(完整word版)高一物理必修二复习资料
(完整版)高一物理必修2章节整理及练习(含答案)
第一节什么是抛体运动抛体运动的速度方向[自读教材·抓基础]1.抛体运动 将物体以一定的初速度向空中抛出,仅在重力作用下物体所做的运动叫作抛体运动。
2.抛体运动的速度方向 (1)在曲线运动中,质点在某一时刻(或某一位置)的速度方向就是曲线上这点的切线方向。
(2)做抛体运动的质点的速度方向,在其运动轨迹各点的切线方向上,并指向质点前进的方向。
(3)质点在曲线运动中速度的方向时刻在改变,即具有加速度,所以曲线运动是一种变速运动。
[学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(想一想)物理上的切线与数学上的切线有何区别?提示:数学上的切线不用考虑方向,而物理上的切线具有方向,即要符合物体运动或物理量的“大方向”。
[跟随名师·解疑难]1.如何理解曲线运动的方向?由平均速度的定义知v =s t,则曲线运动的平均速度应为时间t 内的位移s 与时间t 的比值,如图1-1-1所示,v =s AB t。
随时间t 的取值变小,由图知时间t 内位移的方向逐渐向A 点的切线方向靠近,当时间趋于无限短时,位移方向为A 点的切线方向,故极短时间内的平均速度方向为A 点的瞬时速度方向,即A 点的切线方向。
2.曲线运动的性质曲线运动的速度方向时刻在变化,不管大小是否变化,因其矢量性,速度时刻都在变化,即曲线运动一定是变速运动。
3.做曲线运动的物体一定有加速度吗?由于曲线运动是变速运动,所以,做曲线运动的物体一定有加速度。
[特别提醒] 做曲线运动的物体,其速度沿轨迹上所在点的切线方向,确定物体的速度方向应先明确其运动轨迹。
[学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(选一选)(多选)下列说法正确的是( )A .曲线运动的速度大小可以不变,但速度方向一定改变B .曲线运动的速度方向可以不变,但速度大小一定改变C .曲线运动的速度方向不是物体的运动方向D .做曲线运动的物体在某点的速度方向沿曲线上该点的切线方向抛体做直线或曲线运动的条件[自读教材·抓基础]1.抛体做直线运动的条件 :抛出时的速度方向在竖直方向上。
(完整word版)高一物理必修二复习资料.docx
高一物理必修二复习资料5.1 曲线运动1.曲线运动:轨迹是曲线的运动叫做曲线运动。
2.曲线运动的速度:(1)质点在某一点的速度方向是沿曲线在这一点的切线方向。
(2)曲线运动的速度方向时刻改变。
B(3)曲线运动一定是变速运动。
A3. 做曲线运动的条件:(1)物体具有初速度。
(2)当物体所受合外力 ( 或具有的加速度 ) 的方向跟它的速度方向不在同一直线上vA → B时,物体做曲线运动。
4.只要合力 F 合( 或加速度 a ) 恒定,物体就做匀变速运动。
5.做曲线运动的物体,合外力必指向运动轨迹的凹部内侧。
6. 曲线运动常用结论:凸v(1)当 090 (即锐角)时,做加速曲线运动。
(2) 当90 (即直角)时,做匀速圆周运动。
(3)当 90180 (即钝角)时,做减速曲线运动。
7. 运动状态:(1)F合0静止或匀速直线运动。
凹F(2)F合0且 F合与 v 共线变速直线运动。
(3)F合0且 F合与 v 不共线曲线运动。
5.1 运动的合成与分解1.合运动与分运动:(1)合运动:物体实际发生的运动,叫合运动。
(包括:合位移、合速度、合加速度)(2)分运动:物体同时参与合成运动的运动叫分运动。
(包括:分位移、分速度、分加速度)2.运动的合成与分解:(1)已知物体的几个分运动求合运动叫做运动的合成。
(2)已知物体的合运动求分运动叫做运动的分解。
(3)运动的合成与分解遵循平行四边形定则,可以运用正交分解法。
3.合运动与分运动的关系:(1)独立性:分运动各自独立、互不影响,但共同决定合运动的性质和轨迹。
(2) 等时性:分运动经历的时间与合运动经历的时间相同,即同时开始,同时结束。
(3)等效性:各分运动叠加起来与合运动具有相同的效果。
4.两个直线运动的合成:(1)如果物体所受的合力 ( 或合加速度 ) 与合速度是在一条直线上,物体就做直线运动。
(2)如果物体所受的合力 ( 或合加速度 ) 与合速度是不在一条直线上,物体就做曲线运动。
(完整版)高一物理必修2期末复习材料(各章经典题型分类总结)
(完整版)高一物理必修2期末复习材料(各章经典题型分类总结)(word版可编辑修改)(完整版)高一物理必修2期末复习材料(各章经典题型分类总结)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)高一物理必修2期末复习材料(各章经典题型分类总结)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)高一物理必修2期末复习材料(各章经典题型分类总结)(word版可编辑修改)的全部内容。
(完整版)高一物理必修2期末复习材料(各章经典题型分类总结)(word版可编辑修改)运动的合成与分解【知识回顾】1。
物体做曲线运动的条件?2. 怎样区分合运动与分运动?3。
合运动和分运动之间具有怎样的关系?【课堂探究】一。
两个直线运动的合运动的性质判断1. 两个匀速直线运动的合运动可能是什么运动?⑴同一直线时:⑵互成角度时:2。
一个匀速直线运动和一个匀变速直线运动的合运动可能是什么运动?⑴同一直线时:⑵互成角度时:3. 两个匀变速直线运动的合运动可能是什么运动?⑴同一直线时:⑵互成角度时:总结归纳:怎样判断两个直线运动的合运动的性质?练习1.关于运动的合成,下列说法正确的有A.两个直线运动的合运动一定是直线运动B.初速度为零的两个匀加速直线运动的合运动一定是匀加速直线运动C.一个匀速直线运动和一个匀加速直线运动的合运动一定不是直线运动D.两个匀速直线运动的合运动也可能是曲线运动二。
绳头末端物体速度分解例题:如图所示,在河岸上用绳拉船,拉绳的速度是V ,当绳与水平方向夹角为θ时,船的速度为多大?总结:怎样分解合运动?拓展:若匀速拉绳,则船怎样运动?(加速、减速、匀速)练习2.如图所示,一辆汽车由绳子通过滑轮提升一重物,若汽车通过B 点时的速度为,绳B V 子跟水平方向的夹角为α,问此时被提升的重物的速度为多大?三、小船过河问题例题:某河宽d=100m ,水流速度V 1=3m/s ,船在静水中的出速度是V 2=4m/s ,求;⑴ 要使船渡河时间最短,船应怎样渡河?最短时间是多少?船经过的位移多大?到达对岸何处?⑵ 要使船航行距离最短,船应怎样渡河?渡河时间多长?⑶(选做) 若小船在静水中的速度是3m/s ,水流速度是4m/s ,则小船能否垂直过河?渡河的最短航程是多少?练习3. 小船在静水速度为v ,今小船要渡过一条河流,渡河时小船垂直对岸划行,若小船划行至河中间时,河水流速忽然增大,则渡河时间与预定时间相比,将A .增长B .不变C .缩短D .无法确定平 抛 运 动一:平抛运动的基本计算题类型1、一个物体从某一确定的高度以v0 的初速度水平抛出,已知它落地时的速度为v1,那么它的运动时间是( )A. B. C. D.2、作平抛运动的物体,在水平方向通过的最大距离取决于( )A。
(完整版)高中物理必修2知识点清单(非常详细)
(完整版)高中物理知识点清单整理(必修 2 )第1章 功和功率一、功1.做功的两个必要条件:力和物体在力的方向上发生的位移.2.公式:W =Fl cos_α.适用于恒力做功.其中α为F 、l 方向间夹角,l 为物体对地的位移.3.功的正负判断(1)α<90°,力对物体做正功.(2)α>90°,力对物体做负功,或说物体克服该力做功. (3)α=90°,力对物体不做功.特别提示:功是标量,比较做功多少看功的绝对值. 二、功率1.定义:功与完成这些功所用时间的比值. 2.物理意义:描述力对物体做功的快慢. 3.公式(1)定义式:P =W t,P 为时间t 内的平均功率.(2)推论式:P =Fv cos_α.(α为F 与v 的夹角)考点一 恒力做功的计算 1.恒力做的功直接用W =Fl cos α计算.不论物体做直线运动还是曲线运动,上式均适用. 2.合外力做的功方法一:先求合外力F 合,再用W 合=F 合l cos α求功.适用于F 合为恒力的过程. 方法二:先求各个力做的功W 1、W 2、W 3…,再应用W 合=W 1+W 2+W 3+…求合外力做的功. 3.(1)在求力做功时,首先要区分是求某个力的功还是合力的功,是求恒力的功还是变力的功.(2)恒力做功与物体的实际路径无关,等于力与物体在力方向上的位移的乘积,或等于位移与在位移方向上的力的乘积.考点二 功率的计算 1.平均功率的计算:(1)利用P =Wt.(2)利用P =F ·v cos α,其中v 为物体运动的平均速度.2.瞬时功率的计算:利用公式P =F ·v cos α,其中v 为t 时刻的瞬时速度. 注意:对于α变化的不能用P =Fv cos α计算平均功率. 3.计算功率的基本思路:(1)首先要明确所求功率是平均功率还是瞬时功率,对应于某一过程的功率为平均功率,对应于某一时刻的功率为瞬时功率.(2)求瞬时功率时,如果F 与v 不同向,可用力F 乘以F 方向的分速度,或速度v 乘以速度v 方向的分力求解.考点三 机车启动问题的分析 两种方式 以恒定功率启动 以恒定加速度启动v ↑⇒F =P 不变v ↓⇒a =F -F 阻m↓2.三个重要关系式(1)无论哪种运行过程,机车的最大速度都等于其匀速运动时的速度,即v m =P F min =PF 阻(式中F min 为最小牵引力,其值等于阻力F 阻).(2)机车以恒定加速度启动的运动过程中,匀加速过程结束时,功率最大,速度不是最大,即v =P F <v m =P F 阻. (3)机车以恒定功率运行时,牵引力做的功W =Pt .由动能定理:Pt -F 阻x =ΔE k .此式经常用于求解机车以恒定功率启动过程的位移大小.3.分析机车启动问题时的注意事项 (1)在用公式P =Fv 计算机车的功率时,F 是指机车的牵引力而不是机车所受到的合力. (2)恒定功率下的加速一定不是匀加速,这种加速过程发动机做的功可用W =Pt 计算,不能用W =Fl 计算(因为F 是变力).(3)以恒定牵引力加速时的功率一定不恒定,这种加速过程发动机做的功常用W =Fl 计算,不能用W =Pt 计算(因为功率P 是变化的).第2章 能的转化和守恒一、动能1.定义:物体由于运动而具有的能.2.表达式:E k =12mv 2.3.单位:焦耳,1 J =1 N ·m =1 kg ·m 2/s 2. 4.矢标性:标量. 二、动能定理1.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.2.表达式:W =E k2-E k1=12mv 22-12mv 21.3.适用范围(1)动能定理既适用于直线运动,也适用于曲线运动.(2)既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用.考点一动能定理及其应用1.对动能定理的理解(1)动能定理公式中等号表明了合外力做功与物体动能的变化间的两个关系:①数量关系:即合外力所做的功与物体动能的变化具有等量代换关系.②因果关系:合外力的功是引起物体动能变化的原因.(2)动能定理中涉及的物理量有F、l、m、v、W、E k等,在处理含有上述物理量的问题时,优先考虑使用动能定理.2.运用动能定理需注意的问题(1)应用动能定理解题时,不必深究物体运动过程中状态变化的细节,只需考虑整个过程的功及过程初末的动能.(2)若过程包含了几个运动性质不同的分过程,既可分段考虑,也可整个过程考虑.但求功时,有些力不是全过程都作用的,必须根据不同的情况分别对待求出总功,计算时要把各力的功连同正负号一同代入公式.3.应用动能定理解题的基本思路(1)选取研究对象,明确它的运动过程;(2)分析研究对象的受力情况和各力的做功情况:受哪些力→各力是否做功→做正功还是负功→做多少功→各力做功的代数和(3)明确研究对象在过程的初末状态的动能E k1和E k2;(4)列动能定理的方程W合=E k2-E k1及其他必要的解题方程,进行求解.考点二动能定理与图象结合问题解决物理图象问题的基本步骤1.观察题目给出的图象,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义.2.根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.3.将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点,图线下的面积所对应的物理意义,分析解答问题.或者利用函数图线上的特定值代入函数关系式求物理量.4.解决这类问题首先要分清图象的类型.若是F-x图象,则图象与坐标轴围成的图形的面积表示做的功;若是v-t图象,可提取的信息有:加速度(与F合对应)、速度(与动能对应)、位移(与做功距离对应)等,然后结合动能定理求解.考点三利用动能定理求解往复运动解决物体的往复运动问题,应优先考虑应用动能定理,注意应用下列几种力的做功特点:1.重力、电场力或恒力做的功取决于物体的初、末位置,与路径无关;2.大小恒定的阻力或摩擦力的功等于力的大小与路程的乘积.三、机械能守恒定律一、重力势能1.定义:物体的重力势能等于它所受重力与高度的乘积.2.公式:E p=mgh.3.矢标性:重力势能是标量,正负表示其大小.4.特点(1)系统性:重力势能是地球和物体共有的.(2)相对性:重力势能的大小与参考平面的选取有关.重力势能的变化是绝对的,与参考平面的选取无关.5.重力做功与重力势能变化的关系 重力做正功时,重力势能减小; 重力做负功时,重力势能增大;重力做多少正(负)功,重力势能就减小(增大)多少,即W G =E p1-E p2.二、弹性势能1.定义:物体由于发生弹性形变而具有的能.2.大小:弹性势能的大小与形变量及劲度系数有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能越大.3.弹力做功与弹性势能变化的关系弹力做正功,弹性势能减小;弹力做负功,弹性势能增大. 三、机械能守恒定律1.内容:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变.2.表达式(1)守恒观点:E k1+E p1=E k2+E p2(要选零势能参考平面). (2)转化观点:ΔE k =-ΔE p (不用选零势能参考平面). (3)转移观点:ΔE A 增=ΔE B 减(不用选零势能参考平面). 3.机械能守恒的条件只有重力(或弹力)做功或虽有其他外力做功但其他力做功的代数和为零.考点一 机械能守恒的判断方法1.利用机械能的定义判断(直接判断):分析动能和势能的和是否变化.2.用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,或有其他力做功,但其他力做功的代数和为零,则机械能守恒.3.用能量转化来判断:若物体系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统机械能守恒.4.(1)机械能守恒的条件绝不是合外力的功等于零,更不是合外力为零;“只有重力做功”不等于 “只受重力作用”.(2)分析机械能是否守恒时,必须明确要研究的系统.(3)只要涉及滑动摩擦力做功,机械能一定不守恒.对于一些绳子突然绷紧、物体间碰撞等情况,除非题目特别说明,否则机械能必定不守恒.考点二 机械能守恒定律及应用 1.三种表达式的选择如果系统(除地球外)只有一个物体,用守恒观点列方程较方便;对于由两个或两个以上物体组成的系统,用转化或转移的观点列方程较简便.2.应用机械能守恒定律解题的一般步骤(1)选取研究对象⎩⎪⎨⎪⎧单个物体多个物体组成的系统含弹簧的系统(2)分析受力情况和各力做功情况,确定是否符合机械能守恒条件.(3)确定初末状态的机械能或运动过程中物体机械能的转化情况. (4)选择合适的表达式列出方程,进行求解. (5)对计算结果进行必要的讨论和说明.3.(1)应用机械能守恒定律解题时,要正确选择系统和过程.(2)对于通过绳或杆连接的多个物体组成的系统,注意找物体间的速度关系和高度变化关系.(3)链条、液柱类不能看做质点的物体,要按重心位置确定高度.四 功能关系 能量守恒一、功能关系1.功是能量转化的量度,即做了多少功就有多少能量发生了转化.21.内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化和转移的过程中,能量的总量保持不变.2.表达式:(1)E1=E2.(2)ΔE减=ΔE增.考点一功能关系的应用1.若涉及总功(合外力的功),用动能定理分析.2.若涉及重力势能的变化,用重力做功与重力势能变化的关系分析.3.若涉及弹性势能的变化,用弹力做功与弹性势能变化的关系分析.4.若涉及电势能的变化,用电场力做功与电势能变化的关系分析.5.若涉及机械能变化,用其他力(除重力和系统内弹力之外)做功与机械能变化的关系分析.6.若涉及摩擦生热,用滑动摩擦力做功与内能变化的关系分析.考点二摩擦力做功的特点及应用1.静摩擦力做功的特点(1)静摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互作用的一对静摩擦力做功的代数和总等于零.(3)静摩擦力做功时,只有机械能的相互转移,不会转化为内能.2.滑动摩擦力做功的特点(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果:①机械能全部转化为内能;②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.(3)摩擦生热的计算:Q=F f s相对.其中s相对为相互摩擦的两个物体间的相对路程.考点三能量守恒定律及应用列能量守恒定律方程的两条基本思路:1.某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等;2.某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.3.能量转化问题的解题思路(1)当涉及摩擦力做功,机械能不守恒时,一般应用能的转化和守恒定律.(2)解题时,首先确定初末状态,然后分析状态变化过程中哪种形式的能量减少,哪种形式的能量增加,求出减少的能量总和ΔE减和增加的能量总和ΔE增,最后由ΔE减=ΔE增列式求解.第3章抛体运动一、曲线运动1.速度的方向:质点在某一点的速度方向,沿曲线在这一点的切线方向.2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运动.3.曲线运动的条件:物体所受合力的方向跟它的速度方向不在同一条直线上或它的加速度方向与速度方向不在同一条直线上.二、运动的合成与分解 1.运算法则位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则. 2.合运动和分运动的关系(1)等时性:合运动与分运动经历的时间相等.(2)独立性:一个物体同时参与几个分运动时,各分运动独立进行,不受其他分运动的影响.(3)等效性:各分运动叠加起来与合运动有完全相同的效果.考点一 对曲线运动规律的理解 1.曲线运动的分类及特点(1)匀变速曲线运动:合力(加速度)恒定不变. (2)变加速曲线运动:合力(加速度)变化. 2.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在合外力方向与速度方向之间,速度方向与轨迹相切,合外力方向指向轨迹的“凹”侧.3.速率变化情况判断(1)当合力方向与速度方向的夹角为锐角时,速率增大; (2)当合力方向与速度方向的夹角为钝角时,速率减小; (3)当合力方向与速度方向垂直时,速率不变. 考点二 运动的合成及合运动性质的判断 1.运动的合成与分解的运算法则运动的合成与分解是指描述运动的各物理量即位移、速度、加速度的合成与分解,由于它们均是矢量,故合成与分解都遵循平行四边形定则.2.合运动的性质判断⎩⎨⎧加速度或合外力⎩⎪⎨⎪⎧变化:变加速运动不变:匀变速运动加速度或合外力与速度方向⎩⎪⎨⎪⎧共线:直线运动不共线:曲线运动3两个互成角度的分运动 合运动的性质 两个匀速直线运动 匀速直线运动 一个匀速直线运动、一个匀变速直线运动 匀变速曲线运动两个初速度为零的匀加速直线运动匀加速直线运动两个初速度不为零的匀变速直线运动 如果v 合与a 合共线,为匀变速直线运动 如果v 合与a 合不共线,为匀变速曲线运动4.最后进行各量的合成运算.两种运动的合成与分解实例一、小船渡河模型 1.模型特点两个分运动和合运动都是匀速直线运动,其中一个分运动的速度大小、方向都不变,另一分运动的速度大小不变,研究其速度方向不同时对合运动的影响.这样的运动系统可看做小船渡河模型.2.模型分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v 1(船在静水中的速度)、v 2(水流速度)、v (船的实际速度). (3)两个极值①过河时间最短:v 1⊥v 2,t min =dv 1(d 为河宽).②过河位移最小:v ⊥v 2(前提v 1>v 2),如图甲所示,此时x min =d ,船头指向上游与河岸夹角为α,cos α=v 2v 1;v 1⊥v (前提v 1<v 2),如图乙所示.过河最小位移为x min =dsin α=v 2v 1d .3.求解小船渡河问题的方法求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移.无论哪类都必须明确以下三点:(1)解决这类问题的关键是:正确区分分运动和合运动,在船的航行方向也就是船头指向方向的运动,是分运动;船的运动也就是船的实际运动,是合运动,一般情况下与船头指向不共线.(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则沿水流方向和船头指向分解.(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关. 二、绳(杆)端速度分解模型 1.模型特点绳(杆)拉物体或物体拉绳(杆),以及两物体通过绳(杆)相连,物体运动方向与绳(杆)不在一条直线上,求解运动过程中它们的速度关系,都属于该模型.2.模型分析(1)合运动→绳拉物体的实际运动速度v(2)分运动→⎩⎪⎨⎪⎧其一:沿绳或杆的分速度v 1其二:与绳或杆垂直的分速度v 2(3)关系:沿绳(杆)方向的速度分量大小相等. 3.解决绳(杆)端速度分解问题的技巧(1)明确分解谁——分解不沿绳(杆)方向运动物体的速度; (2)知道如何分解——沿绳(杆)方向和垂直绳(杆)方向分解;(3)求解依据——因为绳(杆)不能伸长,所以沿绳(杆)方向的速度分量大小相等.二 抛体运动1、平抛运动1.性质:平抛运动是加速度恒为重力加速度g 的匀变速曲线运动,轨迹是抛物线. 2.规律:以抛出点为原点,以水平方向(初速度v 0方向)为x 轴,以竖直向下的方向为y 轴建立平面直角坐标系,则(1)水平方向:做匀速直线运动,速度:v x =v 0,位移:x =v 0t .(2)竖直方向:做自由落体运动,速度:v y =gt ,位移:y =12gt 2.(3)合运动①合速度:v =v 2x +v 2y ,方向与水平方向夹角为θ,则tan θ=v y v 0=gt v 0.②合位移:x 合=x 2+y 2,方向与水平方向夹角为α,则tan α=y x =gt 2v 0.2、斜抛运动 1.性质加速度为g 的匀变速曲线运动,轨迹为抛物线.2.规律(以斜向上抛为例说明,如图所示)(1)水平方向:做匀速直线运动,v x =v 0cos θ. (2)竖直方向:做竖直上抛运动,v y =v 0sin θ-gt .考点一 平抛运动的基本规律及应用1.飞行时间:由t =2hg知,时间取决于下落高度h ,与初速度v 0无关.2.水平射程:x =v 0t =v 02hg,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关.3.落地速度:v t =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与x 轴正方向的夹角,有tan θ=v y v x =2ghv 0,所以落地速度也只与初速度v 0和下落高度h 有关.4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 相同,方向恒为竖直向下,如图甲所示.5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图乙中A 点和B 点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ.6.“化曲为直”思想在抛体运动中的应用(1)根据等效性,利用运动分解的方法,将其转化为两个方向上的直线运动,在这两个方向上分别求解.(2)运用运动合成的方法求出平抛运动的速度、位移等.第4章 匀速圆周运动一、描述圆周运动的物理量1.线速度:描述物体圆周运动的快慢,v =Δs Δt =2πrT .2.角速度:描述物体转动的快慢,ω=ΔθΔt =2πT .3.周期和频率:描述物体转动的快慢,T =2πr v ,T =1f.4.向心加速度:描述线速度方向变化的快慢.a n =r ω2=v 2r =ωv =4π2T2r .5.向心力:作用效果产生向心加速度,F n =ma n . 二、匀速圆周运动和非匀速圆周运动的比较项目 匀速圆周运动 非匀速圆周运动 定义 线速度大小不变的圆周运动 线速度大小变化的圆周运动 运动特点 F 向、a 向、v 均大小不变,方向变化,ω不变 F 向、a 向、v 大小、方向均发生变化,ω发生变化 向心力 F 向=F 合 由F 合沿半径方向的分力提供三、离心运动1.定义:做圆周运动的物体,在合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动.2.供需关系与运动如图所示,F 为实际提供的向心力,则(1)当F =m ω2r 时,物体做匀速圆周运动; (2)当F =0时,物体沿切线方向飞出;(3)当F <m ω2r 时,物体逐渐远离圆心;(4)当F >m ω2r 时,物体逐渐靠近圆心.考点一 水平面内的圆周运动1.运动实例:圆锥摆、火车转弯、飞机在水平面内做匀速圆周飞行等.2.重力对向心力没有贡献,向心力一般来自弹力、摩擦力或电磁力.向心力的方向水平,竖直方向的合力为零.3.涉及静摩擦力时,常出现临界和极值问题. 4.水平面内的匀速圆周运动的解题方法(1)对研究对象受力分析,确定向心力的来源,涉及临界问题时,确定临界条件; (2)确定圆周运动的圆心和半径; (3)应用相关力学规律列方程求解. 考点二 竖直面内的圆周运动1.物体在竖直平面内的圆周运动有匀速圆周运动和变速圆周运动两种.2.只有重力做功的竖直面内的圆周运动一定是变速圆周运动,遵守机械能守恒. 3.竖直面内的圆周运动问题,涉及知识面比较广,既有临界问题,又有能量守恒的问题.4.一般情况下,竖直面内的变速圆周运动问题只涉及最高点和最低点的两种情形. 考点三 圆周运动的综合问题 圆周运动常与平抛(类平抛)运动、匀变速直线运动等组合而成为多过程问题,除应用各自的运动规律外,还要结合功能关系进行求解.解答时应从下列两点入手:1.分析转变点:分析哪些物理量突变,哪些物理量不变,特别是转变点前后的速度关系.2.分析每个运动过程的受力情况和运动性质,明确遵守的规律. 3.平抛运动与圆周运动的组合题,用平抛运动的规律求解平抛运动问题,用牛顿定律求解圆周运动问题,关键是找到两者的速度关系.若先做圆周运动后做平抛运动,则圆周运动的末速等于平抛运动的水平初速;若物体平抛后进入圆轨道,圆周运动的初速等于平抛末速在圆切线方向的分速度.竖直平面内圆周运动的“轻杆、轻绳”模型1.模型特点在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接、小球在弯管内运动等),称为“轻杆模型”.2.模型分析轻绳模型 轻杆模型v 2(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同,其原因主要是“绳”不能支持物体,而“杆”既能支持物体,也能拉物体.(2)确定临界点:v 临=gr ,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N 表现为支持力还是拉力的临界点.(3)定规律:用牛顿第二定律列方程求解.第5章 万有引力定律及其应用一、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比.2.公式:F =Gm 1m 2r,其中G =6.67×10-11 N ·m 2/kg 2. 3.适用条件:严格地说,公式只适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小时,物体可视为质点.均匀的球体可视为质点,其中r 是两球心间的距离.一个均匀球体与球外一个质点间的万有引力也适用,其中r 为球心到质点间的距离.二、宇宙速度三、经典力学的时空观和相对论时空观1.经典时空观(1)在经典力学中,物体的质量是不随速度的改变而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的.2.相对论时空观同一过程的位移和时间的测量与参考系有关,在不同的参考系中不同.3.经典力学的适用范围只适用于低速运动,不适用于高速运动;只适用于宏观世界,不适用于微观世界.考点一 天体质量和密度的估算1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即G Mm r 2=ma n =m v 2r =m ω2r =m 4π2r T2 (2)在中心天体表面或附近运动时,万有引力近似等于重力,即G Mm R2=mg (g 表示天体表面的重力加速度).2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R . 由于G Mm R 2=mg ,故天体质量M =gR 2G, 天体密度ρ=M V =M 43πR 3=3g 4πGR . (2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3GT2; ②若已知天体半径R ,则天体的平均密度ρ=M V =M 43πR 3=3πr 3GT 2R 3; ③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3πGT2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.3.(1)利用圆周运动模型,只能估算中心天体质量,而不能估算环绕天体质量.(2)区别天体半径R 和卫星轨道半径r :只有在天体表面附近的卫星才有r ≈R ;计算天体密度时,V =43πR 3中的R 只能是中心天体的半径. 考点二 卫星运行参量的比较与运算1.卫星的各物理量随轨道半径变化的规律。
高一年级必修二物理知识点复习
高一年级必修二物理知识点复习(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高一年级必修二物理知识点复习本店铺为各位同学整理了《高一年级必修二物理知识点复习》,希望对你的学习有所帮助!1.高一年级必修二物理知识点复习篇一恒定电流1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U 外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+电流关系I总=I1=I2=I3I并=I1+I2+I3+电压关系U总=U1+U2+U3+U总=U1=U2=U3功率分配P总=P1+P2+P3+P总=P1+P2+P3+2.高一年级必修二物理知识点复习篇二气体的性质1.气体的状态参量:温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,热力学温度与摄氏温度关系:T=t+273{T:热力学温度(K),t:摄氏温度(℃)}体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL 压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大3.理想气体的状态方程:p1V1/T1=p2V2/T2{PV/T=恒量,T为热力学温度(K)}注:(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。
(完整版)高中物理人教版必修二知识点总结
(完整版)高中物理人教版必修二知识点总
结
力学
第一章机械基础知识
- 机械运动和参照系
- 直线运动的描述
- 动能和动能定理
- 动量和动量定理
- 机械能守恒定律
第二章力的作用和力的效果
- 分类和测量力
- 推力和拉力
- 摩擦力
- 弹力
- 合力和力的分解
- 牛顿第一和第二定律
第三章牛顿第三定律和力的平衡
- 牛顿第三定律
- 力的合成
- 力的平衡和不平衡
- 平衡的条件
- 弹簧测力计
热学
第四章热学基础知识
- 热学现象和热量的传递
- 温度和热平衡
- 热膨胀和热机械转换
- 热力学第一定律
第五章气体的分子动理论
- 分子动理论的基本假设
- 气体分子的速率分布
- 热力学温度和分子动理论温度的联系- 分子自由度和平均动能定理
第六章热力学第二定律及其应用
- 热力学第二定律
- 卡诺热机
- 熵和热力学第二定律的表述
光学
第七章光的直线传播
- 光的直线传播
- 光的反射
- 光的折射
- 光的透射和光的反射、折射定律
- 可见光谱和线性偏振光
第八章光的波动性
- 光的干涉
- 光的衍射
- 杨氏实验和光的相干性
- 光的偏振和偏振器
- 波粒二象性
第九章光的粒子特性
- 光电效应
- 光子的概念
- 康普顿散射
- 波粒二象性的应用
以上是高中物理人教版必修二的知识点总结。
希望对你有所帮助。
(完整版)必修二物理知识点总结(人教版)精编(可编辑修改word版)
v 船 v船 dθ Aθ v 水x = = L第五章 平抛运动必修二 物理知识点§5-1 曲线运动 & 运动的合成与分解 一、曲线运动1. 定义:物体运动轨迹是曲线的运动。
2. 条件:运动物体所受合力的方向跟它的速度方向不在同一直线上。
3. 特点:①方向:某点瞬时速度方向就是通过这一点的曲线的切线方向。
②运动类型:变速运动(速度方向不断变化)。
③F 合≠0,一定有加速度 a 。
④F 合方向一定指向曲线凹侧。
4. 运动描述——蜡块运动涉及的公式:v = tan =v yv x二、运动的合成与分解1. 合运动与分运动的关系:等时性、独立性、等效性、矢量性。
2. 互成角度的两个分运动的合运动的判断:①两个匀速直线运动的合运动仍然是匀速直线运动。
②速度方向不在同一直线上的两个分运动,一个是匀速直线运动,一个是匀变速直线运动,其合运动是匀变速曲线运动,a 合为分运动的加速度。
③两初速度为 0 的匀加速直线运动的合运动仍然是匀加速直线运动。
④两个初速度不为 0 的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。
当两个分运动的初速度的和速度方向与这两个分运动的和加速度在同一直线上时,合运动是匀变速直线运动,否则即为曲线运动。
三、有关“曲线运动”的两大题型 (一)小船过河问题 模型一:过河时间 t 最短: 模型二:直接位移 x 最短:模型三:间接位移 x 最短:d当 v <v 时,x=d ,当 v 水>v 船时, d v 临 , min t min =临 , x =sin 水船t = dmin,t =dcos v 临,tan = v临v 临 sinv 临 sinv 临(二)绳杆问题(连带运动问题)cos = v临v 临cos = v临v 临1、实质:合运动的识别与合运动的分解。
2、关键:①物体的实际运动是合速度,分速度的方向要按实际运动效果确定;②沿绳(或杆)方向的分速度大小相等。
高一物理必修二知识点归纳总结通用15篇
高一物理必修二知识点归纳总结通用15篇高一物理必修二复习知识点总结篇一电势的概念(1)定义及定义式电场中某点的电荷的电势能跟它的电量比值,叫做这一点的电势。
(2)电势的单位:伏(V)。
(3)电势是标量。
(4)电势是反映电场能的性质的物理量。
(5)零电势点规定的电势能为零的点叫零电势点。
理论研究中,通常以无限远点为零电势点,实际研究中,通常取大地为零电势点。
(6)电势具有相对性电势的数值与零电势点的选取有关,零电势点的选取不同,同一点的电势的数值则不同。
(7)顺着电场线的方向电势越来越低。
电场强度的方向是电势降低最快的方向。
(8)电势能与电势的关系:ε=qU。
高一物理必修二复习知识点篇二弹力1、定义:发生形变的物体,由于要恢复原状,会对跟它接触的物体产生的力的作用,这种力叫弹力。
2、产生条件:(1)两物体必须直接接触,(2)量物体接触处有弹性形变(弹力是接触力)。
3、方向:弹力的方向与施力物体的形变方向相反。
4、弹力方向的判断方法(1)弹簧两端的弹力方向,与弹簧中心轴线重合,指向弹簧恢复原状的方向。
其弹力可为拉力,可为压力;对弹簧秤只为拉力。
(2)轻绳对物体的弹力方向,沿绳指向绳收缩的方向,即只为拉力。
(3)点与面接触时弹力的方向,过接触点垂直于接触面(或接触面的切线方向)而指向受力物体。
(4)面与面接触时弹力的方向,垂直于接触面而指向受力物体。
(5)球与面接触时弹力的方向,在接触点与球心的连线上而指向受力物体。
(6)球与球相接触的弹力方向,沿半径方向,垂直于过接触点的公切面而指向受力物体。
(7)轻杆的弹力方向可能沿杆也可能不沿杆,杆可提供拉力也可提供压力。
(8)根据物体的运动情况,动力学规律判断。
说明:①压力、支持力的方向总是垂直于接触面(若是曲面则垂直过接触点的切面)指向被压或被支持的物体。
②绳的拉力方向总是沿绳指向绳收缩的方向。
③杆既可产生拉力,也可产生压力,而且能产生不同方向的力。
这是杆的受力特点。
高一物理必修2知识点基础过关纲要复习提纲
高一物理必修2知识点基础过关纲要复习提纲一、万有引力与航天1.开普勒行星运动定律(1).所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上.(2).对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积.(3).所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.a3/T2=K2.万有引力定律及其应用自然界中任何两个物体都是相互吸引的, 引力的大小跟这两个物体质量的乘积成正比, 跟它们距离的二次方成反比。
表达式: F=Gm1m2/r2地球表面附近,重力近似等于万有引力mg=Gm 1m 2/R 23.第一宇宙速度 第二宇宙速度 第三宇宙速度人造地球卫星:卫星环绕速度v 、角速度 、周期T 与半径 的关系:由 , 可得: , r 越大,越小; , r 越大, 越小; , r 越大, T 越大。
第一宇宙速度(环绕速度): ;第二宇宙速度(脱离速度): ;第三宇宙速度(逃逸速度): 。
会求第一宇宙速度: 卫星贴近地球表面飞行R v m R Mm G 22= 地球表面近似有 mg RMm G=2 则有 s Km gR v /9.7== 4.经典力学的局限性 牛顿运动定律只适用于解决宏观、低速问题, 不适用于高速运动问题, 不适用于微观世界。
二、机械能守恒定律1.功和功率力对物体所做的功等于力的大小、位移的大小、力和位移夹角的余弦三者的乘积。
功的定义式: ..注意: 时, ;但 时, , 力不做功; 时, ... 功与完成这些功所用时间的比值..平均功率: .. ;功率是表示物体做功快慢的物理量。
力与速度方向一致时:P=Fv2. 重力势能物体的重力势能等于它所受重力与所处高度的乘积, 。
重力势能的值与所选取的参考平面有关.. 重力势能的变化与重力做功的关系:重力做多少功重力势能就减少多少,克服重力做多少功重力势能就增加多少.重力对物体所做的功等于物体重力势能的减少量: 。
高一物理必修二知识点归纳
高一物理必修二知识点归纳一、曲线运动(一)曲线运动的速度方向曲线运动中质点在某一点的速度方向,就是沿曲线在这一点的切线方向。
(二)曲线运动的条件当物体所受合外力的方向跟它的速度方向不在同一直线上时,物体做曲线运动。
(三)平抛运动1、定义:将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动。
2、性质:平抛运动是加速度为重力加速度(g)的匀变速曲线运动。
3、平抛运动的规律(1)水平方向:做匀速直线运动,速度 vx = v0,位移 x = v0t。
(2)竖直方向:做自由落体运动,速度 vy = gt,位移 y = 1/2gt²。
(3)合速度:v =√(vx²+ vy²) ,方向与水平方向夹角的正切值tanθ = vy / vx 。
(4)合位移:s =√(x²+ y²) ,方向与水平方向夹角的正切值tanα = y / x 。
(四)圆周运动1、线速度 v:描述物体沿圆周运动的快慢,v = s / t ,单位:m/s 。
2、角速度ω:描述物体绕圆心转动的快慢,ω =φ / t ,单位:rad/s 。
3、周期 T:物体沿圆周运动一周所用的时间,单位:s 。
4、频率 f:单位时间内物体完成圆周运动的次数,f = 1 / T ,单位:Hz 。
5、向心加速度 an:描述线速度方向变化快慢的物理量,an = v²/ r =ω²r ,方向始终指向圆心。
6、向心力 Fn:产生向心加速度的力,Fn = m v²/ r =m ω²r ,方向始终指向圆心。
二、万有引力与航天(一)开普勒行星运动定律1、第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
2、第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
3、第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,即 a³/ T²= k ,k 是一个对所有行星都相同的常量。
(完整word版)高一物理必修2知识点总结汇总,推荐文档
提纲一.曲线运动1.曲线运动的特征(1)曲线运动的轨迹是曲线。
(2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。
即使其速度大小保持恒定,由于其方向不断变化,所以:曲线运动一定是变速运动。
(3)由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。
(注意:合外力为零只有两种状态:静止和匀速直线运动。
)曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动。
2.物体做曲线运动的条件(1)从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。
(2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。
3.匀变速运动:加速度(大小和方向)不变的运动。
也可以说是:合外力不变的运动。
4曲线运动的合力、轨迹、速度之间的关系(1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。
(2)合力的效果:合力沿切线方向的分力F2改变速度的大小,沿径向的分力F1改变速度的方向。
①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。
②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。
③当合力方向与速度方向垂直时,物体的速率不变。
(举例:匀速圆周运动)2.绳拉物体合运动:实际的运动。
对应的是合速度。
方法:把合速度分解为沿绳方向和垂直于绳方向。
3.小船渡河例1:一艘小船在200m 宽的河中横渡到对岸,已知水流速度是3m/s ,小船在静水中的速度是5m/s ,求:(1)欲使船渡河时间最短,船应该怎样渡河?最短时间是多少?船经过的位移多大?(2)欲使航行位移最短,船应该怎样渡河?最短位移是多少?渡河时间多长?船渡河时间:主要看小船垂直于河岸的分速度,如果小船垂直于河岸没有分速度,则不能渡河。
min cos d dt t v v θ=⇒=船船(此时θ=0°,即船头的方向应该垂直于河岸) 解:(1)结论:欲使船渡河时间最短,船头的方向应该垂直于河岸。
高中物理必修二复习资料
高中物理必修二复习资料目录1静电场21.1库仑定律 (2)1.2电场强度 (2)1.3电势能与电势 (2)1.4电场线与等势面 (2)1.5电容器 (2)2恒定电流32.1电流与电路 (3)2.2欧姆定律 (3)2.3电功率与焦耳定律 (3)2.4基尔霍夫定律 (3)3磁场43.1磁感应强度 (4)3.2安培定律 (4)3.3电磁感应 (4)4机械波44.1波的描述 (4)4.2波的干涉与衍射 (5)4.3声波 (5)1静电场静电场是由静止电荷产生的电场,描述了电荷之间的相互作用。
1.1库仑定律库仑定律描述了两个静止点电荷之间的相互作用力:F=k e q1q2r2(1.1)其中,F是两个电荷之间的作用力,k e是静电力常数,q1和q2是两个电荷的电量,r 是它们之间的距离。
1.2电场强度电场强度是电场中某点电荷受到的力与该电荷量的比值,表示电场的强弱和方向:E=Fq(1.2)其中,E是电场强度,F是电荷在电场中受到的力,q是电荷量。
1.3电势能与电势电势能是电荷在电场中的位置能:U=k e q1q2r(1.3)电势是单位电荷在电场中的电势能:V=Uq(1.4)其中,V是电势,U是电势能,q是电荷量。
1.4电场线与等势面电场线是表示电场方向的曲线,电场线的切线方向表示电场的方向。
等势面是电势相同的点组成的面,电荷在等势面上移动不做功。
1.5电容器电容器是能够存储电荷的装置,电容器的电容表示电容器储存电荷的能力:C=QV(1.5)其中,C是电容,Q是电荷量,V是电压。
2恒定电流恒定电流是指电流强度和方向保持不变的电流。
2.1电流与电路电流是电荷的定向移动,电流的大小等于单位时间内通过导体截面的电荷量:I=Qt(2.1)其中,I是电流,Q是电荷量,t是时间。
2.2欧姆定律欧姆定律描述了导体中的电流与电压和电阻的关系:V=IR(2.2)其中,V是电压,I是电流,R是电阻。
2.3电功率与焦耳定律电功率是电流在单位时间内做的功:P=IV(2.3)焦耳定律描述了电流通过导体产生的热量:Q=I2Rt(2.4)其中,Q是热量,I是电流,R是电阻,t是时间。
高一物理必修2知识点复习打印版2
高一物理必修2知识点复习一、 曲线运动1、在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。
2、物体做直线或曲线运动的条件:(已知当物体受到合外力F 作用下,在F 方向上便产生加速度a )(1)若F (或a )的方向与物体速度v 的方向相同,则物体做直线运动;(2)若F (或a )的方向与物体速度v 的方向不同,则物体做曲线运动。
3、物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。
4、平抛运动:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。
两分运动说明:(1)在水平方向上由于不受力,将做匀速直线运动;(2)在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动。
5、以抛点为坐标原点,水平方向为x 轴(正方向和初速度的方向相同),竖直方向为y 轴,正方向向下,则物体在任意时刻t 的位置坐标为:2021,gt y t v x == 6、①水平分速度:0v v x =②竖直分速度:gt v y = ③t 秒末的合速度::22y x v v v +=④任意时刻的运动方向可用该点速度方向与x 轴的正方向的夹角θ表示:x yv v =θtan二、圆周运动1、匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。
2、描述匀速圆周运动快慢的物理量(1)线速度v :质点通过的弧长和通过该弧长所用时间的比值,即v =s/t ,单位m/s ;属于瞬时速度,既有大小,也有方向。
方向为在圆周各点的切线方向上**匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变。
(2)角速度ω:ω=φ/t(φ指转过的角度,转一圈φ为π2),单位 rad/s 或1/s ;对某一确定的匀速圆周运动而言,角速度是恒定的(3)周期T ,频率f =1/T(4)线速度、角速度及周期之间的关系: r v Tr v T ωππω===,2,2 3、向心力:r m F 2ω=,或者r v m F 2=,r T m F 2)2(π= 向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。
高一物理必修二知识点复习提纲
抛体运动知识要点一、匀变速直线运动的特征和规律:匀变速直线运动:加速度是一个恒量、且与速度在同一直线上。
基本公式:、、(只适用于匀变速直线运动)。
当v0=0 、a=g(自由落体运动),有v t=gt 、、、。
当V0竖直向上、a= -g(竖直上抛运动)。
注意:(1)上升过程是匀减速直线运动,下落过程是匀加速直线运动。
(2)全过程加速度大小是g,方向竖直向下,全过程是匀变速直线运动(3)从抛出到落回抛出点的时间:t总= 2V0/g =2 t上=2 t下(4)上升的最大高度(相对抛出点):H=v02/2g(5)*上升、下落经过同一位置时的加速度相同,而速度等值反向(6)*上升、下落经过同一段位移的时间相等。
(7)*用全程法分析求解时:取竖直向上方向为正方向,S>0表示此时刻质点的位置在抛出点的上方;S<0表示质点位置在抛出点的下方。
v t >0表示方向向上;v t <0表示方向向下。
在最高点a=-g v=0。
二、运动的合成和分解:1.两个匀速直线运动的物体的合运动是___________________运动。
一般来说,两个直线运动的合运动并不一定是____________运动,也可能是_____________运动。
合运动和分运动进行的时间是__________的。
2.由于位移、速度和加速度都是______量,它们的合成和分解都按照_________法则。
三、曲线运动:曲线运动中质点的速度沿____________方向,曲线运动中,物体的速度方向随时间而变化,所以曲线运动是一种__________运动,所受的合力一定.必具有_________。
物体做曲线运动的条件是________ ________ 。
四、平抛运动(设初速度为v0):1.特征:初速度方向____________,加速度____________。
是一种。
2.性质和规律:水平方向:做______________运动,v X=v0、x=v0t。
高一物理必修二复习知识点优秀4篇
高一物理必修二复习知识点优秀4篇高一年级物理必修二知识点复习篇一1、力的冲量定义:力与力作用时间的乘积--冲量I=Ft矢量:方向--当力的方向不变时,冲量的方向就是力的方向。
过程量:力在时间上的累积作用,与力作用的一段时间相关单位:牛秒2、动量定义:物体的质量与其运动速度的乘积--动量p=mv矢量:方向--速度的方向状态量:物体在一些置、时刻的动量单位:千克米每秒、kgm/s3、动量定理:∑Ft=mvt-mv0动量定理研究对象是一个质点,研究质点在合外力作用下、在一段时间内的一个运动过程。
定理表示合外力的冲量是物体动量变化的原因,合外力的冲量决定并量度了物体动量变化的大小和方向。
矢量性:公式中每一项均为矢量,公式本身为一矢量式,在同一条直线上处理问题,可先确定正方向,可用正负号表矢量的方向,按代数方法运算。
当研究的过程作用时间很短,作用力急剧变化(打击、碰撞)时,∑F可理解为平均力。
动量定理变形为∑F=Δp/Δt,表明合外力的大小方向决定物体动量变化率的大小方向,这是牛顿第二定律的另一种表述。
4、动量守恒:一个系统不受外力或所受到的合外力为零,这个系统的动量就保持不变,可用数学公式表达为p=p'系统相互作用前的总动量等于相互作用后的总动量。
Δp1=-Δp2相互作用的两个物体组成的系统,两物体动量的增量大小相等方向相反。
Δp=0系统总动量的变化为零“守衡”定律的研究对象为一个系统,上式均为矢量运算,一维情况可用正负表示方向。
注意把握变与不变的关系,相互作用过程中,每一个参与作用的成员的动量均可能在变化着,但只要合外力为零,各物体动量的矢量合总保持不变。
注意各状态的动量均为对同一个参照系的动量。
而相互作用的系统可以是两个或多个物体组成。
5、怎样判断系统动量是否守衡?动量守衡条件是系统不受外力,或合外力为零。
一般研究问题,如果相互作用的内力比外力大很多,则可认为系统动量守衡;根据力的独立作用原理,如果在方向上合外力为零,则在该方向上动量守衡。
(完整版)高一物理会考——必修2总复习汇总,推荐文档
第五章曲线运动复习一、曲线运动1、物体做曲线运动的条件:运动物体所受的合外力(或加速度)的方向跟它的速度方向不在同一直线上2、物体做曲线运动的条件的讨论:①当合外力与速度的之间的夹角0°90时,物体将做加速曲线运动;②当满足90°时,物体做匀速圆周运动;③但满足9001800时,物体将做减速曲线运动。
3、判断曲线运动的轨迹时应注意的问题:①与运动轨迹的曲线相切的方向是速度方向,而不是合外力的方向;②运动轨迹偏向合外力的方向,即受力指向轨迹的凹侧。
例1、下列说法中正确的是()A.如果合外力方向与速度的方向不在在同一条直线上,则物体的速度一定发生变化B.如果合外力方向与速度的方向成锐角,则物体的速度将增加,方向也发生改变C.如果合外力方向与速度的方向成钝角,则物体的速度将减小,方向也发生改变D.如果合外力方向总跟速度的方向垂直,则物体的速度大小不会改变,而物体的速度方向发生改变E.曲线运动一定是变速运动F.变速运动一定是曲线运动二、抛体运动规律抛体运动研究和求解主要思路:运动的分解,即首先把运动分解为相互独立但同时发生的两个分运动,一般分为水平方向和竖直方向的分运动,分别研究这两个分运动,再通过运动的合成(位移和速度的合成)来求解实际运动。
1、平抛运动规律:1)平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动。
其各方向的速度与位移如下: ① 水平方向:V x V 。
, x v °t ,1 O② 竖直方向:V y gt , y 2gt③ 合速度:V v X v y , v 0 (gt)2 , ④ 合位移:s Jx 2 y 2,⑤ 运动时间由高度决定,与初速度X V o t V o ,2h/g2)处理平抛物体的运动时应注意:个分运动的存在而受到影响;但两个运动是同时发生的 ② 水平方向和竖直方向的两个分运动具有等时性,运动时间由高度决定,与V o 无关;③ 平抛运动是匀加速曲线运动; ④解决平抛运动问题是利用“四个公式”,“三个速度”之间的关系进行求解例2、一个物体以初速度v o 水平抛出,经过时间t 后落地,求:①下落高度; ② 落地时的速度;a x 0a ygtan v ytan Vxy xv o 无关,即:t v2h/ g ;水平距离①水平方向和竖直方向的两个分运动是相互独立的,其中每个分运动都不会因另一例3、一个物体从高为h的地方,以初速度v o水平抛出,求:①水平位移;③落地时的速度;例4、一个物体以初速度V o水平抛出,落地时的速度大小为v t,求物体空中飞行时间;例5、一个物体以初速度V。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一物理必修二复习资料5.1 曲线运动1. 曲线运动:轨迹是曲线的运动叫做曲线运动。
2. 曲线运动的速度:(1)质点在某一点的速度方向是沿曲线在这一点的切线方向。
(2)曲线运动的速度方向时刻改变。
(3)曲线运动一定是变速运动。
3. 做曲线运动的条件: (1)物体具有初速度。
(2)当物体所受合外力(或具有的加速度)的方向跟它的速度方向不在同一直线上时,物体做曲线运动。
4. 只要合力 F 合(或加速度a )恒定,物体就做匀变速运动。
5. 做曲线运动的物体,合外力必指向运动轨迹的凹部内侧。
6. 曲线运动常用结论:(1)当︒<<︒900θ(即锐角)时,做加速曲线运动。
(2)当︒=90θ(即直角)时,做匀速圆周运动。
(3)当︒<<︒18090θ(即钝角)时,做减速曲线运动。
7. 运动状态:(1)静止或匀速直线运动合→=0F 。
(2)变速直线运动共线与且合合→≠v F F 0。
(3)曲线运动不共线与且合合→≠v F F 0。
5.1 运动的合成与分解1. 合运动与分运动:(1)合运动:物体实际发生的运动,叫合运动。
(包括:合位移、合速度、合加速度)(2)分运动:物体同时参与合成运动的运动叫分运动。
(包括:分位移、分速度、分加速度) 2. 运动的合成与分解:(1)已知物体的几个分运动求合运动叫做运动的合成。
(2)已知物体的合运动求分运动叫做运动的分解。
(3)运动的合成与分解遵循平行四边形定则,可以运用正交分解法。
3. 合运动与分运动的关系:(1)独立性:分运动各自独立、互不影响,但共同决定合运动的性质和轨迹。
(2)等时性:分运动经历的时间与合运动经历的时间相同,即同时开始,同时结束。
(3)等效性:各分运动叠加起来与合运动具有相同的效果。
4. 两个直线运动的合成:(1)如果物体所受的合力(或合加速度)与合速度是在一条直线上,物体就做直线运动。
(2)如果物体所受的合力(或合加速度)与合速度是不在一条直线上,物体就做曲线运动。
5.2 平抛运动1. 平抛运动:物体以一定的初速度沿水平方向抛出,只在重力作用下的运动叫平抛运动。
2. 平抛运动的特点:(1)水平方向:匀速直线运动( v x = v 0 )。
(2)竖直方向:自由落体运动( a = g )。
(3)运动轨迹为抛物线,是匀变速曲线运动。
3. 平抛运动的规律:( α 是 v x 与 v 的夹角; θ 是合位移 s 与水平位移 x 的夹角 ) 速度 位移 (1)水平方向:0v v x = t v t v x x 0==(2)竖直方向:gy v gt v yy 2,2== 221gt y =(3)合运动: 22y x v v v +=22y x s +=(4)方向: 0tan v gtv v x y==α 02tan v gt x y ==θ 4. 平抛运动的常用结论:(计算题中不可直接使用) (1)飞行时间:ght 2=(取决于下落的高度 h )。
(2)水平位移:ghv x 20= (取决于下落的高度 h 与水平初速度 v 0 )。
(3)落地速度:gh v v 220+=(取决于下落的高度 h 与水平初速度 v 0 )。
(4)任意两个时刻间的速度变化量t g v v y ∆=∆=∆,方向恒为竖直向下。
(5)任意时刻速度反向延长线经过水平位移 x 的中点,且 θαtan 2tan =。
5.4 圆周运动1. 线速度:t sv ∆∆=,∆s 为弧长,单位:m/s ;方向:沿圆周该点的切线方向。
2. 角速度:t∆∆=θω,∆θ 为角度(采用弧度制),单位:rad/s 或 s -13. 线速度与角速度的关系:r v ω=。
4. 匀速圆周运动的特点:(1)线速度的大小处处相等,方向时刻改变,是变加速曲线运动。
(2)角速度时刻处处相等。
(3)周期恒定不变(ωπ=π=22v r T )。
5. 周期( T ):做匀速圆周运动的物体运动一周所用的时间。
(单位:秒,s )6. 频率( f ):做匀速圆周运动的物体每秒转过的圈数。
(单位:赫兹,Hz )7. 转速( n ):做匀速圆周运动的物体单位时间转过的圈数。
(单位:转/秒,r/s 或 r/min )xsA →B 用时 ∆t8. T 、f 与n 的关系:Tf n 1==。
9. 同轴传动:转盘上任意两点绕轴转动的角速度 ω 相等。
10. 皮带传动:皮带上各点及两轮边缘上的每一点,线速度 v 的大小相等。
5.5 向心加速度1. 速度变化量 ∆v :从初速度 v 1 的末端指向末速度 v 2 的末端的矢量( ∆v = v 2 - v 1 )。
2. 向心加速度:任何做匀速圆周运动的物体的加速度方向都指向圆心,这个加速度叫做向心加速度。
3. 向心加速度的特点:(1)方向:总是沿半径指向圆心,跟该点线速度方向垂直,(2)大小:v r Tr r v a ωω=π===222n )2(。
(3)物理意义:描述线速度方向变化快慢的物理量。
(4)向心加速度只改变线速度的方向,不改变线速度的大小。
4. 做匀速圆周运动的物体向心加速度方向时刻改变,是变加速5.6 向心力1. 向心力:做匀速圆周运动的物体所受到的指向圆心的合外力2. 向心力的特点:(1)方向:总是沿半径指向圆心,跟该点线速度方向垂直,方向时刻改变(2)大小:v m r Tm r m r v m ma F ωω=π====222n n )2(。
(3)作用效果:产生向心加速度,不断改变线速度的方向。
(4)向心力是按效果来命名的,是效果力,受力分析时不可出现向心力。
3. 向心力的来源:向心力不是一种特殊的力,它可能是重力或弹力或摩擦力,或者是某个力的分力,还可能是它们的合力。
4. 物体只有做匀速圆周运动,合力才始终等于向心力,这时合力才指向圆心。
( F 合 = F n )5. 物体做变速圆周运动,合力一般不等于向心力。
( F 合 ≠ F n )6. 向心力 F n (或向心加速度 a n )方向始终与线速度 v 方向垂直,且只改变线速度 v 的方向,不改变线速度的大小。
7. 切向力 F t (或切向加速度 a t )方向始终与线速度 v 方向在一条直线上,且只改变线速度 v 的大小,不改变线速度的方向。
5.7 生活中的圆周运动1. 物体做圆周运动需要向心力,向心力由物体受到外界各种力指向圆心的合力来提供。
2. 外界“提供”的向心力:物体与圆心连线方向上所有力(包括沿这个方向的分力)的合力就是提供物体做圆周运动的向心力。
3. 物体“需要”的向心力:根据向心力公式r m rv m F 22n ω==,物体所需要的向心力的大小,由物体的质量、圆周半径和线速度(或角速度)共同决定。
4. 当外界“提供”的向心力等于物体“需要”的向心力时,物体就做圆周运动。
5. 若物体做圆周运动,则表示外界“提供”的向心力等于物体“需要”的向心力。
(F 供 = F 需)6. 离心运动:当向心力突然消失或者指向圆心的合力不足时,物体做逐渐远离圆心的运动,叫做离心运动。
(1)当 F 供 = m ω2r 时,物体做匀速圆周运动。
(2)当 F 供 = 0 时,物体沿切线方向飞出。
(3)当 F 供 < m ω2r 时,物体逐渐远离圆心。
(4)当 F 供 > m ω2r 时,物体逐渐靠近圆心。
7. 求解圆周运动问题的思路: (1)根据题意,确定物体做圆周运动的平面、半径和圆心。
(2)对物体进行受力分析,找出向心力。
以圆心为正方向,所有指向圆心的力相加,减去所有背离圆心的力,所得的合力“提供”物体做圆周运动的向心力。
(3)根据牛顿第二定律,列出运动方程 (r m rv m F F 22ω==-背离圆心指向圆心)。
6.1 行星的运动1. 开普勒第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
2. 开普勒第二定律(面积定律):对于任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
3. 开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。
(关只与中心天体的质量有k k Ta ,23=)6.3 万有引力定律1. 万有引力定律:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量 m 1 和 m 2 的乘积成正比,与它们之间距离 r 的二次方成反比,即221r m m GF =。
2. 引力常量(卡文迪许“扭称实验”):2211/kg m N 1067.6⋅⨯=-G3. 公式的适用条件:(1)可看成质点的两物体。
(2)质量分布均匀的球体间,r 是两球心间的距离。
(3)两个物体间的距离远远大于物体本身的大小时,其中 r 为两物体质心间的距离。
r O 2 mgrmgN F N6.4 万有引力理论的成就1. 已知天体半径 R 与重力加速度 g ,则:G gR M mg RMm G 22=⇒=。
2. 中心天体对卫星的万有引力提供卫星做圆周运动的向心力:(1)已知行星公转周期 T 与轨道半径 r ,则:232224)2(GT r M r Τm r Mm G π=⇒π=。
(2)已知行星线速度 v 与轨道半径 r ,则:G rv M r v m r Mm G 222=⇒=。
(3)已知行星角速度 ω 与轨道半径 r ,则:Gr M r m r Mm G 3222ωω=⇒=。
3. 已知天体半径 R ,则天体的体积为:334R V π=,天体密度为:3233R GT r V M π==ρ。
6.5 宇宙航行1. 第一宇宙速度(环绕速度):物体在地面附近绕地球做匀速圆周运动的速度,其大小为 7.9km/s ,是人造地球卫星的最小发射速度和最大环绕速度。
2. 第二宇宙速度(脱离速度):在地面附近发射飞行器,使之能够克服地球的引力作用永远离开地球所需的最小发射速度,其大小为 11.2 km/s 。
3. 第三宇宙速度(逃逸速度):在地面附近发射飞行器,使之能够挣脱太阳引力的束缚永远飞到太阳系以外所需的最小发射速度,其大小为 16.7 km/s 。
2n rGMa =,r GM v =,3r GM =ω,GMr T 32π= (1)轨道半径 r 越大,a n ,v ,ω 都越小。
(2)轨道半径 r 越大,T 越大。
5. 同步卫星(三定)(1)周期( T = 24 h )一定,与地球自转周期相同。
(2)轨道平面一定,卫星轨道平面与地球赤道平面重合。
(3)同步卫星离地面高度 h 一定,加速度 a n ,运行速率 v ,角速度 ω 一定。
6. 解决卫星运行问题的基本思路:(1)万有引力提供卫星运行所需的向心力,有r Tm r m r v m ma r Mm G 222n 2)2(π====ω。