几何图形初步单元测试与练习(word解析版)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学几何模型部分解答题压轴题精选(难)

1.如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D.

(1)若,,求∠D的度数;

(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D、∠M、∠N的关系,并说明理由.

【答案】(1)解:∵BD平分∠ABC,

∴∠CBD= ∠ABC= ×75°=37.5°,

∵CD平分△ABC的外角,

∴∠DCA= (180°-∠ACB)= (180°-45°)=67.5°,

∴∠D=180°-∠DBC-∠DCB=180°-37.5°-67.5°-45°=30°.

(2)解:猜想:∠ D = ( ∠ M + ∠ N − 180 ° ).

∵∠M+∠N+∠CBM+∠NCB=360°,

∴∠D=180°- ∠CBM-∠NCB- ∠NCE.

=180°- (360°-∠NCB-∠M-∠N)- ∠NCB- ∠NCE.

=180°-180°+ ∠NCB+ ∠M+ ∠N-∠NCB- ∠NCE.

= ∠M+ ∠N- ∠NCB- ∠NCE= ,

或写成

【解析】【分析】(1)根据角平分线的定义可得∠DBC=37.5°,根据邻补角定义以及角平分线定义求得∠DCA的度数为67.5°,最后根据三角形内角和定理即可求得∠D的度数;

(2)由四边形内角和与角平分线性质即可求解.

2.如图1,已知,点A、B在直线a上,点C、B在直线b上,且于E.

(1)求证:;

(2)如图2,平分交于点F,平分交于点G,求

的度数;

(3)如图3,P为线段上一点,I为线段上一点,连接,N为的角平分线

上一点,且,则、、之间的数量关系是________. 【答案】(1)证明:过作 ,

(2)解:作,,

设,,

由(1)知:,,

∴,

∴,

同理:,

(3)

【解析】【解答】解:(3)结论:或

I.∠NCD在∠BCD内部时,

过I点作,过N点作,设∠IPN=∠BPN=x, =y,

∴∠BCD=3y.

∵a∥b,

∴,,,

∴,,

∴,

II. 在外部时,如图3(2):

过I点作,过N点作,设∠IPN=∠BPN=x, =y,

∴∠BCD=y.

∵a∥b,

∴IG∥a∥

∴,,,

∴,,

∴,

∴.

故答案为:.

【分析】(1) 过作EF∥a,由BC⊥AD可知,由平行可知,,从而可得 = + = ;

(2)作,,设,,由平行线性质和邻补角定义可得,,进而计算出

即可解答;

(3)分两种情况解答:I.∠NCD在∠BCD内部,II 外部,仿照(2)解答即可.

3.在直角坐标系中,已知点A(a,0),B(b,c),C(d,0),a是-8的立方根,方程2x3b-5-3y2b-2c+5=1是关于x,y的二元一次方程,d为不等式组的最大整数解.

(1)求点A、B、C的坐标;

(2)如图1,若D为y轴负半轴上的一个动点,当AD∥BC时,∠ADO与∠BCA的平分线

交于M点,求∠M的度数;

(3)如图2,若D为y轴负半轴上的一个动点,连BD交x轴于点E,问是否存在点D,使S△ADE≤S△BCE?若存在,请求出D的纵坐标y D的取值范围;若不存在,请说明理由.【答案】(1)解:-8的立方根是-2,

∴a=-2,

方程2x3b-5-3y2b-2c+5=1是关于x,y的二元一次方程,

∴,

解得,,

不等式组的最大整数解是5,

则A(-2,0)、B(2,4)、C(5,0)

(2)解:作MH∥AD,

∵AD∥BC,

∴MH∥BC,

∵∠AOD=90°,

∴∠ADO+∠OAD=90°,

∵AD∥BC,

∴∠BCA=∠OAD,

∴∠ADO+∠BCA=90°,

∵∠ADO与∠BCA的平分线交于M点,

∴∠ADM= ∠ADO,∠BCM= ∠BCA,

∴∠ADM+∠BCM=45°,

∵MH∥AD,MH∥BC,

∴∠NMD=∠ADM,∠HMC=∠BCM,

∴∠M=∠NMD+∠HMC=∠ADM+∠BCM=45°;

(3)解:存在,

连AB交y轴于F,

设点D的纵坐标为y D,

∵S△ADE≤S△BCE,

∴S△ADE+S△ABE≤S△BCE+S△ABE,即S△ABD≤S△ABC,

∵A(-2,0),B(2,4),C(5,0),

∴S△ABC=14,点F的坐标为(0,2),

S△ABD= ×(2-y D)×2+ ×(2-y D)×2=4-2y,

由题意得,4-2y D≤14,

解得,y D≥-5,

∵D在y轴负半轴上,

∴y D<0,

∴D的纵坐标y D的取值范围是-5≤y D<0.

【解析】【分析】(1)根据立方根的概念、二元一次方程组的定义、一元一次不等式组的解法分别求出a、b、c、d,得到点A、B、C的坐标;(2)作MH∥AD,根据平行线的性质得到∠BCA=∠OAD,得到∠ADO+∠BCA=90°,根据角平分线的定义得到∠ADM+∠BCM=45°,根据平行线的性质计算即可;(3)连AB交y轴于F,根据题意求出点F的坐标,根据三角形的面积公式列出方程,解方程即可.

4.将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.

(1)如图(1)若∠BOD=35°,则∠AOC=________ .

如图(2)若∠BOD=35°,则∠AOC=________ .

相关文档
最新文档