ·MC +21OA ·ND =21×1×2+21×1×4=3. (3)将点P (4,1)的坐标代入y =x4,知两边相等,∴P 点在反比例函数图象上.。

中考数学专题复习《反比例函数与几何综合》测试卷-附带答案

中考数学专题复习《反比例函数与几何综合》测试卷-附带答案

中考数学专题复习《反比例函数与几何综合》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________1.如图 在直角坐标系中 A B C D 四点在反比例函数k y x=线段AC BD ,都过原点O ()4,2A 点B 点纵坐标为4 连接AB CD DA ,,.(1)求该反比例函数的解析式(2)当-2y ≥时 写出x 的取值范围(3)求四边形ABCD 的面积.2.如图 在平面直角坐标系中 直线2y x b =+经过点()2,0A - 与y 轴交于点B 与反比例函数()0k y x x =>的图象交于点(),6C m 过点B 作BD y ⊥轴 交反比例函数()0k y x x=>的图象于点D 连接AD CD 、.(1)b =______ k =______(2)求ACD 的面积.3.如图 一次函数y kx b =+与反比例函数m y x=的图象相交于A B 两点(点A 在点B 的左侧) 与x 轴相交于点C 已知点()1,4A 连接OB .(1)求反比例函数的解析式(2)若BOC 的面积为3 求AOB 的面积(3)在(2)的条件下 根据图象 直接写出m kx b x>+的解集. 4.小明借助反比例函数图象设计“鱼形”图案.如图 在平面直角坐标系中 以反比例函数ky x =图象上的点()2A 和点B 为顶点 分别作菱形AOCD 和荾形OBEF 点D E 在x 轴上 以点O 为圆心 OA 长为半径作AC 连接BF(1)求k 值(2)计算图形阴影部分面积之和.5.在平面直角坐标系xOy 中 反比例函数()0k y x x=>的图象与等腰直角三角形OAB 相交 90OBA ∠=︒ 6OA =.(1)如图1 若反比例函数的图象恰好经过OAB 的顶点B 时 求反比例函数的表达式(2)在(1)的前提下 过点A 作AQ OB 交反比例函数的图象于点Q 连接BQ 求OBQ △的面积和点Q 的坐标(3)如图2 若反比例函数的图象交OAB 的边OB 于点C 且13BC OB = 点P 是反比例函数图象上的一动点 满足OCP △的面积是3 请直接写出点P 的坐标.6.平面直角坐标系xOy 中 横坐标为a 的点A 在反比例函数()10k y x x=>的图象上 点A '与点A 关于点O 对称 一次函数2y mx n =+的图象经过点A '.(1)设2a = 点()4,2B 在函数1y 2y 的图象上 分别求函数1y 2y 的表达式.(2)如图① 设函数1y 2y 的图象相交于点B 点B 的横坐标为3aAA B '的面积为16 求k 的值(3)设12m = 如图① 过点A 作AD x ⊥轴 与函数2y 的图象相交于点D 以AD 为一边向右侧作正方形ADEF 试说明函数2y 的图象与线段EF 的交点P 一定在函数1y 的图象上. 7.如图 在矩形OABC 中 3OA = 2OC = F 是AB 上的一个动点(F 不与A B 重合) 过点F 的反比例函数()0ky x x=>的图象与BC 边交于点E .(1)当F 为AB 的中点时 求该反比例函数的解析式和点E 的坐标.(2)当k 为何值时 CEF △的面积最大 最大面积是多少?8.已知直线11y x =+与双曲线22y x=相交于点A 和点B 如图所示 过点B 作BD y ⊥轴于点D 设直线AB 交x 轴于点C 连接CD .(1)求:BCD △的面积(2)求:当12y y ≥时 x 的取值范围.9.如图 在平面直角坐标系中 O 为坐标原点 ABO 的边AB 垂直x 轴于点B 反比例函数()0k y x x=>的图象经过AO 的中点C 与边AB 相交于点D 若D 的坐标为()4,m 3AD =.(1)反比例函数k y x=的解析式是 (2)设点E 是线段CD 上的动点 过点E 且平行y 轴的直线与反比例函数的图象交于点F 则OEF 面积的最大值是 .10.如图 一次函数1y kx b =+的图象与x 轴 y 轴分别交于点A B 与反比例函数()20m y x x=>的图象交于点()1,2C ()2,D n .(1)分别求出两个函数的解析式(2)连接OC OD 求COD △的面积(3)点P 是反比例函数上一点 PQ x ∥轴交直线AB 于Q 且3PQ = 求点P 的坐标. 11.如图 反比例函数(0)k y x x =<的图像与直线3x =-交于点P AOP 的面积等于3.(1)求反比例函数的表达式(2)利用图像 求当30x -<<时 y 的取值范围.12.如图 ABC 中 60CAB ∠= 45ABC ∠= 点A B 在x 轴上 反比例函数k y x =的图象经过点(123C , 且与BC 边交于另一点D CE x ⊥轴 垂足为点E .(1)求反比例函数的解析式(2)求点D 的坐标(3)在x 轴上是否存在点P 使得BDP △与BCE 相似 若存在 请直接写出满足条件点P 的坐标 若不存在 请说明理由.13.如图 Rt OAB 的直角顶点B 在x 轴的正半轴上 点A 在第一象限内 已知反比例函数()0k y x x =>的图象经过线段OA 的中点D 交直线AB 于点C .若OAB 的面积为6.(1)求k 的值(2)若AC OB = 求点A 的坐标.14.如图 在Rt ABO △中 直角顶点B 在x 轴正半轴上 反比例函数n y x=(0n >)的图象分别与边AO 边AB 交于点C D .(1)如果点C 的坐标为()23,且8AD = 求n 的值及点B 的坐标 (2)连结CB 如果AD DB = 求OAB OCB S S :的值.15.如图 一次函数y ax b =+与反比例函数k y x =的图象交于D E 两点 CD x ⊥轴 垂足为C 过C 作CB DE ∥交y 轴于B 已知四边形ABCD 的面积为12 E 点纵坐标为2-.(1)求反比例函数的解析式(2)当6AB =时 求一次函数的解析式(3)在(2)的条件下 直接写出k ax b x+<的自变量x 的取值范围. 参考答案:1.(1)8y x= (2)4x ≤-或0x >(3)242.(1)4 6 (2)92.3.(1)4y x= (2)3AOB S =△(3)01x <<或2x >4.(1)43(2)833π5.(1)9y x = (2)9 点Q 的坐标为()332,323+(3)()1,4或()4,16.(1)18y x=22y x =- (2)6k =7.(1)3y x = 3,22E ⎛⎫ ⎪⎝⎭ (2)3k =时 CEF S △最大为348.(1)BCD △的面积为1(2)20x -≤<或1x ≥9.(1)4y x= (2)1410.(1)13y x =-+ 22y x= (2)32(3)(3P 或(3P11.(1)()60y x x=-< (2)2y >12.(1)y =(2)()D(3)()P 或()10P ,13.(1)3(2)()3,414.(1)()660n B =,,15.(1)反比例函数的解析式为12y x=- (2)一次函数的解析式为4y x =-+(3)20x -<<或6x >.。

人教版九年级数学下册《第二十六章 反比例函数》测试卷-含参考答案

人教版九年级数学下册《第二十六章 反比例函数》测试卷-含参考答案

人教版九年级数学下册《第二十六章 反比例函数》测试卷-含参考答案一、选择题1.下列关系式中,y 是x 反比例函数的是( ) A .y= 13 xB .y=- 3xC .y=3x 2D .y=6x+12.函数 y =(m +1)x m 2+m−1是反比例函数,则m 的值为( )A .0B .﹣1C .0或﹣1D .0或13.若点A(x 1,−5),B(x 2,2),C(x 3,5)都在反比例函数y =m 2+1x的图象上,则x 1,x 2,x 3的大小关系是( ) A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 1<x 3<x 2D .x 3<x 1<x 24.函数y =x −a 与y =ax (a ≠0)在同一坐标系内的图象可以是( )A .B .C .D .5.反比例函数y =2−3k x的图象经过点(−2,5),则k 的值为( )A .10B .-10C .4D .-43⎛⎫2⎛⎫2⎛⎫7.验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表.根据表中数据,可得y 关于x 的函数表达式为( )A.y=100x B.y=x100C.y=400xD.y=x4008.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数y=kx(x>0)的图象经过顶点B,则k的值为()A.12 B.16 C.20 D.32二、填空题9.反比例函数y=m−5x,其图象分别位于第一、第三象限,则m的取值范围是.10.已知点P位于第三象限内,且点P到两坐标轴的距离分别为3和4,若反比例函数图象经过点P,则该反比例函数的解析式为.11.在平面直角坐标系xOy中,直线y=−2x与双曲线y=mx交于A,B两点,若点A,B的纵坐标分别为y1,y2,则−3y1−3y2的值为.12.如图,一次函数y1=k1x+b与反比例函数y2=k2x的图象相交于A,B两点,点A的横坐标为2,点B的横坐标为−1,则不等式k1x+b<k2x的解集是.13.如图所示,点A是反比例函数y=kx(x<0)的图象上一点,过点A作AB⊥y轴于点P,点P在x轴上,若△ABP的面积是2,则k=.三、解答题14.已知道y=y 1+y 2,y 1与x 2成正比例,y 2与x+3成反比例.并且x=0时,y=2,x=1时,y=0.试求函数y 的解析式,并指出自变量的取值范围.15.如图,双曲线y 1=kx (k 为常数,且k ≠0)与直线y 2=﹣13x+b 交于点A (﹣2,a )和B (3c ,2﹣c ).(1)求k ,b 的值;(2)求直线与x 轴的交点坐标.17.某单位为响应政府发出的全民健身的号召,打算在长和宽分别为20m 和11m 的矩形大厅内修建一个60m2的矩形健身房ABCD. 该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图),已知装修旧墙壁的费用为20元/m 2,新建(含装修)墙壁的费用为80元/m 2.设健身房的高为3m,一面旧墙壁AB 的长为xm,修建健身房墙壁的总投入为y 元. (1)求y 与x 的函数关系式;(2)为了合理利用大厅,要求自变量x 必须满足条件:8≤x ≤12, 当投入的资金为4800元时,问利用旧墙壁的总长度为多少?18.如图,已知一次函数y =ax +b(a,b 为常数,a ≠0)的图象与x 轴,y 轴分别交于点A ,B ,且与反比例函数y =kx (k 为常数,k ≠0)的图象在第二象限内交于点C ,作CD ⊥x 轴于D ,若OA =OD =34OB =3.(1)求一次函数与反比例函数的解析式;(2)观察图象直接写出不等式0<ax +b ≤kx的解集;(3)在y 轴上是否存在点P ,使得△PBC 是以BC 为一腰的等腰三角形?如果存在,请直接写出P 点的坐标;如果不存在,请简要说明理由.11m20mDCB A参考答案 1.B 2.A 3.C 4.D 5.C 6.A 7.A 8.D 9.m >5 10.y =12x11.012.-1<x <0或x >2 13.-414.解:∵y 1与x 2成正比例,y 2与x+3成反比例.∴y 1=k 1x 2,y 2= k2x+3∵y=y 1+y 2 ∴y=k 1x 2+k 2x+3∵x=0时,y=2,x=1时,y=0. ∴{k 23=2k 1+k 24=0解得k 1=﹣ 32 ,k 2=6∴y=﹣ 32 x 2+ 6x+3 (x ≠﹣3)15.(1)解:∵点B (3c ,2﹣c )在直线y 2=﹣13x+b 的图象上 ∴−13×3c +b =2−c 解得:b =2∴直线解析式为y 2=﹣13x+2∵点A (﹣2,a )在直线y 2=﹣13x+2的图象上∴a =−13×(−2)+2=83 ∴点A 坐标为(-2,83) ∵点A (-2,83)在y 1=k x 图象上 ∴83=k −2解得:k =−163.(2)解:∵直线解析式为y 2=﹣13x+2 ∴当y 2=0时,x=6∴直线与x 轴的交点坐标为(6,0). 16.(1)∵点A 、B 是反比例函数ky x=的图象上一点,AC x ⊥轴,BC y ⊥轴()3,4C - ∴3,3k A ⎛⎫ ⎪⎝⎭(),44kB --∵AB 经过原点∴A 、B 两点关于原点对称 ∴34k =∴12k =∴()3,4A ()3,4B -- ∴8AC = 6BC = ∴Rt ACB △的面积11862422AC BC =⋅=⨯⨯=; (2)∵()3,4A∴将()3,4A 代入y k x '=得43k '= 解得43k '=∴经过AB 两点的直线43y x =; 由图象可得当30x -<<或3x >时k k x x'>. 17.解:(1)根据题意,AB=x,AB ·BC=60,所以BC=60x。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数 过关检测(时间:120分钟 分数:120分)得分:____________一、选择题(本大题共12小题,每小题3分,共36分)1.A .y =3x -1 B .y =-x 3 C .xy =5 D .y =12x2.某工厂现有材料100吨,若平均每天用去x 吨,这批材料能用y 天,则y 与x 之间的函数关系式为( )A .y =100xB .y =100xC .y =100-100xD .y =100-x3.若点P (x 1,y 1),P 2(x 2,y 2)在反比例函数y =kx的图象上,且x 1=-x 2,则( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .y 1=-y 24.已知反比例函数y =k -2x的图象位于第一、三象限,则k 的取值范围是( )A .k >2B .k ≥2C .k ≤2D .k <25.关于反比例函数y =5x的图象,下列说法正确的是( )A .经过点(2,3)B .函数图象分布在第二、四象限C .关于直线y =x 对称D .x 越大,越接近y 轴6.直角三角形的两直角边长分别为x ,y ,它的面积为6,则y 关于x 的函数图象为( )ABCD7.如图,双曲线y =8x的一个分支为( )A .①B .②C .③D .④(第7题图)(第8题图)(第10题图) (第12题图)8.如图,A ,B 两点在双曲线y =4x(x >0)上,分别过A ,B 两点向坐标轴作垂线段,已知S 阴影=1,则S 1+S 2=( )A .3B .4C .5D .69.反比例函数y =6x图象上有三个点(x 1,y 1),(x 2,y 2),(x 3,y 3),其中x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 1<y 2C .y 2<y 1<y 3D .y 3<y 2<y 110.当温度不变时,某气球内的气压p (kPa )与气球体积V (m 3)的函数关系如图所示,已知当气球内的气压p >120kPa 时,气球将爆炸,为了安全起见,气球的体积V 应( )A .不大于45 m 3B .大于45 m 3C .不小于45 m 3D .小于45m 311.反比例函数y 1=mx(x >0)的图象与一次函数y 2=-x +b 的图象交于A ,B 两点,其中A (1,2),当y 2>y 1时,x 的取值范围是( )A .x <1B .1<x <2C .x >2D .x <1或x >212.如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴的正半轴上,反比例函数y =kx(x>0)的图象经过对角线OB 的中点D 和顶点C.若菱形OABC 的面积为12,则k 的值为( )A .6B .5C .4D .3 二、填空题(本大题共6小题,每小题3分,共18分)13.已知一个函数的图象与y =6x 的图象关于y 轴对称,则该函数的解析式为________.14.已知反比例函数y =kx(k ≠0)的图象经过点(3,-1),则当1<y <3时,自变量x 的取值范围是________.15.如图,点P 在反比例函数y =kx的图象上,且PD ⊥x 轴于点D ,连接OP .若△POD 的面积为3,则k 的值是________.(第15题图) (第16题图) (第17题图) (第18题图) 16.在对物体做功一定的情况下,力F (N )与此物体在力的方向上移动的距离s (m )成反比例函数关系,其图象如图所示,点P (4,3)在图象上,则当力达到10N 时,物体在力的方向上移动的距离是________m .17.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =kx(k ≠0)的图象上,则k 的值为________. 18.如图,矩形ABCD 的顶点A ,B 在x 轴上,且关于y 轴对称,反比例函数y =k 1x(x >0)的图象经过点C ,反比例函数y =k 2x(x <0)的图象分别与AD ,CD 交于点E ,F ,若S △BEF =7,k 1+3k 2=0,则k 1=________.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(6分)如果函数y =mxm 2-5是经过第二、四象限的反比例函数,求m 的值和反比例函数的解析式.20.(6分)如图,反比例函数y =kx的图象过点A (-2,m ),AB ⊥x 轴于点B ,且S △AOB =3,求k和m 的值.21.(8分)去学校食堂就餐,经常会在一个买菜窗口前等待.经调查发现,同学的舒适度指数y与等待时间x (分)之间存在关系:y =100x.(1)若等待时间x =5分钟,求舒适度指数y 的值;(2)舒适度指数不低于10时,同学才会感到舒适.函数y =100x(x >0)的图象如图所示,请根据图象说明:作为食堂的管理员,为了让每个在窗口前买菜的同学感到舒适,最多等待多长时间?22.(8分)如图,在平面直角坐标系中,点O 为原点,反比例函数y =kx的图象经过点(1,4),菱形OABC 的顶点A 在图象上,对角线OB 在x 轴上.(1)求反比例函数的关系式;(2)直接写出菱形OABC 的面积.23.(8分)反比例函数y =mx的图象与一次函数y =kx +b 的图象交于M (1,3),N 两点,点N 的横坐标为-3.(1)根据信息可得关于x 的方程mx=kx +b 的解为________;(2)求一次函数的解析式.24.(10分)如图,在平面直角坐标系xOy 中,一次函数y =kx +b 的图象与反比例函数y =mx的图象交于A (2,3),B (-3,n )两点.(1)求一次函数和反比例函数的解析式;(2)若P 是y 轴上一点,且满足△P AB 的面积是5,直接写出OP 的长.25.(10分)如图,正比例函数y =12 x 的图象与反比例函数y =kx(k ≠0)在第一象限的图象交于点A ,过点A 作x 轴的垂线,垂足为M ,已知△OAM 的面积为1.(1)求反比例函数的解析式;(2)如果点B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且点B 的横坐标为1,在x 轴上确定一点P ,使P A +PB 最小.(只作图说明理由,不必求出点P 坐标)26.(10分)小明家饮水机中原有水的温度为20△,通电开机后,饮水机自动开始加热[此过程中水温y (△)与开机时间x (分)满足一次函数关系],当加热到100△时自动停止加热,随后水温开始下降[此过程中水温y (△)与开机时间x (分)成反比例关系],当水温降至20△时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x≤8时,求水温y(△)与开机时间x(分)的函数关系式;(2)求图中t的值;(3)若小明在通电开机后即外出散步,请你预测小明散步45分钟回到家时,饮水机内水的温度约为多少?参考答案一、选择题(本大题共12小题,每小题3分,共36分)1.A.y=3x-1B.y=-x 366666666666666666666666666666666666666666666666666666666666666666666666666666666666666 66666666666666666666666666666666666666666666666666666666666666666666666666666666666666 6666666666666666666666666666666666666666666666666666666666666666666666666666 66666666666666666666666666666666666666666666666666666666666 66666666666666666666666666666666666666666666666666666666666666666666666666666666666666 6666666666666666666666666666666666Somavara66666666666666666666666666666666666666666666 66666666666666666666666666666666666666666666666666666666666666666666666666666666666666 66666666666666666666666666666666666666666666666666666666666666666666666666666666666666 66666666666666666666666666666666666666666666666666666666666666666666666666666666666666 66666666666666666666666666666666666666194266666666666666666666666666666666666666666666 66666666666666666666666666666666666666666666666666666666666666666666666666666666666666 66666666666666666666666666666666666666666666666666666666666666666666666666666666666666 66666666666666666666666666666666666666666666666666666666666666666666666666666666666666 666666666666666666666666666666666666666666666666 66666666666 66666666666666666666666666666666666666666666666666666666666666666666666666666666666666 66666666666666666666666666666666666666666666666666666666666666666666666666666666666666 66666666666666666666666666666666666666666666666666666666666666666666666666666666666666 6666666666666666666666666666666666666666666666666666666666666666666666666666666 66。

相关文档
最新文档