八年级下册数学配套练习册答案人教版

合集下载

新课程课堂数学人教版八年级下册同步练习册参考答案

新课程课堂数学人教版八年级下册同步练习册参考答案

新课程课堂数学人教版八年级下册同步练习册参考答案二、1、,三、1、 2、(1)(2) 3、§16.1.2(一)一、1、C 2、D 3、A二、1、 2、1 3、,三、(1)(2)§16.1.2(二)一、1、C 2、C 3、C二、1、 2、 3、三、1、(1)(2)(3)2、(1),(2),§16.2.1(一)一、1、D 2、A 3、D二、1、 2、 3、三、1、 2、 3、§16.2.1(二)一、1、B 2、A 3、C二、1、 2、 3、三、1、原式=,当时原式=2 2、 3、§16.2.2(一)一、1、B 2、B 3、C二、1、 2、0 3、三、1、 2、 3、0§16.2.2(二)一、1、C 2、B 3、A二、1、 2、三、1、 2、 3、,§16.2.2(三)一、1、A 2、A二、1、 2、 3、三、1、, 2、, -5§16.2.3(一)一、1、D 2、B 3、A二、1、 2、1;;9 3、三、1、 2、-5 3、§16.2.3(二)一、1、B 2、B 3、A二、1、1.514× 2、4.3× 3、-8.1×三、1、 2、一、1、C 2、A 3、D二、1、9 2、3 3、x =-14三、1、 2、 3、§16.3(二)一、1、A 2、D 3、-12、二、1、x =5 2、 3、三、1、 2、无解 3、无解§16.3(三)一、1、A 2、B 3、B二、1、 2、三、1、无解 2、§16.4(一)一、1、D 2、B 3、C二、1、 2、; 3、3三、1、120千米/时2、先遣队6千米/时,大队5千米/时§16.4(二)一、1、B 2、B二、1、 2、三、1、15人 2、9天一、1.C 2. D 3.D二.1. 2 2. 如: 3.三、1.(1)略(2)略§17.1.2(二)一、1.B 2.C 3.B二、1.< 2.(2,4),(-2,-4) 3. -4三.1.-3, 2. (1)y=-,(2)-6§17.2(一)一、1.D 2.C 3.B二、1.二、四 2.略 3.(2,3)三、1.,100 2.解:(1)把A(m,2)代入y=得2=∴m=3∴y=,把(2,n)代入y=得n=3(2)由(1)知y=mx-n为y=3x-3与x轴交点的纵坐标为0,由0=3x-3得x=1∴C(1,0),C关于y轴的对称点Cˊ的坐标为(-1,0).§17.2(二)一、1.D2.B 3.B二、 1. 2 2. -2(提示:由双曲线经过A、B得,解得=2,由经过A、B得解得,-2)3. 0.5三、1、(1)设A、B两地之间的路程为千米,则=75×4=300(千米)∴与之间的函数关系式是.(2)当=3时,则有3=,∴返回时车速至少是100千米/时.2解:(1)∵点在反比例函数的图象上,∴∴反比例函数的表达式为.∵点也在反比例函数的图象上,∴,即.把点,点代入一次函数中,得解得一次函数的表达式为.(2)在中,当时,得.直线与轴的交点为.∵线段OC将分成和,一、1. B2.C 3.A二、1.勾股定理, 2.(1)5;(2) 3.76三、150§18.1(二)一、1.C 2.A3.C二、1. 2.25三、1. 米 2.953米§18.1(三)一、1.C 2.C二、1.2. 3.8三、§18.2(一)一、1.B2. A二、1.同位角相等,两条直线平行 2. 24三、1.(1)是;(2)是;(3)是;(4)不是2.(1)两条直线平行,内错角相等;成立;(2)如果两个有理数的绝对值相等,那么它们也相等;不成立;(3)如果两个角的补角相等,那么这两个角也相等;成立;(4)到线段两端点的距离相等的点在这条线段的垂直平分线上;成立.§18.2(二)一、1.B2.A二、1.3,4,5 2.①②③三、符合要求一、1.B 2.D 3.D二、1.分别平行,□ABCD 2、53、(1)∠A=60°,∠B=120°,∠D=120°;(2)∠A=110°,∠B=70°;(3)∠D=135°.三、1.解:∵四边形ABCD是平行四边形∴AD//BC,AB//CD∴∠A+∠B=180°,∠A+∠D=180°,∠C+∠D=180°∵∠A=120°∴∠B=60°,∠D=60°∴∠C=120°2、证:∵四边形ABCD是平行四边形∴ABCD∴∠ABD=∠CDB∵AE⊥BD,CF⊥BD ∴∠AEB =∠CFD=90°在△ABE和△CFD中∴△ABE≌△CDF(AAS) ∴AE=CF§19.1(二)一、1、A ;2、 A ;3、 A ;二、1.互相平分、相等、互补;2.45 cm ;3.16;三、1.证:∵四边形ABCD是平行四边形∴AD//BC∴∠DAE+∠AEC=180°∵AE//CF ∴∠DAE+∠AFC = 180°∴∠AFC =∠AEC2、证:∵四边形ABCD是平行四边形∴AD//BC,OD=OB ∴∠E=∠F在△ODE和△OBF中∴△ODE≌△OBF ∴OE=OF§19.1.2(一)一、1、B 2、D 3、D 4 、B二、1. 8, 4 2. 4,5三、1.证:∵四边形ABCD是平行四边形∴AO=CO,BO=DO∵BE=DF∴OE=OF∴四边形AECF是平行四边形2、证:∵四边形ABCD是平行四边形∴ABCD ,ADBC ∴∠FAB=∠ADC=∠DCE在△ABF和△CDE中∴△ABF≌△CDE∴DE=BF,CE=AF ∴BE=DF又∵AD∥BC 即FD∥BE∴四边形FBED是平行四边形。

(完整版)人教版八年级数学下学期课后习题与答案

(完整版)人教版八年级数学下学期课后习题与答案

习题16.11、当a 是怎样的实数时,下列各式在实数范围内有意义? (1) .. rr ;( 2)、、戸;(3),5a ;( 4) .. 2a 1 . 解析:(1)由 a + 2 >0,得 a >- 2; (2) 由 3- a > 0,得 a w 3; (3) 由 5a >0,得 a >0;1(4) 由 2a + 1 > 0,得 a > -.22、计算:3、用代数式表示:(1) 面积为S 的圆的半径; (2) 面积为S 且两条邻边的比为(1)C.5)2 ; ( 2) ( 、.02)2 ; (3) ;(4) (5.5)2 ;(5) .(10)2 ; (6)( ⑺:(?2 ; (8)(2)2.解析: ⑴(、一5)2 (2)(02)2 ( 1)2 (、、0^)20.2;(4) (3) (5.5)252 (一 5)2125 ;.(10)2■■ 10210;(5)214 ;解析:(1)设半径为r (r>0),由r 2 S,得 r2 : 3的长方形的长和宽.2x, 3x (x>0),则有2x • 3x=S,得x J-S ,(2)设两条邻边长为4、利用a (、、a)2(a > 0),把下列非负数分别写成一个非负数的平方的形式:1(1)9;( 2)5;( 3)2.5;( 4)0.25;( 5) _; (6)0.2解析:(1) 9=32; (2) 5=(... 5)2; ( 3) 2.5=(云)2;1 斤2(4) 0.25=0.52; (5) § (,瑕)2; (6) 0=02.5、半径为r cm的圆的面积是,半径为2cm和3cm的两个圆的面积之和.求r的值.解析:r22232, r213 ,Q r 0, r 55 .6、A ABC的面积为12, AB边上的高是AB边长的4倍.求AB的长.答案:.6 .7、当x是怎样的实数时,下列各式在实数范围内有意义?(1)X2 1 ; (2) ,(X 1)2; (3) , 1; (4) 1.V X yj x 1答案:(1) x为任意实数;(2) x为任意实数;(3) x>0; (4) x>— 1 .8、小球从离地面为h (单位:m)的高处自由下落,落到地面所用的时间为t (单位:s).经过实验,发现h与t2成正比例关系,而且当h=20时,t=2 •试用h表示t,并分别求当h=10和h=25时,小球落地所用的时间.答案:h=5t2,,-、5 .9、(1)已知18 n是整数,求自然数n所有可能的值;(2)已知.24n是整数,求正整数n的最小值.答案:(1) 2, 9, 14, 17, 18 ; (2) 6.因为24n=22x 6X n,因此,使得莎为整数的最小的正整数n是6.⑵210、一个圆柱体的高为 10,体积为V •求它的底面半径r (用含V 的代数式表示),并 分别求当V=5n ,10n 和20 n 时,底面半径r 的大小.习题16.21、计算:(1) •, 24 ...27 ;( 2) 6 ( .. 15);(3) .18.. 20 , 75 ;( 4) , 32 43 5 •答案:(1) 18; (2) 3 10 ; ( 3) 30.30 ; (4) 24. 5 •2、计算:3、化简:(3) 誥;(4)宁;(5) y 怎;(6) 5 •(1),4 49 ;(2) (4)a 2b 4c 2答案:(1) 14 ; (2)10 '、3 ; (3) 37(4) 4、化简: (1) ; (2)23 (3)运6 ;( 3) 3质;(4) 卑;(5)辿;(6)•3、n .2x 3 5y(1) .181; 5 ;( 4) 2 也•6 3、xy答案:(1)2 ,3 ; (3)「2 ; (4)答案:(1) .3 ;5、根据下列条件求代数式b 、b 2 4ac2a的值;答案:11、已知长方体的体积V 4 3,高 h 3、2 ,求它的底面积S .(1) a=1, b=10, c=—15; (2) a=2, b= — 8, c=5 . 答案:(1)5 2.10 ;(2)4;6 26、设长方形的面积为 S,相邻两边分别为 a , b . (1) 已知 a .8 , b .12,求 S ; (2) 已知 a 2.,50 , b 3 32,求 S . 答案:(1) 4.6 ; (2) 240.7、设正方形的面积为 S,边长为a . (1) 已知 S=50,求 a ; (2) 已知 S=242,求 a . 答案:(1) 5、、2 ; (2) 112 •8、计算:.8 3、、40,5 ; (4) 27 ■- 50 \ 6 .9、已知 2 1.414 ,答案:0.707, 2.828.10、设长方形的面积为 S ,相邻两边长分别为 a , b •已知S 4;3,a、、15,求 b .(1) m 题;答案:(1) 1.2 ; ( 2)(3)15.12、如图,从一个大正方形中裁去面积为15cm2和24cm2的两个小正方形, 的面积.答案:12.10cm2.13、用计算器计算:(1) -.,9 9 19 ; (2)、一99 99 199 ;(3)、、999 999 1999 ; (4) 9999 9999 19999 .观察上面几题的结果,你能发现什么规律?用你发现的规律直接写出下题的结果:9些39 99L39 19匹39 ___________ .n个9 n个9 n个9答案:(1) 10 ; (2) 100; (3) 1000; (4) 10000. 100匕0 .n个0习题16.31、下列计算是否正确?为什么?(1) .2 .3 .,5 ;(2) 2 .2 2 2 ;(3) 32 ,2 3; (4)压8J 3 2 1 2答案: (1)不正确,,2与. 3不能合并;(2)不正确,2与不能合并;(3)不正确,3、. 2 .2 2,2 ;求留下部分12 (4) 不正确,邑空3 2 2辽2 .2 2 24、计算:(1) (、、12 5、、8八3 ; (2) (2、一 3 3. 2)(2 ,3 3、2); (3) ®3 2、、5)2 ; (4)^481、、6) ,27 •4答案:(1) 6 10 .6; (2)— 6; (3) 95 20.15; (4)-35、已知亏 2.236,求5 1 5 4*45的近似值(结果保留小数点后两位)(1)2、.-.27;(2).9;(3) 2、9X3X ;(4)a 2 , 8a 3a 50a 3 •答案: (1) 7、、3 ;⑵ \ 2 ; (3) 5 .. X ; (4)17a^. 2a23、计算:(1) .18 ,32 迈;(2) ,7554 ,96 .108 ;(3) C.45•18)(、、8 .125);(4)丄(42、3) 3(.2.27) 4•答案:(1) 0 ;(2) 、、6 . 3 ; (3) 8.. 5 . 2 ; (4)— I" •2、计算: 4(2)答案:7.83.6、已知x . 3 1,y ,3 1,求下列各式的值:(1) x 2+ 2xy + y 2; (2) x 2— y 2. 答案:(1) 12 ; (2) 4.3 .7、如图,在 Rt △ ABC 中,/ C=90° CB=CA=a .求 AB 的长.A8、已知a 1 ,10,求a -的值.aa答案:.6 .9、在下列各方程后面的括号内分别给出了一组数,从中找出方程的解: (1) 2x 2 — 6=0 , (、、3,、、6, J, 厨;(2) 2 (x + 5) 2=24, (5 2.3,5 2.3, 5 2 G, 5 2、3). 答案:(1)3 ; (2) 2.3 5 .复习题161、当x 是怎样的实数时,下列各式在实数范围内有意义? (1) r~x;12、化简:3、计算:(1) G24 J) (、1 ,6) ; (2) 2.12 乜 5、、2 ; V2 \8 4 (3) (2 ,3、、6)(2、、3 ,6) ; (4) (2 .一48 3. 27)、、6 ;(5)(2-2 3、3)2 ; (6)《J ; :1;)2 •4、正方形的边长为 a cm ,它的面积与长为 96cm ,宽为12cm 的长方形的面积相等.求 a 的值.答案:24、2 .5、已知x .5 1,求代数式x 2+ 5x — 6的值.答案:3,5 5 .6、已知x 2.3 ,求代数式(7 4 3)x 2(2 .3)x .3的值.(3):2 ;3x(4)r1:(X1)2 •答案: (1) x >— 3 ;(2) x 1 22 ;(3)%3 ;(4)乂工1-(1).500 ;(2) (3) (5)2x 2y 3 ;答案: (1) 10、5 ; (2) 2 '、3X ; ( 3)42; ;(4) 迁;(5) xy 2y ;(6) ‘五3a 答案:(1);(2);(3) 6; (4)4 10(5) 35 12.6 ; (6) 55_3 2; (4)亦;(6)5a 5答案:2 3 •7、电流通过导线时会产生热量,电流 I (单位:A )、导线电阻R (单位:Q )、通电时 间t (单位:s )与产生的热量 Q (单位:J )满足Q=l 2Rt •已知导线的电阻为 5Q, 1s 时间 导线产生30J 的热量,求电流I 的值(结果保留小数点后两位)•答案:2.45A •8、已知n 是正整数, "89n 是整数,求n 的最小值. 答案:21.9、(1)把一个圆心为点 0,半径为r 的圆的面积四等分•请你尽可能多地设想各种分 割方法. (2)如图,以点0为圆心的三个同心圆把以 0A 为半径的大圆0的面积四等分•求这 三个圆的半径 OB , 0C , 0D 的长.类比上述式子,再写出几个同类型的式子. 你能看出其中的规律吗?用字母表示这一规律,并给出证明.平方即可.答案:(1)例如,相互垂直的直径将圆的面积四等分;1(2)设 0A=r ,则 0D r , 0C20Bn n 2 1n 3 n 2 1,再两边开答案:规律是:•只要注意到习题17.11、设直角三角形的两条直角边长分别为 a 和b ,斜边长为c .(1) 已知 a=12, b=5,求 c ; (2) 已知 a=3, c=4,求 b ; (3) 已知 c=10,b=9,求 a . 答案:(1) 13; (2), 7 ; (3) J9 .2、一木杆在离地面 3m 处折断,木杆顶端落在离木杆底端 4m 处.木杆折断之前有多高?答案:8m .3、如图,一个圆锥的高 AO=2.4,底面半径 OB=0.7 . AB 的长是多少?答案:2.5.4、已知长方形零件尺寸(单位:mm)如图,求两孔中心的距离(结果保留小数点后一位).5、如图,要从电线杆离地面 5m 处向地面拉一条长 7m 的钢缆•求地面钢缆固定点 A到电线杆底部B 的距离(结果保留小数点后一位)•答案:4.9m •6、在数轴上作出表示 .20的点. 答案:略.8、在厶 ABC 中,/ C=90°, AC=2.1 , BC=2.8 .求: (1) △ ABC 的面积; (2) 斜边AB ; (3) 高 CD •7、在厶 ABC 中,/ C=90°, AB=c • (1) 如果/ (2) 如果/ A=30°,求 A=45 ,求 BC , BC , AC ; AC • 答案:(1) BC -c ,2AC(2) BCc , AC2答案:(1) 2.94; (2) 3.5; (3) 1.68.9、已知一个三角形工件尺寸(单位:mm)如图,计算高I的长(结果取整数)答案:82mm.10、有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面. 水的深度与这根芦苇的长度分别是多少?答案:12尺,13尺.11、如图,在AB的长.答案:12、有5个边长为1的正方形,排列形式如图.请把它们分割后拼接成一个大正方形.答案:分割方法和拼接方法分别如图(1)和图(2)所示.S半圆 ACD g因为/ ACD=90,根据勾股定理得 AC 2 + CD 2=AD 2, S 半圆AEC + S 半圆CFD =S 半圆ACD ,S 阴影=S ^ACD + S 半圆AEC + S 半圆CFD — S 半圆ACD , 即S 阴影=S ^ACD . 14、如图,△ ACB 和厶ECD 都是等腰直角三角形, △ ACB 的顶点A 在厶ECD 的斜边DE 上.求证:AE 2+ AD 2=2AC 2.证明:证法1:如图(1),连接BD .•••△ ECD 和△ ACB 都为等腰直角三角形,••• EC=CD , AC=CB ,/ ECD= / ACB=90 •••/ ECA= / DCB . • △ ACE ◎△ DCB . • AE=DB ,/ CDB= / E=45 . 又/ EDC=45 ,13、 月形图案 u如图,分别以等腰 AGCE 和 DHCF (1)Rt △ ACD 的边AD , AC , CD 为直径画半圆.求证:所得两个 的面积之和(图中阴影部分)等于Rt △ ACD 的面积. S半圆AECAB2 符 8 gAC 2,S 半圆CFD8 g CD 2 ,gAD 2 .所以H•••/ ADB=90 .在Rt△ ADB 中,AD 2+ DB2=AB2,得AD2+ AE2=AC2+ CB2, 即AE2+ AD 2=2AC2.<1)证法2:如图(2),作AF丄EC, AG丄CD,由条件可知,AG=FC . 在Rt△ AFC中,根据勾股定理得AF2+ FC2=AC 2.• AF2+ AG2=AC2.在等腰Rt△ AFE和等腰Rt△ AGD中,由勾股定理得AF2+ FE2=AE 2, AG 2+ GD2=AD2.又AF=FE , AG=GD ,••• 2AF2=AE2, 2AG 2=AD 而2AF2+ 2AG 2=2AC2,• AE2+ AD2=2AC2.习题17.21、判断由线段a, b, c组成的三角形是不是直角三角形:(1)a=7, b=24, c=25;(2) a .41 , b=4, c=5;5 3(3) a , b=1, c —;4 4(4)a=40, b=50, c=60.答案:(1)是;(2)是;(3)是;(4)不是.2、下列各命题都成立,写出它们的逆命题•这些逆命题成立吗?(1)同旁内角互补,两直线平行;(2)如果两个角是直角,那么它们相等;(3)全等三角形的对应边相等;(4)如果两个实数相等,那么它们的平方相等.答案:(1)两直线平行,同旁内角互补.成立.(2)如果两个角相等,那么这两个角是直角•不成立.(3)三条边对应相等的三角形全等.成立.(4)如果两个实数的平方相等,那么这两个实数相等.不成立.3、小明向东走80m后,沿另一方向又走了60m,再沿第三个方向走100m回到原地.小明向东走80m后是向哪个方向走的?答案:向北或向南.4、在厶ABC 中,AB=13 , BC=10, BC 边上的中线AD=12 .求AC .答案:13.5、如图,在四边形ABCD 中,AB=3 , BC=4 , CD=12 , AD=13,/ B=90° 求四边形ABCD的面积.答案:36.一一1 一6、如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF —CD .求4证/ AEF=90 .答案:设AB=4k,贝U BE=CE=2k , CF=k , DF=3k .•••/ B=90°,••• AE2= (4k) 2+( 2k) 2=20k2.同理,EF2=5k2, AF2=25k2.• AE2+ EF2=AF2.根据勾股定理的逆定理,△ AEF为直角三角形.•••/ AEF=90 .7、我们知道3, 4, 5是一组勾股数,那么3k, 4k , 5k ( k是正整数)也是一组勾股数吗?一般地,如果a, b, c是一组勾股数,那么ak, bk, ck (k是正整数)也是一组勾股数吗?答案:因为(3k) 2+( 4k) 2=9k2+ 16k2=25k2= (5k) 2,所以3k, 4k,5k( k是正整数)为勾股数.如果a , b , c 为勾股数,即a 2 + b 2=c 2,那么(ak ) 2+( bk ) 2=a 2k 2 + b 2k 2= (a 2+ b 2) k 2=c 2k 2= (ck ) 2 • 因此,ak , bk , ck (k 是正整数)也是勾股数.复习题171、两人从同一地点同时出发, 一人以20 m/min 的速度向北直行, 一人以30m/min 的速 度向东直行.10min 后他们相距多远(结果取整数)?答案:361m .2、如图,过圆锥的顶点S 和底面圆的圆心 0的平面截圆锥得截面△ SAB ,其中SA=SB , 答案: 6、5 cm 23、如图,车床齿轮箱壳要钻两个圆孔,两孔中心的距离是134mm ,两孔中心的水平距离是77mm •计算两孔中心的垂直距离(结果保留小数点后一位)答案:109.7mm .4、如图,要修一个育苗棚,棚的横截面是直角三角形,棚宽 a=3m ,高b=1.5m,长d=10m .求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位)AB 是圆锥底面圆答案:33.5m2.5、一个三角形三边的比为1: .3:2,这个三角形是直角三角形吗?答案:设这个三角形三边为k…3k ,2k,其中k>0.由于k2(、、3k)2 4k2 (2k)2, 根据勾股定理的逆定理,这个三角形是直角三角形.6、下列各命题都成立,写出它们的逆命题.这些逆命题成立吗?(1)两条直线平行,同位角相等;(2)如果两个实数都是正数,那么它们的积是正数;(3)等边三角形是锐角三角形;(4)线段垂直平分线上的点到这条线段两个端点的距离相等.答案:(1)同位角相等,两直线平行.成立.(2)如果两个实数的积是正数,那么这两个实数是正数.不成立.(3)锐角三角形是等边三角形.不成立.(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.成立.7、已知直角三角形的两条直角边的长分别为2 3 1和2 3 1,求斜边c的长.答案:.26 .8、如图,在△ ABC 中,AB=AC=BC,高AD=h .求AB .答案:2 3h .39、如图,每个小正方形的边长都为1.(1)求四边形ABCD的面积与周长;(2)Z BCD是直角吗?答案:(1) 14.5, 3.5 、17 .. 26 ;(2)由BC 、20, CD . 5 , BD=5,可得BC2+ CD2=BD2•根据勾股定理的逆定理,△ BCD是直角三角形,因此/ BCD是直角.10、一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是多少?(这是我国古代数学著作《九章算术》中的一个问题.其中的丈、尺是长度单位,1丈=10尺.)答案:4.55尺.11、古希腊的哲学家柏拉图曾指出, 如果m 表示大于1的整数,a=2m , b=m 2- 1, c=m 2 +1,那么a , b , c 为勾股数.你认为对吗?如果对, 你能利用这个结论得出一些勾股数吗?答案:因为a 2+b 2= (2m ) 2+( m 2- 1) 2=4m 2 + m 4- 2m 2+ 1=m 4+ 2m 2+ 1= (m 2+ 1) 2=c 2, 所以a , b , c 为勾股数.用 m=2, 3, 4 等大于 1 的整数代入 2m , m 2- 1, m 2 + 1,得 4, 3, 5; 6, 8, 10; 8, 15, 17;等等.12、如图,圆柱的底面半径为 6cm ,高为10cm ,蚂蚁在圆柱表面爬行,从点 A 爬到点B 的最短路程是多少厘米(结果保留小数点后一位)?答案:21.3cm .13、一根70cm 的木棒,要放在长、宽、高分别是50cm , 40cm , 30cm 的长方体木箱中, 能放进去吗?答案:能.习题18.11、如果四边形 3 ABCD 是平行四边形,AB=6,且AB 的长是口 ABCD 周长的,那么16BC 的长是多少?答案:10.14、设直角三角形的两条直角边长及斜边上的高分别为 a, b 及h .求证:a 21 h2 .答案:由直角三角形的面积公式,1 得- ab 2対厂,等式两边平方得抚窃(a2+ b 2),等式两边再同除以a 2b 2c 2,得 $h 2 a 22、如图,在一束平行光线中插入一张对边平行的纸板•如果光线与纸板右下方所成的 / 1是72° 15'那么光线与纸板左上方所成的/ 2是多少度?为什么?答案:72° 15 ',平行四边形的对角相等.3、如图,口ABCD的对角线AC , BD相交于点0,且AC + BD=36 , AB=11 .求厶0CD 的周长.答案:29.4、如图,在口ABCD中,点E, F分别在BC , AD上,且AF=CE .求证:四边形AECF 是平行四边形.答案: 提示:利用5、如图,口ABCD的对角线AC , BD相交于点0,且E, F, G, H分别是AO , B0 , CO, DO 的中点.求证:四边形EFGH是平行四边形.答案:提示:利用四边形EFGH的对角线互相平分.6、如图,四边形AEFD 和EBCF 都是平行四边形.求证:四边形ABCD 是平行四边形.7、如图,直线l i // |2,厶ABC 与厶DBC 的面积相等吗?为什么?你还能画出一些与△ ABC 面积相等的三角形吗?答案:相等•提示:在直线 l i 上任取一点P,A PBC 的面积与厶ABC 的面积相等(同 底等高).□ OABC 的顶点O , A , C 的坐标分别是(0, 0), (a , 0), (b , c ).求顶点9、如图,在梯形 ABCD 中,AB // DC .(1) 已知/ A= / B ,求证 AD=BC ; (2) 已知 AD=BC ,求证/ A= / B .答案: 8、如图, B 的坐标.答案:B 提示:利用(a + b ,答案:提示:过点AECD为平行四边形.10、如图,四边形ABCD是平行四边形,/ ABC=70°, BE平分/ ABC且交AD于点E, DF // BE且交BC于点F.求/ 1的大小.A E DB F C答案:35°11、如图,A' B BA , B'C'// CB , C ' /AC,/ ABC 与/ B'有什么关系?线段AB'与线段AC 呢?为什么?答案:由四边形ABCB是平行四边形,可知/ ABC= / B ', AB =BC ;再由四边形C BCA 是平行四边形,可知 C A=BC .从而AB =AC12、如图,在四边形ABCD 中,AD=12 , DO=OB=5 , AC=26 , / ADB=90°.求BC 的长和四边形ABCD的面积.答案: 的对角线互相平分,它是一个平行四边形•所以BC=AD=12,四边形ABCD的面积为120 .13、如图,由六个全等的正三角形拼成的图中,有多少个平行四边形?为什么?答案:6个,利用对边相等的四边形是平行四边形.14、如图,用硬纸板剪一个平行四边形,作出它的对角线的交点0,用大头针把一根平放在平行四边形上的直细木条固定在点0处,并使细木条可以绕点0转动.拨动细木条,使它随意停留在任意位置.观察几次拨动的结果,你发现了什么?证明你的发现.答案:设木条与口ABCD的边AD , BC分别交于点E, F,可以发现0E=0F , AE=CF ,DE=BF , △ A0E C0F , △ D0EB0F等.利用平行四边形的性质可以证明上述结论.15、如图,在□ABCD中,过对角线BD上一点P作EF // BC, GH // AB .图中哪两个平行四边形面积相等?为什么?答案:口AEPH 与□PGCF面积相等.利用△ ABD 与厶CDB , △ PHD与厶DFP, △ BEP 与厶PGB分别全等,从而口AEPH与口PGCF面积相等.习题18.21、如图,四边形ABCD是平行四边形,对角线AC, BD相交于点0,且/仁/2.它是一个矩形吗?为什么?答案:是.利用/ 1 = / 2,可知B0=C0,从而BD=AC , □ ABCD的对角线相等,它是一个矩形.2、求证:四个角都相等的四边形是矩形.答案:由于四边形的内角和为360°四个角又都相等,所以它的四个角都是直角.因此这个四边形是矩形.3、一个木匠要制作矩形的踏板•他在一个对边平行的长木板上分别沿与长边垂直的方向锯了两次,就能得到矩形踏板.为什么?答案:能.这时他得到的是一个角为直角的平行四边形,即矩形.4、在Rt△ ABC 中,/ C=90° AB=2AC .求/ A,/ B 的度数. 答案:/ A=60°,/ B=30°.5、如图,四边形ABCD是菱形,/ ACD=30°, BD=6 .求:(1)Z BAD,/ ABC 的度数;(2)AB , AC 的长.B答案:(1)Z BAD=60,/ ABC=120 ; (2) AB=6 , AC 6品-6、如图,AE // BF , AC平分/ BAD,且交BF于点C, BD平分/ ABC,且交AE于点D,连接CD •求证:四边形ABCD是菱形.答案:提示:由/ ABD= / DBC= / ADB,可知AB=AD,同理可得AB=BC .从而AD P BC,四边形ABCD是一组邻边相等的平行四边形,它是菱形.7、如图,把一个长方形的纸片对折两次,然后剪下一个角•要得到一个正方形,剪口与折痕应成多少度的角?答案:45°8、如图,为了做一个无盖纸盒,小明先在一块矩形硬纸板的四角画出四个相同的正方形,用剪刀剪下.然后把纸板的四边沿虚线折起,并用胶带粘好,一个无盖纸盒就做成了. 纸盒的底面是什么形状?为什么?答案:矩形,它的四个角都是直角.9、如图,在Rt△ ABC 中,/ ACB=90°, CD 丄AB 于点D,/ ACD=3 / BCD , E 是斜边AB的中点./ ECD是多少度?为什么?45°.提示:/ BCD= / EAC= / ECA=22.5答案:10、如图,四边形ABCD 是菱形,点M , N分别在AB , AD上,且BM=DN , MG // AD , NF // AB ;点F, G分别在BC , CD上,MG与NF相交于点E.求证:四边形AMEN , EFCG都是菱形.答案:提示:四边形AMEN , EFCG都是一组邻边相等的平行四边形.11、如图,四边形ABCD是菱形,AC=8 , DB=6 , DH丄AB于点H .求DH的长.B答案:DH=4.8 .提示:由AB • DH=2AO • OD=2S A ABD可得.12、(1)如下图(1),四边形OBCD是矩形,O, B , D三点的坐标分别是(0, 0),(b, 0), (0, d).求点C的坐标.(2) 如下图(2),四边形ABCD 是菱形,C , D 两点的坐标分别是(c , 0), (0, d ), 点A , B 在坐标轴上.求 A , B 两点的坐标.(3) 如下图(3),四边形OBCD 是正方形,O , D 两点的坐标分别是 (0, 0),(0, d ).求 B , C 两点的坐标.答案:正方形.提示: △ BFECMF DNM AEN ,证明四边形 EFMN 的四条 边相等,四个角都是直角.14、如图,将等腰三角形纸片 ABC 沿底边BC 上的高AD 剪成两个三角形.用这两个 三角形你能拼成多少种平行四边形?试一试,分别求出它们的对角线的长.(2)(3)答案:(1) C (b , (2) A ( — c , 0), B (0, — d );(3) B (d , 0), C (d , d ).13、如图,E , F , M , N 分别是正方形 ABCD 四条边上的点,且 判断四边形EFMN 是什么图形,并证明你的结论. AE=BF=CM=DN .试 B D n Cd );DB答案:3种.可以分别以 AD , AB (AC ), BD ( CD )为四边形的一条对角线,得到3B G C答案:提示:由△ ADE BAF ,可得 AE=BF ,从而 AF — BF=EF .16、如图,在△ ABC 中,BD ,CE 分别是边 AC , AB 上的中线,BD 与CE 相交于点 O. B0 与0D 的长度有什么关系? BC 边上的中线是否一定过点 0?为什么?答案:B0=20D , BC 边上的中线一定过点 0.利用四边形EMND 是平行四边形,可知B0=20D ;设BC 边上的中线和 BD 相交于点0',可知B0 =20'D ,从而0与0重合.17、如图是一块正方形草地, 要在上面修建两条交叉的小路, 使得这两条小路将草地分成的四部分面积相等,你有多少种方法?并与你的同学交流一下.种平行四边形,它们的对角线长分别为 h ,、.、4n 2 h 2 (或.3n 2 m 2) ; m , m ; n ,n 2 4h 2 (或.3h 2 m 2).15、如图,四边形ABCD 是正方形. 且交AG 于点F .求证:AF — BF=EF . G 是BC 上的任意一点, DE 丄 AG 于点 E , BF // DE ,答案:分法有无数种•只要保持两条小路互相垂直,并且都过正方形的中心即可.复习题181、选择题. (1)若平行四边形中两个内角的度数比为 1 : 2,则其中较小的内角是(A • 90 °B . 60 °C • 120 °D • 45 °(2)若菱形的周长为 8,高为1,则菱形两邻角的度数比为().A . 3 : 1B . 4 : 1C . 5 : 1D . 6 : 1(3) 如图,在正方形 ABCD 的外侧,作等边三角形 ADE ,则/ AEB 为(答案:(1) B ; (2) C ; (3) B .2、如图,将口ABCD 的对角线BD 向两个方向延长,分别至点E 和点F,且使BE=DF •求 证:四边形AECF 是平行四边形.)• A . 10答案:提示:连接AC,利用对角线互相平分的四边形是平行四边形.3、矩形对角线组成的对顶角中,有一组是两个少50。

人教版八年级数学下册全套课后题练习题及答案解析

人教版八年级数学下册全套课后题练习题及答案解析

第十六章 二次根式16.1 二次根式第1课时 二次根式的概念1.使二次根式2a -有意义的a 的取值范围是( ) A .a ≥﹣2 B .a ≥2 C .a ≤2 D .a ≤﹣2 2.若代数式12x x --有意义,则x 的取值范围是( ) A .21≠>x x 且 B .1≥x C .2≠x D .21≠≥x x 且 3.下列各式中,一定是二次根式的是( ) A .4- B .32a C .22x + D .1x -4.已知实数x ,y 满足|4|80x y -+-=,则以x ,y 的值为两边长的等腰三角形的周长是( )A . 20或16B . 20C . 16D . 以上答案均不对 5.如果a 为任意实数, 下列各式中一定有意义的是( ) A .a B .2a - C .21a + D .21a - 6.如果二次根式x 23- 有意义,那么x 的取值范围是 .7.若使式子xx21-有意义,则x 的取值范围是 . 8.大于6的最小整数是 .9x在实数范围内有意义,则x 的取值范围是 .10.当x 是怎样的实数时,下列式子在实数范围内有意义? (1)12x -;(2)23x x --11.若3a b --与1a b ++互为相反数,求()5a b +的值是多少?12.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.第十六章 二次根式16.1 二次根式第2课时 二次根式的性质一、选择题1.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①②B .③④C .①③D .②④2.()232-的值等于( )A.32-B.23-C.1D. -13.已知二次根式2x 的值为3,那么x 的值是( )A.3B.9C.-3D.3或-34.已知,21)12(2a a -=-那么a 的取值范围是( ). A .21>a B .21<a C .21≥a D .21≤a 二、填空题5.直接写出下列各式的结果:(1)49=_______; (2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 6.已知2<x<5,化简:()()2225x x -+-= .7.如果()22x --是二次根式,那么点(),1A x 的坐标为 .8.已知实数a 在数轴上的位置如图所示,则化简21a a -+的结果是 .9.李东和赵梅在解答题目:“先化简,再求值:212a a a +-+,其中a=10”时得出不同的答案.李东的解答过程如下:()21211a a a a a -+=+-=.赵梅的解答过程如下:()212121210119a a a a a a -+=+-=-=⨯-=(1) ___的解答是错误的;(2) 错误的原因是 .三、解答题 10.利用()20a aa =≥,把下列非负数分别写成一个非负数的平方的形式;(1)16;(2)7;(3)1.5;(4)3411.计算下列各式:(1)235⎛⎫⎪ ⎪⎝⎭; (2)()243; (3)()26-;(4)218⎛⎫-- ⎪⎝⎭;(5)()225-; (6)()22216913x x x x x -++-+≤≤16.2 二次根式的乘除第1课时 二次根式的乘法一、选择题1.下列计算正确的是()A.253565⨯=B.253555⨯=C.2535625150⨯=⨯=D.25356530⨯=⨯= 2.(易错题)等式2422a a a -=+-成立的条件是( )A.a≤-2或a≥2B. a≥2C. a≥-2D. -2≤a≤23.(易错題)对于任意实数a ,下列各式中一定成立的是( ) A.2111a a a -=-+ B.()266a a +=+C.()()164a a --=--D.42255a a =4.下列计算正确的是( ). A .532=⋅ B .632=⋅ C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9二、填空题7.化简:①328a = ; (2)2325x y = (x≥0,y≥0)8.—个长方形的长和宽分别是15cm 和1253cm ,则这个长方形的面积是 .三、解答题9.计算:(1);26⨯ (2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯-(8);51322-(9).7272y x10.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.11.化简: (1300; (2()()14112-⨯-; (3545200a b c(4221312- (5)4216320x x x +>12.比较3526.参考答案1.D 解析因为(0,0)a b c b ac bd b d ⨯=≥≥,所以2535235530⨯=⨯⨯⨯=.故D 正确.2.B 解析由积的算术平方根成立的条件知20,20,a a +≥⎧⎨-≥⎩故a≥2,故选B.3.D 解析A 中不能保证a-1≥O,a +1≥O,所以A 不正确;B 中()266a a +=+,故B 不正确;C 中()()164a a -⋅-=,故C 不正确;因为4242 =5a 255a a =⋅,所以D 正确.4.B . 5.B . 6.B .7.①27a a ②5xy y解析①32228474727a a a a a a a =⨯=⨯=.②∵x >0,2223222225555x y x y y x y y xy y ∴=⋅=⋅=. 8.25cm 2解析21251562525()3cm ⨯==. 9.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 10..cm 6211.解:(1)22300310310103=⨯=⨯=; (2)()()221411214112274-⨯-=⨯=⨯⨯2274742282=⨯⨯=⨯⨯=;(3)()()()222545222220010a b c a a a b c c =⋅⋅⋅⋅⋅⋅()()()2222222222210102a b c aca b cac =⋅⋅⋅⋅⋅=;()()22131213121312251255;-=+-=⨯(5)()4222221632162162x x x x x x +=+=⋅⋅+ 242(0).x x x =+>12.分析:可将根号外的因式移到根号里面,然后比较被开方数的大小. 解:22353545,262624=⨯==⨯=,又∵45>24,4524∴>,即3526>.16.2 二次根式的乘除第2课时 二次根式的除法一、选择题1.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x xx3294= 2.下列各式中,最简二次根式是( ). A .yx -1B .ba C .42+x D .b a 253.(易错题)下列各式错误的是( ) A.164255=B.2733648=C.222493=D.165755-=-4.11x xx x =--成立的条件是( )A. x≥0B. x<1C. 0≤x<1D.x≥0且x ≠15.下列二次根式是最简二次根式的是( )A.8B.2;C.12D.0.26.化简20的结果是( )A. 52B.25C.210D.457.计算()8223÷-⨯的结果是( ) A.26-B.33-C.32-D.62-二、填空题8.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 9.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 10.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 11.如果2,5a b ==,则1000用含a,b 的代数式表示为__________ .三、解答题 12.计算:(1)1115 3.524⨯÷;(2)241512532⎛⎫⨯⨯- ⎪ ⎪⎝⎭. 13.已知a,b 满足1414303a b b a -++--=,求12b a a b ⎛⎫÷ ⎪ ⎪-⎝⎭的值. 14.观察下列各式及其验证过程: 322233+验证:()()323222222212322223332121-+-+====+--. 333388=+.验证:()()323223333313333338883131-+-+====+--.(1)按照上述两个等式及其验证过程的基本思路,猜想4415的变形结果并进行验证; (2)针对上述各式反映的规律,写出用n(n 为自然数,且n ≥2)表示的等式,并给出证明.15.已知9966x xx x --=--,且x 为偶数,求()225411x x x x -++-的值.16.在进行二次根式化简时,我们有时会碰上如522,,3331+这样的式子,其实我们还可以将其进一步化简:553533333⨯==⨯.(一)22363333⨯==⨯ (二)()()()()()2223123123131313131⨯--===-++--(三)以上这种化简的方法叫做分母有理化。

人教版八年级下册数学配套练习册答案

人教版八年级下册数学配套练习册答案

人教版八年级下册数学配套练习册答案第17章 分式§17.1分式及其基本性质(一)一、选择题. 1.C 2.B二、填空题. 1. 31, 2.1,1 3. v320小时 三、解答题. 1. 整式:32-a ,51+x ,)(41y x -,x ; 分式:222y x x -,a 1,n m +-3,ab 6; 有理式:32-a ,51+x ,222y x x -,a 1,n m +-3,)(41y x -,abb ,x 2. (1) 0≠x 时, (2)23-≠x 时, (3)x 取任意实数时,(4)3±≠x 时 §17.1分式及其基本性质(二)一、选择题. 1.C 2.D二、填空题. 1. 3312y x , 2. 22b a - 3. 1≠a 三、解答题. 1.(1) ac41,(2) x y -1,(3) 22-+a a ,(4) b 1 2.(1) z y x xyz 222121 , z y x z 222114,zy x x 222115;(2)))((y x y x x x -+ ,))(()(2y x y x x y x -+- 3.cm abc π §17.2分式的运算(一)一、选择题. 1.D 2.A二、填空题. 1. a 2, 2. 21x3. 338a b - 三、解答题.1.(1)xy 31,(2)1-,(3)c -,(4)22--x ; 2. 4--x , 6- §17.2分式的运算(二)一、选择题. 1.D 2.B二、填空题. 1. mnn m 22-, 2. 1, 3. 1-三、解答题. 1.(1) 21+a ,(2)222b a ,(3)x ,(4)a4- 2. 1+x ,当2=x 时 ,31=+x17.3可化为一元一次方程的分式方程(一)一、选择题. 1.C 2.B二、填空题. 1. 162-x ,64=+x 2. 5=x , 3. 2=x三、解答题. 1.(1)21=x ,(2)2=x ,(3)10-=x ,(4)2=x ,原方程无解; 2. 32=x 17.3可化为一元一次方程的分式方程(二)一、选择题. 1.C 2.D二、填空题. 1. 3+x ,3-x ,360380-=+x x 2. 1.018040=+x , 3.%25160=-xx 三、解答题. 1.第一次捐款的人数是400人,第二次捐款的人数是800人2. 甲的速度为60千米/小时,乙的速度为80千米/小时17.4 零指数与负整数指数(一)一、选择题. 1.B 2.D二、填空题. 1.0.001,0.0028 , 2.3-, 3. 1≠a三、解答题. 1.(1)1,(2)1251,(3)2010,(4) 9, (5) 41, (6) 4- 2.(1)0.0001,(2)0.016,(3)0.000025,(4)00000702.0-17.4 零指数与负整数指数(二)一、选择题. 1.B 2.C二、填空题. 1.610,610- 2.0.000075, 31007.8-⨯ 3.m 4103.6-⨯三、解答题. 1.(1)8107.5⨯,(2)21001.1-⨯,(3)5103.4-⨯-,(4)510003.2-⨯ 2. (1)21a ,(2)331b a ,(3)4x ,(4)a 1, (5) y x 2, (6) 1036x; 3. 15.9 第18章 函数及其图象§18.1变量与函数(一)一、选择题. 1.A 2.B二、填空题. 1. 2.5,x 、y 2.x 210- 3. x y 8.0=三、解答题. 1. x y 6.31000+= 2. )(108.112-+=x y§18.1变量与函数(二)一、选择题. 1.A 2.D二、填空题. 1. 1≠x 2. 5 3. x y 436-=,90≤≤x三、解答题. 1. x y 5.015-=,300≤≤x 的整数 2. (1))(2010500-+=x y , (2)810元§18.2函数的图象(一)一、选择题. 1.B 2.A二、填空题. 1. x ,三,四 2. (-1,-2) 3. -7,4三、解答题. 1. 作图(略),点A 在y 轴上,点B 在第一象限,点C 在第四象限,点D 在第三象限; 2. (1)A (-3,2),B (0,-1),C (2,1) (2)6§18.2函数的图象(二)一、选择题. 1.A 2.B二、填空题. 1. 5.99 2. 20 3. (1)100 (2)甲 (3)秒米/10,秒米/8三、解答题. 1. (1)40 (2)8,5 (3)x y 540-=,80≤≤x2. (1)时间与距离 (2)10千米,30千米 (3)10点半到11点或12点到13点§18.2函数的图象(三)一、选择题. 1.C 2.D二、填空题. 1. 3 2. 12分钟 3. 2)220(21t y -=三、解答题1. (1)体温与时间(2):2.(1)x y -=4,40<<x (2)作图略§18.3一次函数(一)一、选择题. 1.B 2. B二、填空题. 1. (1)、(4), (1) 2. 3≠m ,2=m 3. x y 6.2=三、解答题. 1. (1)x y 5240+=,(2)390元; 2. 3-或1-§18.3一次函数(二)一、选择题. 1.A 2. C 时间t (h ) 612 18 24 体温(℃) 39 36 38 36二、填空题. 1. 35+-=x y 2. 31- 3. 0, 3 三、解答题. 1.作图略 ;两条直线平行 2. 13--=x y§18.3一次函数(三)一、选择题. 1.C 2. D二、填空题. 1. -2,1 2. (-2,0) ,(0,-6) 3. -2三、解答题. 1. (1)(1,0) ,(0,-3),作图略 (2)23 2. (1) x y 318-=,60<≤x (2)作图略,y 的值为6§18.3一次函数(四)一、选择题. 1.B 2.B二、填空题. 1. 第四 2. > 3. 1>m三、解答题. 1. (1)1>m (2) -2 2. (1) 2<x ,(2)b a >(图略)§18.3一次函数(五)一、选择题. 1.D 2.C二、填空题. 1. 57-=x y 2. 答案不唯一,如:2+=x y 3. -2, 2三、解答题. 1. 5+-=x y 2. (1)(4,0) (2)623-=x y §18.4反比例函数(一)一、选择题. 1.D 2.B 二、填空题. 1. xy 6=2. 13. x y 20=,反比例 三、解答题. 1. (1)xy 3= (2)点B 在图象上,点C 不在图象上,理由(略) 2. (1)x y 3-= (2)§18.4反比例函数(二)一、选择题. 1.D 2.D二、填空题. 1. 第一、三;减小 2. 二,第四 3. 2三、解答题.1. (1)-2 (2)21y y < 2. (1)x y 2-= , 21§18.5实践与探索(一)一、选择题. 1.A 2.B二、填空题. 1. 4- 2. (1,-1) 3. (4,3)三、解答题. 1. 2+=x y 2.(1)①.甲,甲,2 ②.3小时和5.5小时(2)甲在4到7小时内,10 个§18.5实践与探索(二)一、选择题. 1.A 2.B二、填空题. 1. 2-<y 2. 2-≤x 3. 0≤m三、解答题. 1.(1)27=x (2)27<x (作图略)2. (1)1000 (2)5000300-=x y (3)40§18.5实践与探索(三)一、选择题. 1.B 2.C二、填空题. 1. 7 ,815 2. )115(87x x y -+= 3. 125.0+=x y 三、解答题. 1. (1)102-=x y (2) 27cm第19章 全等三角形§19.1命题与定理(一)一、选择题. 1.C 2.A二、填空题. 1.题设,结论 2.如果两条直线相交,只有一个交点 ,真 3. 如:平行四边形的对边相等三、解答题. 1.(1)如果两条直线平行,那么内错角相等 (2)如果一条中线是直角三角形斜边上的中线,那么它等于斜边的一半; 2.(1)真命题;(2)假命题,如:22=-,但22≠-; 3.正确,已知: c a b a ⊥⊥,,求证:b ∥c ,证明(略)§19.2三角形全等的判定(一)一、选择题. 1. A 2.A二、填空题. 1.(1)AB 和DE ;AC 和DC ;BC 和EC (2)∠A 和∠D ;∠B 和∠E ;∠ACB 和∠DCE ; 2.2 3. 0110三、解答题. 1. (1)△ABP ≌△ACQ, AP 和AQ, AB 和AC, BP 和QC ,∠ABP 和∠ACQ, ∠BAP 和∠CAQ,∠APB 和∠AQC , (2)90°§19.2三角形全等的判定(二)一、选择题. 1.D 2.B二、填空题. 1. △ABD ≌△ACD ,△ABE ≌△ACE 或△BDE ≌△CDE 2. ABD , CDB, S.A.S3. ACB ECF三、解答题.1.证明:∵AB ∥ED ∴∠B =∠E 又∵AB =CE ,BC =ED ∴△ABC ≌△CED∴AC =CD2.证明:(1)∵△ABC 是等边三角形 ∴AC =BC ,∠B =60° 又∵DC 绕C 点顺时针旋转60°到CE 位置 ∴EC =DC ,∠DCE =60° ∴∠BCA =∠DCE ∴∠DC E –∠DCA =∠ACB –∠DCA, 即∠ACE =∠BCD ,∴△ACE ≌△BCD(2)∵△ACE ≌△BCD ∴∠EAC =∠B =60° ∴∠EAC =∠BCA ∴AE ∥BC§19.2三角形全等的判定(三)一、选择题. 1.D 2.C二、填空题. 1.(1) S.A.S; (2)A.S.A; (3)A.A.S 2. AD =EF (答案不唯一)三、解答题. 1.证明:∵AB ∥DE ∴∠B =∠DEF 又∵AC ∥DF ∴∠F =∠ACB∵BE =CF ∴BE +EC =CF +EC ∴BC =EF ∴△ABC ≌△DEF ∴AB =DE2.证明:在中,AD =BC ,AD ∥BC ∴∠DAC =∠BCA 又∵BE ∥DF∴∠AFD =∠BEC ∵BC =AD ∴△BCE ≌△DAF ∴AF =CE§19.2三角形全等的判定(四)一、选择题. 1.B 2.D二、填空题. 1. ACD ,直角 2. AE =AC (答案不唯一) 3. 3; △ABC ≌△ABD , △ACE ≌△ADE , △BCE ≌△BDE三、解答题. 1.证明:∵BE =CF ∴BE+EC =CF+EC ∴BC =EF 又∵AB =D E ,AC =DF ∴△ABC ≌△DEF ∴∠B =∠DEF ∴AB ∥DE2.证明:∵AB =DC ,AC =DB ,BC =BC ∴△ABC ≌△DCB ∴∠DBC =∠ACB∴BM =CM ∴AC –MC =BD –MB ∴AM =DM§19.2三角形全等的判定(五)一、选择题. 1.D 2.B二、填空题. 1.3 ; △ABC ≌△ADC ,△ABE ≌△ADE ,△BCE ≌△DCE 2. AC =BD (答案不唯一)三、解答题. 1.证明:∵BF =CD ∴BF+CF =CD+CF 即BC =DF 又∵∠B =∠D=90°,AC =EF ∴△ABC ≌△EDF ∴AB =DE2.证明:∵CD ⊥BD ∴∠B +∠BCD=90° 又∵∠ACB=90°∴∠FCE =∠B 又∵FE ⊥AC , ∴∠FEC =∠ACB=90° ∵CE =BC ∴△FEC ≌△ACB ∴AB =FC§19.3尺规作图(一)一、选择题. 1.C 2.A二、填空题. 1.圆规, 没有刻度的直尺 2.第一步:画射线AB ;第二步:以A 为圆心,MN长为半径作弧,交AB 于点C三、解答题. 1.(略) 2.(略) 3.提示:先画//B C BC =,再以B ′为圆心,AB 长为半径作弧,再以C ′为圆心,AC 长为半径作弧,两弧交于点A ′,则△A ′B ′C ′为所求作的三角形.§19.3尺规作图(二)一、选择题. 1. D二、解答题. 1.(略) 2(略)§19.3尺规作图(三)一、填空题. 1. C △CED 等腰三角形底边上的高就是顶角的平分线二、解答题. 1.(略) 2.方法不唯一,如可以作点C 关于线段BD 的对称点C ′.§19.3尺规作图(四)一、填空题. 1.线段垂直平分线上的点到线段的两个端点的距离相等.二、解答题. 1.(略) 2.(略) 3. 提示:作线段AB 的垂直平分线与直线l 相交于点P ,则P 就是车站的位置.§19.4逆命题与逆定理(一)一、选择题. 1. C 2. D二、填空题.1.已知两个角是同一个角的补角,这两个角相等;若两个角相等,则这两个角的补角也相等.;2. 线段垂直平分线上的点到线段的两个端点的距离相等.3. 如果∠1和∠2是互为邻补角,那么∠1+∠2 =180 ° 真命题三、解答题. 1.(1)如果一个三角形的两个锐角互余,那么这个三角形是直角三角形,是真命题;(2)如果22,b a b a ==那么,是真命题; (3)平行四边形的对角线互相平分,是真命题. 2. 假命题,添加条件(答案不唯一)如:AC =DF 证明(略)§19.4逆命题与逆定理(二)一、选择题. 1. C 2. D二、填空题. 1. ①、②、③ 2.80 3.答案不唯一,如△BMD三、解答题. 1. OE 垂直平分AB 证明:∵AC =BD ,∠BAC =∠ABD ,BA =BA∴△ABC ≌△BAD ∴∠OAB =∠OBA ∴△AOB 是等腰三角形 又∵E 是AB 的中点 ∴OE 垂直平分AB 2. 已知:①③(或①④,或②③,或②④) 证明(略)§19.4逆命题与逆定理(三)一、选择题. 1. C 2.D二、填空题. 1.15 2.50三、解答题1. 证明:如图,连结AP ,∵PE ⊥AB ,PF ⊥AC ,∴∠AEP =∠AFP =ο90 又∵AE =AF ,AP =AP ,∴Rt △AEP ≌Rt △AFP ,∴∠EAP =∠F AP ,∴AP 是∠BAC 的角平分线,故点P 在∠BAC 的角平分线上2.提示:作EF ⊥CD ,垂足为F ,∵DE 平分∠ADC ,∠A =ο90,EF ⊥CD ∴AE =FE ∵AE =BE ∴BE =FE 又∵∠B =ο90,EF ⊥CD ∴点E 在∠DCB 的平分线上∴CE 平分∠DCB§19.4逆命题与逆定理(四)一、选择题. 1.C 2. B二、填空题. 1.60° 2.11 3.20°或70°三、解答题. 1.提示:作角平分线和作线段垂直平分线,两条线的交点P 为所求作. 第20章 平行四边形的判定§20.1平行四边形的判定(一)一、选择题. 1.D 2.D二、填空题. 1. AD =BC (答案不唯一) 2. AF =EC (答案不唯一) 3. 3三、解答题. 1.证明:∵DE ∥BC , EF ∥AB ∴四边形DEFB 是平行四边形 ∴DE =BF 又 ∵F 是BC 的中点 ∴BF =CF . ∴DE =CF2.证明:(1)∵四边形ABCD 是平行四边形 ∴AB =CD , AB ∥CD ∴∠ABD =∠BDC又 ∵AE ⊥BD ,CF ⊥BD ∴⊿ABE ≌⊿CDF .(2) ∵⊿A BE ≌⊿CDF . ∴AE =CF 又 ∵AE ⊥BD ,CF ⊥BD ∴四边形AECF 是平行四边形§20.1平行四边形的判定(二)一、选择题. 1.C 2.C二、填空题. 1. 平行四边形 2. AE =CF (答案不唯一) 3. AE =CF (答案不唯一)三、解答题. 1.证明:∵∠BCA =180°-∠B -∠BAC ∠DAC =180°-∠D -∠DCA 且∠B =∠D ∠BAC =∠ACD ∴∠BCA =∠DAC ∴∠BAD =∠BCD∴四边形ABCD 是平行四边形2.证明:∵四边形ABCD 是平行四边形 ∴AO =CO ,BO =DO 又 ∵E 、F 、G 、H 分别为AO 、BO 、CO 、DO 的中点 ∴OE =OG ,OF =OH ∴四边形EFGH 是平行四边形§20.1平行四边形的判定(三)一、选择题. 1.A 2.C二、填空题. 1. 平行四边形 2. 3三、解答题. 1.证明:在□ABCD 中,AB =CD ,AB ∥CD ∵AE =CF ∴AB -AE =CD -CF即BE =DF ∴四边形EBFD 是平行四边形∴BD 、EF 互相平分2.证明:在□ABCD 中,AD =BC ,AD ∥BC ,AO =CO ∴∠DAC =∠BCA 又∵∠AOE = ∠COF ∴⊿AOE ≌⊿COF .∴AE =CF ∴DE =BF ∴四边形BEDF 是平行四边形§20.2 矩形的判定一、选择题. 1.B 2.D二、填空题. 1. AC =BD (答案不唯一) 2. ③,④三、解答题. 1.证明:(1)在□ABCD 中,AB =CD ∵BE =CF ∴BE+EF =CF +EF即BF =CE 又∵AF =DE ∴⊿ABF ≌⊿DCE .(2)∵⊿ABF ≌⊿DCE .∴∠B =∠C 在□ABCD 中,∠B +∠C =180°∴∠B =∠C =90° ∴□ABCD 是矩形2.证明:∵AE ∥BD , BE ∥AC ∴四边形OAEB 是平行四边形 又∵AB =AD ,O 是BD 的中点∴∠AOB =90° ∴四边形OAEB 是矩形3.证明:(1)∵AF ∥BC ∴∠AFB =∠FBD 又∵E 是AD 的中点, ∠AEF =∠BED ∴⊿AEF ≌⊿DEB ∴AF =BD 又∵AF =DC ∴BD =DC ∴D 是BC 的中点(2)四边形ADCF 是矩形,理由是:∵AF =DC ,AF ∥DC ∴四边形ADCF 是平行四边形又∵AB =AC ,D 是BC 的中点 ∴∠ADC =90° ∴四边形ADCF 是矩形§20.3 菱形的判定一、选择题. 1.A 2.A二、填空题. 1. AB =AD (答案不唯一) 2. 332 3. 菱形 三、解答题. 1.证明:(1)∵AB ∥CD ,CE ∥AD ∴四边形AECD 是平行四边形又∵AC 平分∠BAD ∴∠BAC =∠DAC ∵CE ∥AD ∴∠ECA =∠CAD∴∠EAC =∠ECA ∴AE =EC ∴四边形AECD 是菱形(2)⊿ABC 是直角三角形,理由是:∵AE =EC ,E 是AB 的中点 ∴AE =BE =EC∴∠ACB =90°∴⊿ABC 是直角三角形2.证明:∵DF ⊥BC ,∠B =90°,∴AB ∥DF ,∵∠B =90°,∠A =60°, ∴∠C =30°, ∵∠EDF =∠A =60°,DF ⊥BC ,∴∠EDB =30°,∴AF ∥DE ,∴四边形AEDF 是平行四边形,由折叠可得AE =ED ,∴四边形AEDF 是菱形.3.证明:(1)在矩形ABCD 中,BO =DO ,AB ∥CD ∴AE ∥CF ∴∠E =∠F又∵∠BOE =∠DOF ,∴⊿BOE ≌⊿DOF .(2)当EF ⊥AC 时,以A 、E 、C 、F 为顶点的四边形是菱形 ∵⊿BOE ≌⊿DOF .∴EO =FO 在矩形ABCD 中, AO =CO ∴四边形AECF 是平行四边形 又∵EF ⊥AC , ∴四边形AECF 是菱形§20.4 正方形的判定一、选择题. 1.D 2.C二、填空题. 1. AB =BC (答案不唯一) 2. AC =BD (答案不唯一)三、解答题. 1.证明:(1)∵AB =AC ∴∠B =∠C 又∵DE ⊥AB ,DF ⊥AC ,D 是BC 的中点 ∴⊿BED ≌⊿CFD .(2)∵∠A =90°,DE ⊥AB ,DF ⊥AC ∴四边形AEDF 是矩形 又∵⊿BED ≌⊿CFD∴DE =DF ∴四边形DF AE 是正方形.2.证明:(1)在ABCD 中,AO =CO 又∵⊿ACE 是等边三角形 ∴EO ⊥AC .∴四边形ABCD 是菱形.(2)∵⊿ACE 是等边三角形 ∴∠AED =21∠AEC =30°,∠EAC =60° 又∵∠AED =2∠EAD ∴∠EAD =15°∴∠DAC =45°∴∠ADO =45°∴AO =DO∴四边形ABCD 是正方形.§20.5 等腰梯形的判定一、选择题. 1.B 2.D二、填空题. 1.等腰梯形 2. 4 3. ③,④三、解答题. 1.证明:(1)∵AB =AC ∴∠ABC =∠ACB 又∵BD ⊥AC ,CE ⊥AB , BC =BC ∴⊿BCE ≌⊿CBD ∴EB =CD ∴AE =AD ∴∠AED =∠ADB∵∠A+∠AED +∠ADE =∠A+∠ABC +∠ACB ∴∠AED =∠ABC ∴DE ∥BC∴四边形BCDE 是等腰梯形.2.证明:(1)在菱形ABCD 中,∠CAB =21∠DAB =30°,AD =BC , ∵CE ⊥AC , ∴∠E =60°, 又∵DA ∥BC , ∴∠CBE =∠DAB =60°∴CB =CE ,∴AD =CE , ∴四边形AECD 是等腰梯形.3.在等腰梯形ABCD 中,AD ∥BC , ∴∠B =∠BCD , ∵GE ∥DC ,∴∠GEB =∠BCD , ∴∠B =∠GEB , ∴BG =EG , 又∵GE ∥DC , ∴∠EGF =∠H , ∵EF =FC , ∠EFG =∠CFH , ∴⊿GEF ≌⊿HCF , ∴EG =CH , ∴BG =CH.第21章 数据的整理与初步处理§21.1 算术平均数与加权平均数(一)一、选择题. 1.C 2.B二、填空题. 1. 169 2. 20 3. 73三、解答题. 1. 82 2. 3.01§21.1 算术平均数与加权平均数(二)一、选择题. 1.D 2.C二、填空题. 1. 14 2. 1529.625三、解答题. 1.(1) 84 (2) 83.2§21.1 算术平均数与加权平均数(三)一、选择题. 1.D 2.C二、填空题. 1. 4.4 2. 87 3. 16三、解答题. 1. (1)41 (2)49200 2. (1)A (2)C§21.1算术平均数与加权平均数(四)一、选择题. 1.D 2.B二、填空题. 1. 1 2. 30% 3. 25180三、解答题. 1. (略) 2. (1)15 15 20 (2)甲 (3)丙§21.2平均数、中位数和众数的选用(一)一、选择题. 1.B 2.D二、填空题. 1. 1.5 2. 9, 9, 3. 2, 4三、解答题. 1.(1)8 (2)37.5 2.(1)260 240 (2)不合理,因为大部分工人的月加工零件数小于260个§21.2平均数、中位数和众数的选用(二)一、选择题. 1.C 2.B二、填空题. 1.众数 2. 中位数 3. 1.70米三、解答题. 1.(1)众数:0.03,中位数:0.03 (2)不符合,因为平均数为0.03>0.0252. (1)3,5,2,2 (2)26,25,24 (3)不能,因为众数为26,只有9个人达到目标,没有到一半.§21.3 极差、方差与标准差(一)一、选择题. 1.D 2.B二、填空题. 1. 70 2. 4 3.甲三、解答题. 1.甲:6 乙:4 2. (1) 甲:4 乙:4 (2) 甲的销售更稳定一些,因为甲的方差约为0.57,乙的方差约为1.14,甲的方差较小,故甲的销售更稳定一些。

【练习】新课程课堂数学人教版八年级下册同步练习册参考答案

【练习】新课程课堂数学人教版八年级下册同步练习册参考答案

【关键字】练习新课程课堂数学人教版八年级下册同步练习册参考答案新课程课堂数学人教版八年级下册同步练习册参考答案参考答案第16章分式§16.1.1一、1、C 2、B 3、D2、1、,三、1、2、(1)(2)3、§一、1、C 2、D 3、A2、1、2、13、,三、(1)(2)§一、1、C 2、C 3、C2、1、2、3、三、1、(1)(2)(3)2、(1),(2),§一、1、D 2、A 3、D2、1、2、3、三、1、2、3、§16.2.1(二)一、1、B 2、A 3、C2、1、2、3、三、1、原式=,当时原式=2 2、3、§一、1、B 2、B 3、C2、1、2、03、三、1、2、3、0§一、1、C 2、B 3、A2、1、2、§一、1、A 2、A2、1、2、3、三、1、,2、,-5§一、1、D 2、B 3、A2、1、2、1;;93、三、1、2、-5 3、§一、1、B 2、B 3、A2、1、1.514× 2、4.3×3、-8.1×三、1、2、新课程课堂数学人教版八年级下册同步练习册参考答案参考答案第16章分式§16.1.1一、1、C 2、B 3、D2、1、,三、1、2、(1)(2)3、§一、1、C 2、D 3、A2、1、2、13、,三、(1)(2)§一、1、C 2、C 3、C2、1、2、3、三、1、(1)(2)(3)2、(1),(2),§一、1、D 2、A 3、D2、1、2、3、三、1、2、3、§16.2.1(二)2、1、2、3、三、1、原式=,当时原式=2 2、3、§一、1、B 2、B 3、C2、1、2、03、三、1、2、3、0§一、1、C 2、B 3、A2、1、2、三、1、2、3、,§一、1、A 2、A2、1、2、3、三、1、,2、,-5§一、1、D 2、B 3、A2、1、2、1;;93、三、1、2、-5 3、§一、1、B 2、B 3、A2、1、1.514× 2、4.3×3、-8.1×三、1、2、新课程课堂数学人教版八年级下册同步练习册参考答案参考答案第16章分式§16.1.1一、1、C 2、B 3、D2、1、,三、1、2、(1)(2)3、§一、1、C 2、D 3、A2、1、2、13、,三、(1)(2)§一、1、C 2、C 3、C2、1、2、3、三、1、(1)(2)(3)2、(1),(2),§一、1、D 2、A 3、D2、1、2、3、三、1、2、3、§16.2.1(二)一、1、B 2、A 3、C2、1、2、3、三、1、原式=,当时原式=2 2、3、§一、1、B 2、B 3、C2、1、2、03、三、1、2、3、0§一、1、C 2、B 3、A2、1、2、三、1、2、3、,§一、1、A 2、A2、1、2、3、三、1、,2、,-5§一、1、D 2、B 3、A2、1、2、1;;93、三、1、2、-5 3、§一、1、B 2、B 3、A2、1、1.514× 2、4.3×3、-8.1×三、1、2、此文档是由网络收集并进行重新排版整理.word可编辑版本!。

(完整版)人教八年级数学下册同步练习题及答案

(完整版)人教八年级数学下册同步练习题及答案

1第十六章、分式 16.1.1从分数到分式(第一课时)一、课前小测:1、________________________统称为整式.2、23表示_______÷______的商,那么(2a+b )÷(m+n )可以表示为________. 3、甲种水果每千克价格a 元,乙种水果每千克价格b 元,取甲种水果m 千克,乙种水果n 千克,混合后,平均每千克价格是_________.二、基础训练:1、分式24x x -,当x_______时,分式有意义;当x_______时,分式的值为零; 当x_______时,分式15x -+的值为正;当x______时,分式241x -+的值为负. 2、有理式①2x ,②5x y +,③12a -,④1x π-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④23、使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±1三、综合训练:1、当x______时,分式2134x x +-无意义. 2、当x_______时,分式2212x x x -+-的值为零. 3、当x 取何值时,下列分式有意义?(1) (2)2323x x +-16.1.2分式的基本性质(第二课时)一、课前小测:23+x31.如果分式x211-的值为负数,则的x 取值范围是( ) A.21≤x B.21<x C.21≥x D.21>x 2. 当_____时,分式4312-+x x 无意义.当______时,分式68-x x 有意义 二、基础训练:1、分式的基本性质为:_________ ___.用字母表示为:_____________________.2、判断下列约分是否正确:(1)c b c a ++=b a , (2)22y x y x --=y x +1, (3)nm n m ++=0。

3、根据分式的基本性质,分式a a b --可变形为( ) A .a a b-- B .a a b + C .-a a b - D .a a b + 4、填空:4 (1) x x x 3222+= ()3+x , (2) 32386b b a =()33a , 5、约分:(1)c ab b a 2263 (2)532164xyz yz x - 三、综合训练:1、通分:(1)231ab 和b a 272 (2)xx x --21和x x x +-21 2、若a =23,则2223712aa a a ---+的值等于______。

八年级下册数学配套练习册答案人教版(2019)

八年级下册数学配套练习册答案人教版(2019)

八年级下册数学配套练习册答案人教版(2019)第18章函数及其图象§18.1变量与函数(一)一、选择题. 1.A 2.B0.8x2x 3. y二、填空题. 1. 2.5,x、y 2.101.(123.6x2. y100010)三、解答题. 1. y8x§18.1变量与函数(二)一、选择题. 1.A 2.D9x4x,0361 2. 5 3. y二、填空题. 1. x10,50030的整数 2. (1)yx0.5x,01520)三、解答题. 1. y(x(2)810元§18.2函数的图象(一)一、选择题. 1.B 2.A二、填空题. 1. x ,三,四 2. (-1,-2) 3. -7,4三、解答题. 1. 作图(略),点A在y轴上,点B在第一象限,点C 在第四象限,点D在第三象限; 2. (1)A(-3,2),B(0,-1),C(2,1)(2)6§18.2函数的图象(二)一、选择题. 1.A 2.B二、填空题. 1. 5.99 2. 20 3. (1)100 (2)甲(3)10米/秒,8米/秒8x5x,040三、解答题. 1. (1)40 (2)8,5 (3)y2. (1)时间与距离(2)10千米,30千米(3)10点半到11点或12点到13点§18.2函数的图象(三)一、选择题. 1.C 2.D二、填空题. 1. 3 2. 12分钟 3. y三、解答题1. (1)体温与时间(2):4 (2)作图略xx,042.(1)y§18.3一次函数(一)一、选择题. 1.B 2. B2.6x23. y3,m二、填空题. 1. (1)、(4), (1) 2. m13或5x,(2)390元; 2. 240三、解答题. 1. (1)y§18.3一次函数(二)2t)2 212 18 24 时间t(h) 6一、选择题. 1.A 2. C 体温(℃)39 36 38 36 1(201 3. 0, 3 33 2. 5x二、填空题. 1. y13x三、解答题. 1. ;两条直线平行 2. y§18.3一次函数(三)一、选择题. 1.C 2. D二、填空题. 1. -2,1 2. (-2,0),(0,-6) 3. -23x,218三、解答题. 1. (1)(1,0),(0,-3),作图略(2)3 2. (1) y6 (2)作图略,y的值为6x0§18.3一次函数(四)一、选择题. 1.B 2.B二、填空题. 1. 第四 2. > 13. mb(图略)2,(2)a1 (2) -2 2. (1) x三、解答题. 1. (1)m §18.3一次函数(五)一、选择题. 1.D 2.C2 3. -2, 2x5 2. 答案不,如:y7x二、填空题. 1. y5 2. (1)(4,0)(2)yx三、解答题. 1. y§18.4反比例函数(一)6 2一、选择题. 1.D 2.B 3x,反比例 xx620 2. 1 3. y(2)点B在图象上,点C不在图象上,理由(略) x3三、解答题.1. (1)yx二、填空题. 1. y32. (1)y(2)§18.4反比例函数(二)一、选择题. 1.D 2.D二、填空题. 1. 第一、三;减小 2. 二,第四 3. 221 , x2y2 2. (1)y三、解答题.1. (1)-2 (2)y1§18.5实践与探索(一)。

2019年人教版八年级下册数学练习册答案-精选word文档 (16页)

2019年人教版八年级下册数学练习册答案-精选word文档 (16页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==人教版八年级下册数学练习册答案篇一:人教版八年级下册数学配套练习册答案人教版八年级下册数学练习册答案简略版第17章分式17.1分式及其基本性质(一)一、选择题. 1.C2.B二、填空题. 1. 1320, 2.1,13. 小时 3vx?11132x?,(x?y),x;分式:2,,,254am?nx?y三、解答题. 1. 整式:2a?3 ,6x?1131b2x?(x?y);有理式:2a?3,,2,,,,,x 2ab5am?n4abx?y2. (1) x?0时,(2)x??3时,(3)x取任意实数时,(4)x??3 时 217.1分式及其基本性质(二)一、选择题. 1.C2.D22二、填空题. 1. 12x3y3, 2. a?b 3. a?1三、解答题. 1.(1) 1a?211,(2),(3),(4) a?2b4acy?x2.(1) x2(x?y)21xyz14z15x ,,;(2),x(x?y)(x?y)x(x?y)(x?y)21x2y2z21x2y2z21x2y2z3.bccm ?a17.2分式的运算(一)一、选择题. 1.D2.A21b3二、填空题. 1. , 2. 2 3. ?3 ax8a三、解答题.1.(1)21,(2)?1,(3)?c,(4)?; 2. ?x?4, ?6 x?23xy17.2分式的运算(二)一、选择题. 1.D2.Bm2?n2二、填空题. 1. , 2. 1,3. ?1 mn142a2三、解答题. 1.(1),(2)2,(3)x,(4)? a?2ab2. x?1,当x?2 时,x?1?317.3可化为一元一次方程的分式方程(一)一、选择题. 1.C2.B2二、填空题. 1. x?16,x?4?6 2. x?5,3. x?2三、解答题. 1.(1)x?2. x?1,(2)x?2,(3)x??10,(4)x?2,原方程无解; 22 317.3可化为一元一次方程的分式方程(二)一、选择题. 1.C2.D二、填空题. 1. x?3,x?3,806040160?x??0.1,3.?25% 2. x?3x?3x?180x三、解答题. 1.第一次捐款的人数是400人,第二次捐款的人数是800人2. 甲的速度为60千米/小时,乙的速度为80千米/小时17.4 零指数与负整数指数(一)一、选择题. 1.B2.D二、填空题. 1.0.001,0.0028 ,2.?3,3. a?1三、解答题. 1.(1)1,(2)11,(3)201X,(4) 9, (5) , (6) ?4 12542.(1)0.0001,(2)0.016,(3)0.000025,(4)?0.0000070217.4 零指数与负整数指数(二)一、选择题. 1.B2.C二、填空题. 1.10,10 2.0.000075, 8.07?10 3.6.3?10m三、解答题. 1.(1)5.7?10,(2)1.01?10,(3)?4.3?10,(4)2.003?10 8?2?5?56?6?3?411136x242. (1)2,(2)33,(3)x,(4), (5) , (6) 10; 3. 15.9 aaabxy第18章函数及其图象18.1变量与函数(一)一、选择题. 1.A 2.B二、填空题. 1. 2.5,x、y 2.10?2x 3. y?0.8x8x?10)三、解答题. 1. y?1000?3.6x2. y?12?1.(18.1变量与函数(二)一、选择题. 1.A 2.D二、填空题. 1. x?12. 5 3. y?36?4x,0?x?9(x?20)三、解答题. 1. y?15?0.5x,0?x?30的整数 2. (1)y?500?10,(2)810元18.2函数的图象(一)一、选择题. 1.B 2.A二、填空题. 1. x ,三,四 2. (-1,-2)3. -7,4三、解答题. 1. 作图(略),点A在y轴上,点B在第一象限,点C在第四象限,点D在第三象限; 2. (1)A(-3,2),B(0,-1),C(2,1)(2)618.2函数的图象(二)一、选择题. 1.A 2.B二、填空题. 1. 5.99 2. 20 3. (1)100 (2)甲(3)10米/秒,8米/秒三、解答题. 1. (1)40 (2)8,5(3)y?40?5x,0?x?82. (1)时间与距离(2)10千米,30千米(3)10点半到11点或12点到13点18.2函数的图象(三)一、选择题. 1.C 2.D二、填空题. 1. 3 2. 12分钟3. y?三、解答题1. (1)体温与时间(2):2.(1)y?4?x,0?x?4 (2)作图略18.3一次函数(一)一、选择题. 1.B 2. B二、填空题. 1. (1)、(4), (1) 2. m?3,m?2 3. y?2.6x三、解答题. 1. (1)y?240?5x,(2)390元;2. ?3或?118.3一次函数(二)一、选择题. 1.A 2. C二、填空题. 1. y??5x?3 2. ?体温(℃) 39 36 38 36 1(20?2t)2 212 18 24 时间t(h) 6 1 3.0, 3 3三、解答题. 1. ;两条直线平行 2. y??3x?118.3一次函数(三)一、选择题. 1.C2. D二、填空题. 1. -2,12. (-2,0),(0,-6) 3. -2三、解答题. 1. (1)(1,0),(0,-3),作图略(2)3 2. (1)y?18?3x,20?x?6 (2)作图略,y的值为618.3一次函数(四)。

人教版八年级下册数学同步练习 函数(配套练习附答案)

人教版八年级下册数学同步练习 函数(配套练习附答案)
13.在△ABC中,它的底边是a,底边上的高是h,则三角形面积S= ah,当a为定长时,在此函数关系式中()
A.S,h是变量, ,a是常量B.S,h,a是变量, 是常量
C.a,h是变量, ,S是常量D.S是变量, ,a,h是常量
【答案】A
【解析】
【分析】
【详解】∵三角形面积S= ah中,a为定长,
∴S,h是变量, ,a是常量.
答:需要61个铁环.
21.下列曲线中不能表示y与x的函数的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
函数是在一个变化过程中有两个变量x,y,一个x只能对应唯一一个y.
【详解】当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.
选项C中的图形中对于一个自变量的值,图象就对应两个点,即y有两个值与x的值对应,因而不是函数关系.
【点睛】函数图像的判断题,只需过每个自变量在x轴对应的点,作垂直x轴的直线观察与图像的交点,有且只有一个交点则为函数图象.
22.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是( )
A. B. C. D.
(2)结合实际即可得出时间t的取值范围;
(3)根据(1)中的函数关系式,将t=10代入即可得出池中的水;
【详解】解:(1)Q=800-50t.
(2)令y=0,则0=800-50t,解得t=16.
∴0<t≤16.
(3)当t=10时,Q=800-50×10=300.
答:10小时后,池中还有300立方米水.
4.小明用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的函数关系式是()

八年级下册数学配套练习册答案人教版

八年级下册数学配套练习册答案人教版

八年级下册数学配套练习册答案人教版(一)平行四边行的判定第2课时【基础知识】1、C2、C3、C4、45、略(答案不唯一)6、(1)BF(2)F=DE(3)连接BD,DF,设BD与AC交于点O,在平行四边形ABCD中,OB=OD,OA=OC,∴AE=CF,∴OE=OF,∴四边形BEDF是平行四边形,∴BF=DE【能力提升】7、提示:延长AD到点E,使AD=ED,连接BE,可证△ACD≌△EDB,得到AC=BE,∵AB+BE>AE,∴AB+AC>2AD8、(1)证明:∵CF∥BE,∴∠EBD=∠FCD.又∵∠BDE=∠CDF,BD=CD,∴△BDE≌△CDE.(2)四边形BECF是平行四边形,理由如下:∵△BDE≌△CDE,∴ED=FD,BD=CD,∴四边形BECF是平行四边形【探索研究】9、证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAC=∠FCA.又∵AO=CO,∠AOE=∠COE,∴△AOE≌△COF.∴OE=OF又∵AO=CO,∴四边形AECF是平行四边形.10、(1)理由:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴AE=DF,∠C=∠EDB.又∵AB=AC,∴∠B=∠C=∠EDB.∴BE=DE.∵AE+BE=AB,∴DE+DF=AB.(2)图略.DE-DF=AB,证明略八年级下册数学配套练习册答案人教版(二)菱形第1课时【基础知识】1、C2、C3、44、165、60°,120°,60°,120°【能力提升】6、解:∵E,F分别为BC,CD的中点,且AE⊥BC,AF⊥CD,∴BE=1/2AB,∴∠BAE=30°,∴∠B=60°,∠BAD=120°,同理可得∠DAF=30°,∴∠EAF=120°-30°-30°=60°7、解:∵∠A:∠B=5:1,且∠A+∠B=180°,∴∠B=30°.又∵菱形ABCD的周长为12cm∴AB=3cm,∴AB与CD间的距离是3/2cm8、解:在菱形ABCD中,∠BAD+∠ABC=180°,又∵∠DAB:∠ABC=1:2,∴∠DAB=60°,又∵周长为48cm,∴AB=12cm,∴BD=AB=12cm∴OD=6cm,∴由勾股定理得∴12cm和12cm9、32【探索研究】10、提示:(1)可利用SAS证明.(2)若四边形AECF为菱形,则∠B=60°,可求出△ABE的BE边上的高为∴菱形AECF的面积为2八年级下册数学配套练习册答案人教版(三)二次根式第2课时【基础知识】1、D2、B3、C4、C5、A6、2,57、±38、2【能力提升】9、>、>10、a≥-311、D12、(1)(x+)(x-)(2)2(a+)(a-)13、(1)4(2)7(3)24(4)-214、7、2、-1/2、0.02、1/2、0.4。

新课程课堂数学人教版八年级下册同步练习册参考答案

新课程课堂数学人教版八年级下册同步练习册参考答案

新课程课堂数学人教版八年级下册同步练习册参考答案新课程课堂数学人教版八年级下册同步练习册参考答案参考答案第16章分式§16.1.1一、1、C 2、B 3、D二、1、,三、1、 2、(1)(2) 3、§一、1、C 2、D 3、A二、1、 2、1 3、,三、(1)(2)§一、1、C 2、C 3、C二、1、 2、 3、三、1、(1)(2)(3)2、(1),(2),§一、1、D 2、A 3、D二、1、 2、 3、三、1、 2、 3、§16.2.1(二)一、1、B 2、A 3、C二、1、 2、 3、三、1、原式=,当时原式=2 2、 3、§一、1、B 2、B 3、C二、1、 2、0 3、三、1、 2、 3、0§一、1、C 2、B 3、A二、1、 2、三、1、 2、 3、,§一、1、A 2、A二、1、 2、 3、三、1、, 2、, -5§一、1、D 2、B 3、A二、1、 2、1;;9 3、三、1、 2、-5 3、§一、1、B 2、B 3、A二、1、1.514× 2、4.3× 3、-8.1×三、1、 2、新课程课堂数学人教版八年级下册同步练习册参考答案参考答案第16章分式§16.1.1一、1、C 2、B 3、D二、1、,三、1、 2、(1)(2) 3、§一、1、C 2、D 3、A二、1、 2、1 3、,三、(1)(2)§一、1、C 2、C 3、C二、1、 2、 3、三、1、(1)(2)(3)2、(1),(2),§一、1、D 2、A 3、D二、1、 2、 3、三、1、 2、 3、§16.2.1(二)一、1、B 2、A 3、C二、1、 2、 3、三、1、原式=,当时原式=2 2、 3、§一、1、B 2、B 3、C二、1、 2、0 3、三、1、 2、 3、0§一、1、C 2、B 3、A二、1、 2、三、1、 2、 3、,§一、1、A 2、A二、1、 2、 3、三、1、, 2、, -5§一、1、D 2、B 3、A二、1、 2、1;;9 3、三、1、 2、-5 3、§一、1、B 2、B 3、A二、1、1.514× 2、4.3× 3、-8.1×三、1、 2、新课程课堂数学人教版八年级下册同步练习册参考答案参考答案第16章分式§16.1.1一、1、C 2、B 3、D二、1、,三、1、 2、(1)(2) 3、一、1、C 2、D 3、A二、1、 2、1 3、,三、(1)(2)§一、1、C 2、C 3、C二、1、 2、 3、三、1、(1)(2)(3)2、(1),(2),§一、1、D 2、A 3、D二、1、 2、 3、三、1、 2、 3、§16.2.1(二)一、1、B 2、A 3、C二、1、 2、 3、三、1、原式=,当时原式=2 2、 3、§一、1、B 2、B 3、C二、1、 2、0 3、三、1、 2、 3、0一、1、C 2、B 3、A二、1、 2、三、1、 2、 3、,§一、1、A 2、A二、1、 2、 3、三、1、, 2、, -5§一、1、D 2、B 3、A二、1、 2、1;;9 3、三、1、 2、-5 3、§一、1、B 2、B 3、A二、1、1.514× 2、4.3× 3、-8.1×三、1、 2、。

最新人教版八年级下册数学练习册答案名师优秀教案

最新人教版八年级下册数学练习册答案名师优秀教案

人教版八年级下册数学练习册答案精品文档人教版八年级下册数学练习册答案认真做人教版八年级数学下册练习册的习题,好动与不满足是进步的第一必需品。

小编整理了关于人教版八年级下册数学练习册的答案,希望对大家有帮助!人教版八年级下册数学练习册答案(一) 平行四边行的性质第1课时【基础知识】1、D、B、B、9cm、22cm、140?,0?,140?,40?、2cm、?DAE=20?,?BAE=50?【能力提升】、提示:先证?ADE??CBF,?DE=BF10、(1)?ABC??CDE,?AED??CFB,?ABD??CDB(2)略1 / 4精品文档【探索研究】11、(1)?CEF是等腰三角形.理由:?AD?BC,??F=?EAD.?AB?CD??E=?BAF.又??EAD=?BAF,??E=?F,??CEF是等腰三角形(2)在?CEF中,CE,CF之和等于平行四边形ABCD的周长,理由:?F=?FAB,?AB=BF,?CF=AB+BC同理CE=CD+AD??CEF的CE和CF边之和恰好等于平行四边形的周长人教版八年级下册数学练习册答案(二) 函数的图象第1课时【基础知识】1、B、A、B2 / 4精品文档、6;-12、-4、20、略、(1)-4?x?4(2)x=-4,-2,4时,y的值分别为2,-2,0(3)当y=0时,x的值为-3,-1,4(4)当x=3/2时,y的值最大;当x=-2时,y的值最小(5)当-2?x?3/2时,y随x的增大而增大当-4?x?-2或3/2?x?4时,y随x的增大而减小、(1)距离和时间(2)10千米;30千米(3)10时30分~11时;13时【能力提升】10、略【探索研究】11、点Q人教版八年级下册数学练习册答案(三) 一次函数第2课时【基础知识】1、1、D、A3 / 4精品文档、B、D、A、B、3、y=2x+5、三条直线互相平行10、v=;/s11、y=;;12、1【能力提升】13、(1)k=1;b=2(2)a=-2【探索研究】14、(1)2;6毫克(2)3毫克(3)y=3x(0?x?2);y=-x+2(0(4)4h猜你感兴趣: 4 / 4。

最新八年级下册数学练习册答案人教版名师优秀教案

最新八年级下册数学练习册答案人教版名师优秀教案
八年级下册数学练习册答案人教版
数学精深又重要。以下是小编收集的八年级下册数学练习册答案人教版~仅供大家阅读参考!
八年级下册数学练习册答案人教版【基础知识】
1、C
2、B
3、B
4、B
5、D
6、?3
7、0
8、-1、0
【能力提升】
9、(1)x?3/4
(2)x?-1
(3)x为任意实数
(4)-1?x?2
10、1/9
11、x+y=4/5
【探索研究】
1 / 3
12、0
13、x=2~y=-3~2x-y=7
八年级下册数学练习册答案人教版【基础知识】
1、D
2、B
3、C
4、C
5、A
6、2~5
7、〒3
8、2
【能力提升】
9、>、>
10、a?-3
11、D
12、(1)(x+
)(x-
) (2)2(a+
)(a-
1.仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角)
12、20
cm
【探索研究】
(2)两锐角的关系:∠A+∠B=90°;13、?a
3 / 3
3、C
③当a>0时,抛物线开口向上,并且向上方无限伸展。当a<0时,抛物线开口向下,并且向下方无限伸展。4、2
①对称轴:x=(2)12
(3)a
(4)42
10、8
(1)二次函数y=ax2的图象:是一条顶点在原点且关于y轴对称的抛物线。是二次函数的特例,此时常数b=c=0.mc2 11、?;-2
=-
扇形的面积S扇形=LR/2=-
13、(1)4
(2)7

人教版八年级下册数学配套练习册答案

人教版八年级下册数学配套练习册答案

1
2a2
4
三、解答题 . 1. ( 1)
a
,( 2)
2
b2
,( 3) x,(4)
a
1
2. x 1 ,当 x 2 时 , x 1 3
17.3 可化为一元一次方程的分式方程(一)
一、选择题 . 1.C 2.B
二、填空题 . 1. x 2 16 , x 4 6 2. x 5 , 3. x 2
三、解答题 . 1. ( 1) x
a
一、选择题 . 1.D 2.A
§ 17.2 分式的运算(一)
二、填空题 . 1.
2 , 2. a
1 x 2 3.
b3 8a 3
三、解答题 . 1. ( 1)
1
,( 2)
1,( 3)
c ,( 4)
2
; 2.
x 4,
6
3xy
x2
一、选择题 . 1.பைடு நூலகம் 2.B
§ 17.2 分式的运算(二)
二、填空题 . 1. m2 n 2 , 2. 1, 3. 1 mn
三、解答题 . 1. ( 1) 5.7 108 ,( 2) 1.01 10 2 ,( 3) 4.3 10 5 ,( 4) 2.003 10 5
2.
1 (1 ) a 2
,(2)
1 a 3b3
,( 3)
x 4 ,( 4)
1 a
,
(5)
x2
,
y
36 (6) x 10 ;
3. 15.9
一、选择题 . 1.A 2.B
4
125
4
2. ( 1) 0.0001,( 2) 0.016,( 3) 0.000025,( 4) 0.00000702

人教版八年级下册数学配套练习册答案

人教版八年级下册数学配套练习册答案

⼈教版⼋年级下册数学配套练习册答案 认真的做⼈教版⼋年级数学配套练习册的习题,对我们有好处,学会学习的⼈,是⾮常幸福的⼈。

⼩编整理了关于⼈教版⼋年级下册数学配套练习册的答案,希望对⼤家有帮助! ⼈教版⼋年级下册数学配套练习册答案(⼀) ⼆次根式第1课时 【基础知识】 1、C 2、B 3、B 4、B 5、D 6、≤3 7、0 8、-1、0 【能⼒提升】 9、(1)x≤3/4 (2)x≤-1 (3)x为任意实数 (4)-1≤x≤2 10、1/9 11、x+y=4/5 【探索研究】 12、0 13、x=2,y=-3,2x-y=7 ⼈教版⼋年级下册数学配套练习册答案(⼆) 勾股定理第1课时 【基础知识】 1、A 2、B 3、B 4、6、8 5、16 6、勾股定理,a²+b²=c² 7、2 8、169 9、300 【能⼒提升】 10、21 11、(1)25 (2)51 (3)2x 12、9 13、2km 【探索研究】 14、这根⽊棒长度为17cm⾄(2+5)cm ⼈教版⼋年级下册数学配套练习册答案(三) 矩形第2课时 【基础知识】 1、D 2、D 3、B 4、A 5、2+2或2+2/3 6、45° 7、1000 8、128 9、略 【能⼒提升】 10、解:BE=x,则DE=3x.由已知及OF=2得AB=4 在Rt△ABE中,AE平⽅=BE²=16-x². 在Rt△ADE中,AE²=AD²-DE²=(16x²-16)-9x²=7x²-16, ∴16-x²=7x²-16, ∴x=2, ∴AC=4x=8. 11、125° 【探索研究】 12、提⽰:依题意得4t=20-t, ∴t=4s时四边形APQD是矩形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册数学配套练习册答案人教版
做八年级数学配套练习册的习题要仔细,学习必须与实干相结合。

小编整理了关于人教版八年级下册数学配套练习册的答案,希望对大家有帮助!
八年级下册数学配套练习册答案人教版(一) 平行四边行的判定第2课时
【基础知识】
1、C
2、C
3、C
4、4
5、略(答案不唯一)
6、(1)BF
(2)F=DE
(3)连接BD,DF,设BD与AC交于点O,在平行四边形ABCD 中,OB=OD,OA=OC,
AE=CF,
OE=OF,
四边形BEDF是平行四边形,
BF=DE
【能力提升】
7、提示:延长AD到点E,使AD=ED,连接BE,可证△ACD≌△EDB,得到AC=BE,
∵AB+BEAE,
AB+AC2AD
8、(1)证明:∵CF∥BE,
EBD=FCD.
又∵BDE=CDF,BD=CD,
△BDE≌△CDE.
(2)四边形BECF是平行四边形,理由如下:
∵△BDE≌△CDE,
ED=FD,BD=CD,
四边形BECF是平行四边形
【探索研究】
9、证明:∵四边形ABCD是平行四边形,
AB∥CD,
EAC=FCA.
又∵AO=CO,AOE=COE,
△AOE≌△COF.
OE=OF
又∵AO=CO,
四边形AECF是平行四边形.
10、(1)理由:∵DE∥AC,DF∥AB,
四边形AEDF是平行四边形,
AE=DF,C=EDB.
又∵AB=AC,
B=C=EDB.
BE=DE.
∵AE+BE=AB,
DE+DF=AB.
(2)图略.
DE-DF=AB,
证明略
八年级下册数学配套练习册答案人教版(二) 菱形第1课时【基础知识】
1、C
2、C
3、4
4、16
5、60,120,60,120
【能力提升】
6、解:∵E,F分别为BC,CD的中点,且AEBC,AFCD,BE=1/2AB,
BAE=30,
B=60,BAD=120,
同理可得DAF=30,
EAF=120-30-30=60
7、解:∵A:B=5:1,且A+B=180,
B=30.
又∵菱形ABCD的周长为12cm
AB=3cm,
AB与CD间的距离是3/2cm
8、解:在菱形ABCD中,BAD+ABC=180,
又∵DAB:ABC=1:2,
DAB=60,
又∵周长为48cm,
AB=12cm,
BD=AB=12cm
OD=6cm,
由勾股定理得
12cm和12cm
9、32
【探索研究】
10、提示:(1)可利用SAS证明.
(2)若四边形AECF为菱形,则B=60,可求出△ABE的BE边上的高为
菱形AECF的面积为2
八年级下册数学配套练习册答案人教版(三) 二次根式第2课时
【基础知识】
1、D
2、B
3、C
4、C
5、A
6、2,5
7、3
8、2
【能力提升】
9、、
10、a-3
11、D
12、(1)(x+)(x-)
(2)2(a+)(a-)
13、(1)4
(2)7
(3)24
(4)-2
14、7、2、-1/2、0.02、1/2、0.4
猜你感兴趣:
1.八年级上册数学配套练习册答案人教版
2.人教版八年级上册数学配套练习册答案
3.2017八年级上册数学配套练习册答案人教版
4.数学八年级上册配套练习册答案
5.八年级上数学配套练习册答案。

相关文档
最新文档