2018年普通高等学校招生全国统一考试数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试
理科数学
本试卷共23题,共150分
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。 1.
1212i
i
+=-( ) A .4355i --
B .4355
i -+
C .3455
i --
D .3455
i -+
2.已知集合(){}
2
23A x y x
y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( )
A .9
B .8
C .5
D .4
3.函数()2
x x
e e
f x x --=的图象大致是( )
4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=( ) A .4
B .3
C .2
D .0
5.双曲线()22
22100x y a b a b
-=>,> )
A .y =
B .y =
C .y x =
D .y x =
6.在ABC △中,cos
2C =
,1BC =,5AC =,则AB =( )
A .42
B .30
C .29
D .25
7.为计算11111
123499100
S =-
+-+⋅⋅⋅+-
,设计了右侧的程序框图, 则在空白框中应填入( ) A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+
8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112
B .
114
C .
115
D .
118
9.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( )
A .15
B .
56
C .
55
D .
22
10.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是( )
A .2
x B .
2
x C .
34
x D .x
11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则
()()()()12350f f f f +++⋅⋅⋅+=( )
A .50-
B .0
C .2
D .50
12.已知1F ,2F 是椭圆()22
22:10x y C a b a b
+=>>的左、右焦点交点,A 是C 的左顶点,点P
在过A
的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .
23
B .
12
C .13
D .
14
二、填空题,本题共4小题,每小题5分,共20分.
13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.
14.若x y ,满足约束条件25023050x y x y x +-⎧⎪
-+⎨⎪-⎩
≥≥≤,则z x y =+的最大值为_________.
15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.
16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为
7
8
,SA 与圆锥底面所成角为45︒.若SAB △
的面积为,则该圆锥的侧面积为_________.
三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题。每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答。 (一)必答题:60分。 17.(12分)
记n S 为等差数列{}n a 的前n 项和,已知17a =-,115S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.
18.(12分)
下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.
为了预测改地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年数据(时间变量t 的值依次为127⋅⋅⋅,,,)建立模型①:30.413.5y t =-+:根据2010年至2016年的数据(时间变量t 的值依次为127⋅⋅⋅,,,)建
立模型②:9917.5y t =+.
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.
19.(12分)
设抛物线2:4C y x =的焦点为F ,过F 且斜率为()0k k >的直线l 与C 交于A B ,两点。8AB =.
(1)求l 的方程;