统计分析大赛试题答案及解析

合集下载

统计分析大赛试题答案及解析

统计分析大赛试题答案及解析

※第一部分(),共100小题,100.0分。

1、在参数估计中,估计量的期望值等于总体参数,即 说明是θ的( )。

A. 无偏估计量B. 有效估计量C. 一致估计量D. 充分估计量正确答案:A2、在回归分析中,被预测或被解释的变量称为( )。

(1.0分)A. 自变量B. 因变量C. 随机变量D. 非随机变量正确答案:B3、回归系数和相关系数的符号是一致的,其符号均可用来判断变量之间是( )。

A. 线性相关还是非线性相关B. 完全相关还是不完全相关C. 单相关还是复相关D. 正相关还是负相关正确答案:D4、已知变量X 和Y 的协方差为-50,X 的方差为170,Y 的方差为20,其相关系数为( )。

(1.0分)A. 0.86B. ―0.86C. 0.01D. -0.01正确答案:B5、相关系数的取值范围是( )。

(1.0分)A. -1<r<1B. -1≤r ≤1C. 0≤r ≤1D. ∣r ∣≥1正确答案:B6、设某商品供应量y (件)和商品价格x (元)的一元线性回归方程为ŷ=59+148x ,这意味着商品价格每提高1元时,供应量平均( )。

(1.0分)A. 增加148件B. 减少148件C. 增加207件D. 减少207件正确答案:A7、回归方程y=a+bx 中,回归系数b 为负数,说明自变量与因变量为( )。

(1.0A. 负相关B. 正相关C. 显著相关D. 高度相关正确答案:A8、下列关系中,属于负相关关系的是( )。

(1.0分)θθ=)ˆ(E θˆA. 父母的身高与子女身高的关系B. 球的体积与半径之间的关系C. 一个家庭的收入与支出的关系D. 商品的价格与需求量之间的关系正确答案:D9、相关系数等于0表明两个变量()。

(1.0分)A. 存在相关关系B. 不存在相关关系C. 存在线性相关关系D. 不存在线性相关关系正确答案:D10、一位母亲记录了儿子3-10岁的身高,一位母亲记录了儿子3-10岁的身高,由此建立的身高与年龄的回归直线方程为ŷ=71.54+7.36x,据此对这个孩子11岁时的身高进行预测,以下正确的是()。

2021年SAS大赛初赛试题

2021年SAS大赛初赛试题

2021年SAS大赛初赛试题sas数据分析大赛试题注意:建立逻辑库test保存所有原始数据集,每道题要将代码和运行结果保存在word文档中。

1、(20分)a600605所给数据中包含上证股票600605,1995-2001年的行情信息。

其数据信息如下所示。

[题目建议]1)使用data步计来计算a600605这支股票在1995-1998年的市场收益,即该股票的月收益率为(个股月收益率=[(本月收盘价-上月收盘价)/上月收盘价]×100%),过程中不要采用dif和lag函数。

其中date的格式设置为‘1995-01’的形式,并删掉1995年1月的观测数据。

2)编写graph,绘制a600605这支股票的收益率曲线,横坐标标签改为“日期”,纵坐标标签下改成“月收益率”2、(30分)数据集credit_old中存放的是用于构建客户信用模型的数据,其中target为被解释变量,其他变量为解释变量。

由于字符变量不能用于后续的统计分析工作,因此需要将credit_model中的字符变量重编码为数值变量。

由于分析时并不关心每个水平的具体编码是什么,因此按照从1到k(k为该变量水平数)编码即可,比如res变量一共用3个水平,分别是u、r、s,编码为1、2、3即可。

但是需要使用宏进行自动处理。

[题目建议]1)将test库下的credit_old数据集复制到work逻辑库下,并重命名为credit_new。

(5分)2)使用数据字典读取credit_new数据集下所有解释变量中的字符变量的个数和名称。

(10分后)3)编写宏,为每一个字符变量重新编码,以“变量名_cd”的命名方式保存新的编码,并嵌入至原credit_new数据集的后面,效果如下:(15分后)3、(25分)数据集base来源于一个全国性的社会学调查的一部分,采集了受访者对于一些社会问题的感受。

变量标签变量q8q22q3f标签您指出您的收入水平在整个社会中处在何种边线?就目前社会环境来说,您指出凭个人努力可以赢得较好发展的期望存有多小?贫富差距不断扩大age10年龄组weight权数所有的数据除了weight之外,全部就是等级数据,分值越高意味著评价越负面。

数据分析经典测试题附解析

数据分析经典测试题附解析

数据分析经典测试题附解析一、选择题1.下列说法正确的是 ()A.要调查现在人们在数学化时代的生活方式,宜采用普查方式B.一组数据3,4,4,6,8,5的中位数是4C.必然事件的概率是100%,随机事件的概率大于0而小于1D.若甲组数据的方差2s甲=0.128,乙组数据的方差2s乙=0.036,则甲组数据更稳定【答案】C【解析】【分析】直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案.【详解】A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误;B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误;C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确;D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误;故选:C.【点睛】此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键.2.一组数据2,x,6,3,3,5的众数是3和5,则这组数据的中位数是()A.3 B.4 C.5 D.6【答案】B【解析】【分析】由众数的定义求出x=5,再根据中位数的定义即可解答.【详解】解:∵数据2,x,3,3,5的众数是3和5,∴x=5,则数据为2、3、3、5、5、6,这组数据为352=4.故答案为B.【点睛】本题主要考查众数和中位数,根据题意确定x的值以及求中位数的方法是解答本题的关键.3.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月【答案】C【解析】【分析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【详解】A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.4.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分95908580人数4682那么20名学生决赛成绩的众数和中位数分别是( )A.85,90 B.85,87.5 C.90,85 D.95,90【答案】B【解析】试题解析:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分. 故选B .考点:1.众数;2.中位数5.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①22s s >甲乙;②22s s <甲乙;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定.由统计图可知正确的结论是( )A .①③B .①④C .②③D .②④【答案】C 【解析】 【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案. 【详解】由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9, 乙的成绩为8,9,7,8,10,7,9,10,7,10,x 甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5, x 乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S 甲2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85, 乙的方差S 乙2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.45, ∴S 2甲<S 2乙,∴甲的射击成绩比乙稳定; 故选:C . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.对于一组统计数据:1,1,4,1,3,下列说法中错误的是( ) A .中位数是1 B .众数是1 C .平均数是1.5D .方差是1.6【答案】C【解析】【分析】将数据从小到大排列,再根据中位数、众数、平均数及方差的定义依次计算可得答案.【详解】解:将数据重新排列为:1、1、1、3、4,则这组数据的中位数1,A选项正确;众数是1,B选项正确;平均数为111345++++=2,C选项错误;方差为15×[(1﹣2)2×3+(3﹣2)2+(4﹣2)2]=1.6,D选项正确;故选:C.【点睛】本题主要考查中位数、众数、平均数及方差,解题的关键是掌握中位数、众数、平均数及方差的定义与计算公式.7.某青年排球队12名队员的年龄情况如下:则12名队员的年龄()A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁【答案】D【解析】【分析】中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数;众数是指在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个).【详解】解:在这一组数据中19岁是出现次数最多的,故众数是19岁;将这组数据从小到大的顺序排列后,处于中间位置的数是20岁,那么由中位数的定义可知,这组数据中的中位数是20岁.故选:D.【点睛】理解中位数和众数的定义是解题的关键.8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.学生类型人数时间010t≤<1020t≤<2030t≤<3040t≤<40t≥性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【答案】C【解析】【分析】根据中位数与平均数的意义对每个选项逐一判断即可.【详解】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5-25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误【点睛】本题考查了中位数与平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.已知一组数据:6,2,8,x,7,它们的平均数是6.则这组数据的中位数是()A.7 B.6 C.5 D.4【答案】A【解析】分析:首先根据平均数为6求出x的值,然后根据中位数的概念求解.详解:由题意得:6+2+8+x+7=6×5,解得:x=7,这组数据按照从小到大的顺序排列为:2,6,7,7,8,则中位数为7.故选A.点睛:本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.10.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()A.众数是110 B.方差是16C.平均数是109.5 D.中位数是109【答案】A【解析】【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差.【详解】解:这组数据的众数是110,A正确;16x=×(110+106+109+111+108+110)=109,C错误;21S6= [(110﹣109)2+(106﹣109)2+(109﹣109)2+(111﹣109)2+(108﹣109)2+(110﹣109)2]=83,B错误;中位数是109.5,D错误;故选A.【点睛】本题考查的是众数、平均数、方差、中位数,掌握它们的概念和计算公式是解题的关键.11.下列说法正确的是( )A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为7【答案】D【解析】【分析】根据必然事件的意义、概率的意义、方差的意义、中位数和众数的概念逐一进行判断即可.【详解】A.打开电视机,正在播放“张家界新闻”是随机事件,故A选项错误;B.天气预报说“明天的降水概率为65%”,意味着明天可能下雨,故B选项错误;C.两组数据平均数相同,则方差大的更不稳定,故C选项错误;D,数据5,6,7,7,8的中位数与众数均为7,正确,故选D.【点睛】本题考查了概率、方差、众数和中位数等知识,熟练掌握相关知识的概念、意义以及求解方法是解题的关键.12.某地区汉字听写大赛中,10名学生得分情况如下表:那么这10名学生所得分数的中位数和众数分别是()A.85和85 B.85.5和85 C.85和82.5 D.85.5和80【答案】A【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.【详解】把这组数据从小到大排列,处于中间位置的两个数都是85,那么由中位数的定义可知,这组数据的中位数是85;在这一组数据中85出现的次数最多,则众数是85;故选:A.【点睛】此题考查众数与中位数的意义.解题关键在于掌握众数是一组数据中出现次数最多的数据;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.13.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是( )A.平均数B.方差C.中位数D.众数【答案】D【解析】【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选D.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.14.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【答案】D【解析】【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.15.在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()A.四位同学身高的中位数一定是其中一位同学的身高B.丁同学的身高一定高于其他三位同学的身高C.丁同学的身高为1.71米D.四位同学身高的众数一定是1.65【答案】C【解析】【分析】根据平均数,中位数,众数的定义求解即可.【详解】解:A、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;B、丁同学的身高一定高于其他三位同学的身高,错误;C、丁同学的身高为1.654 1.633 1.71⨯-⨯=米,正确;D.四位同学身高的众数一定是1.65,错误.故选:C.【点睛】本题考查的是平均数,中位数和众数,熟练掌握平均数,中位数和众数是解题的关键.16.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定【答案】A【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选A.【点睛】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.错因分析容易题.失分原因是方差的意义掌握不牢.17.5、2.4、2.4、2.4、2.3的中位数是2.4,选项C不符合题意.15×[(2.3﹣2.4)2+(2.4﹣2.4)2+(2.5﹣2.4)2+(2.4﹣2.4)2+(2.4﹣2.4)2]=15×(0.01+0+0.01+0+0)=15×0.02=0.004∴这组数据的方差是0.004,∴选项D不符合题意.故选B.【点睛】此题主要考查了中位数、众数、算术平均数、方差的含义和求法,要熟练掌握.18.数据2、5、6、0、6、1、8的中位数是()A.8 B.6 C.5 D.0【答案】C【解析】【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.【详解】将数据从小到大排列为:0,1,2,5,6,6,8∵这组数据的个数是奇数∴最中间的那个数是中位数即中位数为5故选C .【点睛】此题考查了平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.19.某班统计一次数学测验成绩的平均分与方差,计算完毕以后才发现有位同学的分数还未登记,只好重新算一次.已知原平均分和原方差分别为x ,2s ,新平均分和新方差分别为1x ,21s ,若此同学的得分恰好为x ,则( )A .1x x <,221s s =B .1x x =,221s s >C .1x x =,221s s <D .1x x =,221s s = 【答案】B【解析】【分析】根据平均数和方差的公式计算比较即可.【详解】设这个班有n 个同学,数据分别是a 1,a 2,…a i …,a n ,第i 个同学没登录,第一次计算时总分是(n−1)x ,方差是s 2=11n -[(a 1−x)2+…(a i−1−x)2+(a i+1−x)2+…+(a n −x)2] 第二次计算时, x =()1n x x n -+=x , 方差s 12=1n [(a 1−x)2+…(a i−1−x)2+(a i −x)2+(a i+1−x)2+…+(a n −x)2]=1n n -s 2, 故221s s >,故选B .【点睛】此题主要考查平均数和方差的计算,解题的关键是熟知其计算方法.20.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差239s =.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( )A .平均分不变,方差变大B .平均分不变,方差变小C .平均分和方差都不变D .平均分和方差都改变【答案】B【解析】【分析】根据平均数,方差的定义计算即可.【详解】解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.【点睛】本题考查方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.。

第四届全国大学生市场调查分析大赛知识测试题

第四届全国大学生市场调查分析大赛知识测试题

知识测试题(学校: 考号: 姓名:答题说明:本测试所有题目均为单项选择题,请将你认为正确的选项填入括号(机读卡)内,每道题只有一个选项是正确的。

一、统计学知识部分(50题)1.下列说法表述最恰当的是()。

A .统计学是处理数据的一门科学B .统计学是调查的一门科学C .统计学是收集、处理、分析、解释数据并从数据中得出结论的一门科学D .统计学是研究经济发展规律的科学2.“统计”一词有多种含义,其中一种是指分析统计数据的方法和技术,即()。

A .抽样方法B .统计学C .统计工作D .统计数据3.根据统计方法研究和应用,可将统计学分为理论统计学和()。

A .应用统计学B .描述统计学C .推断统计学D .经济统计学4.统计学研究最关注下列什么问题()。

A .现象的表现形式B .多样性C .变异D .作用机制5.通过直接调查或科学试验得到的统计数据,我们称之为()数据。

A .第一手B .第二手C .抽样D .普查第四届全国大学生市场调查分析大赛本科模拟卷)6.从调查对象的总体中随机抽取一部分单位作为样本进行的调查,属于()。

A.普查B.抽样调查C.统计报表D.访问调查7.统计调查中的调查项目是指()。

A.统计指标B.统计分组C.调查单位的标志D.调查单位的标志表现8.在全国人口普查中,调查单位是()。

A.全国的人口B.全国的每一个人C.全国的居民户D.每一户9.在工业企业生产设备普查中,企业的每一台生产设备是()。

A.调查对象B.填报单位C.调查项目D.调查单位10.与原始资料相比,二手资料的优势在于()。

A.含有更多的有效信息B.易于取得,而且成本较低C.可以直接使用而不必作任何处理D.更有利于企业解决当前的营销问题11.数据的()是数据整理的先前步骤,是对数据分类或分组前所做的必要处理。

A.预处理B.统计分析C.汇总D.排序12.审核数据准确性的方法主要有逻辑检查和()。

A.计算检查B.查表检查C.文字检查D.方法检查13.既能够反映数据分布状况,又能保持数据原始信息的图形是()。

应用多元统计分析课后习题答案详解北大高惠璇习题解答公开课一等奖优质课大赛微课获奖课件

应用多元统计分析课后习题答案详解北大高惠璇习题解答公开课一等奖优质课大赛微课获奖课件

0 8
X (2)
X
(3)
0
X (5) CL4
第11页 11
第六章 聚类分析
② 合并{X(2),X(5)}=CL3,并类距离 D2=3.
0 D(3) 10
9
0 8
0
X (3)
CL4 CL3
③ 合并{CL3,CL4}=CL2,并类距离 D3=8.
D(4) 100
0
X (3) CL2
④ 所有样品合并为一类CL1,并类距离 D4=10.
n p nq nr2
(X
(k)
X
(q) )'( X
(k)
X
( p) )
n2p nr2
D
2 pk
nq2 nr2
Dq2k
n p nq nr2
(X
(k)
X
( p) )'( X
(k)
X
( p)
X
( p)
X
(q) )
n p nq nr2
(X
(k)
X
(q) )'( X
(k)
X
(q)
X
(q)
X
( p) )
第26页 26
故d*是一个距离.
第5页
5
第六章 聚类分析
(4) 设d (1)和d (2)是距离, 令d * d (1) • d (2).
d *虽满足前2个条件,但不一定满足三角不等式.
下面用反例来说明d *不一定是距离.
设di(j1)
d (2) ij
X (i) X ( j) (m 1), 则di*j
X (i) X ( j)
D
2 pk
nq nr

市场调研大赛题库汇总(含答案)

市场调研大赛题库汇总(含答案)

试题答案及解析※第一部分(),共 70 小题, 70.0 分。

1、随机变量中,出现次数最多的变量值是该变量的()。

( 1.0 分)A.众数B.中位数C.极值D.均值正确答案: A试题解析:2、小刘想对 Z 市人口居住情况进行一个调查,因此,他把 Z 市随机地分成了几个情况相似的区域,然后从中选取了 10 个区域并对这些区域的家庭情况进行了全面的调查。

在这个例子中,小刘运用的是()。

( 1.0 分)A.分层随机抽样B.分群随机抽样C.判断抽样D.整群抽样正确答案:D试题解析:3、抽样效率是指两个抽样方案在样本容量相同的情况下的()。

( 1.0 分)A.样本比例之比B.抽样平均误差之比C.样本均值之比D.抽样方差之比正确答案: D试题解析:4、在实际工作中,市场调查分析方法主要有两种,即定性分析法和()。

(1.0 分)A.归纳分析法B.定量分析法C.比较分析法D.演绎分析法正确答案: B试题解析:5、变量测量尺度的类型包括()。

(1.0分)A.间隔尺度.长短尺度.名义尺度B.顺序尺度.名称尺度.长短尺度C.名称尺度.间隔尺度.长短尺度D.间隔尺度.顺序尺度.名义尺度正确答案: D试题解析:6、某商品的 100 件样品中,测得的优质品为 98 件,则样本优质品成数为()。

(1.0分)A.100%B.98%C.2%D.无法计算正确答案:B试题解析:7、下列描述直方图与条形图差别的说法不正确的是()。

( 1.0 分)A.条形图用于展示分类数据,直方图用于展示数值型数据B.条形图用高度表示类别变化的多少,宽度则固定,表示类别C.直方图的各矩形和条形图的各条形都是连续排列的D.直方图中的矩形用高度表示频数或频率,用宽度表示各组组距正确答案: C试题解析:8、小王对香槟酒的消费情况进行了一次调研。

她界定了三个不同层次的收入阶段,然后规定调研人员对每个收入阶层中特定数量的人群进行访谈,这种抽样方法属于()。

( 1.0 分)A. B. C. D.分群抽样配额抽样任意抽样随机抽样正确答案: B 试题解析:9、某银行想知道平均每户活期存款余额和估计其总量,本存折抽出一本登记其余额。

最新最新统计调查与分析大赛题库2(带答案的)

最新最新统计调查与分析大赛题库2(带答案的)

1关于正态分布,以下陈述正确的是()2为一个双峰分布34峰度系數为35平均数不为负数678偏态系数为1910估计标准误差是反映了()。

1112平均数代表性的指标1314序时平均数的代表性指标1516相关关系的指标17回归直线的代表性指标181920()也被称为判断抽样。

21222324抽样估计2526主观抽样2728非随机抽样2930任意抽样31我还好,不算太糟32在给定的显著性水平下,进行假设检验,确定拒绝域的依据是()。

333435原假设为真的条件下总体参数的概率分布363738原假设为真的条件下检验统计量的概率分布3940备择假设为真的条件下检验统计量的概率分布41焦点小组访谈进行的时间一般是()。

4243443小时以上4546470.5小时以内48491.5-3小时50510.5-1.5小时5215:16:46我还好,不算太糟5354随机变量X服从均值为10标准差为3的正态分布,随机变量Y服从均值为9 55标准差为4的正态分布.假设X与Y是独立的,则Y-X的分布为575859均值为1标准差为-1的正态分布6061均值为-1标准差为1的正态分布6263均值为1标准差为7的正态分布6465均值为-1标准差为5的正态分布66我还好,不算太糟678假设N很大,f可以忽略不计。

已知总体方差为400,要求绝对误差限为5,68置信水平95%,若采用简单随机抽样,样本量应该为()。

697071872737576320777816079我还好,不算太糟80调查中收集每个被抽中单元的个体数据的过程是指()过程。

818283数据分析848586数据整理8788数据发布8990数据收集91我还好,不算太糟11要检验两正态总体的方差是否相等,需要用()。

9293949596t检验97χ²检验9899100F检验101102Z检验10315:19:28104我还好,不算太糟10512()是调查者在提出问题的同时,还将问题的一切可能答案或几种主要106可能答案全部列出,由被调查者从中选出一个或多个答案作为自己的回答,而107不作答案以外的回答。

第6届网考模拟试题(统计调查与分析大赛)带答案的

第6届网考模拟试题(统计调查与分析大赛)带答案的

24单选问卷调查结果能够测量其理论特征,即问卷调查结果与理论预期一致,则认为该问卷具有( )。

C 25单选在抽样时选择概率抽样的情况是( )。

C26单选为了研究影响职工工作积极性的主要因素,公司在全面分析的基础上,分别选取了几位工作极为认真负责和工作积极性较差的员工进行座谈调查,该调查方式为( )。

D27单选在城镇居民家计调查中,统计部门从全部居民户中先随机抽取一户居民,然后按照相等的间隔抽取其他居民户,这种抽样方法称为()。

B28单选在概率抽样中,每个单元的入样概率与抽样比是一致的抽样方法是()。

A29单选先将总体中各单位按一定的标志排队,然后每隔一定的距离抽取一个单位构成样本此种方法为( )。

B30单选测量抽样误差最常用的指标是( )。

B 31单选抽样效率是指两个抽样方案在样本容量相同的情况下的( )。

D 32单选美国波士顿咨询公司提出的相对市场份额指数属于下列哪类调研( )B33单选某企业关注如何能以最低的广告费用求得最大的媒体影响力,这时应开展( )。

A 34单选“市场上的彩电供大于求”属于( )。

B35单选数据的( )是数据整理的先前步骤,是对数据分类或分组前所做的必要处理。

A 36单选以下哪项不属于调查数据的清洁所应检查的内容( )。

D37单选“1=小于2000元,2=2000~4000元,3=4000~6000元,4=6000元以上”,这种编码方法属于()。

A38单选小王收集了1978年以来历年我国人均GDP与人均消费额的资料,如果要反映这一时期我国生产与消费的关系,用什么图形最为合适?()。

C39单选受极端数值影响最小的集中趋势值是( )。

D40单选分配数列各组变量值都减少1/2 ,每组次数加1倍,中位数将( )。

C41单选最常用于反映总体中各单位数量的一般水平的数值有众数、中位数和( )。

C 42单选计算方差所依据的中心值是( )。

D 43单选比较不同类别数据的离散程度时,应使用()。

数据分析经典测试题附答案

数据分析经典测试题附答案

数据分析经典测试题附答案一、选择题1.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:衬衫尺码3940414243平均每天销售件1012201212数该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是( )A.平均数B.方差C.中位数D.众数【答案】D【解析】【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中浮现次数最多的数,故影响该店主决策的统计量是众数.故选D.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.2.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分95908580人数4682那末20名学生决赛成绩的众数和中位数分别是( )A.85,90 B.85,87.5 C.90,85 D.95,90【答案】B【解析】试题解析:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选B.考点:1.众数;2.中位数3.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①22s s >甲乙;②22s s <甲乙;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定.由统计图可知正确的结论是( )A .①③B .①④C .②③D .②④【答案】C 【解析】 【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案. 【详解】由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9, 乙的成绩为8,9,7,8,10,7,9,10,7,10,x 甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5,x 乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S 甲2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85, 乙的方差S 乙2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.45, ∴S 2甲<S 2乙,∴甲的射击成绩比乙稳定; 故选:C . 【点睛】本题考查方差的定义与意义:普通地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.有甲、乙两种糖果,原价分别为每千克a 元和b 元.根据调查,将两种糖果按甲种糖果x 千克与乙种糖果y 千克的比例混合,取得了较好的销售效果.现在糖果价格有了调整:甲种糖果单价下降15%,乙种糖果单价上涨20%,但按原比例混合的糖果单价恰好不变,则xy等于( )A .34a bB .43a bC .34b aD .43b a【答案】D【解析】【分析】根据已知条件表示出价格变化先后两种糖果的平均价格,进而得出等式求出即可.【详解】解:∵甲、乙两种糖果,原价分别为每千克a元和b元,两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,∴两种糖果的平均价格为:ax byx y++,∵甲种糖果单价下降15%,乙种糖果单价上涨20%,∴两种糖果的平均价格为:1520 (1)(1)100100a xb yx y-•+++,∵按原比例混合的糖果单价恰好不变,∴ax byx y++=1520(1)(1)100100a xb yx y-•+++,整理,得15ax=20by∴43x by a =,故选:D.【点睛】本题考查了加权平均数,解决本题的关键是表示出价格变化先后两种糖果的平均价格.5.为全力抗战疫情,响应政府“停课不停学”号召,东营市教育局发布关于疫情防控期间开展在线课程教学的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学和答疑.据互联网后台数据显示,某中学九年级七科老师2月10日在线答疑问题总个数如下表所示则2月10日该中学九年级七科老师在线答疑问题总个数的平均数是()A.22 B.24 C.25 D.26【答案】C【解析】【分析】把7个数相加再除以7即可求得其平均数.【详解】由题意得,九年级七科老师在线答疑问题总个数的平均数是1(26282826242122)257++++++=,故选:C【点睛】此题考查了平均数的计算,掌握计算方法是解答此题的关键.6.某小组长统计组内6人一天在课堂上的发言次数分別为3,3,4,6,5,0.则这组数据的众数是()A.3 B.3.5 C.4 D.5【答案】A【解析】【分析】根据众数的定义,找数据中浮现次数最多的数据即可.【详解】在3,3,4,6,5,0这组数据中,数字3浮现了2次,为浮现次数最多的数,故众数为3.故选A.【点睛】本题考查了众数的概念.众数是一组数据中浮现次数最多的数据.7.在创建安全校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是( )A.中位数是90 B.平均数是90 C.众数是87 D.极差是9【答案】C【解析】【分析】根据中位数、平均数、众数、极差的概念求解.【详解】解:这组数据按照从小到大的顺序罗列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=9156,众数是87,极差是97﹣87=10.故选C.【点睛】本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.8.某校在中国学生核心素质知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:甲乙丙丁平均分8.58.28.58.2方差 1.8 1.2 1.2 1.1最高分9.89.89.89.7如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A.丁B.丙C.乙D.甲【答案】B【解析】【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.【详解】∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.9.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A .极差是47B .众数是42C .中位数是58D .每月阅读数量超过40的有4个月【答案】C 【解析】 【分析】根据统计图可得出最大值和最小值,即可求得极差;浮现次数最多的数据是众数;将这8个数按大小顺序罗列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月. 【详解】A 、极差为:83-28=55,故本选项错误;B 、∵58浮现的次数最多,是2次, ∴众数为:58,故本选项错误;C 、中位数为:(58+58)÷2=58,故本选项正确;D 、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误; 故选C .10.某兴趣小组为了解我市气温变化情况,记录了今年月份连续6天的最低气温(单位:℃):7,4,2,1,2,2----,关于这组数据,下列结论不正确的是( ) A .平均数是B .中位数是C .众数是D .方差是【答案】D 【解析】 【分析】一组数据中浮现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或者从大到小)的顺序罗列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.普通地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2]. 【详解】解:有题意可得,这组数据的众数为-2,中位数为-2,平均数为-2,方差是9 故选D .11.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是( )码(cm)23.52424.52525.5销售量(双)12252A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【答案】A【解析】试题分析:根据众数和中位数的定义求解可得.解:由表可知25浮现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为25252=25,故选:A.12.校团委组织开展“医助武汉捐款”活动,小慧所在的九年级(1)班共40名同学进行了捐款,已知该班同学捐款的平均金额为10元,二小慧捐款11元,下列说法错误的是( ) A.10元是该班同学捐款金额的平均水平B.班上比小慧捐款金额多的人数可能超过20人C.班上捐款金额的中位数一定是10元D.班上捐款金额数据的众数不一定是10元【答案】C【解析】【分析】根据平均数,中位数及众数的定义挨次判断.【详解】∵该班同学捐款的平均金额为10元,∴10元是该班同学捐款金额的平均水平,故A正确;∵九年级(1)班共40名同学进行了捐款,捐款的平均金额为10元,∴班上比小慧捐款金额多的人数可能超过20人,故B正确;班上捐款金额的中位数不一定是10元,故C错误;班上捐款金额数据的众数不一定是10元,故D正确,故选:C.【点睛】此题考查数据统计中的平均数,中位数及众数的定义,正确理解定义是解题的关键.13.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( )A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【答案】D【解析】【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5浮现2次,所以众数为5,此选项正确;B、数据重新罗列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.14.郑州某中学在备考2022河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:成绩(单位:米) 2.10 2.20 2.25 2.30 2.35 2.40 2.45 2.50人数23245211则下列叙述正确的是( )A.这些运动员成绩的众数是 5B.这些运动员成绩的中位数是 2.30C.这些运动员的平均成绩是 2.25D.这些运动员成绩的方差是 0.0725【答案】B【解析】【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是 2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或者从大到小)重新罗列后,最中间的那个数(或者最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.15.关于数据-4,1,2,-1,2,下面结果中,错误的是( )A.中位数为1 B.方差为26 C.众数为2 D.平均数为0【答案】B【解析】【分析】【详解】A.∵从小到大排序为-4,-1,,1,2,2,∴中位数为1 ,故正确;B.412125x-++-+==,()()()() 222224010102022655s--+--+-+-⨯==,故不正确;C.∵众数是2,故正确;D.412125x-++-+==,故正确;故选B.16.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7浮现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,26778==65x ++++甲, ()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4,乙:数据8浮现了2次,次数最多,所以众数为8, 排序后最中间的数是4,所以中位数是4,23488==55x 乙++++, ()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4,所以惟独D 选项正确, 故选D. 【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.17.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是( )A .96分,98分B .97分,98分C .98分,96分D .97分,96分【答案】A 【解析】 【分析】利用众数和中位数的定义求解. 【详解】98浮现了9次,浮现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13个数,是96,所以数据的中位数为96分. 故选A . 【点睛】本题考查了众数:一组数据中浮现次数最多的数据叫做众数.也考查了中位数.18.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表: 比赛成绩/分9.59.69.79.89.9参赛队个数98643则这30个参赛队决赛成绩的中位数和众数分别是( )A.9.7,9.5 B.9.7,9.9 C.9.6,9.5 D.9.6,9.6【答案】C【解析】【分析】根据众数和中位数的定义求解可得.【详解】解:由表知,众数为9.5分,中位数为=9.6(分),故选:C.【点睛】考查了众数和中位数的定义,一组数据中浮现次数最多的数据叫做众数;找中位数要把数据按从小到大的顺序罗列,位于最中间的一个数(或者两个数的平均数)为中位数;众数是一组数据中浮现次数最多的数据,注意众数可以不止一个.19.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那末它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据浮现的可能性的大小,中位数的计算方法,不可能事件的定义挨次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据浮现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.20.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大【答案】D【解析】【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.。

2010统计分析试题笔试

2010统计分析试题笔试

山西省首届青年统计业务能手大赛统计分析类试题(笔试卷)一、单项选择题(以下每小题各有四项备选答案,其中只有一项是正确的。

本题共30分,每小题1分。

)(以下每小题各有四项备选答案,其中只有一项是正确的。

本题共30分,每小题1分。

)1.常驻单位是指()。

A.在一个国家地理领土内的经济单位B.在一个国家经济领土内的经济单位C.在一国地理领土内具有经济利益中心的经济单位D.在一国经济领土内具有经济利益中心的经济单位2.经济流量是指()。

A.本期增加的量B.上期发生的量C.一定时点上的量D.一定时期变化的量3.SNA核算体系中的生产活动()。

A.只局限于物质生产部门B.只局限于非物质生产部门C.既包括物质生产部门,也包括非物质生产部门D.以上都对4.一个估计量的有效性是指()。

A.该估计量的数学期望等于被估计的总体参数B.该估计量的一个具体数值等于被估计的总体参数C.该估计量的方差比其他估计量大D.该估计量的方差比其他估计量小5.变量之间存在相互关系,这些联系具体分为两种不同的类型()。

A.单相关和复相关关系B.完全相关、不完全相关和无相关关系C.正相关和负相关关系D.函数关系和相关关系6.在由三个指数组成的指数体系中,两个因素指数的同度量因素通常()。

A.都固定在基期B.都固定在报告期C.一个固定在基期一个固定在报告期D.采用基期和报告期的平均数7.在掌握基期产值和几种产品产量个体指数资料的条件下,要计算产量总指数,需要采用()。

A.综合指数B.加权算术平均数指数C.加权调和平均数指数D.可变构成指数8.对原有时间数列进行修匀,以削弱短期的偶然因素引起的变化,从而呈现出较长时期的基本发展趋势的一种简单方法称为()。

A.移动平均法B. 移动平均趋势剔除法C.按月平均法D.按季平均法9.在相对指标中,主要用名数表示的指标是()。

A.结构相对指标B.强度相对指标C.比较相对指标D.动态相对指标10.编制时间序列的基本原则是()A.互斥原则B.穷尽原则C.排他原则D.可比性原则11.权数对算术平均数的影响作用,取决于()。

浙江省大学生统计调查方案设计大赛案例解析(2)_OK

浙江省大学生统计调查方案设计大赛案例解析(2)_OK
27
意目 义的

确定选题
1
挖掘制约因素
2
挖掘推动因素
3 为相关部门提供参考
4 宣传“绿色殡葬”理念
28
献参 考 文
确定选题
1、可供参考文献较少
•媒体报道:关于各大墓园 •学术论文:关于殡葬立法、绿色殡葬模式等
2、系统性调查研究几乎没有
•无相关话题的民意调查 •无用统计手段分析的调查报告
29
架分 析 框
• 省决赛 ?——? 4+3+4——?+?+?
8
组队——不超过五人
• 推不出原理 • 都是优生,聚集在一起未必优秀 • 队长:组织能力,执行力 • 队员:文字表述,沟通交流,语言表达,统计分析 • 特质:团队精神、有想法,坚持 • 行百里路半九十
9
特别提示
•参赛作品中不得出 现学校、参赛队员 及指导教师等信息
浙江省大学生统计调查方案 设计大赛案例解析
1
历史沿革
• 浙江工商大学校内比赛:校级 • 浙江省统计局合办:厅级 • 浙江省教育厅主办:省级
2
我校战绩
• 首届一等奖 • 第二届一等奖第一名 • 2012年全省第一名 • 2013年进行中……
3
• 名师指路 • 贵人相助
• 学生努力 • 团队合作
成功经验
•积极宣传“绿色殡葬”理念
43
XdXD0%OrrbRIZwrLj7(9wMZJ fAqo6KS5gvxA$Wm7JnA2L#MGxXptdcGi Abe2% w0vZC h$FnD o+PID88NqAIMA* kxz m%9l OwLj-R zAl1FdqN7XYMNE&D9D324iuV)93SQUBcD$0m!2U xVc A!nRGnz

统计分析大赛试题答案及解析

统计分析大赛试题答案及解析

试题答案及分析※第一部分(),共100 小题,分。

1、在参数预计中,预计量的希望值等于整体参数,即说明是θ的()。

A. 无偏预计量B.有效预计量C.一致预计量D.充足预计量正确答案: A2、在回归剖析中,被展望或被解说的变量称为()。

(分)A.自变量B. 因变量C. 随机变量D. 非随机变量正确答案: B3、回归系数和有关系数的符号是一致的,其符号均可用来判断变量之间是()。

A. 线性有关仍是非线性有关B. 完好有关仍是不完好有关C. 单有关仍是复有关D.正有关仍是负有关正确答案: D4、已知变量 X 和 Y 的协方差为- 50,X 的方差为 170,Y 的方差为 20, 其有关系数为()。

(分)A. B.― C. D.正确答案: B5、有关系数的取值范围是()。

(分)A. -1<r<1B.-1 ≤r ≤1C.0≤r ≤1D.∣r∣≥ 1正确答案: B6、设某商品供应量 y(件)和商品价钱 x(元)的一元线性回归方程为 ?=59+148x,这意味着商品价钱每提升 1 元时,供应量均匀()。

(分)A. 增添 148 件B.减少148件C.增添207件D.减少207件正确答案: A7、回归方程 y=a+bx 中, 回归系数 b 为负数,说明自变量与因变量为()。

(A.负有关B. 正有关C. 明显有关D. 高度有关正确答案: A8、以下关系中,属于负有关关系的是()。

(分)A. 父亲母亲的身高与儿女身高的关系B.球的体积与半径之间的关系C. 一个家庭的收入与支出的关系D.商品的价钱与需求量之间的关系正确答案: D9、有关系数等于 0 表示两个变量()。

(分)A. 存在有关关系B.不存在有关关系C.存在线性有关关系D.不存在线性有关关系正确答案: D10、一位母亲记录了儿子3-10 岁的身高,一位母亲记录了儿子3-10 岁的身高,由此成立的身高与年纪的回归直线方程为 ?=+,据此对这个孩子 11 岁时的身高进行展望,以下正确的选项是()。

新初中数学数据分析经典测试题附答案(1)

新初中数学数据分析经典测试题附答案(1)

新初中数学数据分析经典测试题附答案(1)一、选择题1.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【答案】D【解析】【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.2.某校四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据的众数与平均数相等,则这组数据的中位数是( )A.8 B.9 C.10 D.12【答案】C【解析】【分析】根据这组数据的众数与平均数相等,可知这组数据的众数(因10出现了2次)与平均数都是10;再根据平均数是10,可求出这四个数的和是40,进而求出x的数值;然后把这四个数据按照从大到小的顺序排列,由于是偶数个数据,则中间两个数的平均数就是中位数.【详解】当x=8时,有两个众数,而平均数只有一个,不合题意舍去.当众数为10,根据题意得(10+10+x+8)÷4=10,解得x=12,将这组数据按从小到大的顺序排列为8,10,10,12,处于中间位置的是10,10,所以这组数据的中位数是(10+10)÷2=10.故选C.【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.3.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m【答案】B【解析】【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,++++++÷=m,平均数为:(9.59.69.79.79.810.110.2)79.8故选:B.【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.4.小明参加射击比赛,10次射击的成绩如表:若小明再射击2次,分别命中7环、9环,与前10次相比,小明12次射击的成绩()A.平均数变大,方差不变B.平均数不变,方差不变C.平均数不变,方差变大D.平均数不变,方差变小【答案】D【解析】【分析】首先利用计算出前10次射击的平均数,再计算出方差,然后计算出再射击2次后的平均数和方差,进而可得答案.【详解】前10次平均数:(6×3+7×1+8×2+9×1+10×3)÷10=8,方差:S2=110[(6﹣8)2×3+(7﹣8)2+(8﹣8)2×2+(9﹣8)2+3×(10﹣8)2]=2.6,再射击2次后的平均数::(6×3+7×1+8×2+9×1+10×3+7+9)÷12=8,方差:S2=112[(6﹣8)2×3+(7﹣8)2×2+(8﹣8)2×2+(9﹣8)2×2+3×(10﹣8)2]=73,平均数不变,方差变小,故选:D.【点睛】此题主要考查了方差和平均数,关键是掌握方差计算公式:S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2].5.为全力抗战疫情,响应政府“停课不停学”号召,东营市教育局发布关于疫情防控期间开展在线课程教学的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学和答疑.据互联网后台数据显示,某中学九年级七科老师2月10日在线答疑问题总个数如下表所示则2月10日该中学九年级七科老师在线答疑问题总个数的平均数是()A.22 B.24 C.25 D.26【答案】C【解析】【分析】把7个数相加再除以7即可求得其平均数.【详解】由题意得,九年级七科老师在线答疑问题总个数的平均数是1(26282826242122)257++++++=,故选:C【点睛】此题考查了平均数的计算,掌握计算方法是解答此题的关键.6.分析题中数据,将15名运动员的成绩按从小到大的顺序依次排列,处在中间位置的一个数即为运动员跳高成绩的中位数;7.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【答案】A【解析】【分析】【详解】解:从小到大排列此数据为:23.5、24、24、24.5、24.5、25、25、25、25、25、26,数据25出现了五次最多为众数.25处在第6位为中位数.所以中位数是25,众数是25.故选:A.8.在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是()A.中位数是90 B.平均数是90 C.众数是87 D.极差是9【答案】C【解析】【分析】根据中位数、平均数、众数、极差的概念求解.【详解】解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=9156,众数是87,极差是97﹣87=10.故选C.【点睛】本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.9.某校组织“国学经典”诵读比赛,参赛10名选手的得分情况如表所示:分数/分80859095人数/人3421那么,这10名选手得分的中位数和众数分别是()A.85.5和80 B.85.5和85 C.85和82.5 D.85和85【答案】D【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据85出现了4次,最多,故为众数;按大小排列第5和第6个数均是85,所以中位数是85.故选:D.【点睛】本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.10.某兴趣小组为了解我市气温变化情况,记录了今年月份连续6天的最低气温(单----,关于这组数据,下列结论不正确的是()位:℃):7,4,2,1,2,2A .平均数是B.中位数是C.众数是D.方差是【答案】D【解析】【分析】一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【详解】解:有题意可得,这组数据的众数为-2,中位数为-2,平均数为-2,方差是9故选D.11.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差一次为2S 乙,2S 丁,则下列判断中正确的是( )A .x x =乙丁,22S S <乙丁B .x x =乙丁,22S S >乙丁 C .x x >乙丁,22S S >乙丁D .x x <乙丁,22S S <乙丁【答案】B 【解析】 【分析】根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】4563555260555x ++++==乙,则()()()()()2222221455563555555525560555S ⎡⎤=⨯-+-+-+-+-⎣⎦乙39.6=,5153585657555x ++++==丁,则()()()()()2222221515553555855565557555S ⎡⎤=⨯-+-+-+-+-⎣⎦丁 6.8=,所以x x =乙丁,22S S >乙丁,故选B . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,1x ,2x ,…n x 的平均数为x ,则方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是( ) A .小明的成绩比小强稳定 B .小明、小强两人成绩一样稳定 C .小强的成绩比小明稳定D .无法确定小明、小强的成绩谁更稳定 【答案】A 【解析】 【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8. 平均成绩一样,小明的方差小,成绩稳定, 故选A . 【点睛】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题. 错因分析 容易题.失分原因是方差的意义掌握不牢.13.下列说法正确的是( )A .了解全国中学生最喜爱哪位歌手,适合全面调查.B .甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S 甲2=5,S 乙2=0.5,则甲麦种产量比较稳.C .某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D .一组数据:3,2,5,5,4,6的众数是5. 【答案】D 【解析】 【分析】根据数据整理与分析中的抽样调查,方差,中位数,众数的定义和求法即可判断. 【详解】A 、了解全国中学生最喜爱的歌手情况时,调查对象是全国中学生,人数太多,应选用 抽样调查的调查方式,故本选项错误;B 、甲乙两种麦种连续3年的平均亩产量的方差为:25S =甲,20.5S =乙,因方差越小越稳定,则乙麦种产量比较稳,故本选项错误;C 、某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道这次成绩的中位数,故本选项错误;D 、.一组数据:3,2,5,5,4,6的众数是5,故本选项正确;. 故选D . 【点睛】本题考查了数据整理与分析中的抽样调查,方差,中位数,众数,明确这些知识点的概念和求解方法是解题关键.14.5、2.4、2.4、2.4、2.3的中位数是2.4,选项C不符合题意.15×[(2.3﹣2.4)2+(2.4﹣2.4)2+(2.5﹣2.4)2+(2.4﹣2.4)2+(2.4﹣2.4)2]=15×(0.01+0+0.01+0+0)=15×0.02=0.004∴这组数据的方差是0.004,∴选项D不符合题意.故选B.【点睛】此题主要考查了中位数、众数、算术平均数、方差的含义和求法,要熟练掌握.15.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是()A.22个、20个B.22个、21个C.20个、21个D.20个、22个【答案】C【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】在这一组数据中20出现了3次,次数最多,故众数是20;把数据按从小到大的顺序排列:19,20,20,20,22,22,23,24,处于这组数据中间位置的数20和22,那么由中位数的定义可知,这组数据的中位数是21.故选C.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.16.下列说法中正确的是().A.“打开电视,正在播放《新闻联播》”是必然事件B.一组数据的波动越大,方差越小C.数据1,1,2,2,3的众数是3D.想了解某种饮料中含色素的情况,宜采用抽样调查【答案】D试题分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断,、“打开电视,正在播放《新闻联播》”是随机事件,故本选项错误;B、一组数据的波动越大,方差越大,故本选项错误;C、数据1,1,2,2,3的众数是1和2,故本选项错误;D、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确.故选D.考点:全面调查与抽样调查;众数;方差;随机事件.17.一组数据0、-1、3、2、1的极差是()A.4 B.3 C.2 D.1【答案】A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.18.一组数据-2,3,0,2,3的中位数和众数分别是()A.0,3 B.2,2 C.3,3 D.2,3【答案】D【解析】【分析】根据中位数和众数的定义解答即可.【详解】将这组数据从小到大的顺序排列为:﹣2,0,2,3,3,最中间的数是2,则中位数是2;在这一组数据中3是出现次数最多的,故众数是3.故选D.【点睛】本题考查了众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.19.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和29【答案】D【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.20.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()A.众数是110 B.方差是16C.平均数是109.5 D.中位数是109【答案】A【解析】【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差.【详解】解:这组数据的众数是110,A正确;16x=×(110+106+109+111+108+110)=109,C错误;21S6= [(110﹣109)2+(106﹣109)2+(109﹣109)2+(111﹣109)2+(108﹣109)2+(110﹣109)2]=83,B错误;中位数是109.5,D错误;故选A.【点睛】本题考查的是众数、平均数、方差、中位数,掌握它们的概念和计算公式是解题的关键.。

应用多元统计分析课后习题答案详解北大高惠璇五部分习题解答公开课一等奖优质课大赛微课获奖课件

应用多元统计分析课后习题答案详解北大高惠璇五部分习题解答公开课一等奖优质课大赛微课获奖课件

第21页 21
第五章 判别分析
当X
G2时,W
(X
)
~
N1
(
2
,
2 2
),

2
( (2)
)a
1 2
d
2
,
2 2
d2
P(1| 2)
P{W ( X )
0|
X
G2}
P{W ( X ) 2 2
0 2 } 2
P{U 1 d 2 / d} 1 (1 d ).
2
2
其中 U W ( X ) 2 ~ N (0,1). 2
D22 (x) 1.5625 ln 22 2.9488,
D32 (x) 0.25 ln1 0.25,
因样品到G1广义平方距离最小,因此将样品x=2.5
判归G1.
第6页
6
第五章 判别分析
解二:利用定理5.2.1推论,计算 qt ft (x), (t 1,2,3)
当样品x=2.5时,
f1(x)
W ( X ) ( X )1( (1) (2) ), 1 ( (1) (2) ),
2 判别准则为 判X G1 , 当W ( X ) 0,
判X G2 , 当W ( X ) 0, 试求错判概率P(2 |1)和P(1| 2).
解 : 记a 1 ( (1) (2) ),W ( X ) ( X )a是X的
其中W ( X ) a( X *)
( X * )1( (1) (2) ) ,
* 1 ( (1) (2) ).
2
第10页 10
第五章 判别分析
5-4 设有两个正态总体G1和G2,已知(m=2)
(1)
1105, (2)

数据分析基础测试题及解析

数据分析基础测试题及解析

数据分析基础测试题及解析一、选择题1.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定【答案】B【解析】【分析】根据方差的意义求解可得.【详解】∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳定,故选B.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.2.某校四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据的众数与平均数相等,则这组数据的中位数是( )A.8 B.9 C.10 D.12【答案】C【解析】【分析】根据这组数据的众数与平均数相等,可知这组数据的众数(因10出现了2次)与平均数都是10;再根据平均数是10,可求出这四个数的和是40,进而求出x的数值;然后把这四个数据按照从大到小的顺序排列,由于是偶数个数据,则中间两个数的平均数就是中位数.【详解】当x=8时,有两个众数,而平均数只有一个,不合题意舍去.当众数为10,根据题意得(10+10+x+8)÷4=10,解得x=12,将这组数据按从小到大的顺序排列为8,10,10,12,处于中间位置的是10,10,所以这组数据的中位数是(10+10)÷2=10.故选C.【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.3.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m【答案】B【解析】【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,平均数为:(9.59.69.79.79.810.110.2)79.8++++++÷=m,故选:B.【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.4.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.学生类型人数时间010t≤<1020t≤<2030t≤<3040t≤<40t≥性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【答案】C【解析】【分析】根据中位数与平均数的意义对每个选项逐一判断即可.【详解】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5-25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误【点睛】本题考查了中位数与平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取27名女生进行一分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数≥105次的为优秀,那么甲、乙两班的优秀率的关系是()A.甲优<乙优B.甲优>乙优C.甲优=乙优D.无法比较【答案】A【解析】【分析】根据中位数可得甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,据此可得答案.【详解】解:由表格可知,每班有27人,则中位数是排序后第14名学生的成绩,∵甲班的中位数是104,乙班的中位数是106,∴甲班优秀的人数最多有13人,乙班优秀的人数最少有14人,∴甲优<乙优,故选:A.【点睛】本题考查了中位数的应用,熟练掌握中位数的意义和求法是解题的关键.6.某篮球运动员在连续7场比赛中的得分(单位:分)依次为23,22,20,20,20,25,18.则这组数据的众数与中位数分别是()A.20分,22分B.20分,18分C.20分,22分D.20分,20分【答案】D【解析】【分析】根据众数和中位数的概念求解可得.【详解】数据排列为18,20,20,20,22,23,25,则这组数据的众数为20,中位数为20.故选:D.【点睛】此题考查众数和中位数,解题关键在于掌握一组数据中出现次数最多的数据叫做众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.分析题中数据,将15名运动员的成绩按从小到大的顺序依次排列,处在中间位置的一个数即为运动员跳高成绩的中位数;8.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次s .后来小亮进行了补测,集体测试,因此计算其他39人的平均分为90分,方差239成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【答案】B【解析】【分析】根据平均数,方差的定义计算即可.【详解】解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.【点睛】本题考查方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.9.甲、乙、丙三个不同品种的苹果树在同一地区进行对比试验,从每个品种的苹果树中随机各抽取10棵,对它们的产量进行统计,绘制统计表如下:若从这三个品种中选择一个在该地区推广,则应选择的品种是()A.甲B.乙C.丙D.甲、乙中任选一个【答案】A【解析】【分析】根据平均数、方差等数据的进行判断即可.【详解】根据平均数、方差等数据的比较可以得出甲品种更适在该地区推广.故选:A【点睛】本题考查了平均数、方差,掌握平均数、方差的定义是解题的关键.10.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是()A.中位数31,众数是22 B.中位数是22,众数是31C.中位数是26,众数是22 D.中位数是22,众数是26【答案】C【解析】【分析】根据中位数,众数的定义即可判断.【详解】七个整点时数据为:22,22,23,26,28,30,31所以中位数为26,众数为22故选:C.【点睛】此题考查中位数,众数的定义,解题关键在于看懂图中数据11.若数据 4,x,2,8 ,的平均数是 4,则这组数据的中位数和众数是()A.3 和 2 B.2 和 3 C.2 和 2 D.2 和4【答案】A【解析】【分析】根据平均数的计算公式先求出x的值,再根据中位数和众数的概念进行求解即可.【详解】∵数据2,x,4,8的平均数是4,∴这组数的平均数为2484x+++=4,解得:x=2;所以这组数据是:2,2,4,8,则中位数是242+=3.∵2在这组数据中出现2次,出现的次数最多,∴众数是2.故选A.【点睛】本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.12.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()A.3,2 B.3,4 C.5,2 D.5,4【答案】B【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点:平均数;方差.13.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了20名同学,结果如下表所示:平均每月阅读本数45678人数26543这些同学平均每月阅读课外书籍本数的中位数和众数为( )A.5,5 B.6,6 C.5,6 D.6,5【答案】D【解析】【分析】根据中位数和众数的定义分别进行解答即可.【详解】把这组数据从小到大排列中间的两个数都是6,则这组数据的中位数是6;5出现了6次,出现的次数最多,则众数是5.故选D.【点睛】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.14.下列说法正确的是 ()A.要调查现在人们在数学化时代的生活方式,宜采用普查方式B.一组数据3,4,4,6,8,5的中位数是4C.必然事件的概率是100%,随机事件的概率大于0而小于1D.若甲组数据的方差2s甲=0.128,乙组数据的方差2s乙=0.036,则甲组数据更稳定【答案】C【解析】【分析】直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案.【详解】A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误;B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误;C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确;D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误;故选:C.【点睛】此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键.15.下列说法正确的是()A.要调查人们对“低碳生活”的了解程度,宜采用普查方式B.一组数据:3,4,4,6,8,5的众数和中位数都是3C.必然事件的概率是100%,随机事件的概率是50%D.若甲组数据的方差S甲2=0.128,乙组数据的方差是S乙2=0.036,则乙组数据比甲组数据稳定【答案】D【解析】A、由于涉及范围太广,故不宜采取普查方式,故A选项错误;B、数据3,4,4,6,8,5的众数是4,中位数是4.5,故B选项错误;C、必然事件的概率是100%,随机事件的概率是50%,故C选项错误;D、方差反映了一组数据的波动情况,方差越小数据越稳定,故D选项正确.故选D.16.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是( )A.平均数B.方差C.中位数D.众数【答案】D【解析】【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选D.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.17.甲、乙两班举行电脑汉字输入比赛,参赛学生每分输入汉字的个数统计结果如下表:某同学分析上表后得到如下结论:①甲、乙两班学生平均成绩相同;为优秀)②乙班优秀的人数多于甲班优秀的人数(每分输入汉字个数150③甲班成绩的波动比乙班大.上述结论中正确的是()A.①②③B.①②C.①③D.②③【答案】A【解析】【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【详解】从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.①②③都正确.故选:A.【点睛】此题考查平均数,中位数,方差的意义.解题关键在于掌握平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.18.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差【答案】D【解析】【详解】解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;D.原来数据的方差=222 (12)2(22)(32)4-+⨯-+-=12,添加数字2后的方差=222 (12)3(22)(32)5-+⨯-+-=25,故方差发生了变化.故选D.19.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()A.96分,98分B.97分,98分C.98分,96分D.97分,96分【答案】A【解析】【分析】利用众数和中位数的定义求解.【详解】98出现了9次,出现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13个数,是96,所以数据的中位数为96分.故选A.【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.20.在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是()A.中位数是90 B.平均数是90 C.众数是87 D.极差是9【答案】C【解析】【分析】根据中位数、平均数、众数、极差的概念求解.【详解】解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=9156,众数是87,极差是97﹣87=10.故选C.【点睛】本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.。

数据分析与统计考试试题

数据分析与统计考试试题

数据分析与统计考试试题一、选择题(每题 3 分,共 30 分)1、下列属于描述数据集中趋势的统计量是()A 方差B 标准差C 中位数D 极差2、在一组数据中,如果最大值与最小值的差是 25,组距为 5,那么这组数据应分为()组。

A 4B 5C 6D 73、为了了解某校八年级学生的体重情况,从中抽取了 80 名学生的体重进行统计分析。

在这个问题中,样本是()A 80B 80 名学生C 80 名学生的体重D 该校八年级学生的体重4、对于数据 3,3,2,3,6,3,10,3,6,3,2。

①这组数据的众数是 3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等。

其中正确的结论有()A 1 个B 2 个C 3 个D 4 个5、已知一组数据:12,5,9,5,14,下列说法不正确的是()A 平均数是 9B 中位数是 9C 众数是 5D 极差是 56、某班有 48 人,在一次数学测验中,全班平均分为 81 分,已知不及格人数为 6 人,他们的平均分为 46 分,则及格学生的平均分是()A 78 分B 80 分C 82 分D 86 分7、甲、乙、丙、丁四人进行射击测试,每人 10 次射击成绩的平均数均是 92 环,方差分别为,,,,则成绩最稳定的是()A 甲B 乙C 丙D 丁8、一个容量为 80 的样本最大值为 143,最小值为 50,取组距为10,则可以分成()A 10 组B 9 组C 8 组D 7 组9、为了考察某种小麦的长势,从中抽取了 10 株麦苗,测得苗高(单位:cm)为:16,9,14,11,12,10,16,8,17,19。

则这组数据的中位数和极差分别是()A 13,11B 14,11C 12,11D 13,1610、对某班 60 名同学的一次数学测验成绩进行统计,如果 805~905 分这一组的频数是 18,那么这个班的学生这次数学测验成绩在805~905 分之间的频率是()A 18B 04C 03D 035二、填空题(每题 3 分,共 30 分)1、一组数据 2,4,6,a,8 的平均数是 5,则 a =。

数据分析经典测试题含答案

数据分析经典测试题含答案

数据分析经典测试题含答案一、选择题1.样本数据3,a,4,b,8的平均数是5,众数是3,则这组数据的中位数是()A.2 B.3 C.4 D.8【答案】C【解析】【分析】先根据平均数为5得出a b10+=,由众数是3知a、b中一个数据为3、另一个数据为7,再根据中位数的定义求解可得.【详解】解:数据3,a,4,b,8的平均数是5,3a4b825∴++++=,即a b10+=,又众数是3,a∴、b中一个数据为3、另一个数据为7,则数据从小到大为3、3、4、7、8,∴这组数据的中位数为4,故选C.【点睛】此题考查了平均数、众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.2.一组数据3、2、1、2、2的众数,中位数,方差分别是:()A.2,1,2 B.3,2,0.2 C.2,1,0.4 D.2,2,0.4【答案】D【解析】【分析】根据众数,中位数,方差的定义计算即可.【详解】将这组数据重新由小到大排列为:12223、、、、平均数为:1222325++++=2出现的次数最多,众数为:2中位数为:2方差为:()()()()()22222212222222320.45s-+-+-+-=+-=故选:D 【点睛】本题考查了确定数据众数,中位数,方差的能力,解题的关键是熟悉它们的定义和计算方法.3.某校组织“国学经典”诵读比赛,参赛10名选手的得分情况如表所示:分数/分80859095人数/人3421那么,这10名选手得分的中位数和众数分别是()A.85.5和80 B.85.5和85 C.85和82.5 D.85和85【答案】D【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据85出现了4次,最多,故为众数;按大小排列第5和第6个数均是85,所以中位数是85.故选:D.【点睛】本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.4.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月【答案】C【解析】【分析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【详解】A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.5.某单位招考技术人员,考试分笔试和面试两部分,笔试成绩与面试成绩按6:4记入总成绩,若小李笔试成绩为80分,面试成绩为90分,则他的总成绩为()A.84分B.85分C.86分D.87分【答案】A【解析】【分析】按照笔试与面试所占比例求出总成绩即可.【详解】根据题意,按照笔试与面试所占比例求出总成绩:64⨯+⨯=(分)8090841010故选A【点睛】本题主要考查了加权平均数的计算,解题关键是正确理解题目含义.6.2022年将在北京﹣﹣张家口举办冬季奥运会,很多学校为此开设了相关的课程,下表记录了某校4名同学短道速滑成绩的平均数x和方差S2,根据表中数据,要选一名成绩好又发挥稳定的运动员参加比赛,应选择()A .队员1B .队员2C .队员3D .队员4【答案】B 【解析】 【分析】根据方差的意义先比较出4名同学短道速滑成绩的稳定性,再根据平均数的意义即可求出答案. 【详解】解:因为队员1和2的方差最小,所以这俩人的成绩较稳定, 但队员2平均数最小,所以成绩好,即队员2成绩好又发挥稳定. 故选B . 【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是( ) A .众数是108 B .中位数是105 C .平均数是101 D .方差是93【答案】D 【解析】 【分析】把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,求出众数、中位数、平均数和方差,即可得出结论. 【详解】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110, ∴众数是108,中位数为1021081052+=,平均数为82961021081081101016+++++=,方差为()()()()()()222222182101961011021011081011081011101016⎡⎤-+-+-+-+-+-⎣⎦ 94.393≈≠;故选:D . 【点睛】考核知识点:众数、中位数、平均数和方差;理解定义,记住公式是关键.8.某班40名同学一周参加体育锻炼时间统计如表所示:那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5 B.17,9 C.8,9 D.8,8.5【答案】D【解析】【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为898.5 2+=;故选:D.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.9.一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.10.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是( ) A .25,25 B .24.5,25C .25,24.5D .24.5,24.5【答案】A 【解析】 【分析】 【详解】解:从小到大排列此数据为:23.5、24、24、24.5、24.5、25、25、25、25、25、26, 数据25出现了五次最多为众数.25处在第6位为中位数.所以中位数是25,众数是25. 故选:A .11.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差一次为2S 乙,2S 丁,则下列判断中正确的是( )A .x x =乙丁,22S S <乙丁B .x x =乙丁,22S S >乙丁 C .x x >乙丁,22S S >乙丁D .x x <乙丁,22S S <乙丁【答案】B 【解析】 【分析】根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】4563555260555x ++++==乙,则()()()()()2222221455563555555525560555S ⎡⎤=⨯-+-+-+-+-⎣⎦乙39.6=,5153585657555x ++++==丁,则()()()()()2222221515553555855565557555S ⎡⎤=⨯-+-+-+-+-⎣⎦丁 6.8=,所以x x =乙丁,22S S >乙丁,故选B . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,1x ,2x ,…n x 的平均数为x ,则方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定 D .无法确定甲、乙的成绩谁更稳定【答案】B 【解析】 【分析】根据方差的意义求解可得. 【详解】∵乙的成绩方差<甲成绩的方差, ∴乙的成绩比甲的成绩稳定, 故选B. 【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.13.已知一组数据2a -,42a +,6,83a -,9,其中a 为任意实数,若增加一个数据5,则该组数据的方差一定() A .减小 B .不变C .增大D .不确定【答案】A 【解析】 【分析】先把原来数据的平均数算出来,再把方差算出来,接着把增加数据5以后的平均数算出来,从而可以算出方差,再把两数进行比较可得到答案. 【详解】解:原来数据的平均数=242683925555a a a -++++-+==,原来数据的方差=222222(25)(45)(265)(835)(95)5a a a S --+-++-+--+-=,增加数据5后的平均数=2426839530565a a a -++++-++==(平均数没变化),增加数据5后的方差=22222221(25)(45)(265)(835)(95)(55)6a a a S --+-++-+--+-+-=, 比较2S ,21S 发现两式子分子相同,因此2S >21S (两个正数分子相同,分母大的反而小), 故答案为A. 【点睛】本题主要考查了方差的基本概念,熟记方差的公式是解本题的关键,要比较增加数据后的方差的变化,可分别求出原来的方差和改变数据后的方差,再进行比较.14.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是( ) A .这些运动员成绩的众数是 5 B .这些运动员成绩的中位数是 2.30 C .这些运动员的平均成绩是 2.25 D .这些运动员成绩的方差是 0.0725 【答案】B 【解析】 【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案. 【详解】由表格中数据可得:A 、这些运动员成绩的众数是2.35,错误;B 、这些运动员成绩的中位数是2.30,正确;C 、这些运动员的平均成绩是 2.30,错误;D 、这些运动员成绩的方差不是0.0725,错误; 故选B . 【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.15.5、2.4、2.4、2.4、2.3的中位数是2.4,选项C不符合题意.15×[(2.3﹣2.4)2+(2.4﹣2.4)2+(2.5﹣2.4)2+(2.4﹣2.4)2+(2.4﹣2.4)2]=15×(0.01+0+0.01+0+0)=15×0.02=0.004∴这组数据的方差是0.004,∴选项D不符合题意.故选B.【点睛】此题主要考查了中位数、众数、算术平均数、方差的含义和求法,要熟练掌握.16.甲、乙两班举行电脑汉字输入比赛,参赛学生每分输入汉字的个数统计结果如下表:某同学分析上表后得到如下结论:①甲、乙两班学生平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分输入汉字个数150为优秀)③甲班成绩的波动比乙班大.上述结论中正确的是()A.①②③B.①②C.①③D.②③【答案】A【解析】【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【详解】从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.①②③都正确.故选:A.【点睛】此题考查平均数,中位数,方差的意义.解题关键在于掌握平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.17.数据2、5、6、0、6、1、8的中位数是()A.8 B.6 C.5 D.0【答案】C【解析】【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.【详解】将数据从小到大排列为:0,1,2,5,6,6,8∵这组数据的个数是奇数∴最中间的那个数是中位数即中位数为5故选C.【点睛】此题考查了平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.18.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()A.96分,98分B.97分,98分C.98分,96分D.97分,96分【答案】A【解析】【分析】利用众数和中位数的定义求解.【详解】98出现了9次,出现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13个数,是96,所以数据的中位数为96分.故选A.【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.19.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是()A.10 B C D.2【答案】D【解析】【分析】【详解】∵3、a、4、6、7,它们的平均数是5,∴15(3+a+4+6+7)=5,解得,a=5S2=15[(3-5)2+(5-5)2+(4-5)2+(6-5)2+(7-5)2]=2,故选D.20.分析题中数据,将15名运动员的成绩按从小到大的顺序依次排列,处在中间位置的一个数即为运动员跳高成绩的中位数;。

(常考题)人教版高中数学必修第二册第四单元《统计》测试(含答案解析)(2)

(常考题)人教版高中数学必修第二册第四单元《统计》测试(含答案解析)(2)

一、选择题1.甲、乙、丙、丁四所学校分别有150、120、180、150名高二学生参加某次数学调研测试.为了解学生能力水平,需从这600名学生中抽取一个容量为100的样本作卷面分析,记这项调查为①;在丙校有50名数学培优生,需要从中抽取10名学生进行失分分析,记这项调查为.②完成这两项调查宜采用的抽样方法依次是( ) A .分层抽样法、系统抽样法 B .分层抽样法、简单随机抽样法 C .系统抽样法、分层抽样法D .简单随机抽样法、分层抽样法2.某校高一年级有男生400人,女生300人,为了调查高一学生对于高二时文理分科的意向,拟随机抽取35人的样本,则应抽取的男生人数为( ) A .25B .20C .15D .103.如果数据121x +、221x +、、21n x +的平均值为5,方差为16,则数据:153x -、253x -、、53n x -的平均值和方差分别为( )A .1-,36B .1-,41C .1,72D .10-,1444.一位学生在计算20个数据的平均数时,错把68输成86,那么由此求出的平均数与实际平均数的差为 A .B .C .D .5.如图所示的茎叶图记录了CBA 球员甲、乙两人在2018-2019赛季某月比赛过程中的的得分成绩,则下列结论正确的是( )A .甲的平均数大于乙的平均数B .甲的平均数小于乙的平均数C .甲的中位数大于乙的中位数D .甲的方差小于乙的方差6.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论错误的是( )注:90后指1990年及以后出生,80后指19801989-年之间出生,80前指1979年及以前出生.A .互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数90后一定比80前多D .互联网行业中从事技术岗位的人数90后一定比80后多7.国务院发布《关于进一步调整优化结构、提高教育经费使用效益的意见》中提出,要优先落实教育投入.某研究机构统计了2010年至2018年国家财政性教育经费投入情况及其在GDP 中的占比数据,并将其绘制成下表,由下表可知下列叙述错误的是( )A .随着文化教育重视程度的不断提高,国在财政性教育经费的支出持续增长B .2012年以来,国家财政性教育经费的支出占GDP 比例持续7年保持在4%以上C .从2010年至2018年,中国GDP 的总值最少增加60万亿D .从2010年到2018年,国家财政性教育经费的支出增长最多的年份是2012年 8.已知一组数据:123,,,,n x x x x 的平均数为4,方差为10,则1232,32,32n x x x ---的平均数和方差分别是( )A .10,90B .4,12C .4,10D .10,109.某位教师2017年的家庭总收入为80000元,各种用途占比统计如下面的折线图.2018年家庭总收入的各种用途占比统计如下面的条形图,已知2018年的就医费用比2017年的就医费用增加了4750元,则该教师2018年的旅行费用为( )A .21250元B .28000元C .29750元D .85000元10.某企业开展职工技能比赛,并从参赛职工中选1人参加该行业全国技能大赛.经过6轮选拔,甲、乙两人成绩突出,得分情况如茎叶图所示.若甲乙两人的平均成绩分别是x 甲,x 乙,则下列说法正确的是( ). A .x x >甲乙,乙比甲成绩稳定,应该选乙参加比赛 B .x x >甲乙,甲比乙成绩稳定,应该选甲参加比赛 C .x x <甲乙,甲比乙成绩稳定,应该选甲参加比赛 D .x x <甲乙,乙比甲成绩稳定,应该选乙参加比赛11.某实验中学共有职工150人,其中高级职称的职工15人,中级职称的职工45人,一般职员90人,现采用分层抽样抽取容量为30的样本,则抽取的高级职称、中级职称、一般职员的人数分别为 A .5、10、15B .3、9、18C .3、10、17D .5、9、1612.某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下: 行业名称计算机机械营销物流贸易应聘人数2158302002501546767457065280行业名称计算机营销机械建筑化工招聘人数124620102935891157651670436若用同一行业中应聘人数和招聘人数的比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是( ) A .计算机行业好于化工行业 B .建筑行业好于物流行业 C .机械行业最紧张D .营销行业比贸易行业紧张13.在发生某公共卫生事件期间,我国有关机构规定:该事件在一段时间没有发生规模群体感染的标志为“连续10天每天新增加疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )A.甲地总体均值为3,中位数为4B.乙地总体均值为2,总体方差大于0 C.丙地中位数为3,众数为3D.丁地总体均值为2,总体方差为3二、解答题14.某市有100万居民,政府为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),,[4,4.5)分成9组,制成了如下的频率分布直方图:(1)求直方图中a的值;(2)估计居民月均用水量的众数、中位数(精确到0.01).15.2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间[20,40),9:40~10:00记作[40,60),10:00~10:20记作[60,80),10:20~10:40记作[80,100].例如:10点04分,记作时刻64.(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值,同一组中的数据用该组区间的中点值代表;(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X ,求X 的分布列与数学期望;(3)由大数据分析可知,车辆在每天通过该收费点的时刻T 服从正态分布()2,N μσ,其中μ可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,2σ可用样本的方差近似代替同一组中的数据用该组区间的中点值代表,已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:22之间通过的车辆数结果保留到整数. 参考数据:若()2~,T Nμσ,则①()0.6827P T μσμσ-<≤≤=;②(22)0.9545P T μσμσ-<≤+=;③(33)0.9973P T μσμσ-<≤+=. 16.随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30、42、41、36、44、40、37、37、25、45、29、43、31、36、49、34、33、43、38、42、32、34、46、39、36,根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中1n 、2n 、1f 和2f 的值; (2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(]30,35的概率.17.辽宁省六校协作体(葫芦岛第一高中、东港二中、凤城一中、北镇高中、瓦房店高中、丹东四中)中的某校文科实验班的100名学生期中考试的语文、数学成绩都不低于100分,其中语文成绩的频率分布直方图如图所示,成绩分组区间是:[)100,110、[)110,120、[)120130,、[)130140,、[]140,150.(1)根据频率分布直方图,估计这100名学生语文成绩的中位数和平均数;(同一组数据用该区间的中点值作代表;中位数精确到0.01)(2)若这100名学生语文成绩某些分数段的人数x 与数学成绩相应分数段的人数y 之比如下表所示: 分组区间[)100,110[)110,120[)120130, [)130140, :x y 1:31:13:4 10:1从数学成绩在[]130,150的学生中随机选取2人,求选出的2人中恰好有1人数学成绩在[]140,150的概率.18.对某校高三年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率统计表和频率分布直方图如下:分组 频数 频率 [)10,15 15 0.30[)15,20 29n[)20,25mp[)25,302t合计M1(1)求出表中M,p及图中a的值;(2)若该校高三学生人数有500人,试估计该校高三学生参加社区服务的次数在区间[)10,15内的人数;(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[)25,30内的概率.19.某单位共有10名员工,他们某年的收入如下表:员工编号12345678910年薪(万元)4 4.565 6.57.588.5951(1)求该单位员工当年年薪的平均值和中位数;(2)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元、5.5万元、6万元、8.5万元,预测该员工第六年的年薪为多少?附:线性回归方程ˆˆˆy bx a=+中系数计算公式分别为:()()()121ˆni iiniix x y ybx x==--=-∑∑,ˆˆa y bx=-,其中x、y为样本均值.20.为提高产品质量,某企业质量管理部门经常不定期地抽查产品进行检测,现在某条生产线上随机抽取100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.(1)求图中a的值,并求综合评分的中位数;(2)用样本估计总体,以频率作为概率,按分层抽样的思想,先在该条生产线中随机抽取5个产品,再从这5个产品中随机抽取2个产品记录有关数据,求这2个产品中恰有一个一等品的概率.21.参加某高中十佳校园主持人比赛的甲、乙选手得分的茎叶统计图如图所示.(1)比较甲、乙两位选手的平均数;(2)分别计算甲、乙两位选手的方差,并判断成绩更稳定的是哪位.22.2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间X (单位:小时)并绘制如图所示的频率分布直方图.(1)求这200名学生每周阅读时间的样本平均数x 和样本方差2s (同一组中的数据用该组区间的中间值代表);(2)由直方图可以认为,目前该校学生每周的阅读时间X 服从正态分布()2N μσ,,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(i )一般正态分布的概率都可以转化为标准正态分布的概率进行计算:若()2~,,X N μσ令X Y μσ-=,则()~0,1Y N ,且()a P X a P Y μσ-⎛⎫≤=≤⎪⎝⎭.利用直方图得到的正态分布,求()10P X ≤.(ii)从该高校的学生中随机抽取20名,记Z 表示这20名学生中每周阅读时间超过10小时的人数,求()2PZ ≥(结果精确到0.0001)以及Z 的数学期望.1940178,0.77340.00763≈≈.若()~0,1Y N ,则()0.750.7734P Y ≤=. 23.随着电子商务的发展, 人们的购物习惯正在改变, 基本上所有的需求都可以通过网络购物解决. 小韩是位网购达人, 每次购买商品成功后都会对电商的商品和服务进行评价. 现对其近年的200次成功交易进行评价统计, 统计结果如下表所示.(1) 是否有99.9%的把握认为商品好评与服务好评有关? 请说明理由;(2) 若针对商品的好评率, 采用分层抽样的方式从这200次交易中取出5次交易, 并从中选择两次交易进行观察, 求只有一次好评的概率.(22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++)24.某中学从高三男生中随机抽取100名学生,将他们的身高数据进行整理,得到下侧的频率分布表.(Ⅰ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样的方法抽取6名学生进行体能测试,问第3,4,5组每组各应抽取多少名学生进行测试;(Ⅱ)在(Ⅰ)的前提下,学校决定在6名学生中随机抽取2名学生进行引体向上测试,求第3组中至少有一名学生被抽中的概率;(Ⅲ)试估计该中学高三年级男生身高的中位数位于第几组中,并说明理由.25.2018年2月925-日,第23届冬奥会在韩国平昌举行.4年后,第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:(1)根据上表说明,能否有99%的把握认为,收看开幕式与性别有关?(2)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法选取8人,参加2022年北京冬奥会志愿者宣传活动.①问男、女学生各选取多少人?②若从这8人中随机选取2人到校广播站开展冬奥会及冰雪项目宣传介绍,求恰好选到一名男生一名女生的概率P.附:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.26.某研究院为了调查学生的身体发育情况,从某校随机抽频率组距测120名学生检测他们的身高(单位:米),按数据分成[1.2,1.3],(1.3,1.4],,(1.7,1.8]这6组,得到如图所示的频率分布直方图,其中身高大于或等于1.59米的学生有20人,其身高分别为1.59,1.59,1.61,1.61,1.62,1.63,1.63,1.64,1.65,1.65,1.65,1.65,1.66,1.67,,1.68,1.69,1.69,1.71,1.72,1.74,以这120名学生身高在各组的身高的频率估计整个学校的学生在各组身高的概率.(1)求该校学生身高大于1.60米的频率,并求频率分布直方图中m 、n 、t 的值; (2)若从该校中随机选取3名学生(学生数量足够大),记X 为抽取学生的身高在(1.4,1.6]的人数求X 的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据分层抽样和简单随机抽样的定义进行判断即可. 【详解】①,四所学校,学生有差异,故①使用分层抽样, ②在同一所学校,且人数较少,使用的是简单随机抽样,故选B . 【点睛】本题主要考查简单抽样的应用,根据分层抽样的定义是解决本题的关键.2.B解析:B 【解析】分析:设应抽取的男生人数为x ,根据分层抽样的定义对应成比例可得35400300400x=+,解出方程即可.详解:设应抽取的男生人数为x ,∴35400300400x=+,解得20x,即应抽取的男生人数为20,故选B.点睛:本题考查应从高一年级学生中抽取学生人数的求法,考查分层抽样等基础知识,考查运算求解能力,是基础题.3.A解析:A 【分析】计算出数据1x 、2x 、、n x 的平均值x 和方差2s 的值,然后利用平均数和方差公式计算出数据153x -、253x -、、53n x -的平均值和方差.【详解】 设数据1x 、2x 、、n x 的平均值为x ,方差为2s ,由题意()()()()121221212121215n n x x x x x x x nn++++++++=+=+=,得2x =,由方差公式得()()()()()()22212212121212121n x x x x x x n⎡⎤⎡⎤⎡⎤+-+++-++++-+⎣⎦⎣⎦⎣⎦()()()2221224416n x x x x x x s n⎡⎤-+-++-⎢⎥⎣⎦===,24s ∴=. 所以,数据153x -、253x -、、53n x -的平均值为()()()12535353n x x x n-+-+-()1235535321n x x x x n+++=-=-=-⨯=-,方差为()()()()()()22212535353535353n x x x x x x n⎡⎤⎡⎤⎡⎤---+---++---⎣⎦⎣⎦⎣⎦()()()2221229936n x x x x x x s n⎡⎤-+-++-⎢⎥⎣⎦===. 故选:A. 【点睛】本题考查平均数与方差的计算,熟练利用平均数与方差的公式计算是解题的关键,考查计算能力,属于中等题.4.B解析:B 【解析】 【分析】应用平均数计算方法,设出两个平均数表达式,相减,即可。

统计调查与分析大赛题库带答案

统计调查与分析大赛题库带答案

统计调查与分析大赛题库带答案关于正态分布,以下陈述正确的是()为一个双峰分布峰度系數为3平均数不为负数偏态系数为1估计标准误差是反映了()。

平均数代表性的指标序时平均数的代表性指标相关关系的指标回归直线的代表性指标()也被称为判断抽样。

抽样估计主观抽样非随机抽样任意抽样我还好,不算太糟在给定的显著性水平下,进行假设检验,确定拒绝域的依据是()。

原假设为真的条件下总体参数的概率分布原假设为真的条件下检验统计量的概率分布备择假设为真的条件下检验统计量的概率分布焦点小组访谈进行的时间一般是()。

3小时以上0.5小时以内1.5-3小时0.5-1.5小时15:16:46我还好,不算太糟随机变量X服从均值为10标准差为3的正态分布,随机变量Y服从均值为9标准差为4的正态分布.假设X与Y是独立的,则Y-X的分布为均值为1标准差为-1的正态分布均值为-1标准差为1的正态分布均值为1标准差为7的正态分布均值为-1标准差为5的正态分布我还好,不算太糟8假设N很大,f可以忽略不计。

已知总体方差为400,要求绝对误差限为5,置信水平95%,若采用简单随机抽样,样本量应该为()。

864320160我还好,不算太糟调查中收集每个被抽中单元的个体数据的过程是指()过程。

数据分析数据整理数据发布数据收集我还好,不算太糟11要检验两正态总体的方差是否相等,需要用()。

t检验χ²检验F检验Z检验15:19:28我还好,不算太糟12()是调查者在提出问题的同时,还将问题的一切可能答案或几种主要可能答案全部列出,由被调查者从中选出一个或多个答案作为自己的回答,而不作答案以外的回答。

开放式问题封闭式问题实质性问题指导性问题13对市场宏观环境调查,主要包括政治法律环境调查、经济环境调查、社会文化环境调查、科技环境调查和()。

市场需求调查地理和气候环境调查市场供给调查消费者人口状况调查我还好,不算太糟14为调查幼儿园中每一幼儿的发育状况,则()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试题答案及解析※第一部分(),共100小题,分。

1、在参数估计中,估计量的期望值等于总体参数,即说明 是θ的( )。

A.无偏估计量B.有效估计量C.一致估计量D.充分估计量正确答案:A2、在回归分析中,被预测或被解释的变量称为( )。

(分)A.自变量B.因变量C.随机变量D.非随机变量正确答案:B3、回归系数和相关系数的符号是一致的,其符号均可用来判断变量之间是( )。

A.线性相关还是非线性相关B.完全相关还是不完全相关C.单相关还是复相关D.正相关还是负相关正确答案:D4、已知变量X 和Y 的协方差为-50,X 的方差为170,Y 的方差为20,其相关系数为( )。

(分)A. B.― C. D.正确答案:B5、相关系数的取值范围是( )。

(分)A.-1<r<1B.-1≤r ≤1C.0≤r ≤1D.∣r ∣≥1正确答案:B6、设某商品供应量y (件)和商品价格x (元)的一元线性回归方程为=59+148x ,这意味着商品价格每提高1元时,供应量平均( )。

(分)θθ=)ˆ(E θˆA.增加148件B.减少148件C.增加207件D.减少207件正确答案:A7、回归方程y=a+bx中,回归系数b为负数,说明自变量与因变量为()。

(A.负相关B.正相关C.显着相关D.高度相关正确答案:A8、下列关系中,属于负相关关系的是()。

(分)A.父母的身高与子女身高的关系B.球的体积与半径之间的关系C.一个家庭的收入与支出的关系D.商品的价格与需求量之间的关系正确答案:D9、相关系数等于0表明两个变量()。

(分)A.存在相关关系B.不存在相关关系C.存在线性相关关系D.不存在线性相关关系正确答案:D10、一位母亲记录了儿子3-10岁的身高,一位母亲记录了儿子3-10岁的身高,由此建立的身高与年龄的回归直线方程为=+,据此对这个孩子11岁时的身高进行预测,以下正确的是()。

(分)A.身高一定是B.身高超过C.身高低于B.D.身高在左右正确答案:D11、已知某一直线回归方程R2=,则剩余变差占总变差中的比重为()。

A. B.C. D.正确答案:A12、由某商品广告费用(万元)与销售收入(万元)的有关数据建立的一元线性回归方程为=+,根据回归方程进行推算,则以下叙述正确的是()。

(分)A.若广告费用为8万元,商品销售收入为万元B.若广告费用为8万元,商品销售收入为万元 C.若商品销售收入为8万元,广告费用为万元 D.若商品销售收入为万元,广告费用为8万元正确答案:B13、现象之间线性依存关系的程度越低,则相关系数()。

(分)A.越接近于-1B.越接近于1C.越接近于0D.在和之间正确答案:C14、在回归模型=β0+β1+ε中,ε反映的是()。

(分)A.由于x的变化引起的y的线性变化部分B.由于y的变化引起的x的线性变化部分C.除x和y的线性关系之外的随机因素对y的影响D.由于x和y的线性关系对y的影响正确答案:C15、当所有的观察值y都落在直线y=a+bx上时,则x与y之间的相关系数为()。

A.r=0B.|r|=1C.-1<r<1D.r=1正确答案:B16、变量x与y之间的负相关是指()。

(分)A.x数值增大时y值也随之增大B.x数值减少时y值也随之减少C.x数值增大(或减少)时y值也随之减少(或增大)D.y的取值几乎不受x取值的影响正确答案:C17、一元线性回归分析中, 关于回归系数显着性检验的t检验、回归方程显着性的F检验、相关系数显着性的t检验,以下描述最正确的是()。

(分)A.回归系数显着性检验的t检验与回归方程显着性的F检验等价B.回归方程显着性的F检验与相关系数显着性的t检验等价C.回归系数显着性检验的t检验,与相关系数显着性的t检验等价D.这三种检验都是等价的正确答案:D18、设单位产品成本(元)对产量(千件)的一元线性回归方程为=,这表示()。

(分)A.产量为1000件时,单位产品成本为67元B.产量为1000件时,单位产品成本为元C.产量每增加1000件时,单位产品成本下降67元D.产量每增加1000件时单位产品成本下降元正确答案:B19、已知回归直线的回归系数的估计值是,样本点的中心为(2,5),则回归直线的方程是()。

(分)A.=+4B.=+5C.=2x+D.=+2正确答案:D20、下列现象的相关密切程度最高的是()。

(分)A.产品产量与单位产品成本之间的相关系数为B.B.商品流通费用与销售利润之间的相关系数为C.商品销售额与广告支出之间的相关系数为D.商品的销售额与商品利润额之间的相关系数正确答案:A21、估计标准误差是反映了()。

(分)A.平均数代表性的指标B.相关关系的指标C.回归直线的代表性指标D.序时平均数的代表性指标正确答案:A22、当相关系数r=0时,说明()。

(分)A.现象之间相关程度较小B.现象之间完全相关C.现象之间无直线相关D.现象之间完全无关正确答案:C23、如果变量x和变量y之间的相关系数为﹣1,这说明两个变量之间是()。

(分)A.低度相关关系B.完全相关关系C.高度相关关系D.完全不相关正确答案:B24、若直线回归方程y=a+bx中的回归系数b为负数,则()。

(分)A.r为0B.r为负数C.r为正数D.r为任意数正确答案:B25、研究发现,举重运动员的体重与他能举起的重量间的相关系数为,则()。

A.体重越重,运动员平均能举起的重量越多B.平均来说,运动员能举起其体重60%的重量C.如果运动员体重增加10公斤,则平均可多举6公斤的重量D.举重能力的60%归因于其体重正确答案:A26、一项调查,当数据需从总体每一单位中搜集时,称为()。

(分)A.抽样调查B.重点调查C.典型调查D.普查正确答案:D27、为了调查购车摇号政策对汽车制造商的影响,对规模较大的制造厂商进行了调研,则此调查为()。

(分)A.简单随机抽样B.系统抽样C.重点调查D.典型调查正确答案:C28、为某一特定目的而专门组织的一次性全面调查,称为()。

(分)A.普查B.抽样调查C.统计报表D.访问调查正确答案:A29、()是指运用科学的方法,有目的地、系统地搜集、记录、整理有关市场营销的信息和资料,从而分析市场情况,了解市场的现状及其发展趋势,为市场预测和营销决策提供客观的、正确的资料。

(分)A.市场预测B.市场开发C.市场调查D.市场营销正确答案:C30、统计调查按调查登记的时间是否连续,可分为()。

(分)A.全面调查和非全面调查B.经常性调查和一次性调查C.典型调查和非典型调查D.时点调查和时期调查正确答案:B31、人均粮食消费量与人均粮食产量()。

(分)A.前者是平均指标而后者是相对指标B.前者是相对指标而后者是平均指标C.两者都是平均指D.两者都是相对指标正确答案:A32、通过直接调查或科学试验得到的统计数据,我们称之为()统计数据。

(A.第一手B.第二手C.抽样D.普查正确答案:A33、市场营销主体与社会公众之间进行信息互相传输、交换,体现了市场调研的()。

(分)A.认识功能B.信息功能C.沟通功能D.反馈和调节功能正确答案:C34、抽样调查与典型调查的最主要区别是()。

(分)A.灵活机动程度不同B.涉及的调查范围不同C.对所研究总体推算方法不同D.选择调查单位的方法不同正确答案:D35、科学家为了解土壤的理化性质,在实验室中测定土壤样品中的重金属含量,得到的数据为()。

(分)A.统计台账资料B.原始数据C.普查资料D.第二手资料正确答案:B36、推断统计学研究的是()。

(分)A.如何根据样本数据去推断总体数量特征的方法B.统计数据收集的方法B.C.统计数据显示的方法D.数据加工处理的方法正确答案:A37、某便利店为了掌握到店消费顾客的信息而进行的调查,包括性别、年龄、购买频率、购买数量、购买金额等,这种调查属于()。

(分)A.探测性B.描述性C.因果关系D.预测性正确答案:B38、以下不属于企业外部市场调研主体的是()。

(分)A.市场调研公司B.广告公司的调研与预测机构C.咨询公司D.企业的会计部门正确答案:D39、以下市场调查活动行为中错误的是()。

(分)A.为及时了解剧烈变化的经济社会环境、预测市场的变化等,应主动进行市场调查B.除非出现影响企业生存的重大变化,否则不需要进行市场调查C.当营销环境发生急剧变化时,应该进行市场调查D.当企业的外部环境和内部情况发生变化带来问题或机会时,应该进行市场调查正确答案:B40、索尼公司通过调查,每年向市场推出1000种新产品,这体现了市场调查在()上的重要性。

(分)A.有助于管理者了解市场状况,发现和利用市场机会B.B.有助于管理者制定正确的营销战略C.有助于企业开发新产品,开拓新市场C.D.有助于企业在竞争中占据有利地位正确答案:C41、国势学派的创始人是()。

(分)A.康令B.凯特勒C.威廉配第D.皮尔逊正确答案:A42、在统计调查中,调查项目的承担者是()。

(分)A.调查对象B.调查单位C.填报单位D.统计报表正确答案:B43、提出开展市场调研任务和要求,并承担开展市场调研费用的是()。

(A.开展市场调研者B.被调查者C.开展市场调研的委托方D.政府部门正确答案:C44、探询人们的消费倾向、文化素养、道德规范等对企业的发展会有什么影响,属于()。

(分)A.经济环境调研B.政治法律环境调研C.社会文化环境调研D.科学技术环境调研正确答案:C45、生产经营活动的原始记录、原始数据、单据等是加工信息的基础,在企业统计信息收集活动中一般被称为()。

(分)A.二级信息B.生产信息C.原始信息D.企业信息正确答案:C46、在工业企业生产设备普查中,企业的每一台生产设备是()。

(分)A.调查对象B.调查单位C.调查项目D.填报单位正确答案:B47、通过统计描述和统计推断的方法探索数据内在规律的过程是统计的核心内容,这个过程就是统计数据的()。

(分)A.收集B.整理C.分析D.汇总正确答案:C48、统计调查的调查时间是指()。

(分)A.调查资料所属的时间B.调查工作的整个期限C.对调查单位情况进行登记的时间D.调查任务的布置时间正确答案:A49、统计调查的继续和统计分析的前提是()。

(分)A.数据处理B.统计设计C.撰写报告D.统计准备正确答案:A50、检查产品寿命应采用()。

(分)A.抽样调查B.重点调查C.普查D.典型调查正确答案:A51、构成统计总体的个别事物称为()。

(分)A.调查对象B.总体单位C.标志值D.品质标志正确答案:B52、以发展的眼光而不是静止的眼光看待市场及其影响因素,体现了市场调研的()。

(分)A.系统性原则B.动态性原则C.科学性原则D.因果性原则正确答案:B53、在统计调查中,负责向上报告调查内容的单位是()。

相关文档
最新文档