高考真题——三角函数及解三角形真题(加答案)(最新整理)

合集下载

三角函数与解三角形-新高考数学新情景、新文化问题(新高考地区专用)(解析版)

三角函数与解三角形-新高考数学新情景、新文化问题(新高考地区专用)(解析版)

三角函数与解三角形一、单选题1.(2021·云南昆明市·高三(文))东寺塔与西寺塔为“昆明八景”之一,两塔一西一东,遥遥相对,已有1100多年历史.东寺塔基座为正方形,塔身有13级,塔顶四角立有四只铜皮做成的鸟,俗称金鸡,所以也有“金鸡塔”之称.如图,在A 点测得:塔在北偏东30°的点D 处,塔顶C 的仰角为30°,且B 点在北偏东60°.AB 相距80(单位:m ),在B 点测得塔在北偏西60°,则塔的高度CD 约为( )mA .69B .40C .35D .23【答案】B 【分析】根据题意构造四面体C -ABD ,再运用线面位置关系及三角形相关知识求解出相应的线段长即可. 【详解】如图,根据题意,图中CD ⊥平面ABD ,30CAD ∠=︒,30,60,80BAD ABD AB ∠=︒∠=︒=ABD 中,30,60BAD ABD ∠=︒∠=︒, 90ADB ∴∠=︒cos 80?cos30AD AB BAD ∴=∠=︒=又CD ⊥平面ABD ,ACD ∴是直角三角形Rt ACD中,30,90,CAD ADC AD ∠=︒∠=︒=·tan 3040CD AD ∴=︒==,选项B 正确,选项ACD 错误 故选:B.2.(2021·山东枣庄八中高一期中)《数书九章》是中国南宋时期杰出数学家秦九韶的著作,全书十八卷共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九昭的许多创造性成就,其中在卷五“三斜求积"中提出了已知三角形三边a ,b ,c 求面积的公式,这与古希腊的海伦公式完全等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.”若把以上这段文字写成公式,即S =现在有周长为10+ABC满足sin :sin :sin 2:A B C =,则用以上给出的公式求得ABC 的面积为( ) A.B.C.D .12【答案】A 【分析】利用正弦定理结合三角形的周长可求得ABC 的三边边长,利用题中公式可求得ABC 的面积. 【详解】由题意结合正弦定理可得:::sin :sin :sin 2:a b c A B C ==ABC周长为10+10a b c ++=+4a ∴=,6b =,c =所以S == 故选:A.3.(2021·安徽淮北一中高一月考)“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形(如图),若大、小正方形的面积分别为25和1,直角三角形中较大的锐角为θ,则cos2θ等于( )A .725B .725-C .925D .925-【答案】B 【分析】根据题意可得出1sin cos 5θθ-=,平方可得24sin 225θ=,即可求出.【详解】因为大正方形的面积为25,小正方形的面积为1,所以大正方形的边长为5,小正方形的边长为1, 所以5sin 5cos 1θθ-=,即1sin cos 5θθ-=,两边平方得11sin 225θ-=,即24sin 225θ=. 因为θ是直角三角形中较大的锐角,所以42ππθ<<,所以22πθπ<<,所以7cos 225θ==-. 故选:B.4.(2021·蚌埠铁路中学高三开学考试(文))勒洛三角形是一种特殊三角形,指分别以正三角形的三个顶点为圆心,以其边长为半径作圆弧,由这三段圆弧组成的曲边三角形.勒洛三角形的特点是:在任何方向上都有相同的宽度,即能在距离等于其圆弧半径(等于正三角形的边长)的两条平行线间自由转动,并且始终保持与两直线都接触.机械加工业上利用这个性质,把钻头的横截面做成勒洛三角形的形状,就能在零件上钻出正方形的孔来.如在勒洛三角形ABC 内随机选取一点,则该点位于正三角形ABC 内的概率为( )AB C D 【答案】A 【分析】由题意可得曲边三角形的面积为一个扇形加两个拱形的面积,或者3个扇形面积减去2个三角形的面积,然后由几何概型的概率公式求出概率. 【详解】解:由题意可得正三角形的边长为半径的三段圆弧组成的曲边三角形的面积S 曲=S 扇形CAB +2S 拱=123π⋅⋅22+2(S 扇形﹣S △ABC )=23π⋅3﹣2⋅22=2π﹣三角形ABC 的面积S △ABC 22所以由几何概型的概率公式可得:所求概率=ABCS S ∆曲 故选:A .5.(2021·江苏高一期中)公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图方法,发现了“黄金分割”.“黄金分割”是工艺美术、建筑、摄影等许多艺术门类中审美的要素之一,它表现了恰到好处的和谐,0.618≈,这一比值也可以表示为2sin18m =︒,若228m n +=,=( ) A.2 B .4 C .D .【答案】C 【分析】由题知28cos 18n =,再根据二倍角公式化简整理即可得答案. 【详解】解:因为2sin18m =︒,228m n +=, 所以2228288sin 188cos 18n m =-=-=,2sin1822cos1822sin 3622cos54cos54⨯===故选:C6.(2021·贵州贵阳·高三开学考试(文))水车(如图1),又称孔明车,是我国最古老的农业灌溉工具,主要利用水流的动力灌溉农作物,是先人们在征服世界的过程中创造出来的高超劳动技艺,是珍贵的历史文化遗产,相传为汉灵帝时毕岚造出雏形,经三国时孔明改造完善后在蜀国推广使用,隋唐时广泛用于农业灌溉,有1700余年历史.下图2是一个水车的示意图,它的直径为3m ,其中心(即圆心)O 距水面0.75m .如果水车每4min 逆时针转3圈,在水车轮边缘上取一点P ,我们知道在水车匀速转动时,P 点距水面的高度h(单位:m )是一个变量,它是时间t (单位:s )的函数.为了方便,不妨从P 点位于水车与水面交点Q 时开始记时()0t =,则我们可以建立函数关系式()()sin h t A t k ωϕ=++(其中0A >,0>ω,2πϕ<)来反映h 随t 变化的周期规律.下面关于函数()h t 的描述,正确的是( )A .最小正周期为80πB .一个单调递减区间为[]30,70C .()y h t =的最小正周期为40D .图像的一条对称轴方程为403t =- 【答案】D 【分析】首先求得()33sin 24064h t t ππ⎛⎫=-+ ⎪⎝⎭,[)0,t ∈+∞,然后结合选项由三角函数的图象和性质判断即可.【详解】依题意可知,水车转动的角速度32(rad /s)46040ππω⨯==⨯, 3324A k +=+,3324A k -+=-+,解得32A =,34k =,由()330sin sin 024h A k ϕϕ=+=+=得1sin 2ϕ=-,又2πϕ<,则6πϕ=-,所以()33sin 24064h t t ππ⎛⎫=-+ ⎪⎝⎭,[)0,t ∈+∞.对于选项A :函数()h t 的最小正周期为2=8040ππ,故A 错误;对于选项B :当[]30,70t ∈时,719,4061212t ππππ⎡⎤-∈⎢⎥⎣⎦,因为3719,21212πππ⎡⎤∈⎢⎥⎣⎦, 所以函数()h t 在[]30,70上不具有单调性,故B 错误; 对于选项C :()()353340sin 02642h h π=+=≠,所以C 错误;对于选项D :40333sin 32244h π⎛⎫⎛⎫-=-+=- ⎪ ⎪⎝⎭⎝⎭(最小值),所以D 正确.故选:D.7.(2021·江苏南京市·高一期中)托勒密(C .Ptolemy ,约90-168),古希腊人,是天文学家、地理学家、地图学家、数学家,所著《天文集》第一卷中载有弦表.在弦表基础上,后人制作了正弦和余弦表(部分如下图所示),该表便于查出0°~90°间许多角的正弦值和余弦值,避免了冗长的计算.例如,依据该表,角2°12′的正弦值为0.0384,角30°0′的正弦值为0.5000,则角34°36′的正弦值为( )A .0.0017B .0.0454C .0.5678D .0.5736【答案】C 【分析】先看左边列找34︒,再往右找对第一行的36'即可. 【详解】由题意查表可得3436︒'的正弦值为0.5678. 故选:C .8.(2021·江苏镇江·高一期中)今年是伟大、光荣、正确的中国共产党成立100周年.“红星闪闪放光彩”,正五角星是一个非常优美的几何图形,庄严美丽的国旗和国徽上的大五角星是中国共产党的象征,如图为一个正五角星图形,由一个正五边形的五条对角线连结而成,已知C ,D 为AB 的两个黄金分割点,即AC BD AB AB =.则cos DEC ∠=( )ABCD【答案】A 【分析】根据图形和已知条件表示出,,CE DE CD ,然后用余弦定理求解即可 【详解】由正五角星的对称性知:BC CE DE AD ===, 不妨设BC CE DE AD x ====,则CD AC AD =-, 又AC BC AC AD AB +=+=,AB AC ==则AC AD AC +=,所以AD =,AC AD AD ==,CD AC AD x x =-=-=22222224cos 122x DE CE CDDEC DE CEx +-∠===⨯ 故选:A二、多选题9.(2021·河北唐山·高三开学考试)声音是由物体振动产生的波,每一个音都是由纯音合成的.已知纯音的数学模型是函数sin y A t ω=.我们平常听到的乐音是许多音的结合,称为复合音.若一个复合音的数学模型是函数()1sin sin 22f x x x =+,则( )A .()f x 的最大值为32B .2π为()f x 的最小正周期C .π2x =为()y f x =曲线的对称轴 D .()π,0为曲线()y f x =的对称中心【答案】BD 【分析】分析函数sin y x =与1sin 22y x =不能同时取得最大值可判断A ;由sin y x =的最小正周期是2π,1sin 22y x=的最小正周期是2ππ2=可判断B ;计算ππ22f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭是否成立可判断C ;计算()()2π0f x f x +-=是否成立可判断D ;进而可得正确选项. 【详解】对于A :若()f x 的最大值为32,则sin y x =与1sin 22y x =同时取得最大值,当sin y x =取得最大值1时,cos 0x =,可得1sin 2sin cos 02y x x x ===取不到12,若1sin 22y x =取得最大值12时,sin 21x =,此时()ππZ 4x k k =+∈,而πsin sin π4y x k ⎛⎫==+= ⎪⎝⎭1,所以sin y x =与1sin 22y x =不可能同时取得最大值,故选项A 不正确;对于B :因为sin y x =的最小正周期是2π,1sin 22y x =的最小正周期是2ππ2=, 且()()()()112πsin 2πsin 22πsin sin 222f x x x x x f x +=+++=+=,()()()()11πsin πsin 2πsin sin 222f x x x x x f x +=+++=-+≠所以2π为()f x 的最小正周期,故选项B 正确;对于C :ππ1π1sin sin 2cos sin 222222f x x x x x ⎛⎫⎛⎫⎛⎫+=+++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,ππ1π1sin sin 2cos sin 222222f x x x x x ⎛⎫⎛⎫⎛⎫-=-+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以ππ22f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭不恒成立,即ππ22f x f x ⎛⎫⎛⎫+≠- ⎪ ⎪⎝⎭⎝⎭,所以π2x =不是曲线()y f x =的对称轴,故选项C 不正确;对于D :()()()112πsin 2πsin 22πsin sin 222f x x x x x -=-+-=--,所以()()2π0f x f x +-=对于任意的x 恒成立,所以()π,0为曲线()y f x =的对称中心,故选项D 正确; 故选:BD.10.(2021·江苏)由倍角公式2cos 22cos 1x x =-,可知cos2x 可以表示为cos x 的二次多项式.一般地,存在一个n (n *∈N )次多项式()12012n n n n n P t a t a ta t a --=+++⋅⋅⋅+(012,,,n a a a a ⋅⋅⋅∈R ),使得()cos cos n nx P x =,这些多项式()n P t 称为切比雪夫(P .L .Tschebyscheff )多项式.运用探究切比雪夫多项式的方法可得( )A .()3343P t t t =-+ B .()424881P t t t =-+C .sin18︒=D .cos18︒=【答案】BC 【分析】通过求cos3,cos 4,cos5x x x ,来判断出正确选项. 【详解】()cos3cos 2cos2cos sin 2sin =+=-x x x x x x x()222cos 1cos 2sin cos x x x x =-- ()()222cos 1cos 21cos cos x x x x =--- 34cos 3cos x x =-,所以()3343P t t t =-,A 错误.()()222222cos 4cos 22cos 2sin 22cos 14sin cos x x x x x x x =⋅=-=--()42224cos 4cos 141cos cos x x x x =-+--428cos 8cos 1x x =-+,所以()424881P t t t =-+,B 正确.()cos5cos 4cos4cos sin 4sin x x x x x x x =+=- ()428cos 8cos 1cos 2sin 2cos2sin x x x x x x =-+- ()53228cos 8cos cos 4sin 2cos 1cos x x x x x x =-+--()()53228cos 8cos cos 41cos 2cos 1cos x x x x x x =-+--- 5316cos 20cos 5cos x x x =-+.所以()53cos90cos 51816cos 1820cos 185cos180︒=⨯︒=︒-︒+︒=,由于cos180︒≠,所以4216cos 1820cos 1850︒-︒+=,由于cos18cos30︒>︒,所以223cos 18cos 304︒>︒=,所以由4216cos 1820cos 1850︒-︒+=解得2cos 18︒=,所以sin18︒=,C正确. 2=≠⎝⎭,所以D 错误. 故选:BC 【点睛】三角函数化简求值问题,关键是根据题意,利用三角恒等变换的公式进行化简.11.(2021·全国)海水受日月的引力,在一定的时候发生涨落的现象叫潮汐.早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近船坞;卸货后,在落潮时返回海洋.一艘货船的吃水深度(船底到水面的距离)为4m.安全条例规定至少要有2.25m 的安全间隙(船底到海底的距离),下表给出了某港口在某季节每天几个时刻的水深.若选用一个三角函数()f x 来近似描述这个港口的水深与时间的函数关系,则下列说法中正确的有( ) A .() 2.5cos 56x x f π⎛⎫=+⎪⎝⎭B .() 2.5sin 56f x x π⎛⎫=+⎪⎝⎭C .该货船在2:00至4:00期间可以进港D .该货船在13:00至17:00期间可以进港 【答案】BCD 【分析】依据题中所给表格,写出()f x 的表达式而判断选项A ,B ;再根据船进港的条件列出不等式,求解即可判断选项C ,D. 【详解】依据表格中数据知,可设函数为()sin f x A x k ω=+,由已知数据求得 2.5A =,5k =,周期12T =,所以26T ππω==﹐ 所以有() 2.5sin 56f x x π⎛⎫=+⎪⎝⎭,选项A 错误;选项B 正确; 由于船进港水深至少要6.25,所以 2. 5sin 5 6.256x π⎛⎫+ ⎪⎝⎭≥,得1sin 62x π⎛⎫⎪⎝⎭≥, 又024046x x ππ≤≤⇒≤≤,则有5666x πππ≤≤或1317666x πππ≤≤,从而有1 5 x ≤≤或1317x ≤≤,选项C ,D 都正确. 故选:BCD 【点睛】解三角不等式sin()(||1)x m m ωϕ+≥<关键在于:找准不等式中的函数值m 所对角; 长为一个周期的区间内相位x ωϕ+所在范围.12.(2020·全国高三月考)斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD AB BC ⎛= ⎝⎭中作正方形ABFE ,以F 为圆心,AB 长为半径作弧BE ;然后在黄金矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作弧EG ;;如此继续下去,这些弧就连接成了斐波那契螺线.记弧BE ,EG ,GI 的长度分别为l ,m ,n ,则下列结论正确的是( )A .l m n =+B .2m l n =⋅C .2m l n =+D .111m l n=+ 【答案】AB 【分析】设1AB =,则2BC =,再由14圆弧分别求得l ,m ,n ,然后再逐项判断.【详解】不妨设1AB =,则2BC =,所以121)4l π=⨯⨯=.因为3ED =所以12(34m π=⨯⨯=.同理可得124)4n π=⨯⨯=所以l m n =+,2m l n =⋅,2m l n ≠+,111m l n≠+,所以A ,B 正确,C ,D 错误. 故选:AB三、填空题13.(2021·安徽高三开学考试(理))正割(secant )及余割(cosecant )这两个符号是荷兰数学家基拉德在《三角学》中首先使用,后经欧拉采用得以通行.在三角中,定义正割1sec cos αα=,余割1csc sin αα=.已知0t >,且22sec csc 16x t x +≥对任意的实数,2k x x k Z π⎛⎫≠∈ ⎪⎝⎭均成立,则t 的最小值为__________. 【答案】9 【分析】根据正余割的定义,得到和为1,结合基本不等式1的代入即可求解 【详解】 由题得:22111sec csc x x+=, 所以()22222211sec csc sec csc 16sec csc x t x x t x x x ⎛⎫+=++≥ ⎪⎝⎭即:2222csc sec 11sec csc t x xt x x t ≥+++++116t ++5-3,所以9t ≥故答案为:914.(2021·江苏仪征中学高一月考)赵爽是我国古代数学家,大约在公元222年,赵爽在为《周髀算经》,作序时,介绍了“勾股圆方图”,亦称为“赵爽弦图”.可类似地构造如图所示的图形,由三个全等的三角形与中间的一个小等边三角形拼成一个大的等边三角形,设2DF FA =,若AB =ABD △的面积为____________.【答案】【分析】设BD x =,可得出3AD x =,23ADB π∠=,利用余弦定理求出x 的值,再利用三角形的面积公式可求得ABD △的面积. 【详解】设BD x =,则3AD x =,因为DEF 为等边三角形,则3ADE π∠=,故23ADB π∠=, 在ABD △中,由余弦定理得()222252323cos3AB x x x x π==+-⨯⨯⨯,解得2x =,故6AD =,2BD =,因此,ABD △的面积为1226sin23ABD S π=⨯⨯⨯=△故答案为:15.(2021·安徽阜阳·高一期末)筒车是一种水利灌溉工具(如图1所示),筒车上的每一个盛水筒都做逆时针匀速圆周运动,筒车转轮的中心为O ,筒车的半径为r ,筒车转动的周期为24s ,如图2所示,盛水桶M在0P 处距水面的距离为0h .4s 后盛水桶M 在1P 处距水面的距离为1h ,若10h h -=,则直线0OP 与水面的夹角为______.【答案】π12【分析】根据题意构建平面几何模型,在借助三角函数求解答案. 【详解】如图,过O 作直线l 与水面平行,过0P 作0P A l ⊥于A ,过1P 作1PB l ⊥于B . 设0AOP α∠=,1BOP β∠=,则,4π2π243βα-=⨯=,π3βα∴=+由图知,0sin P A r α=,1sin PB r β=,0101sin sin P A h h PB r r r βα--=-==,所以πsin sin 3αα⎛⎫+-= ⎪⎝⎭πsin 3α⎛⎫-= ⎪⎝⎭,则ππ34α-=-,即π12α=.故答案为:π12. 16.(2021·广东深圳·高三)著名的费马问题是法国数学家皮埃尔德费马(1601-1665)于1643年提出的平面几何极值问题:“已知一个三角形,求作一点,使其与此三角形的三个顶点的距离之和最小.”费马问题中的所求点称为费马点,已知对于每个给定的三角形,都存在唯一的费马点,当ABC 的三个内角均小于120︒时,则使得120APB BPC CPA ∠=∠=∠=︒的点P 即为费马点.已知点P 为ABC 的费马点,且AC BC ⊥,若||||||PA PB PC λ+=,则实数λ的最小值为_________.【答案】2 【分析】根据题意120APB BPC CPA ∠=∠=∠=︒,不妨设PCB α∠=,故,,326CBP ACP CAP πππααα∠=-∠=-∠=-,进而得,63ππα⎛⎫∈ ⎪⎝⎭,所以在BCP 和ACP △中,由正弦定理得sin sin 3BP PC απα=⎛⎫- ⎪⎝⎭,sin 2sin 6PA PC παπα⎛⎫- ⎪⎝⎭=⎛⎫- ⎪⎝⎭,故sin sin 2sin sin 36πααλππαα⎛⎫- ⎪⎝⎭=+⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,在结合三角恒等变换化简整理求函数最值即可.【详解】根据题意, 点P 为ABC 的费马点,ABC 的三个内角均小于120︒, 所以120APB BPC CPA ∠=∠=∠=︒,设PCB α∠=,所以在BCP 和ACP △中,,,3236CBP ACP CAP ACP ππππααα∠=-∠=-∠=-∠=-,且均为锐角,所以,63ππα⎛⎫∈ ⎪⎝⎭所以由正弦定理得:sin sin 3BPPC παα=⎛⎫- ⎪⎝⎭,sin sin 26PA PCππαα=⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,所以sin sin 3BP PC απα=⎛⎫- ⎪⎝⎭,sin 2sin 6PA PC παπα⎛⎫- ⎪⎝⎭=⎛⎫- ⎪⎝⎭, 因为||||||PA PB PC λ+=所以sin cos sin sin cos sin 2sin sin 36πααααααλππαα⎛⎛⎫- - ⎪⎝⎭=+==⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭11==,因为,63ππα⎛⎫∈ ⎪⎝⎭,所以22,33ππα⎛⎫∈ ⎪⎝⎭,所以(2sin 20,2α,)12,⎡∈+∞⎣故实数λ的最小值为2.故答案为:2【点睛】本题考查数学文化背景下的解三角形,三角恒等变换解决三角函数取值范围问题,考查运算求解能力,数学建模能力,化归转化思想,是难题.本题解题的关键在于根据题目背景,通过设PCB α∠=,进而建立解三角形的模型,再根据正弦定理及三角恒等变换化简求最值即可.四、解答题17.(2021·海安市南莫中学高一期中)下图所示的毕达格拉斯树画是由图(i )利用几何画板或者动态几何画板Geogebra 做出来的图片,其中四边形ABCD ,AEFG ,PQBE 都是正方形.如果改变图(i )中EAB ∠的大小会得到更多不同的“树形”.(1)在图(i )中,21AB ,AE ==,且AE AB ⊥,求AQ ;(2)在图(ii )中,21AB ,AE ==,设(0)EAB θθπ∠=<<,求AQ 的最大值.【答案】(1(2)9. 【分析】(1)由已知条件结合诱导公式求得cos ABQ ∠,在ABQ △中,利用余弦定理,即可求解;(2)由已知条件结合余弦定理,求得BE ,再利用正弦定理、余弦定理及三角函数的性质,即可求解. 【详解】(1)当AE AB ⊥时,BE BQ ==则()cos cos2ABQ ABE π∠=+∠sin AE ABE BE =-∠=-=在ABQ △中,由余弦定理可得2222cos 45413AQ AB BQ AB BQ ABQ =+-⋅∠=++=,所以AQ =(2)在ABE △中,由余弦定理知,2222cos 54cos BE AB AE AB AE θθ⋅=-⋅=+-,所以BE BQ ==在ABE △中,由正弦定理知sin sin AE BEABE θ=∠,可得sin ABE ∠=在ABQ △中,由余弦定理可得2222cos()2AQ AB BQ AB BQ ABE π=+-⋅⋅+∠454cos 4θ=+-+4(sin cos )994πθθθ⎛⎫=-+=-+ ⎪⎝⎭,所以当3(0,)4πθπ=∈时,AQ 的取最大值9.答:(1)AQ =(2)AQ 的最大值为9.18.(2021·昆明·云南师大附中高一期中)仰望星空,时有流星划过天际,令我们感叹生命的短暂,又深深震撼我们凡俗的心灵.流星是什么?从古至今,人们作过无数种猜测.古希腊亚里士多德说,那是地球上的蒸发物,近代有人进一步认为,那是地球上磷火升空后的燃烧现象.10世纪波斯著名数学家、天文学家阿尔·库希设计出一种方案,通过两个观测者异地同时观察同一颗流星,来测定其发射点的高度.如图,假设地球是一个标准的球体,O 为地球的球心,AB 为地平线,有两个观测者在地球上的A ,B 两地同时观测到一颗流星S ,观测的仰角分别为SAD α∠=,SBD β∠=,其中,90DAO DBO ∠=∠=︒,为了方便计算,我们考虑一种理想状态,假设两个观测者在地球上的A ,B 两点测得30α=︒,15β=︒,地球半径为R 公里,两个观测者的距离3RAB π=. 1.73 1.5≈)(1)求流星S 发射点近似高度ES ;(2)在古希腊,科学不发达,人们看到流星以为这是地球水分蒸发后凝结的固体,已知对流层高度大约在18公里左右,若地球半径6370R ≈公里,请你据此判断该流星S 是地球蒸发物还是“天外来客”?并说明理由.【答案】(1)0.5ES R =公里;(2)该流星不是地球蒸发物,而是“天外来客”,理由见解析. 【分析】(1)由已知条件在ASB △中利用正弦定理求出1)AS R =,在SAC 中再利用余弦定理求出OS ,从而可得ES OS R =-;(2)由(1)求出的值可得流星S 发射点近似高度为3185公里,远远大于对流层最高近似高度18公里,从而可得结论 【详解】 (1)因为3AB R π=,则60AOB ∠=︒,所以AOB 为等边角形,所以AB R =.又因为90DAO DBO ∠=∠=︒,所以30∠=∠=︒DAB DBA ,所以30∠=∠=︒DAB DBA ,所以60SAB ∠=︒,45SBA ∠=︒,75ASB ∠=︒.在ASB △中,由正弦定理:sin 75sin 45AB AS =︒︒,得()sin 4530sin 45R AS ︒=︒+︒, 解得1)AS R =,在SAC 中,由余弦定理:2222222212cos 1)1)(42OS SA OA SA OA SAO R R R R ⎛⎫=+-⋅∠=+-⨯-= ⎪⎝⎭.所以 1.5OS R =≈≈,所以0.5ES OS R R =-=公里.(2)0.53185ES R ≈≈公里,所以流星S 发射点近似高度为3185公里,远远大于对流层最高近似高度18公里,所以该流星不是地球蒸发物,而是“天外来客”.(言之有理即可).19.(2021·奉新县第一中学高一月考)重庆是我国著名的“火炉”城市之一,如图,重庆某避暑山庄O 为吸引游客,准备在门前两条小路OA 和OB 之间修建一处弓形花园,使之有着类似“冰淇淋”般的凉爽感,已知π6AOB ∠=,弓形花园的弦长AB =M ,π6MAB MBA ∠=∠=,设OBA θ∠=.(1)将OA 、OB 用含有θ的关系式表示出来;(2)该山庄准备在M 点处修建喷泉,为获取更好的观景视野,如何设计OA 、OB 的长度,才使得喷泉M 与山庄O 的距离的值最大?【答案】(1)OA θ=,6OB πθ⎛⎫=+ ⎪⎝⎭;(2)当OA OB =OM 取最大值4+ 【分析】(1)本题可通过正弦定理得出OA θ=、6OB πθ⎛⎫=+ ⎪⎝⎭;(2)本题首先可根据题意得出2AM BM ==,然后通过余弦定理得出2222cos 6OM OB BM OB BM πθ⎛⎫=+-⋅⋅⋅+ ⎪⎝⎭,通过转化得出222283OM πθ⎛⎫=-++ ⎪⎝⎭,最后通过50,6πθ⎛⎫∈ ⎪⎝⎭以及正弦函数的性质即可求出最值.【详解】(1)因为sin sin sin OA OB AB OAB AOBθ==∠∠,π6AOB ∠=,AB =所以56OAB πθ∠=-,OA θ=,566OB ππθθ⎛⎫⎛⎫=-=+⎪ ⎪⎝⎭⎝⎭.(2)因为AB =π6MAB MBA ∠=∠=,所以2AM BM ==, 在OMB △中,由余弦定理易知2222cos 6OM OB BM OB BM πθ⎛⎫=+-⋅⋅⋅+ ⎪⎝⎭,即2248sin 4cos 666OM πππθθθ⎛⎫⎛⎫⎛⎫=++-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭248sin 2428224cos 22286333ππππθθθθ⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+=-+-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭122sin 2282283233πππθθθ⎤⎛⎫⎛⎫⎛⎫=-++++=-++⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎦,因为50,6πθ⎛⎫∈ ⎪⎝⎭,所以2272,333πππθ⎛⎫+∈ ⎪⎝⎭,2sin 23πθ⎡⎛⎫+∈-⎢⎪⎝⎭⎣⎭, 当2sin 213πθ⎛⎫+=- ⎪⎝⎭,即512πθ=时, 2OM 取最大值28+OM 取最大值4+此时51264OA πππ⎛⎫==+= ⎪⎝⎭ 512643OB ππππ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭故当OA OB =时,OM 取最大值4+ 【点睛】关键点点睛:本题考查解三角形的实际应用,考查正弦定理与余弦定理的应用,考查三角恒等变换,考查根据正弦函数的性质求最值,考查化归与转化思想,体现了综合性,是难题.20.(2021·江苏省镇江中学)古希腊数学家普洛克拉斯曾说:“哪里有数学,哪里就有美,哪里就有发现……”,对称美是数学美的一个重要组成部分,比如圆,正多边形……,请解决以下问题:(1)魏晋时期,我国古代数学家刘徽在《九章算术注》中提出了割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”,割圆术可以视为将一个圆内接正n 边形等分成n 个等腰三角形(如图所示),当n 变得很大时,等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,求sin3︒的近似值(结果保留π).(2)正n 边形的边长为a ,内切圆的半径为r ,外接圆的半径为R ,求证:2tan2a R r nπ+=.【答案】(1)60π;(2)详见解析.【分析】(1)将一个单位圆分成120个扇形,每个扇形的圆心角为3︒,再根据120个等腰三角形的面积之和近似等于圆的面积求解;(2)设O 为内切圆的圆心,OA ,OB 分别为外接圆和内切圆的半径R ,r ,易知 1,2AB a nπθ==,然后在Rt OAB 中,利用三角函数的定义求得R ,r ,利用三角恒等变换证明.【详解】(1)将一个单位圆分成120个扇形,每个扇形的圆心角为3︒, 因为这120个等腰三角形的面积之和近似等于圆的面积, 所以11211sin 32π⨯⨯⨯⨯≈ sin 360π≈;(2)设O 为内切圆的圆心,OA ,OB 分别为外接圆和内切圆的半径R ,r ,则,OA R OB r ==, 如图所示:所以1,2AB a nπθ==, 在Rt OAB 中,sin AB OAθ=,即12sin an Rπ=,所以2sin a R n π=, cos OB OA θ=,即cos r n Rπ=,所以coscos 2sin a n r R n nπππ==, 所以1cos cos2sin 2sin 2sina a a n n R r n n nπππππ⎛⎫+ ⎪⎝⎭+=+=, 22cos 24sincos2tan222a a nnnnππππ==.21.(2021·上海徐汇·高一期末)主动降噪耳机工作的原理是:先通过微型麦克风采集周国的噪声,然后降噪芯片生成与噪声振幅相同、相位相反的声波来抵消噪声(如图所示).已知某噪声的声波曲线f(x)=Asin (2π3x +φ)(A >0,0≤φ<π),其中的振幅为2,且经过点(1,-2)(1)求该噪声声波曲线的解析式f(x)以及降噪芯片生成的降噪声波曲线的解析式g(x); (2)证明:g(x)+g(x +1)+g(x +2)为定值. 【答案】(1)f(x)=2sin (2π3x +5π6), g(x)=−2sin (2π3x +5π6);(2)证明见解析.【分析】(1)首先根据振幅为2求出A ,将点(1,-2)代入解析式即可解得; (2)由(1),结合诱导公式和两角和差的余弦公式化简即可证明.【详解】(1)∵振幅为2,A >0,∴A =2,f(x)=2sin (2π3x +φ),将点(1,-2)代入得:−2=2sin (2π3+φ)⇒sin (2π3+φ)=−1,∵0≤φ<π,∴2π3+φ∈[2π3,5π3),∴2π3+φ=3π2⇒φ=5π6,∴f(x)=2sin (2π3x +5π6),易知g(x)与f(x)关于x 轴对称,所以g(x)=−2sin (2π3x +5π6).(2)由(1)g(x)=−2sin (2π3x +5π6)=−2sin (2π3x +π3+π2)=−2cos (2π3x +π3)g(x)+g(x +1)+g(x +2)=−2cos (2π3x +π3)−2cos (2π3x +π)−2cos (2π3x +2π3+π)=−2cos (2π3x +π3)+2cos2π3x +2cos (2π3x +2π3)=−2(cos2π3x ⋅12−sin2π3x ⋅√32)+2cos2π3x +2[cos2π3x ⋅(−12)−sin2π3x ⋅√32]=0.即定值为0.22.(2021·合肥市第六中学高一期末)合肥逍遥津公园是三国古战场,也是合肥最重要的文化和城市地标,是休闲游乐场,更是几代合肥人美好记忆的承载地.2020年8月启动改造升级工作,欲对该公园内一个平面凸四边形ABCD 的区域进行改造,如图所示,其中4DC a =米,2DA a =米,ABC 为正三角形.改造后BCD △将作为人们旅游观光、休闲娱乐的区域,ABD △将作为对三国历史文化的介绍区域.(1)当3ADC π∠=时,求旅游观光、休闲娱乐的区域BCD △的面积;(2)求旅游观光、休闲娱乐的区域BCD △的面积的最大值.【答案】(1)()22m ;(2)(()224m a +.【分析】(1)由余弦定理求得AC ,再由正弦定理求得ACD ∠,求出BC BC ⊥,易得面积;(2)不妨设ADC θ∠=,ACD α∠=,用余弦定理表示出2AC ,用正弦定理表示出sin α,再用余弦定理表示出cos α,然后表示出BCD △的面积,利用两角和的正弦公式展开代入2sin ,cos ,AC αα,再利用两角差的正弦公式化简,然后利用正弦函数性质得最大值. 【详解】解析:(1)2222cos3AC AD DC AD DC π=+-⋅⋅,∴AC =,又sin sin3ACADACD π=∠,∴1sin 2ACD ∠=,易知ACD ∠是锐角,所以6π∠=ACD ,∴2BCD π∠=,()2214m 2BCD S a =⨯⨯=△,(2)不妨设ADC θ∠=,ACD α∠=,于是由余弦定理得()222016cos AC a θ=-①,22sin sin sin sin AC a a ACθαθα=⇒=②, 22222124168cos cos 8AC a a AC a aAC a a aAC+=+-⋅⇒=③, ∴14sin 23BCDS a AC πα⎛⎫=⨯⨯⋅+ ⎪⎝⎭△2(sin cos cos sin )33a AC ππαα=⋅+2222sin 128a AC a AC AC AC θ⎡⎤+=⋅⎢⎥⎣⎦((2222sin 4sin 43a a a πθθθ⎛⎛⎫=-+=-++ ⎪ ⎝⎝≤⎭,当且仅当5 326πππθθ-=⇒=时取等号,∴BCD S △最大值为(()224m a +.【点睛】本题考查解三角形的应用,解题关键是选用一个角为参数,然后把其他量表示为参数的三角函数,这里注意正弦定理和余弦定理的应用,然后利用三角函数恒等变换公式化简变形,最后利用正弦函数性质求得最值.。

高考数学压轴专题最新备战高考《三角函数与解三角形》经典测试题含答案

高考数学压轴专题最新备战高考《三角函数与解三角形》经典测试题含答案

新高中数学《三角函数与解三角形》专题解析一、选择题1.已知πππsin()cos()0,322ααα++-=-<<则2πcos()3α+等于( )A B .35-C .45D .35【答案】C 【解析】 【分析】首先根据等式化简,得到4sin 65πα⎛⎫+=- ⎪⎝⎭,再利用诱导公式化简2cos 3πα⎛⎫+ ⎪⎝⎭求值. 【详解】解析:∵ππsin cos 32αα⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭13sin sin sin 22225ααααα++=+=-65πα⎛⎫=+=-⎪⎝⎭ ∴π4sin 65()α+=-.又2ππππcos cos sin 32()())6(6ααα+=++=-+, ∴2π4co (s 35)α+=. 故选:C 【点睛】本题考查三角恒等变换,化简求值,重点考查转化与变形,计算能力,属于基础题型.2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a ﹣c cos B )sin A =c cos A sin B ,则△ABC 的形状一定是( ) A .钝角三角形 B .直角三角形C .等腰三角形D .锐角三角形【答案】C 【解析】 【分析】根据题意,由(cos )sin cos sin a c B A c A B -=变形可得sin sin a A c C =,进而由正弦定理可得22a c =,即a c =,即可得答案. 【详解】根据题意,在ABC ∆中,(cos )sin cos sin a c B A c A B -=,变形可得:sin cos sin cos sin (cos sin cos sin )sin()sin a A c B A c A B c B A A B c A B c C =+=+=+=,即有sin sin a A c C =,又由正弦定理可得22a c =,即a c =. 故选:C . 【点睛】本题主要考查三角形的形状判断,考查正弦定理的应用,意在考查学生对这些知识点的理解掌握水平,属于基础题.3.在ABC ∆中,角,,A B C 所对的边分别为,,a b c 满足,222b c a bc +-=,AB BC ⋅>u ur u u r u u,a =b c +的取值范围是( ) A .31,2⎛⎫ ⎪⎝⎭B.32⎫⎪⎪⎝⎭C .13,22⎛⎫⎪⎝⎭D .31,2⎛⎤ ⎥⎝⎦【答案】B 【解析】 【分析】利用余弦定理222cos 2b c a A bc+-=,可得3A π=,由|||cos()|0AB BC AB BC B π⋅=⋅->u u u u u u u u r u ur u r u r,可得B为钝角,由正弦定理可得sin sin(120)30)o o b c B B B ∴+=+-=+,结合B 的范围,可得解【详解】由余弦定理有:222cos 2b c a A bc+-=,又222b c a bc +-=故2221cos 222b c a bc A bc bc +-===又A 为三角形的内角,故3A π=又2a=sin sin sin(120)2ob c c B C B ==- 又|||cos()|0AB BC AB BC B π⋅=⋅->u u u u u u u u r u ur u r u r故cos 0B B <∴为钝角3sin sin(120)sin 30)22o o b c B B B B B ∴+=+-=+=+(90,120)o o B ∈Q ,可得1330(120150)sin(30)(,)22o o o o B B +∈∴+∈,333sin(30)(,)22o b c B ∴+=+∈ 故选:B 【点睛】本题考查了正弦定理、余弦定理和向量的综合应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题4.设函数f (x )=cos (x +3π),则下列结论错误的是 A .f(x)的一个周期为−2π B .y=f(x)的图像关于直线x=83π对称 C .f(x+π)的一个零点为x=6π D .f(x)在(2π,π)单调递减 【答案】D 【解析】f (x )的最小正周期为2π,易知A 正确; f 8π3⎛⎫⎪⎝⎭=cos 8ππ33⎛⎫+ ⎪⎝⎭=cos3π=-1,为f (x )的最小值,故B 正确;∵f (x +π)=cos ππ3x ⎛⎫++ ⎪⎝⎭=-cos π3x ⎛⎫+ ⎪⎝⎭,∴f ππ6⎛⎫+ ⎪⎝⎭=-cos ππ63⎛⎫+ ⎪⎝⎭=-cos 2π=0,故C 正确; 由于f 2π3⎛⎫⎪⎝⎭=cos 2ππ33⎛⎫+ ⎪⎝⎭=cosπ=-1,为f (x )的最小值,故f (x )在,2ππ⎛⎫ ⎪⎝⎭上不单调,故D 错误. 故选D.5.已知函数()sin()R,0,0,||2f x A x x A πωϕωϕ⎛⎫=+∈>>< ⎪⎝⎭的图象(部分)如图所示,则ω,ϕ分别为( )A .,3πωπϕ==B .2,3πωπϕ==C .,6πωπϕ==D .2,6πωπϕ==【答案】C 【解析】 【分析】由最大值可确定振幅A ,由周期确定ω,由1()23f =确定ϕ. 【详解】 由图可得,2A =,5114632T =-=,所以22T πω==,ωπ=,又1()23f =,所以12sin()23πϕ⨯+=,2,32k k Z ππϕπ+=+∈,即2,6k k Z πϕπ=+∈, 又2πϕ<,故6π=ϕ. 故选:C 【点睛】本题考查由图象确定正弦型函数解析式中的参数问题,考查学生逻辑推理能力,是一道中档题.6.已知ABC V 的三条边的边长分别为2米、3米、4米,将三边都增加x 米后,仍组成一个钝角三角形,则x 的取值范围是( ) A .102x << B .112x << C .12x << D .01x <<【答案】D 【解析】 【分析】根据余弦定理和三角形三边关系可求得x 的取值范围. 【详解】将ABC V 的三条边的边长均增加x 米形成A B C '''V ,设A B C '''V 的最大角为A '∠,则A '∠所对的边的长为()4x +米,且A '∠为钝角,则cos 0A '∠<,所以()()()()()2222342340x x x x x x x ⎧+++<+⎪+++>+⎨⎪>⎩,解得01x <<.故选:D. 【点睛】本题考查利用余弦定理和三角形三边关系求参数的取值范围,灵活利用余弦定理是解本题的关键,考查计算能力,属于中等题.7.将函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的图象向右平移6π个单位长度后,所得图象关于y 轴对称,且1π2f ω⎛⎫=- ⎪⎝⎭,则当ω取最小值时,函数()f x 的解析式为( )A .()sin 26f x x π⎛⎫=+⎪⎝⎭B .()sin 2π6f x x ⎛⎫=- ⎪⎝⎭C .()sin 4π6f x x ⎛⎫=+ ⎪⎝⎭D .()sin 4π6f x x ⎛⎫=- ⎪⎝⎭【答案】C 【解析】 【分析】由题意利用函数()sin y A x ωφ=+的图象变换规律,可得所得函数的解析式,由12f πω⎛⎫=- ⎪⎝⎭,求出φ,再根据所得图象关于y 轴对称求出ω,可得()f x 的解析式.【详解】解:将函数()()sin (0,)2f x x πωφωφ=+><的图象向右平移6π个单位长度后,可得sin 6y x ωπωφ⎛⎫=-+ ⎪⎝⎭的图象;∵所得图象关于y 轴对称,∴62k ωππφπ-+=+,k Z ∈.∵()1sin sin 2f ππφφω⎛⎫=-=+=- ⎪⎝⎭,即1sin 2φ=,26ππφφ<=,. ∴63k ωπππ-=+,620k ω=-->, 则当ω取最小值时,取1k =-,可得4ω=, ∴函数()f x 的解析式为()sin 46f x x π⎛⎫=+ ⎪⎝⎭. 故选C . 【点睛】本题主要考查函数()sin y A x ωφ=+的图象变换规律,正弦函数的性质,属于中档题.8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c ,则C =A .π12B .π6C .π4D .π3【答案】B【解析】 【分析】 【详解】试题分析:根据诱导公式和两角和的正弦公式以及正弦定理计算即可 详解:sinB=sin (A+C )=sinAcosC+cosAsinC , ∵sinB+sinA (sinC ﹣cosC )=0,∴sinAcosC+cosAsinC+sinAsinC ﹣sinAcosC=0, ∴cosAsinC+sinAsinC=0, ∵sinC ≠0, ∴cosA=﹣sinA , ∴tanA=﹣1,∵π2<A <π, ∴A= 3π4,由正弦定理可得c sin sin aC A=, ∵a=2,,∴sinC=sin c A a=12=22, ∵a >c , ∴C=π6, 故选B .点睛:本题主要考查正弦定理及余弦定理的应用,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.9.若,2παπ⎛⎫∈ ⎪⎝⎭,2cos2sin 4παα⎛⎫=- ⎪⎝⎭,则sin 2α的值为( ) A .78-B .78C .18-D .18【答案】A 【解析】 【分析】利用二倍角公式及两角差的正弦公式化简得到cos sin 4αα+=,再将两边平方利用二倍角正弦公式计算可得; 【详解】解:因为2cos2sin 4παα⎛⎫=-⎪⎝⎭所以()222cos sin sincos cossin 44ππαααα-=-所以()())2cos sin cos sin cos sin αααααα-+=- ,cos sin 02παπαα⎛⎫∈-≠ ⎪⎝⎭Q ,所以cos sin 4αα+=所以()21cos sin 8αα+=,即221cos 2cos sin sin 8αααα++=,11sin 28α+= 所以7sin 28α=- 故选:A 【点睛】本题考查两角和差的正弦公式、二倍角公式的应用,属于中档题;10.已知函数()sin (0)f x x x ωωω=+>的图象关于直线8x π=对称,则ω的最小值为( ) A .13B .23C .43D .83【答案】C 【解析】 【分析】利用辅助角公式将函数()y f x =的解析式化简为()2sin 3f x x πω⎛⎫=+ ⎪⎝⎭,根据题意得出()832k k Z πππωπ+=+∈,可得出关于ω的表达式,即可求出正数ω的最小值.【详解】()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭Q ,由于该函数的图象关于直线8x π=对称,则()832k k Z πππωπ+=+∈,得()483k k Z ω=+∈, 0ω>Q ,当0k =时,ω取得最小值43.故选:C. 【点睛】本题考查利用正弦型函数的对称性求参数,解题时要将三角函数的解析式利用三角恒等变换思想化简,并通过对称性列出参数的表达式求解,考查计算能力,属于中等题.11.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( ) A.13+ B.3C.23+ D.3【答案】B 【解析】 【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】22222sin 2sin cos 2cos 2sin cos1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭. 令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫=⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >.故()min 3f x f π⎛⎫==⎪⎝⎭. 故选:A 【点睛】本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.12.若函数()y f x =同时满足下列三个性质:①最小正周期为π;②图象关于直线3x π=对称;③在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增,则()y f x =的解析式可以是( ) A .sin 26y x π⎛⎫=-⎪⎝⎭B .sin 26x y π⎛⎫=-⎪⎝⎭ C .cos 26y x π⎛⎫=- ⎪⎝⎭D .cos 23y x π⎛⎫=+ ⎪⎝⎭ 【答案】A 【解析】 【分析】利用性质①可排除B ,利用性质②可排除C ,利用性质③可排除D ,通过验证选项A 同时满足三个性质. 【详解】逐一验证,由函数()f x 的最小正周期为π,而B 中函数最小正周期为2412ππ=,故排除B ;又cos 2cos 0362πππ⎛⎫⨯-== ⎪⎝⎭,所以cos 26y x π⎛⎫=- ⎪⎝⎭的图象不关于直线3x π=对称,故排除C ; 若63x ππ-≤≤,则023x ππ≤+≤,故函数cos 23y x π⎛⎫=+ ⎪⎝⎭在,63ππ⎡⎤-⎢⎥⎣⎦上单调递减,故排除D ; 令2262x πππ-≤-≤,得63x ππ-≤≤,所以函数sin 26y x π⎛⎫=- ⎪⎝⎭在,63ππ⎡⎤-⎢⎥⎣⎦上单调递增.由周期公式可得22T ππ==,当3x π=时,sin(2)sin 1362πππ⨯-==, 所以函数sin 26y x π⎛⎫=- ⎪⎝⎭同时满足三个性质.故选A . 【点睛】本题考查了三角函数的周期性,对称性,单调性,属于中档题.13.函数()()()cos 20f x x ϕϕπ=+<<在区间,66ππ⎡⎤-⎢⎥⎣⎦单调递减,在区间,06π⎛⎫- ⎪⎝⎭上有零点,则ϕ的取值范围是( ) A .,62ππ⎡⎤⎢⎥⎣⎦B .25,36ππ⎡⎫⎪⎢⎣⎭ C .2,23ππ⎛⎤⎥⎝⎦ D .,32ππ⎡⎫⎪⎢⎣⎭【答案】C 【解析】分析:结合余弦函数的单调减区间,求出零点,再结合零点范围列出不等式 详解:当[,]66x ππ∈-,2[,]33x ππϕϕϕ+∈-++,又∵(0,)ϕπ∈,则[,][0,]33ππϕϕπ-++⊆,即033πϕπϕπ⎧-≥⎪⎪⎨⎪+≤⎪⎩,233ππϕ≤≤,由cos(2)0x ϕ+=得2,2x k k Z πϕπ+=+∈,242k x ππϕ=+-, ∴0642ππϕ-<-<,解得526ππϕ<<, 综上223ππϕ<≤. 故选C.点睛:余弦函数的单调减区间:[2,2]k k ππ+π,增区间:[2,22]k k ππππ++,零点:2x k ππ=+,对称轴:x k π=,对称中心:,2)0(k ππ+,k Z ∈.14.在ABC ∆中,60B ∠=︒,AD 是BAC ∠的平分线交BC 于D,BD =,1cos 4BAC ∠=,则AD =( ) A .2 BCD【答案】A 【解析】 【分析】先求出sin BAD ∠=,再利用正弦定理求AD. 【详解】∵21cos 12sin 4BAC BAD ∠=-∠=,∴sin 4BAD ∠=.在ABD ∆中,sin sin AD BD B BAD =∠,∴sin 2sin 4B AD BD BAD =⋅==∠. 【点睛】本题主要考查二倍角的余弦和正弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.15.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,b =c =( )A.B .2 CD .1【答案】B【解析】1sin A ===cos A =,所以22212c c =+-2320,c c -+=求得1c =或 2.c = 若1c =,则三角形为等腰三角形,0030,60A C B ===不满足内角和定理,排除.【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想.当求出cos 2A =后,要及时判断出0030,60AB ==,便于三角形的初步定型,也为排除1c =提供了依据.如果选择支中同时给出了1或2,会增大出错率.16.已知函数())(0f x x ωϕω=+>,)22ππ-<ϕ<,1(3A ,0)为()f x 图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,若4BC =,则()f x 的单调递增区间是( )A .2(23k -,42)3k +,k Z ∈B .2(23k ππ-,42)3k ππ+,k Z ∈C .2(43k -,44)3k +,k Z ∈D .2(43k ππ-,44)3k ππ+,k Z ∈ 【答案】C【解析】【分析】由三角函数图像的性质可求得:2πω=,6πϕ=-,即()sin()26f x x ππ=-,再令222262k x k ππππππ--+剟,求出函数的单调增区间即可. 【详解】解:函数())(0f x x ωϕω=+>,)22ππ-<ϕ<, 因为1(3A ,0)为()f x 图象的对称中心,B ,C 是该图象上相邻的最高点和最低点, 又4BC =,∴222()42T +=,即221216πω+=,求得2πω=. 再根据123k πϕπ+=g ,k Z ∈,可得6πϕ=-,()3sin()26f x x ππ∴=-, 令222262k x k ππππππ--+剟,求得244433k x k -+剟, 故()f x 的单调递增区间为2(43k -,44)3k +,k Z ∈, 故选:C .【点睛】本题考查了三角函数图像的性质及单调性,属中档题.17.40cos2d cos sin x x x xπ=+⎰( ) A.1)B1 C1 D.2【答案】C【解析】【分析】利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分.【详解】 因为22cos2cos sin cos sin cos sin cos sin x x x x x x x x x-==-++,∴4400cos 2d (cos sin )d (sin cos )14cos sin 0x x x x x x x x x πππ=-=+=+⎰⎰,故选C . 【点睛】本题考查三角恒等变换知与微积分基本定理的交汇.18.在ABC V 中,角A 的平分线交边BC 于D ,4AB =,8AC =,2BD =,则ABD △的面积是( )A .15B .315C .1D .3【答案】A 【解析】【分析】 先根据正弦定理求得DC ,再结合余弦定理求得cos B ,进而求出ABD S V ,即可求得结论.【详解】如图:()sin sin sin ADC ADB ADB π∠=-∠=∠,在ABD △中,由正弦定理得sin sin BD AB BAD ADB=∠∠,同理可得sin sin CD AC CAD ADC=∠∠, 因为ABC V 中,角A 的平分线交边BC 于D ,上述两个等式相除得BD AB CD AC =, 4AB =Q ,8AC =,2BD =,8244AC BD CD AB ⋅⨯∴===,6BC ∴=. 2222224681cos 22464AB BC AC B AB BC +-+-∴===-⋅⨯⨯,2115sin 144B ⎛⎫=--= ⎪⎝⎭. 1sin 152ABD S AB BD B ∴=⋅⋅=V 故选:A .【点睛】本题考查三角形面积的求法以及角平分线的性质应用,是中档题,解题时要注意余弦定理的合理运用,考查计算能力,属于中等题.19.设2α是第一象限角,且cos cos αα=-,则α是第( )象限角 A .一B .二C .三D .四【答案】B【解析】【分析】计算得到720180720k k α︒<<︒+︒,k Z ∈,再根据cos 0α<得到答案.【详解】 ∵2α是第一象限角,∴360903602k k α︒<<︒+︒,k Z ∈, ∴720180720k k α︒<<︒+︒,k Z ∈,∴α为第一象限角或第二象限角或终边在y 轴正半轴上的轴线角, ∵cos cos αα=-,∴cos 0α<,∴α是第二象限角.故选:B .【点睛】本题考查了角度所在象限,意在考查学生的计算能力和转化能力.20.在三棱锥P ABC -中,PA ⊥平面ABC ,2π,43BAC AP ∠==,AB AC ==P ABC -的外接球的表面积为( ) A .32πB .48πC .64πD .72π 【答案】C【解析】【分析】先求出ABC V 的外接圆的半径,然后取ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==,由于PA ⊥平面ABC ,故点O 为三棱锥P ABC -的外接球的球心,OA 为外接球半径,求解即可.【详解】 在ABC V中,AB AC ==23BAC π∠=,可得6ACB π∠=, 则ABC V的外接圆的半径π2sin 2sin 6AB r ACB ===ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==, 因为PA ⊥平面ABC ,所以点O 为三棱锥P ABC -的外接球的球心,则222OA OG AG =+,即外接球半径4R ==,则三棱锥P ABC -的外接球的表面积为24π4π1664πR =⨯=.故选C.【点睛】本题考查了三棱锥的外接球表面积的求法,考查了学生的空间想象能力,属于中档题.。

通用版五年高考2024_2025高考数学真题专题归纳专题15三角函数与解三角形综合含解析理

通用版五年高考2024_2025高考数学真题专题归纳专题15三角函数与解三角形综合含解析理

专题15 三角函数与解三角形综合【2024年】1.(2024·新课标Ⅱ)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C. (1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+【解析】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈,23A π∴=. (2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+【点睛】本题考查解三角形的相关学问,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.2.(2024·北京卷)在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==.注:假如选择条件①和条件②分别解答,按第一个解答计分. 【答案】选择条件①(Ⅰ)8(Ⅱ)sin C =, S = 选择条件②(Ⅰ)6(Ⅱ)sin C =, S =. 【解析】选择条件①(Ⅰ)17,cos 7c A ==-,11a b +=22222212cos (11)72(11)7()7a b c bc A a a a =+-∴=-+--⋅⋅-8a ∴=(Ⅱ)1cos (0,)sin 7A A A π=-∈∴==,由正弦定理得:7sin sin sin sin 27a c C A C C ==∴=11sin (118)822S ba C ==-⨯=选择条件②(Ⅰ)19cos ,cos ,(0,)816A B A B π==∈,sin A B ∴====由正弦定理得:6sin sin 816a b a A B ===(Ⅱ)91sin sin()sin cos sin cos 8161684C A B A B B A =+=+=+=11sin (116)622S ba C ==-⨯=【点睛】本题考查正弦定理、余弦定理,三角形面积公式,考查基本分析求解实力,属中档题.3.(2024·山东卷)在①ac sin 3c A =,③=c 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由. 问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin AB ,6C π=,________?注:假如选择多个条件分别解答,按第一个解答计分. 【答案】详见解析 【解析】解法一:由sin 3sin AB 可得:ab=不妨设(),0a b m m =>,则:2222222cos 322c a b ab C m m m m =+-=+-⨯⨯=,即c m =. 选择条件①的解析:据此可得:2ac m =⨯==1m ∴=,此时1c m ==. 选择条件②的解析:据此可得:222222231cos 222b c a m m m A bc m +-+-===-,则:sin A ==,此时:sin 3c A m ==,则:c m ==选择条件③的解析: 可得1c mb m==,c b =,与条件=c 冲突,则问题中的三角形不存在.解法二:∵(),,6sinA C B A C ππ===-+,∴()6sinA A C A π⎛⎫=+=+⎪⎝⎭,()1?2sinA A C =+= ,∴sinA =,∴tanA =23A π=,∴6B C π==,若选①,ac =,∵a ==2=若选②,3csinA =,3=,c =;若选③,与条件=c 冲突.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采纳到正弦定理,出现边的二次式一般采纳到余弦定理.应用正、余弦定理时,留意公式变式的应用.解决三角形问题时,留意角的限制范围. 4.(2024·天津卷)在ABC 中,角,,A B C 所对的边分别为,,a b c.已知5,a b c ===(Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值;(Ⅲ)求sin 24A π⎛⎫+ ⎪⎝⎭的值.【答案】(Ⅰ)4C π;(Ⅱ)sin A =(Ⅲ)sin 2426A π⎛⎫+= ⎪⎝⎭.【解析】(Ⅰ)在ABC中,由5,a b c ===222cos 22a b c C ab +-===, 又因为(0,)C π∈,所以4C π;(Ⅱ)在ABC 中,由4Cπ,a c ==sin sin a C A c===13; (Ⅲ)由a c <知角A为锐角,由sin 13A =,可得cos A=13,进而2125sin 22sin cos ,cos22cos 11313A A A A A ===-=,所以125sin(2)sin 2coscos2sin444132132A A A πππ+=+=⨯+⨯=26. 【点晴】本题主要考查正、余弦定理解三角形,以及三角恒等变换在解三角形中的应用,考查学生的数学运算实力,是一道简单题.5.(2024·浙江卷)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin b A =. (I )求角B ;(II )求cos A +cos B +cos C 的取值范围.【答案】(I )3B π=;(II)13,22⎛⎤⎥ ⎝⎦ 【解析】(I)由2sin b A =结合正弦定理可得:2sin sin ,sin 2B A A B =∴= △ABC 为锐角三角形,故3B π=.(II )结合(1)的结论有:12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭11cos cos 22A A A =-+11cos 22A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则sin 32A π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,113sin ,2232A π⎛⎤⎛⎫++∈ ⎥ ⎪ ⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦.【2024年】1.【2024年高考全国Ⅰ卷】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .【答案】(1)60A ︒=;(2)sin C =【解析】(1)由已知得222sin sin sin sin sin B C A B C +-=,故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==.因为0180A ︒︒<<,所以60A ︒=.(2)由(1)知120B C ︒=-()sin 1202sin A C C ︒+-=,即1sin 2sin 222C C C ++=,可得()cos 602C ︒+=-.由于0120C ︒︒<<,所以()sin 602C ︒+=,故 ()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+=. 2.【2024年高考全国Ⅲ卷】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【答案】(1)B =60°;(2).【解析】(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC的面积ABC S =△. 由正弦定理得()sin 120sin 1sin sin 2C c Aa CC︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而82ABC S <<△. 因此,△ABC面积的取值范围是⎝⎭. 3.【2024年高考北京卷】在△ABC 中,a =3,b −c =2,cos B =12-. (1)求b ,c 的值; (2)求sin (B –C )的值. 【答案】(1)7b =,5c =;(2【解析】(1)由余弦定理2222cos b a c ac B =+-,得22213232b c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭.因为2b c =+,所以2221(2)3232c c c ⎛⎫+=+-⨯⨯⨯-⎪⎝⎭. 解得5c =. 所以7b =.(2)由1cos 2B =-得sin B =.由正弦定理得sin sin 14c C B b ==. 在ABC △中,∠B 是钝角, 所以∠C 为锐角.所以11cos 14C ==.所以sin()sin cos cos sin 7B C B C B C -=-=. 4.【2024年高考天津卷】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+⎪⎝⎭的值. 【答案】(1)14-;(2)【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =.由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅. (2)由(1)可得sin 4B ==,从而sin 22sin cos 8B B B ==-,227cos 2cos sin 8B B B =-=-,故717sin 2sin 2cos cos 2sin 666828216B B B πππ⎛⎫+=+=--⨯=-⎪⎝⎭. 5.【2024年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值.【答案】(1)3c =;(2)5.【解析】(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c +-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos 5B =.因此πsin cos 25B B ⎛⎫+== ⎪⎝⎭6.【2024年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型马路l ,湖上有桥AB (AB 是圆O 的直径).规划在马路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的全部点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+321(百米). 【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满意规划要求.②若Q 在D 处,连结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满意规划要求. 综上,P 和Q 均不能选在D 处. (3)先探讨点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上随意一点F ,OF ≥OB ,即线段PB 上全部点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再探讨点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321CQ QA AC =-=-=.此时,线段QA 上全部点到点O 的距离均不小于圆O的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =321时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+321.因此,d 最小时,P ,Q 两点间的距离为17+321(百米). 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满意规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-.在线段AD 上取点M (3,154),因为5OM =<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满意规划要求. 综上,P 和Q 均不能选在D 处. (3)先探讨点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上随意一点F ,OF ≥OB ,即线段PB 上全部点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再探讨点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q(a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上全部点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+因此,d 最小时,P ,Q 两点间的距离为17+. 7.【2024年高考浙江卷】设函数()sin ,f x x x =∈R . (1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值;(2)求函数22[()][()]124y f x f x ππ=+++的值域. 【答案】(1)π2θ=或3π2;(2)33[1,1]22-+. 【解析】(1)因为()sin()f x x θθ+=+是偶函数,所以,对随意实数x 都有sin()sin()x x θθ+=-+,即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+, 故2sin cos 0x θ=, 所以cos 0θ=. 又[0,2π)θ∈,因此π2θ=或3π2. (2)2222ππππsin sin 124124y fx f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ ππ1cos 21cos 2133621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭ 3π1cos 223x ⎛⎫=-+ ⎪⎝⎭. 因此,函数的值域是33[1,1]22-+. 【2024年】1. (2024年浙江卷)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ().(Ⅰ)求sin (α+π)的值;(Ⅱ)若角β满意sin (α+β)=,求cos β的值. 【答案】(Ⅰ) , (Ⅱ)或【解析】(Ⅰ)由角的终边过点得,所以.(Ⅱ)由角的终边过点得,由得.由得,所以或.2. (2024年天津卷)在中,内角A,B,C所对的边分别为a,b,c.已知. (I)求角B的大小;(II)设a=2,c=3,求b和的值.【答案】(Ⅰ);(Ⅱ),.【解析】(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因为a<c,故.因此,所以,3. (2024年北京卷)在△ABC中,a=7,b=8,cos B= –.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【答案】(1) ∠A=(2) AC边上的高为【解析】(Ⅰ)在△ABC中,∵cos B=–,∴B∈(,π),∴sin B=.由正弦定理得=,∴sin A=.∵B∈(,π),∴A∈(0,),∴∠A=.(Ⅱ)在△ABC中,∵sin C=sin(A+B)=sin A cos B+sin B cos A==.如图所示,在△ABC中,∵sin C=,∴h==,∴AC边上的高为.4. (2024年江苏卷)已知为锐角,,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】(1)因为,,所以.因为,所以,因此,.(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.5. (2024年全国I卷理数)在平面四边形中,,,,. (1)求;(2)若,求.【答案】 (1) .(2).【解析】 (1)在中,由正弦定理得. 由题设知,,所以.由题设知,,所以.(2)由题设及(1)知,.在中,由余弦定理得,所以.【2024年】1.【2024课标1,理17】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 【答案】(1)23.(2)333【解析】(1)由题设得21sin 23sin a ac B A =,即1sin 23sin ac B A =.由正弦定理得1sin sin sin 23sin AC B A =. 故2sin sin 3B C =.(2)由题设及(1)得1cos cos sin sin ,2B C B C -=-,即()1cos 2B C +=-. 所以23B C π+=,故3A π=. 由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即()239b c bc +-=,得33b c +=故△ABC 的周长为333+.2.【2024课标II ,理17】ABC ∆的内角A B C 、、所对的边分别为,,a b c ,已知()2sin 8sin 2BA C +=, (1)求cosB ;(2)若6a c +=,ABC ∆的面积为2,求b 。

三角函数、解三角形——2024届高考数学试题分类汇编(解析版)

三角函数、解三角形——2024届高考数学试题分类汇编(解析版)

2024高考复习·真题分类系列2024高考试题分类集萃·三角函数、解三角形
微专题总述:三角函数的图像与性质
【扎马步】2023高考三角函数的图像与性质方面主要考察“卡根法”的运用,是最为基础的表现
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,加强图像考察与其他知识点如几何、函数的结合,对称思想的隐含
微专题总述:正弦定理与余弦定理的应用
【扎马步】2023高考解三角形小题部分紧抓“教考衔接”基础不放,充分考察正余弦定理的运用
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,在考察正余弦定理时与角平分线定理结合(初中未涉及此定理)
微专题总述:解三角形综合问题
【扎马步】2023高考解三角形大题部分仍然与前几年保持一直模式,结构不良题型日益增多,但方向不变,均是化为“一角一函数”模式是达到的最终目的,考察考生基本计算与化简能力
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,如新高考卷中出现的数形结合可加快解题速度,利用初中平面几何方法快速求出对应参量在近几年高考题中频繁出现,可见初高中结合的紧密 2023年新课标全国Ⅰ卷数学
16.已知在ABC 中,
()3,2sin sin A B C A C B +=−=. (1)求sin A ;
(2)设5AB =,求AB 边上的高.
2023高考试题分类集萃·三角函数、解三角形参考答案
2。

高考数学-三角函数及解三角形(含22年真题讲解)

高考数学-三角函数及解三角形(含22年真题讲解)

高考数学-三角函数及解三角形(含22年真题讲解)1.【2022年全国甲卷】将函数f(x)=sin (ωx +π3)(ω>0)的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( ) A .16 B .14C .13D .12【答案】C 【解析】 【分析】先由平移求出曲线C 的解析式,再结合对称性得ωπ2+π3=π2+kπ,k ∈Z ,即可求出ω的最小值.【详解】由题意知:曲线C 为y =sin [ω(x +π2)+π3]=sin(ωx +ωπ2+π3),又C 关于y 轴对称,则ωπ2+π3=π2+kπ,k ∈Z ,解得ω=13+2k,k ∈Z ,又ω>0,故当k =0时,ω的最小值为13. 故选:C.2.【2022年全国甲卷】沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,AB ⌢是以O 为圆心,OA 为半径的圆弧,C 是的AB 中点,D 在AB ⌢上,CD ⊥AB .“会圆术”给出AB ⌢的弧长的近似值s 的计算公式:s =AB +CD 2OA.当OA =2,∠AOB=60°时,s =( )A .11−3√32B .11−4√32C .9−3√32D .9−4√32【解析】【分析】连接OC,分别求出AB,OC,CD,再根据题中公式即可得出答案. 【详解】解:如图,连接OC,因为C是AB的中点,所以OC⊥AB,又CD⊥AB,所以O,C,D三点共线,即OD=OA=OB=2,又∠AOB=60°,所以AB=OA=OB=2,则OC=√3,故CD=2−√3,所以s=AB+CD2OA =2+(2−√3)22=11−4√32.故选:B.3.【2022年全国甲卷】设函数f(x)=sin(ωx+π3)在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是()A.[53,136)B.[53,196)C.(136,83]D.(136,196]【答案】C 【解析】由x 的取值范围得到ωx +π3的取值范围,再结合正弦函数的性质得到不等式组,解得即可. 【详解】解:依题意可得ω>0,因为x ∈(0,π),所以ωx +π3∈(π3,ωπ+π3),要使函数在区间(0,π)恰有三个极值点、两个零点,又y =sinx ,x ∈(π3,3π)的图象如下所示:则5π2<ωπ+π3≤3π,解得136<ω≤83,即ω∈(136,83]. 故选:C .4.【2022年全国乙卷】函数f (x )=cosx +(x +1)sinx +1在区间[0,2π]的最小值、最大值分别为( ) A .−π2,π2 B .−3π2,π2C .−π2,π2+2 D .−3π2,π2+2【答案】D 【解析】 【分析】利用导数求得f (x )的单调区间,从而判断出f (x )在区间[0,2π]上的最小值和最大值. 【详解】f ′(x )=−sinx +sinx +(x +1)cosx =(x +1)cosx ,所以f (x )在区间(0,π2)和(3π2,2π)上f ′(x )>0,即f (x )单调递增; 在区间(π2,3π2)上f ′(x )<0,即f (x )单调递减, 又f (0)=f (2π)=2,f (π2)=π2+2,f (3π2)=−(3π2+1)+1=−3π2, 所以f (x )在区间[0,2π]上的最小值为−3π2,最大值为π2+2.5.【2022年新高考1卷】记函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T.若2π3<T<π,且y=f(x)的图象关于点(3π2,2)中心对称,则f(π2)=()A.1B.32C.52D.3【答案】A【解析】【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T满足2π3<T<π,得2π3<2πω<π,解得2<ω<3,又因为函数图象关于点(3π2,2)对称,所以3π2ω+π4=kπ,k∈Z,且b=2,所以ω=−16+23k,k∈Z,所以ω=52,f(x)=sin(52x+π4)+2,所以f(π2)=sin(54π+π4)+2=1.故选:A6.【2022年新高考2卷】若sin(α+β)+cos(α+β)=2√2cos(α+π4)sinβ,则()A.tan(α−β)=1B.tan(α+β)=1C.tan(α−β)=−1D.tan(α+β)=−1【答案】C【解析】【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.【详解】由已知得:sinαcosβ+cosαsinβ+cosαcosβ−sinαsinβ=2(cosα−sinα)sinβ,即:sinαcosβ−cosαsinβ+cosαcosβ+sinαsinβ=0,即:sin(α−β)+cos(α−β)=0,所以tan(α−β)=−1,故选:C7.【2022年北京】已知函数f(x)=cos2x−sin2x,则()A.f(x)在(−π2,−π6)上单调递减B.f(x)在(−π4,π12)上单调递增C.f(x)在(0,π3)上单调递减D.f(x)在(π4,7π12)上单调递增【答案】C【解析】【分析】化简得出f(x)=cos2x,利用余弦型函数的单调性逐项判断可得出合适的选项.【详解】因为f(x)=cos2x−sin2x=cos2x.对于A选项,当−π2<x<−π6时,−π<2x<−π3,则f(x)在(−π2,−π6)上单调递增,A错;对于B选项,当−π4<x<π12时,−π2<2x<π6,则f(x)在(−π4,π12)上不单调,B错;对于C选项,当0<x<π3时,0<2x<2π3,则f(x)在(0,π3)上单调递减,C对;对于D选项,当π4<x<7π12时,π2<2x<7π6,则f(x)在(π4,7π12)上不单调,D错.故选:C.8.【2022年浙江】设x∈R,则“sinx=1”是“cosx=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】【分析】由三角函数的性质结合充分条件、必要条件的定义即可得解.【详解】因为sin2x+cos2x=1可得:当sinx=1时,cosx=0,充分性成立;当cosx=0时,sinx=±1,必要性不成立;所以当x∈R,sinx=1是cosx=0的充分不必要条件.故选:A.9.【2022年浙江】为了得到函数y =2sin3x 的图象,只要把函数y =2sin (3x +π5)图象上所有的点( )A .向左平移π5个单位长度B .向右平移π5个单位长度C .向左平移π15个单位长度D .向右平移π15个单位长度【答案】D 【解析】 【分析】根据三角函数图象的变换法则即可求出. 【详解】因为y =2sin3x =2sin [3(x −π15)+π5],所以把函数y =2sin (3x +π5)图象上的所有点向右平移π15个单位长度即可得到函数y =2sin3x 的图象.故选:D.10.【2022年新高考2卷】(多选)已知函数f(x)=sin(2x +φ)(0<φ<π)的图像关于点(2π3,0)中心对称,则( ) A .f(x)在区间(0,5π12)单调递减B .f(x)在区间(−π12,11π12)有两个极值点 C .直线x =7π6是曲线y =f(x)的对称轴D .直线y =√32−x 是曲线y =f(x)的切线 【答案】AD 【解析】 【分析】根据三角函数的性质逐个判断各选项,即可解出. 【详解】由题意得:f (2π3)=sin (4π3+φ)=0,所以4π3+φ=k π,k ∈Z , 即φ=−4π3+k π,k ∈Z ,又0<φ<π,所以k =2时,φ=2π3,故f(x)=sin (2x +2π3). 对A ,当x ∈(0,5π12)时,2x +2π3∈(2π3,3π2),由正弦函数y =sinu 图象知y =f(x)在(0,5π12)上是单调递减;对B ,当x ∈(−π12,11π12)时,2x +2π3∈(π2,5π2),由正弦函数y =sinu 图象知y =f(x)只有1个极值点,由2x +2π3=3π2,解得x =5π12,即x =5π12为函数的唯一极值点; 对C ,当x =7π6时,2x +2π3=3π,f(7π6)=0,直线x =7π6不是对称轴; 对D ,由y′=2cos (2x +2π3)=−1得:cos (2x +2π3)=−12,解得2x +2π3=2π3+2k π或2x +2π3=4π3+2k π,k ∈Z ,从而得:x =k π或x =π3+k π,k ∈Z , 所以函数y =f(x)在点(0,√32)处的切线斜率为k =y′|x=0=2cos2π3=−1,切线方程为:y −√32=−(x −0)即y =√32−x .故选:AD .11.【2022年全国甲卷】已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当AC AB取得最小值时,BD =________.【答案】√3−1##−1+√3 【解析】 【分析】设CD =2BD =2m >0,利用余弦定理表示出AC 2AB 2后,结合基本不等式即可得解.【详解】设CD =2BD =2m >0,则在△ABD 中,AB 2=BD 2+AD 2−2BD ⋅ADcos∠ADB =m 2+4+2m , 在△ACD 中,AC 2=CD 2+AD 2−2CD ⋅ADcos∠ADC =4m 2+4−4m , 所以AC 2AB 2=4m 2+4−4m m 2+4+2m =4(m 2+4+2m)−12(1+m)m 2+4+2m=4−12(m+1)+3m+1≥42√(m+1)⋅3m+1=4−2√3,当且仅当m +1=3m+1即m =√3−1时,等号成立,所以当ACAB 取最小值时,m =√3−1. 故答案为:√3−1.12.【2022年全国乙卷】记函数f(x)=cos(ωx +φ)(ω>0,0<φ<π)的最小正周期为T ,若f(T)=√32,x =π9为f(x)的零点,则ω的最小值为____________.【答案】3 【解析】 【分析】首先表示出T ,根据f (T )=√32求出φ,再根据x =π9为函数的零点,即可求出ω的取值,从而得解; 【详解】解: 因为f (x )=cos (ωx +φ),(ω>0,0<φ<π) 所以最小正周期T =2πω,因为f (T )=cos (ω⋅2πω+φ)=cos (2π+φ)=cosφ=√32, 又0<φ<π,所以φ=π6,即f (x )=cos (ωx +π6),又x =π9为f (x )的零点,所以π9ω+π6=π2+kπ,k ∈Z ,解得ω=3+9k,k ∈Z , 因为ω>0,所以当k =0时ωmin =3; 故答案为:313.【2022年北京】若函数f(x)=Asinx −√3cosx 的一个零点为π3,则A =________;f(π12)=________.【答案】 1 −√2 【解析】 【分析】先代入零点,求得A 的值,再将函数化简为f(x)=2sin(x −π3),代入自变量x =π12,计算即可.【详解】∵f(π3)=√32A−√32=0,∴A=1∴f(x)=sinx−√3cosx=2sin(x−π3)f(π12)=2sin(π12−π3)=−2sinπ4=−√2故答案为:1,−√214.【2022年浙江】我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S=√14[c2a2−(c2+a2−b22)2],其中a,b,c是三角形的三边,S是三角形的面积.设某三角形的三边a=√2,b=√3,c=2,则该三角形的面积S=___________.【答案】√234.【解析】【分析】根据题中所给的公式代值解出.【详解】因为S=√14[c2a2−(c2+a2−b22)2],所以S=√14[4×2−(4+2−32)2]=√234.故答案为:√234.15.【2022年浙江】若3sinα−sinβ=√10,α+β=π2,则sinα=__________,cos2β=____ _____.【答案】3√10104 5【解析】【分析】先通过诱导公式变形,得到α的同角等式关系,再利用辅助角公式化简成正弦型函数方程,可求出α,接下来再求β.【详解】α+β=π2,∴sinβ=cosα,即3sinα−cosα=√10,即√10(3√1010sinα−√1010cosα)=√10,令sinθ=√1010,cosθ=3√1010,则√10sin(α−θ)=√10,∴α−θ=π2+2kπ,k∈Z,即α=θ+π2+2kπ,∴sinα=sin(θ+π2+2kπ)=cosθ=3√1010,则cos2β=2cos2β−1=2sin2α−1=45.故答案为:3√1010;45.16.【2022年全国乙卷】记△ABC的内角A,B,C的对边分别为a,b,c﹐已知sinCsin(A−B)= sinBsin(C−A).(1)若A=2B,求C;(2)证明:2a2=b2+c2【答案】(1)5π8;(2)证明见解析.【解析】【分析】(1)根据题意可得,sinC=sin(C−A),再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),再根据正弦定理,余弦定理化简即可证出.(1)由A=2B,sinCsin(A−B)=sinBsin(C−A)可得,sinCsinB=sinBsin(C−A),而0<B<π2,所以sinB∈(0,1),即有sinC=sin(C−A)>0,而0<C<π,0<C−A<π,显然C≠C−A,所以,C+C−A=π,而A=2B,A+B+C=π,所以C=5π8.(2)由sinCsin(A−B)=sinBsin(C−A)可得,sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),再由正弦定理可得,accosB−bccosA=bccosA−abcosC,然后根据余弦定理可知,1 2(a2+c2−b2)−12(b2+c2−a2)=12(b2+c2−a2)−12(a2+b2−c2),化简得:2a2=b2+c2,故原等式成立.17.【2022年全国乙卷】记△ABC的内角A,B,C的对边分别为a,b,c,已知sinCsin(A−B)=sinBsin(C−A).(1)证明:2a2=b2+c2;(2)若a=5,cosA=2531,求△ABC的周长.【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc,从而可求得b+c,即可得解.(1)证明:因为sinCsin(A−B)=sinBsin(C−A),所以sinCsinAcosB−sinCsinBcosA=sinBsinCcosA−sinBsinAcosC,所以ac⋅a2+c2−b22ac −2bc⋅b2+c2−a22bc=−ab⋅a2+b2−c22ab,即a2+c2−b22−(b2+c2−a2)=−a2+b2−c22,所以2a2=b2+c2;(2)解:因为a=5,cosA=2531,由(1)得b2+c2=50,由余弦定理可得a2=b2+c2−2bccosA,则50−5031bc=25,所以bc=312,故(b+c)2=b2+c2+2bc=50+31=81,所以b+c=9,所以△ABC的周长为a+b+c=14.18.【2022年新高考1卷】记△ABC的内角A,B,C的对边分别为a,b,c,已知cosA1+sinA =sin2B1+cos2B.(1)若C=2π3,求B;(2)求a2+b2c2的最小值.【答案】(1)π6; (2)4√2−5. 【解析】 【分析】(1)根据二倍角公式以及两角差的余弦公式可将cosA 1+sinA =sin2B1+cos2B 化成cos (A +B )=sinB ,再结合0<B <π2,即可求出; (2)由(1)知,C =π2+B ,A =π2−2B ,再利用正弦定理以及二倍角公式将a 2+b 2c 2化成4cos 2B +2cos 2B−5,然后利用基本不等式即可解出.(1)因为cosA1+sinA =sin2B1+cos2B =2sinBcosB 2cos 2B=sinBcosB ,即sinB =cosAcosB −sinAsinB =cos (A +B )=−cosC =12,而0<B <π2,所以B =π6; (2)由(1)知,sinB =−cosC >0,所以π2<C <π,0<B <π2, 而sinB =−cosC =sin (C −π2), 所以C =π2+B ,即有A =π2−2B . 所以a 2+b 2c 2=sin 2A+sin 2Bsin 2C=cos 22B+1−cos 2Bcos 2B=(2cos 2B−1)2+1−cos 2Bcos 2B=4cos 2B +2cos 2B −5≥2√8−5=4√2−5.当且仅当cos 2B =√22时取等号,所以a 2+b 2c 2的最小值为4√2−5.19.【2022年新高考2卷】记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为S 1,S 2,S 3,已知S 1−S 2+S 3=√32,sinB =13.(1)求△ABC 的面积; (2)若sinAsinC =√23,求b .【答案】(1)√28(2)12 【解析】 【分析】(1)先表示出S 1,S 2,S 3,再由S 1−S 2+S 3=√32求得a 2+c 2−b 2=2,结合余弦定理及平方关系求得ac ,再由面积公式求解即可; (2)由正弦定理得b 2sin 2B=acsinAsinC ,即可求解. (1)由题意得S 1=12⋅a 2⋅√32=√34a 2,S 2=√34b 2,S 3=√34c 2,则S 1−S 2+S 3=√34a 2−√34b 2+√34c 2=√32, 即a 2+c 2−b 2=2,由余弦定理得cosB =a 2+c 2−b 22ac,整理得accosB =1,则cosB >0,又sinB=13,则cosB =√1−(13)2=2√23,ac =1cosB=3√24,则S △ABC =12acsinB =√28; (2)由正弦定理得:bsinB =asinA =csinC ,则b 2sin 2B =asinA ⋅csinC =acsinAsinC =3√24√23=94,则b sinB =32,b =32sinB =12.20.【2022年北京】在△ABC 中,sin2C =√3sinC . (1)求∠C ;(2)若b =6,且△ABC 的面积为6√3,求△ABC 的周长. 【答案】(1)π6 (2)6+6√3 【解析】 【分析】(1)利用二倍角的正弦公式化简可得cosC 的值,结合角C 的取值范围可求得角C 的值; (2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得△ABC 的周长. (1)解:因为C ∈(0,π),则sinC >0,由已知可得√3sinC =2sinCcosC ,可得cosC =√32,因此,C =π6.(2)解:由三角形的面积公式可得S △ABC =12absinC =32a =6√3,解得a =4√3.由余弦定理可得c 2=a 2+b 2−2abcosC =48+36−2×4√3×6×√32=12,∴c =2√3,所以,△ABC 的周长为a +b +c =6√3+6.21.【2022年浙江】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知4a =√5c,cosC =35. (1)求sinA 的值;(2)若b =11,求△ABC 的面积.【答案】(1)√55;(2)22. 【解析】 【分析】(1)先由平方关系求出sinC ,再根据正弦定理即可解出; (2)根据余弦定理的推论cosC =a 2+b 2−c 22ab以及4a =√5c 可解出a ,即可由三角形面积公式S=12absinC 求出面积.(1)由于cosC =35, 0<C <π,则sinC =45.因为4a =√5c , 由正弦定理知4sinA =√5sinC ,则sinA =√54sinC =√55.(2)因为4a =√5c ,由余弦定理,得cosC =a 2+b 2−c 22ab =a 2+121−165a 222a=11−a 252a=35,即a 2+6a −55=0,解得a =5,而sinC =45,b =11, 所以△ABC 的面积S =12absinC =12×5×11×45=22.1.(2022·宁夏·银川一中模拟预测(文))已知点12P ⎛- ⎝⎭在角θ的终边上,且[)0,2πθ∈,则角θ的大小为( ). A .π3B .2π3C .5π3D .4π3【答案】B 【解析】 【分析】根据给定条件,确定角θ的范围,再利用三角函数定义求解作答. 【详解】依题意,点12P ⎛- ⎝⎭在第二象限,又[)0,2πθ∈,则ππ2θ<<,而tan θ=所以2π3θ=. 故选:B2.(2022·安徽省舒城中学三模(理))将函数π()2sin()(0)3f x x ωω=->的图象向左平移3ωπ个单位,得到函数()y g x =的图象,若()y g x =在π[0,]4上为增函数,则ω最大值为( )A .2B .3C .4D .52【答案】A 【解析】 【分析】根据平移法则求出函数()g x 的解析式,进而求出()g x 的含有数0的单调区间,再借助集合的包含关系即可解出. 【详解】依题意,()2sin[()]2sin 33g x x x ππωωω=+-=,由ππ22x ω-≤≤,0>ω得:ππ22x ωω-≤≤,于是得()y g x =的一个单调递增区间是ππ,22[]ωω-,因()y g x =在π[0,]4上为增函数,因此,ππ[π[0,]2]24,ωω-⊆,即有ππ24ω≥,解得02ω<≤,即ω最大值为2. 故选:A.3.(2022·甘肃·武威第六中学模拟预测(理))已知函数()12sin 32f x x πϕϕ⎛⎫⎛⎫=+< ⎪⎪⎝⎭⎝⎭,直线x π=-为()f x 图象的一条对称轴,则下列说法正确的是( )A .6π=ϕ B .()f x 在区间,2ππ⎡⎤--⎢⎥⎣⎦单调递减C .()f x 在区间[],ππ-上的最大值为2D .()f x θ+为偶函数,则()23k k Z θππ=+∈【答案】D 【解析】 【分析】由已知得()2sin 23f ππϕ⎛⎫-=-+= ⎪⎝⎭,由2πϕ<可求得ϕ,可判断A 选项,由此有()12sin 36x f x π⎛⎫=- ⎪⎝⎭;对于B ,由,2x ππ⎡⎤∈--⎢⎥⎣⎦得12363x πππ-≤-≤-,由正弦函数的单调性可判断;对于C ,由[],x ππ∈-得12366x πππ-≤-≤,由此得()f x 在区间[],ππ-上的最大值为2sin16π=;对于D ,()11+2sin +336f x x πθθ⎛⎫=- ⎪⎝⎭,由()1+362k k Z ππθπ-=∈,解得()23k k Z θππ=+∈.【详解】解:因为函数()12sin 32f x x πϕϕ⎛⎫⎛⎫=+< ⎪⎪⎝⎭⎝⎭,直线x π=-为()f x 图象的一条对称轴,所以()2sin 23f ππϕ⎛⎫-=-+=± ⎪⎝⎭,所以+,32k k Z ππϕπ-+=∈,又2πϕ<,所以6πϕ=-,故A 不正确;所以()12sin 36x f x π⎛⎫=- ⎪⎝⎭,对于B ,当,2x ππ⎡⎤∈--⎢⎥⎣⎦时,12363x πππ-≤-≤-,所以()f x 在区间,2ππ⎡⎤--⎢⎥⎣⎦单调递增,故B 不正确;对于C ,当[],x ππ∈-时,12366x πππ-≤-≤,()f x 在区间[],ππ-上的最大值为2sin 16π=,故C 不正确;对于D ,若()f x θ+为偶函数,则()()111+2sin +2sin +36336f x x x ππθθθ⎡⎤⎛⎫=-=- ⎪⎢⎥⎣⎦⎝⎭,所以()1+362k k Z ππθπ-=∈,解得()23k k Z θππ=+∈,故D 正确,故选:D.4.(2022·全国·模拟预测)已知α,()0,πβ∈,πtan 3α⎛⎫+= ⎪⎝⎭,πcos 6β⎛⎫+= ⎪⎝⎭,则()cos 2αβ-=( )A. B.CD【答案】D 【解析】 【分析】根据待求式的结构,πππ22362αβαβ⎛⎫⎛⎫-=+-+- ⎪ ⎪⎝⎭⎝⎭求解即可.【详解】解:因为πππππcos(2)cos 2sin 236236αβαβαβ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=+-+-=+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦=ππsin 2()cos()36αβ++-ππcos 2()sin()36αβ++.222πππ2tan 2sin()cos()πππ333sin 22sin()cos()πππ333sin ()cos ()tan 1333ααααααααα⎛⎫+++ ⎪⎡⎤⎛⎫⎝⎭+=++=== ⎪⎢⎥⎛⎫⎝⎭⎣⎦+++++ ⎪⎝⎭,22222222π1tan cos ()sin ()π1333cos 2cos ()sin ()π3333cos ()sin ()tan 1333ππαααππαααππααα⎛⎫-++-+ ⎪⎡⎤⎛⎫⎝⎭+=+-+=== ⎪⎢⎥⎛⎫⎝⎭⎣⎦+++++ ⎪⎝⎭;πcos 6β⎛⎫+ ⎪⎝⎭ππ0,62β⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭,所以πsin 6β⎛⎫+ ⎪⎝⎭故cos(2)αβ-=. 故选:D.5.(2022·全国·模拟预测(文))已知函数()()()sin 0f x x ωϕω=+>的一个对称中心为,03π⎛-⎫⎪⎝⎭,()f x 在区间5,6ππ⎛⎫⎪⎝⎭上不单调,则ω的最小正整数值为( ) A .1 B .2 C .3 D .4【答案】B【分析】根据题意可得()sin()033f ππωϕ-=-+=,所以13k πϕωπ=+,1k Z ∈,由()f x 在区间5,6ππ⎛⎫⎪⎝⎭上不单调可得()()cos 0f x x ωωϕ'=+=在区间5,6ππ⎛⎫⎪⎝⎭上有解,所以22()2x k k Z πωϕπ+=+∈,在区间5,6ππ⎛⎫ ⎪⎝⎭上有解,最终可得23k x ππωπ+=+,k Z ∈,取值即可得解.【详解】由函数()()()sin 0f x x ωϕω=+>的一个对称中心为,03π⎛-⎫⎪⎝⎭,可得()sin()033f ππωϕ-=-+=,所以13k πωϕπ-+=,1k Z ∈,13k πϕωπ=+,1k Z ∈,()()cos f x x ωωϕ'=+,由()f x 在区间5,6ππ⎛⎫⎪⎝⎭上不单调, 所以()()cos 0f x x ωωϕ'=+=在区间5,6ππ⎛⎫⎪⎝⎭上有解, 所以22()2x k k Z πωϕπ+=+∈,在区间5,6ππ⎛⎫⎪⎝⎭上有解, 所以122()32x k k k Z ππωωππ++=+∈,所以23k x ππωπ+=+,21k k k Z =-∈,又5,6x ππ⎛⎫∈⎪⎝⎭,所以74(,)363x πππ+∈, 所以36362(,)873k k k x ππωπ+++=∈+, 当2k =时,1515(,)87ω∈,此时ω的最小正整数为2.6.(2022·河南省杞县高中模拟预测(理))已知π02θ<<,若πsin 24θ⎛⎫-= ⎪⎝⎭,则sin cos θθ+=( )A B C D 【答案】B 【解析】 【分析】根据题中所给的角的范围以及三角函数值,可以确定πcos 24θ⎛⎫- ⎪⎝⎭和角正弦求得3sin 25θ=,从而求得()28sin cos 1sin 25θθθ+=+=,根据角的范围确定符号,开方即可得结果. 【详解】 因为π02θ<<,所以ππ3π2444θ-<-<,又πsin 24θ⎛⎫-= ⎪⎝⎭,所以ππ2044θ-<-<,所以πcos 24θ⎛⎫- ⎪⎝⎭所以ππππππ3sin 2sin 2sin 2cos cos 2sin 4444445θθθθ⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以()28sin cos 1sin 25θθθ+=+=,又sin cos 0θθ+>,sin cos θθ+= 故选:B .7.(2022·全国·模拟预测(理))函数()f x 的图象按以下次序变换:①横坐标变为原来的12;②向左平移23π个单位长度;③向上平移一个单位长度;④纵坐标变为原来的2倍,得到sin y x =的图象,则()f x 的解析式为( )A .()112sin 1223f x x π⎛⎫=-- ⎪⎝⎭B .()11sin 1223f x x π⎛⎫=-- ⎪⎝⎭C .()12sin 2123f x x π⎛⎫=-- ⎪⎝⎭D .()1sin 2123f x x π⎛⎫=-- ⎪⎝⎭【答案】A 【解析】 【分析】根据三角函数图象变换的性质逆推求解即可 【详解】由题意,④纵坐标变为原来的2倍,得到sin y x =的图象,故④变换前为1sin 2y x =;③向上平移一个单位长度,故③变换前为1sin 12y x =-;②向左平移23π个单位长度,故②变换前为1si 123n 2y x π⎛⎫=-- ⎪⎝⎭;①横坐标变为原来的12,故①变换前为211si 3n 122y x π⎛⎫=-- ⎪⎝⎭,故()f x 的解析式为()112sin 1223f x x π⎛⎫=-- ⎪⎝⎭故选:A8.(2022·黑龙江·哈九中三模(文))已知函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示,且13π23f ⎛⎫= ⎪⎝⎭.将()f x 图象上所有点的横坐标缩小为原来的14,再向上平移一个单位长度,得到()g x 的图象.若()()129g x g x =,1x ,[]20,4πx ∈,则21x x -的最大值为( )A .πB .2πC .3πD .4π【答案】C 【解析】 【分析】根据函数图象求得()12sin 23f x x π⎛⎫=+ ⎪⎝⎭,再根据图象变换可得()g x 的解析式,结合()()129g x g x =,1x ,[]20,4x π∈,求得21,x x 的值,可得答案.【详解】设()f x 的最小正周期为T ,则由图可知372433T ππ⎛⎫=-- ⎪⎝⎭,得4T π=,则212T πω==,所以()1sin 2f x A x ϕ⎛⎫=+ ⎪⎝⎭,又由题图可知()f x 图象的一个对称中心为点2,03π⎛⎫-⎪⎝⎭, 故1223k πϕπ⎛⎫⨯-+= ⎪⎝⎭,Z k ∈,故3k πϕπ=+,Z k ∈, 因为0ϕπ<<,所以3πϕ=,所以()1sin 23f x A x π⎛⎫=+ ⎪⎝⎭.又因为1323f π⎛⎫= ⎪⎝⎭,故131135sin sin sin 2323322f A A A A πππππ⎛⎫⎛⎫=⨯+==== ⎪ ⎪⎝⎭⎝⎭, 所以()12sin 23f x x π⎛⎫=+ ⎪⎝⎭;将()f x 图象上所有点的横坐标缩小为原来的14,再向上平移一个单位长度,得到()2sin 213g x x π⎛⎫=++ ⎪⎝⎭的图象;因为()()129g x g x =,所以12,x x 同时令()g x 取得最大值3,由()2sin 2133g x x π⎛⎫=++= ⎪⎝⎭,可得()11212k x π+=,Z k ∈,又[]12,0,4x x π∈,要求21x x -的最大值,故令0k =,得112x π=;令3k =,得23712x π=,所以21x x -的最大值为3731212πππ-=, 故选:C.9.(2022·全国·模拟预测)为了得到函数4sin 23y x π⎛⎫=+⎪⎝⎭的图象,只需将函数sin 26y x π⎛⎫=+ ⎪⎝⎭的图象( ) A .向左平移712π个单位长度 B .向左平移76π个单位长度 C .向右平移712π个单位长度 D .向右平移76π个单位长度 【答案】A 【解析】 【分析】根据图像平移的规律,算出答案即可. 【详解】由题意,由于函数477sin(2)sin(2)sin 2()366126y x x x πππππ⎡⎤=+=++=++⎢⎥⎣⎦, 观察发现可由函数sin 26y x π⎛⎫=+ ⎪⎝⎭向左平移712π个单位长度,得到函数4sin 23y x π⎛⎫=+⎪⎝⎭的图象, 故选:A.10.(2022·贵州·贵阳一中模拟预测(文))如图是函数()()sin (0,0,0)2f x A x A πωϕωϕ=+>><<的图像的一部分,则要得到该函数的图像,只需要将函数()2cos2g x x x -的图像( )A .向左平移4π个单位长度 B .向右平移4π个单位长度 C .向左平移2π个单位长度D .向右平移2π个单位长度【答案】A 【解析】 【分析】先由图像求得()2sin 32f x x π⎛⎫=+ ⎪⎝⎭,再由辅助角公式化简()g x ,最后由三角函数的平移变换即可求解. 【详解】 由题图知:712,1234T T ππππω-=∴==,又()()0,2,sin 2f x A x ωωϕ>∴=∴=+,20,sin 0,0332f A πππϕϕ⎛⎫⎛⎫=∴+=<< ⎪ ⎪⎝⎭⎝⎭,解得(),sin 233f x A x ππϕ⎛⎫=∴=+ ⎪⎝⎭,又()()()0sin2,2sin 2,cos233f A A f x x g x x x ππ⎛⎫=∴==∴=+=-= ⎪⎝⎭2sin 26x π⎛⎫- ⎪⎝⎭,将()g x 向左平移4π得()2sin 22sin 22sin 246263x x x f x πππππ⎡⎤⎛⎫⎛⎫⎛⎫+-=+-=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故选:A.11.(2022·青海西宁·二模(文))在①6a =;②8a =;③12a =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求cos A 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且2224a b c S +-=,c =________?【答案】答案不唯一,具体见解析 【解析】 【分析】根据题干条件及余弦定理、面积公式,可求得角C 的值,若选①6a =,根据正弦定理,可求得sin A 的值,根据大边对大角原则,可得角A 只有一解,根据同角三角函数关系,可求得cos A 的值;若选②8a =,根据正弦定理,可求得sin A 的值,根据大边对大角原则,可得角A 有两解,根据同角三角函数关系,可求得cos A 的值;若选③12a =,根据正弦定理,可求得sin A 的值,因为sin 1A >,则三角形无解. 【详解】由题意可知在ABC 中, 因为2224a b c S +-=,且in 12s S ab C =, 所以222sin 2a b c C ab+-=, 由余弦定理可知222cos 2a b c C ab+-=, 所以cos sin C C = 因为(0,)C π∈, 所以4Cπ;若选①6a =,由正弦定理可得sin sin a cA C=,解得3sin sin5a A C c ==,在ABC 中,因为c a >,所以C A >, 又因为4Cπ,则角A 只有一解,且0,4A π⎛⎫∈ ⎪⎝⎭,所以4cos 5A ==.若选②8a =,由正弦定理可得sin sin a c A C=,解得4sin sin5a A C c ==, 在ABC 中,因为c a <,所以C A <, 又因为4Cπ,则角A 有两解,所以3cos 5A ==±.若选③12a =,由正弦定理可得sin sin a c A C=,解得6sin sin5a A C c ==, 因为sin 1A >,所以ABC 无解,即三角形不存在.12.(2022·河南·开封市东信学校模拟预测(理))在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sinsin 2B Cb a B +=. (1)求角A 的大小;(2)若D 为BC 边中点,且2AD =,求a 的最小值. 【答案】(1)π3【解析】 【分析】(1)利用三角恒等变形及正弦定理即可求解; (2)利用余弦定理及基本不等式即可求解. (1)△sinsin 2B C b a B +=,△πsin sin 2A b aB -=,即cos sin 2Ab a B =.由正弦定理得cos sin sin 2sin AB A B ⋅=⋅. △sin 0B ≠,△cos sin 2sin cos 222A A A A ==. △cos02A ≠,△1sin 22A =,又△π022A <<, △π26A =,△π3A =;(2)△D 为BC 边中点,△2AD AB AC =+,即224()AD AB AC =+, △2AD =,△22162cos c b bc A =++,△2216b c bc +=-,△22216bc b c bc ≤+=-,即163≤bc , 当且仅当b c ==, △222222cos 162a b c bc A b c bc bc =+-=+-=-,△2161616233a ≥-⨯=,即a .故a . 13.(2022·山东聊城·三模)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos()6b Cc B π=-.(1)求角B ;(2)若b =4,求ABC 周长的最大值. 【答案】(1)3B π=;(2)12. 【解析】 【分析】(1)利用差角的余弦公式,结合正弦定理,化简计算作答. (2)利用余弦定理,结合均值不等式求出a +c 的最大值 (1)因为sin cos()6b C c B π=-,则1sin sin )2b Cc B B =+,在ABC 中,由正弦定理得,1sin sin sin sin )2B C C B B =+,而(0,π)C ∈,即sin 0C >,整理得sin B B =,即tan B =()0,πB ∈,解得π3B =, 所以π3B =. (2)在ABC 中,由余弦定理2222cos b a c ac B =+-得:2216a c ac =+-,即()2163a c ac +-=, 而2()2a c ac +≤,于是得()264a c +≤,当且仅当a =c =4时取“=”, 因此,当a =c =4时,a +c 取最大值8,从而a +b +c 取最大值12, 所以ABC 周长的最大值为12.14.(2022·河南·平顶山市第一高级中学模拟预测(理))在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且22(cos )2b a b c a B -=-.(1)求角A 的大小;(2)若8c =,ABC 的面积为BC 边上的高. 【答案】(1)3A π=【解析】 【分析】(1)由余弦定理化简可得答案;(2)由三角形的面积公式可得b 值,由余弦定理可得a 值,结合面积公式可得高. (1)22cos 2b a b c a B ⎛⎫-=- ⎪⎝⎭,即222()2cos a b ca B bc -=-.222222()a b c a b bc ∴-=+--,222b c a bc ∴+-=,2221cos =22b c a A bc +-∴=.又(0,)A π∈,3A π∴=.(2)11sin 8sin 223S bc A b π==⨯⨯==2b ∴=.故由余弦定理可知a ==而1122S ah h ==⨯=解得h =,所以BC . 15.(2022·四川省泸县第二中学模拟预测(理))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c cos A A +=b =①:2a =,222sin sin sin B A C >+;条件②:a b <,21cos cos sin 2a A C c A a =+.这两个条件中选择一个作为已知,求:(1)tan 2A 的值; (2)c 和面积S 的值.【答案】(1)条件选择见解析,tan 2A =(2)条件选择见解析,2c =,S =【解析】 【分析】(1)若选①,由已知条件可得πsin 6A ⎛⎫+= ⎪⎝⎭,得π6A =或π2,由于a b <,则可得π6A =,进而可求出tan 2A ,若选②,由已知条件可得πsin 6A ⎛⎫+ ⎪⎝⎭,得π6A =或π2,由于a b <,则可得π6A =,进而可求出tan 2A ,(2)若选①,由正弦定理得sin B =222sin sin sin B A C >+得222b a c >+,再由余弦定理得cos 0B <,则2π3B =,求得π6C =,然后利用三角形面积公式可求得结果,若选②,由正弦定理结合三角函数恒等变换公式可得1cos 2B =-,从而可得2π3B =,则π6C =,然后利用三角形面积公式可求得结果, (1)若选①:2a =,222sin sin sin B A C >+,在ABC cos A A +=πsin 6A ⎛⎫+= ⎪⎝⎭,而ππ7π,666A ⎛⎫+∈ ⎪⎝⎭,故ππ63A +=或2π3, 则π6A =或π2,△2a b =<=π6A =,△πtan 2tan3A == 若选②:a b <,21cos cos sin 2a A C c A a =+在ABC cos A A +=πsin 6A ⎛⎫+= ⎪⎝⎭,而ππ7π,666A ⎛⎫+∈ ⎪⎝⎭,故ππ63A +=或2π3,则π6A =或π2,由a b <,得:π6A =,△πtan 2tan 3A ==(2)若选①:2a =,222sin sin sin B A C >+,由正弦定理得:sin sin a b A B =,2πsin 6=sin B =, 由222222sin sin sin B A C b a c >+⇒>+知:222cos 02a c b B ac+-=<,故2π3B =, 则π6C =,△2c a ==,11πsin 2sin 226S ab C ==⨯⨯= 若选②:a b <,21cos cos sin 2a A C c A a =+由正弦定理得:21sin cos cos sin sin sin 2A A C C A A =+,△sin 0A ≠△1cos cos sin sin 2A C A C -=,即()1cos 2A C +=,1cos 2B =-, △0πB <<,故2π3B =,则π6C =, △a c =△由余弦定理得2222cos b a c ac B =+-,22211222c c c ⎛⎫=+-⋅- ⎪⎝⎭,得2c =,△11πsin 2sin 226S bc A ==⨯⨯=。

专题08 解三角形(解析版)-三年(2022–2024)高考数学真题分类汇编(全国通用)

专题08 解三角形(解析版)-三年(2022–2024)高考数学真题分类汇编(全国通用)

专题08解三角形考点三年考情(2022-2024)命题趋势考点1:正余弦定理综合应用2023年天津高考数学真题2022年高考全国乙卷数学(文)真题2023年北京高考数学真题2023年高考全国乙卷数学(文)真题2024年高考全国甲卷数学(理)真题2024年天津高考数学真题2022年新高考天津数学高考真题高考对本节的考查不会有大的变化,仍将以考查正余弦定理的基本使用、面积公式的应用为主.从近三年的全国卷的考查情况来看,本节是高考的热点,主要以考查正余弦定理的应用和面积公式为主.考点2:实际应用2024年上海夏季高考数学真题2022年新高考浙江数学高考真题考点3:角平分线、中线、高问题2023年新课标全国Ⅰ卷数学真题2023年高考全国甲卷数学(理)真题考点4:解三角形范围与最值问题2022年高考全国甲卷数学(理)真题2022年新高考全国I卷数学真题2022年新高考北京数学高考真题考点5:周长与面积问题2024年新课标全国Ⅰ卷数学真题2024年新课标全国Ⅱ卷数学真题2024年北京高考数学真题2022年高考全国乙卷数学(理)真题2022年新高考北京数学高考真题2023年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(理)真题2022年新高考浙江数学高考真题2022年新高考全国II卷数学真题考点6:解三角形中的几何应用2023年新课标全国Ⅱ卷数学真题考点1:正余弦定理综合应用1.(2023年天津高考数学真题)在ABC 中,角,,A B C 所对的边分别是,,a b c .已知39,2,120a b A ==∠= .(1)求sin B 的值;(2)求c 的值;(3)求()sin B C -的值.【解析】(1)由正弦定理可得,sin sin a b A B =392sin120sin B = ,解得:13sin 13B =(2)由余弦定理可得,2222cos a b c bc A =+-,即21394222c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭,解得:5c =或7c =-(舍去).(3)由正弦定理可得,sin sin a c A C =395sin120sin C =,解得:513sin 26C =,而120A =o,所以,B C 都为锐角,因此2539cos 15226C =-,139cos 11313B =-,()133********sin sin cos cos sin 1326132626B C B C B C -=-=⨯-⨯=-.2.(2022年高考全国乙卷数学(文)真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-.(1)若2A B =,求C ;(2)证明:2222a b c =+【解析】(1)由2A B =,()()sin sin sin sin C A B B C A -=-可得,()sin sin sin sin C B B C A =-,而π02B <<,所以()sin 0,1B ∈,即有()sin sin 0C C A =->,而0π,0πC C A <<<-<,显然C C A ≠-,所以,πC C A +-=,而2A B =,πA B C ++=,所以5π8C =.(2)由()()sin sin sin sin C A B B C A -=-可得,()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C -=-,然后根据余弦定理可知,()()()()22222222222211112222a c b b c a b c a a b c +--+-=+--+-,化简得:2222a b c =+,故原等式成立.3.(2023年北京高考数学真题)在ABC 中,()(sin sin )(sin sin )a c A C b A B +-=-,则C ∠=()A .π6B .π3C .2π3D .5π6【答案】B【解析】因为()(sin sin )(sin sin )a c A C b A B +-=-,所以由正弦定理得()()()a c a c b a b +-=-,即222a c ab b -=-,则222a b c ab +-=,故2221cos 222a b c ab C ab ab +-===,又0πC <<,所以π3C =.故选:B.4.(2023年高考全国乙卷数学(文)真题)在ABC 中,内角,,A B C 的对边分别是,,a b c ,若cos cos a B b A c -=,且5C π=,则B ∠=()A .10πB .5πC .310πD .25π【答案】C【解析】由题意结合正弦定理可得sin cos sin cos sin A B B A C -=,即()sin cos sin cos sin sin cos sin cos A B B A A B A B B A -=+=+,整理可得sin cos 0B A =,由于()0,πB ∈,故sin 0B >,据此可得πcos 0,2A A ==,则ππ3πππ2510B AC =--=--=.故选:C.5.(2024年高考全国甲卷数学(理)真题)在ABC 中,内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A .23913B .3913C .72D .31313【答案】C 【解析】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则7sin sin A C +=.故选:C.6.(2024年天津高考数学真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -的值.【解析】(1)设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍);则4,6a c ==.(2)法一:因为B 为三角形内角,所以22957sin 1cos 11616B B ⎛⎫=-=-= ⎪⎝⎭,再根据正弦定理得sin sin a b A B =,即4sin 5716A =7sin 4A =法二:由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因为()0,πA ∈,则237sin 144A ⎛⎫=- ⎪⎝⎭(3)法一:因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭,由(2)法一知57sin 16B =,因为a b <,则A B <,所以273cos 144A ⎛⎫=-= ⎪ ⎪⎝⎭,则7337sin 22sin cos 2448A A A ==⨯=,2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭()91573757cos 2cos cos 2sin sin 216864B A B A B A -=+=⨯=.法二:7337sin 22sin cos 2448A A A ===,则2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭,因为B 为三角形内角,所以22957sin 1cos 116B B ⎛⎫=-=-= ⎪⎝⎭所以()91573757cos 2cos cos 2sin sin 216816864B A B A B A -=+=⨯=7.(2022年新高考天津数学高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知16,2,cos 4a b c A ===-.(1)求c 的值;(2)求sin B 的值;(3)求sin(2)A B -的值.【解析】(1)因为2222cos a b c bc A =+-,即22162b c bc =++,而2b c =,代入得22264c c c =++,解得:1c =.(2)由(1)可求出2b =,而0πA <<,所以215sin 1cos 4A A =-sin sin a b AB =,所以152sin 104sin 46b AB a==(3)因为1cos 4A =-,所以ππ2A <<,故π02B <<,又215sin 1cos A A =-所以11515sin 22sin cos 2448A A A ⎛⎫==⨯-⨯=- ⎪⎝⎭,217cos 22cos 121168A A =-=⨯-=-,而sin 104B =26cos 1sin 4B B =-,故15671010sin(2)sin 2cos cos 2sin 84848A B A B A B ⎛-=-=-+= ⎝⎭.考点2:实际应用8.(2024年上海夏季高考数学真题)已知点B 在点C 正北方向,点D 在点C 的正东方向,BC CD =,存在点A 满足16.5,37BAC DAC =︒=︒∠∠,则BCA ∠=(精确到0.1度)【答案】7.8︒【解析】设,90BCA ACD θθ∠=∠=- ,在DCA △中,由正弦定理得sin sin CA CDD CAD=∠,即()sin 37.0sin 1809037.0CACD θ-=⎡⎤-+⎣⎦’即()sin 37.0sin 9037.0CACDθ=-+①在BCA V 中,由正弦定理得sin sin CA CBB CAB=∠,即()sin16.5sin 18016.5CACB θ=⎡⎤+⎦-⎣,即()sin16.5sin 16.5CA CBθ=+ ,②因为CD CB =,②①得()()sin 9037.0sin 37.0sin16.5sin 16.5θθ-+=+,利用计算器即可得7.8θ≈ ,故答案为:7.8 .9.(2022年新高考浙江数学高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是222222142c a b S c a ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边2,3,2a b c ===,则该三角形的面积S =.234【解析】因为222222142c a b S c a ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦,所以242312342442S ⎡⎤+-⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⨯234考点3:角平分线、中线、高问题10.(2023年新课标全国Ⅰ卷数学真题)已知在ABC 中,()3,2sin sin A B C A C B +=-=.(1)求sin A ;(2)设5AB =,求AB 边上的高.【解析】(1)3A B C += ,π3C C ∴-=,即π4C =,又2sin()sin sin()A C B A C -==+,2sin cos 2cos sin sin cos cos sin A C A C A C A C ∴-=+,sin cos 3cos sin A C A C ∴=,sin 3cos A A ∴=,即tan 3A =,所以π02A <<,3310sin 1010A ∴==(2)由(1)知,10cos 1010A =,由sin sin()B A C =+23101025sin cos cos sin ()210105A C A C =+==由正弦定理,sin sin c bC B=,可得255521022b =,11sin 22AB h AB AC A ∴⋅=⋅⋅,310sin 210610h b A ∴=⋅==.11.(2023年高考全国甲卷数学(理)真题)在ABC 中,60,2,6BAC AB BC ∠=︒==,BAC ∠的角平分线交BC 于D ,则AD =.【答案】2【解析】如图所示:记,,AB c AC b BC a ===,方法一:由余弦定理可得,22222cos 606b b +-⨯⨯⨯= ,因为0b >,解得:13b =+由ABC ABD ACD S S S =+ 可得,1112sin 602sin 30sin 30222b AD AD b ⨯⨯⨯=⨯⨯⨯+⨯⨯⨯ ,解得:2313323312b AD b ==++.故答案为:2.方法二:由余弦定理可得,22222cos 606b b +-⨯⨯⨯= ,因为0b >,解得:13b =62sin 60sin sin b B C ==,解得:62sin 4B =,2sin 2C =,因为1362+>>45C = ,180604575B =--= ,又30BAD ∠=o ,所以75ADB ∠= ,即2AD AB ==.故答案为:2.考点4:解三角形范围与最值问题12.(2022年高考全国甲卷数学(理)真题)已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =.31/13-【解析】[方法一]:余弦定理设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++,在ACD 中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++-==-+++++()1244233211m m ≥--+⋅+当且仅当311m m +=+即31m =时,等号成立,所以当ACAB取最小值时,31m =.31.[方法二]:建系法令BD=t ,以D 为原点,OC 为x 轴,建立平面直角坐标系.则C (2t,0),A (13,B (-t,0)()()()22222221344412443324131113,31t AC t t AB t t t t t t BD -+-+∴===-≥-++++++++==当且仅当即时等号成立。

高考数学最新真题专题解析—解三角形(新高考卷)

高考数学最新真题专题解析—解三角形(新高考卷)

高考数学最新真题专题解析—解三角形(新高考卷)【母题来源】2022年新高考I 卷 【母题题文】记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cosA1+sinA =sin2B1+cos2B . (1)若C =2π3,求B;(2)求a 2+b 2c 2的最小值.【答案】解:(1)∵cosA 1+sinA =sin2B1+cos2B ,∴cos 2A 2−sin 2A2cos 2A 2+sin 2A 2+2sin A 2cos A 2=2sinBcosB1+2cos 2B−1且cosB ≠0,∴cos A 2−sinA2cos A 2+sinA 2=sinBcosB ∴1−tanA21+tanA2=tanB ,∴tan(π4−A2)=tanB ,又A ,B ∈(0,π),π4−A2∈(−π4,π4),∴π4−A2=B . 又∵C =2π3,∴A +B =π3,∴B =π6. (2)由正弦定理asinA =bsinB =csinC ,得a 2+b 2c 2=sin 2A+sin 2Bsin 2C=sin 2A+sin 2(π4−A 2)sin 2(A+π4−A2)1−cos 2A 2+1−cos2 (π4−A2)21−cos 2(A+π4−A2)2=1−cos 2A+1−sin A1+sin A=2sin 2 A−sin A+11+sin A,{A ∈(0,π)π4−A2=B ∈(0,π)⇒A ∈(0,π2),令t =1+sinA ∈(1,2), 则y =2(t−1)2−(t−1)+1t =2t −5+4t ,t ∈(1,2),y =2t −5+4t 在t ∈(1,√2)时递减,在t ∈(√2,2)时递增, 因此t =√2时,y min =4√2−5. 【母题来源】2022年新高考II 卷【母题题文】记△ABC 的三个内角分别为A ,B ,C ,其对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为S 1,S 2,S 3,且S 1−S 2+S 3=√32,sinB =13.(1)求△ABC 的面积; (2)若sinAsinC =√23,求b .【答案】解:(1)∵边长为a 的正三角形的面积为√34a 2,∴S 1−S 2+S 3=√34(a 2−b 2+c 2)=√32,即accosB =1,由sinB =13得:cosB =2√23,∴ac =1cosB =3√24, 故S △ABC =12acsinB =12×3√24×13=√28. (2)由正弦定理得:b 2sin 2B=asinA .csinC =acsinAsinC =3√24√23=94,故b =32sinB =12.【命题意图】考察利用正余弦定理解三角形。

2024年高考数学真题分类汇编(三角函数篇,解析版)

2024年高考数学真题分类汇编(三角函数篇,解析版)

专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m【答案】A【分析】根据两角和的余弦可求cos αcos β,sin αsin β的关系,结合tan αtan β的值可求前者,故可求cos α-β 的值.【详解】因为cos α+β =m ,所以cos αcos β-sin αsin β=m ,而tan αtan β=2,所以=12×2b ×kb ×sin A 2+12×kb ×b ×sin A2,故cos αcos β-2cos αcos β=m 即cos αcos β=-m ,从而sin αsin β=-2m ,故cos α-β =-3m ,故选:A .2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.8【答案】C【分析】画出两函数在0,2π 上的图象,根据图象即可求解【详解】因为函数y =sin x 的的最小正周期为T =2π,函数y =2sin 3x -π6 的最小正周期为T =2π3,所以在x ∈0,2π 上函数y =2sin 3x -π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.22024年高考数学真题分类汇编——三角函数篇【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A :当x ∈-π8,π3 时,2x -π3∈-7π12,π3,由函数y =sin x 在-7π12,π3上不为单调递增,故f x 在区间-π8,π3上不为单调递增,故A 错误;对B :当x =5π6时,2x -π3=4π3,由x =4π3不是函数y =sin x 的对称轴,故x =5π6不是f x 图象的对称轴,故B 错误;对C :当x ∈-π6,π4 时,2x -π3∈-2π3,π6,则f x ∈-1,12,故C 错误;对D :将f x 图象上的所有点向左平移5π12个长度单位后,可得y =sin 2x +2×5π12-π3 =sin 2x +π2=cos2x ,该函数关于y 轴对称,故D 正确.故选:D .8(2024·广东广州·二模)已知函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f (x )的图象向右平移θ(θ>0)个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由f π4=1,得sin π4ω+φ =22,又点π4,1 及附近点从左到右是上升的,则π4ω+φ=π4+2k π,k ∈Z ,由f 5π8 =0,点5π8,0 及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2k π,k ∈Z ,联立解得ω=2,φ=-π4+2k π,k ∈Z ,而|φ|<π2,于是φ=-π4,f (x )=2sin 2x -π4,若将函数f (x )的图像向右平移θ(θ>0)个单位后,得到y =sin 2x -2θ-π4,则-2θ-π4=π2-k π,k ∈Z ,而θ>0,因此θ=-3π8+k π2,k ∈N ,所以当k =1时,θ取得最小值为π8.故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。

2023-2024学年高考数学专项复习——三角函数与解三角形(含答案)

2023-2024学年高考数学专项复习——三角函数与解三角形(含答案)

决胜3.在中,角,,所对的边分别为,,,且,.ABC A B C a b c 23a c b +=3A C π-=(1)求;cos B (2)若,求的面积.5b =ABC 4.设()()()()πsin 2πcos 2cos sin πf ααααα⎛⎫++ ⎪⎝⎭=---(1)将化为最简形式;()f α(2)已知,求的值.()3f θ=-()sin 1sin2sin cos θθθθ++5.已知函数.()π1sin 232f x x ⎛⎫=-- ⎪⎝⎭(1)求函数的单调递增区间,并解不等式;()f x ()0f x ≥(2)关于的方程在上有两个不相等的实数解,求实数的取x 11022m f x +⎛⎫+= ⎪⎝⎭[]0,πx ∈12,x x m 值范围及的值.()12f x x +6.已知角为第四象限角,且角的终边与单位圆交于点.αα1,3P y ⎛⎫ ⎪⎝⎭(1)求的值;sin α(2)求的值.()πtan sin 2sin cos παααα⎛⎫+ ⎪⎝⎭+7.在平面直角坐标系中,角以为始边,它的终边与单位圆交于第二象限内的点xOy αOx .(),P x y (1)若,求及的值;255y =tan α7sin 2cos sin 4cos αααα+-(2)若,求点P 的坐标.sin 11cos 2αα=-(1)若,求;3BC =ADCD (2)若,求线段的长11cos 14A =AD(1)求函数在区间上的最大值和最小值;()f x ππ[,]64-(2)若函数在区间上恰有2个零点,求的值.5()()4g x f x =-π(0,)212,x x 12cos()x x -11.在中,,点D 在AB 边上,且为锐角,,的面积为ABC 25BC =BCD ∠2CD =BCD △4.(1)求的值;cos BCD ∠(2)若,求边AC 的长.30A =︒12.记三个内角的对边分别为,已知为锐角,ABC ,,A B C ,,a b c B .sin sin sin 2sin sin a A b B c C a A B +-=(1)求;()sin A C -(2)求的最小值.sin sin A B 13.已知函数且的最小正周期为.()πsin 23f x x ω⎛⎫=+ ⎪⎝⎭()f x π(1)求函数的单调递减区间;()f x (2)若,求x 的取值范围.()22f x ≤14.已知函数在上单调递增.()sin (0)f x x ωω=>ππ,34⎡⎤-⎢⎥⎣⎦(1)求的取值范围:ω(2)当取最大值时,将的图象向左平移个单位,再将图象上所有点的横坐标变为原来ω()f x π9的3倍,得到的图象,求在内的值域.()g x ()g x ππ,32⎡⎤-⎢⎥⎣⎦15.在中,角所对的边分别为,已知.ABC ,,A B C ,,a b c sin cos cos cos cos sin sin A B C B C A B +=--(1)求;C (2)若外接圆的半径为,求的面积最大值.ABC 233ABC 16.已知函数.()()πe e sin ,32x xf x xg x --==(1)若,求;321π3f α⎛⎫+= ⎪⎝⎭32πf α⎛⎫- ⎪⎝⎭(2)设函数,证明:在上有且仅有一个零点,且()()ln h x x f x =+()h x ()0,∞+0x .()()034g f x >-17.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终xOy αO x 边与单位圆交于第三象限点.525,55P ⎛⎫-- ⎪⎝⎭(1)求的值;sin cos αα-(2)若角的终边绕原点按逆时针方向旋转,与单位圆交于点,求点的坐标.αO π2Q Q 18.设函数,且.2()2cos 23sin cos (0)f x x x x m ωωωω=++>(0)1f =(1)求的值;m (2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数存在,求()f x 的值及的零点.ω()f x 条件①:是奇函数;()f x 条件②:图象的两条相邻对称轴之间的距离是;()f x π条件③:在区间上单调递增,在区间上单调递减.()f x π0,6⎡⎤⎢⎥⎣⎦ππ,63⎡⎤⎢⎥⎣⎦注:如果选择的条件不符合要求,第(2)问得分;如果选择多个符合要求的条件分别解答,0按第一个解答计分.答案:1.(1)1-(2)12-【分析】(1)根据点坐标求得.P tan α(2)根据点坐标求得,利用诱导公式求得正确答案.P sin ,cos αα【详解】(1)即,3π,cos π3sin 44P ⎛⎫ ⎪⎝⎭22,22P ⎛⎫- ⎪ ⎪⎝⎭所以.22tan 122α-==-(2)由(1)得,所以,22,22P ⎛⎫- ⎪ ⎪⎝⎭22222sin 22222α-==-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭,22222cos 22222α==⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭()1617πsin πsin πsin sin 808π22αααα⎛⎫⎛⎫-+=++ ⎪ ⎪⎝⎭⎝⎭πsin sin sin cos 2αααα⎛⎫=+= ⎪⎝⎭.221222⎛⎫=-⨯=- ⎪ ⎪⎝⎭2.(1),1tan 7α=1tan 3β=(2)π4【分析】(1)先根据同角三角函数平方关系求出,再根据商数关系和两角和正切公式cos α化简得结果;(2)根据二倍角公式得,,再根据两角和余弦公式得,最后根据sin 2,cos 2ββ()cos 2αβ+范围求结果.【详解】(1)因为为锐角,,所以,,αβ2sin 10α=272cos 1sin 10αα=-=所以,2sin 110tan cos 77210ααα===又因为,所以,tan tan 1tan()1tan tan 2αβαβαβ++==-1tan 3β=(2)因为为锐角,,所以,解得,,αβ1tan 3β=22sin 1cos 3sin cos 1ββββ⎧=⎪⎨⎪+=⎩10sin 10310cos 10ββ⎧=⎪⎪⎨⎪=⎪⎩所以,sin 22sin cos 103103101052βββ==⨯=⨯,24cos 212sin 5ββ=-=所以,()724232cos 2cos cos 2sin sin 21051052αβαβαβ+=-=⨯-⨯=又因为为锐角,所以,,αβ3π022αβ<+<所以.π24αβ+=3.(1)78(2)111512【分析】(1)根据已知条件,利用正弦定理化为,结合23a c b +=sin sin 23sin A C B +=已知条件,有,,代入解三角形即可.3A C π-=32B C π=-232B A π=-sin sin 23sin A C B +=(2)根据(1)终结论,利用余弦定理,结合,,解得,利用面5b =23a c b +=443ac =积公式即可求得面积为.11115sin 212ABC S ac B ==△【详解】(1)因为,所以由正弦定理得,23a c b +=sin sin 23sin A C B +=因为,且,所以,,3A C π-=A B C π++=32B C π=-232B A π=-所以2sin sin 23sin 3232B B B ππ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭即,22sin cos cos sin sin cos cos sin 23sin 32323232B B B B B ππππ-+-=所以,所以,3cos 23sin 2B B =cos 4sin cos 222B B B =因为,所以,所以;022B π<<1sin 24B =27cos 12sin 28B B =-=(2)由余弦定理可得,2222cos b a c ac B =+-即,得,得,()27524a c ac ac =+--()2155234b ac =-443ac =因为,所以,所以7cos 8B =15sin 8B =11115sin 212ABC S ac B ==△4.(1)tan α-(2)65【分析】(1)根据三角函数的诱导公式,结合同角三角函数的商式关系,可得答案;(2)利用正弦函数的二倍角公式以及同角三角函数的平方式,整理齐次式,可得答案.【详解】(1).()()()()πsin 2πcos sin sin 2tan cos sin πcos sin f αααααααααα⎛⎫++ ⎪-⎝⎭===----(2)由,则,()tan 3f θθ=-=-tan 3θ=,()()()()()22222sin 1sin2sin (sin cos )tan (tan 1)sin cos sin cos sin cos tan 1tan 1θθθθθθθθθθθθθθθ+++==+++++.()()2223(31)34641053131⨯+⨯===⨯+⨯+5.(1)答案见解析(2)(()1212,3,2f x x ⎤--+=-⎦【分析】(1)由题意分别令,πππ2π22π,Z 232k x k k -+≤-≤+∈,解不等式即可得解.ππ5π2π22π,Z 366k x k k +≤-≤+∈(2)由题意得在上有两个不相等的实数解,结合三角()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 函数单调性、最值即可求出的取值范围,结合对称性代入求值即可得的值.m ()12f x x +【详解】(1)由题意令,解得,πππ2π22π,Z 232k x k k -+≤-≤+∈π5πππ,Z 1212k x k k -+≤≤+∈即函数的单调递增区间为,()f x ()π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦令,所以,()π1sin 2032f x x ⎛⎫=--≥ ⎪⎝⎭π1sin 232x ⎛⎫-≥ ⎪⎝⎭所以,解得,ππ5π2π22π,Z 366k x k k +≤-≤+∈π7πZ 412ππ,k x k k +≤≤+∈所以不等式的解集为.()0f x ≥()π7ππ,π,Z 412k k k ⎡⎤++∈⎢⎥⎣⎦(2)由题意即,11022m f x +⎛⎫+= ⎪⎝⎭πsin 032m x ⎛⎫-+= ⎪⎝⎭即在上有两个不相等的实数解,()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 当时,,而在上单调递减,在上单[]0,πx ∈ππ2π,333t x ⎡⎤=-∈-⎢⎥⎣⎦2sin y t =-ππ,32⎡⎤-⎢⎥⎣⎦π2π,23⎡⎤⎢⎥⎣⎦调递增,所以当即时,,ππ32t x =-=5π6x =()min 2g x =-当即时,,ππ33t x =-=-0x =()max 3g x =又即时,,π2π33t x =-=πx =()3g x =-所以若在上有两个不相等的实数解,()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 则实数的取值范围为,m (2,3⎤--⎦因为,所以是的对称轴,()min 5π26g x g ⎛⎫==- ⎪⎝⎭5π6x =()g x所以.()125π5ππ112sin 263322f x x f ⎛⎫⎛⎫+=⨯=⨯--=- ⎪ ⎪⎝⎭⎝⎭6.(1)223-(2)3-【分析】(1)将点代入单位圆后结合任意角三角函数定义求解即可.(2)利用诱导公式化简求值即可.【详解】(1)在单位圆中,解得,22113y ⎛⎫+= ⎪⎝⎭223y =±因为第四象限角,所以α223y =-22sin 3α∴=-(2)第四象限角22sin ,3αα=-1cos 3α∴=.()πtan sin 123sin cos πcos ααααα⎛⎫+ ⎪⎝⎭∴=-=-+7.(1),;2-2(2).34(,)55-【分析】(1)根据给定条件,求出点的坐标及,再利用齐次式法计算即得.P tan α(2)利用同角公式,结合三角函数定义求解即得.【详解】(1)角以Ox 为始边,它的终边与单位圆交于第二象限内的点,α(),P x y 当时,,则,255y =22551()55x =--=-tan 2y x α==-所以.7tan 27(2)227ta 4sin 2cos sin 42c 4os n αααααα+⨯-++==---=-(2)依题意,,sin 0,cos 0αα><由,得,代入,sin 11cos 2αα=-cos 12sin αα=-22sin cos 1αα+=于是,解得,22sin (12sin )1αα+-=2sin ,cos 1sin 5543ααα==--=-即,所以点P 的坐标为.34,55x y =-=34(,)55-8.(1);π3A =(2).2AD =【分析】(1)由正弦定理化边为角,然后由三角恒等变换求解;(2)设,利用由余弦定理求得,从而由正弦定理求得AD x =πADB ADC ∠+∠=cos ADB ∠(用表示),再代入余弦定理的结论中求得值.AC x x 【详解】(1)由正弦定理及已知得2cos cos cos 2c a A B b A =-,sin 2sin cos cos sin cos 2sin 2cos sin cos 2sin(2)C A A B B A A B B A A B =-=-=-或,C 2A B =-2πC A B +-=又,所以,A B ≤22πC A B C B B C B +-≤+-=+<所以,从而,所以;C 2A B =-2πB C A A +==-π3A =(2)由余弦定理得,,2222cos AB BD AD AD BD ADB =+-⋅∠,2222cos AC CD AD AD CD ADC =+-⋅∠又是角平分线,所以,又,则,记,因为AD 2AC CD AB BD ==3a =2,1CD BD ==AD x =,πADB ADC ∠+∠=所以,所以,2244cos 412cos x x ADC x x ADC +-∠=++∠cos 4x ADC ∠=-,则,0πADC <∠<2sin 116x ADC ∠=-由正弦定理得,sin sin AC CD ADC CAD =∠∠所以,222116π16sin 6x AC x =⋅-=-所以,解得,即.221644()4x x x x -=+-⋅-2x =2AD =9.(1)263(2)677【分析】(1)利用正弦定理及其余弦定理求解;(2)利用三角形的面积公式求解.【详解】(1)因为平分,,故,AD BAC ∠3AB BC ==2C BAC θ∠=∠=在中,由正弦定理知:,ADC △sin sin 22cos sin sin AD ACD CD DAC θθθ∠===∠由余弦定理有,2222223231cos 2cos 22323CA CB BA C CA CB θ+-+-====⋅⨯⨯又因为,所以,21cos 22cos 13θθ==-6cos 3θ=即;262cos 3AD CDθ==(2)由,得,则,11cos 14A =11cos 214θ=cos 2157cos 214θθ+==又由,()11sin 2sin 22ABC ABD ACD S AB AC S S AB AC AD θθ=⋅=+=+△△△得.()sin 21267cos sin 57AB AC AD AB AC θθθ⋅===+10.(1)最大值和最小值分别为;2,1-(2).58【分析】(1)求出函数的解析式,再利用余弦函数的性质求解即得.()f x (2)利用余弦函数图象的对称性,结合诱导公式计算.12cos()x x -【详解】(1)由函数的最小正周期为,得,解得,()f x π2ππω=π2,()2cos(2)3x f x ω==-当时,,则当,即时,,ππ[,]64x ∈-π2ππ2[,]336x -∈-π2π233x -=-π6x =-min ()1f x =-当,即时,,π203x -=π6x =max ()2f x =所以函数在区间上的最大值和最小值分别为.()f x ππ[,]64-2,1-(2)()2222252cos 25222525BD BC CD BC CD BCD =+-⨯∠=+-⨯⨯⨯,故,204816=+-=4BD =有,故,22216420BD CD BC +=+==CD AB ⊥则,即.21sin sin 302CD A AC AC ==︒==4AC =12.(1);()sin 1A C -=(2)无最小值;【分析】(1)利用正弦定理和余弦定理可得,结合为锐角可得,所sin cos A C =B π2A C =+以;()sin 1A C -=(2)利用诱导公式可得,再由导数判断出在3sin sin 2sin sin A B A A =-()32f t t t =-上单调递增,可得无最小值;2,12t ⎛⎫∈ ⎪ ⎪⎝⎭sin sin A B 【详解】(1)因为,sin sin sin 2sin sin a A b B c C a A B +-=由正弦定理得,2222sin a b c ab A +-=由余弦定理可得,2222cos a b c ab C +-=所以可得,解得或;sin cos A C =π2A C =-π2A C =+又为锐角,所以(舍),即,B π2A C =-π2A C =+因此;()πsin sin12A C -==(2)结合(1)中,又可得:π2A C =+πA B C ++=;33πsin sin sin sin 2sin cos 22sin sin 2A B A A A A A A ⎛⎫=-=-=- ⎪⎝⎭令,则,sin t A =()3sin sin 2A B f t t t ==-又为锐角,,所以,B 3ππ20,22A ⎛⎫-∈ ⎪⎝⎭π3π24A <<可得,212t <<所以,当时,恒成立,()261f t t '=-212t <<()2610f t t '=->即可得为单调递增,()32f t t t =-所以时,,所以无最值;2,12t ⎛⎫∈ ⎪ ⎪⎝⎭()()0,1f t ∈()f t 因此无最小值;sin sin A B 13.(1)答案见解析(2)答案见解析【分析】(1)根据最小正周期为求得,求出单调递减区间;π=1ω±(2)根据写出x 的取值范围.()22f x ≤【详解】(1)因为的周期为,()πsin 23f x x ω⎛⎫=+ ⎪⎝⎭π故,所以.2ππ2ω==1ω±当时,,=1ω()πsin 23f x x ⎛⎫=+ ⎪⎝⎭由,得到,ππ3π2π22π232k x k +≤+≤+π7πππ1212k x k +≤≤+故的递减区间为.()f x π7ππ,π,Z 1212k k k ⎡⎤++∈⎢⎥⎣⎦当时,,1ω=-()ππsin 2sin 233f x x x ⎛⎫⎛⎫=-+=-- ⎪ ⎪⎝⎭⎝⎭由,得到πππ2π22π232k x k -+≤-≤+π5πππ1212k x k -+≤≤+故的递减区间为.()f x π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦(2)当时,,=1ω()π2sin 232f x x ⎛⎫=+≤ ⎪⎝⎭所以,5πππ2π22π434k x k -+≤+≤+解得.19ππππ,Z 2424k x k k -+≤≤-+∈当时,,1ω=-()ππ2sin 2sin 2332f x x x ⎛⎫⎛⎫=-+=--≤ ⎪ ⎪⎝⎭⎝⎭即,π2sin 232x ⎛⎫-≥- ⎪⎝⎭所以,ππ5π2π22π434k x k -+≤-≤+解得.π19πππ2424k x k +≤≤+综上:当时,;=1ω19ππππ2424k x k -+≤≤-+当时,.1ω=-π19πππ,Z 2424k x k k +≤≤+∈14.(1)302ω<≤(2)260,4⎡⎤+⎢⎥⎣⎦【分析】(1)由题设条件,列出不等式,求解即可.,32πππ4π2ωω-≥-≤(2)根据函数图像平移变换,写出函数,再结合区间和三角函数性质求1π()sin 26g x x ⎛⎫=+ ⎪⎝⎭出值域.【详解】(1)由,得 ,ππ,34x ⎡⎤∈-⎢⎥⎣⎦ππ,34x ωωω⎡⎤∈-⎢⎥⎣⎦又函数在上单调递增,()sin (0)f x x ωω=>ππ,34⎡⎤-⎢⎥⎣⎦所以,解得,32πππ4π2ωω-≥-≤32ω≤因为,所以.0ω>302ω<≤(2)由(1)知的最大值为,此时,ω323()sin 2f x x =根据题意,,31π1π()sin sin 23926g x x x ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦当时,.ππ,32x ⎡⎤∈-⎢⎥⎣⎦1πππ02664x ≤+≤+所以,故值域为.ππ260()sin 644g x +⎛⎫≤≤+= ⎪⎝⎭260,4⎡⎤+⎢⎥⎣⎦15.(1)π3C =(2)3【分析】(1)利用正弦定理、三角恒等变换计算即可.(2)利用正余弦定理、三角形面积公式及基本不等式计算即可.【详解】(1)由已知可得:,222sin sin sin cos cos A A B B C -=-∴,()222sin sin sin 1sin 1sin A A B B C -=---∴,222sin sin sin sin sin A B C A B +-=根据正弦定理可知:,222a b c ab +-=∴.2221cos 22a b c C ab +-==又.π(0,π),3C C ∈∴=(2)∵外接圆的半径为,ABC 233r =∴,解得.432sin 3c r C==2c =又由(1)得,222a b c ab +-=故,∴,当且仅当时等号成立22424a b ab ab +-=≥-4ab ≤2a b ==∴,13sin 324ABC S ab C ab ==≤△∴的面积最大值为.ABC 316.(1)23(2)证明见解析【分析】(1)化简已知条件求得,利用诱导公式求得.πsin 3α⎛⎫+ ⎪⎝⎭32πf α⎛⎫- ⎪⎝⎭(2)先求得的表达式,然后对进行分类讨论,结合零点存在性定理证得在()h x x ()h x 上有且仅有一个零点,求得的表达式,然后利用函数的单调性证得不等()0,∞+0x()()0g f x 式成立.()()034g f x >-【详解】(1)由,则,321π3f α⎛⎫+= ⎪⎝⎭π2sin 33α⎛⎫+= ⎪⎝⎭所以32π2sin π3f αα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.ππ2sin πsin 333αα⎡⎤⎛⎫⎛⎫=-+=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)证明:由题意得.()πln sin 3h x x x =+①当时,,所以单调递增.30,2x ⎛⎤∈ ⎥⎝⎦ππ0,32x ⎛⎤∈ ⎥⎝⎦()h x 又,由于,而,1πsin ln226h ⎛⎫=- ⎪⎝⎭π1sin 62=1ln2ln e 2>=所以.又,102h ⎛⎫< ⎪⎝⎭()3102h =>所以由零点存在定理得在内有唯一零点,使得.()h x 30,2⎛⎤ ⎥⎝⎦0x ()00h x =当时,,所以,则在上无零点;3,32x ⎛⎤∈ ⎥⎝⎦πln 0,sin 03x x >≥()0h x >()h x 3,32⎛⎤ ⎥⎝⎦当时,,所以,则在上无零点.()3,x ∈+∞πln 1,1sin 13x x >-≤≤()0h x >()h x ()3,+∞综上,在上有且仅有一个零点.()h x ()0,∞+0x ②由①得,且,0112x <<()00ln 0x f x +=则.()()()()00000011ln ,ln 2f x x g f x g x x x ⎛⎫=-=-=- ⎪⎝⎭由函数的单调性得函数在上单调递增,()000112x x x ϕ⎛⎫=-⎪⎝⎭1,12⎛⎫ ⎪⎝⎭则,()01324x ϕϕ⎛⎫>=- ⎪⎝⎭故.()()034g f x >-求解已知三角函数值求三角函数值的问题,可以考虑利用诱导公式等三角恒等变换的公式来进行求解.判断函数零点的个数,除了零点存在性定理外,还需要结合函数的单调性来进行判断.17.(1)55-(2)255,55⎛⎫- ⎪ ⎪⎝⎭【分析】(1)直接根据三角函数的定义求解;(2)利用诱导公式求出旋转后的角的三角函数值即可.【详解】(1)由三角函数的定义可得,5sin c 5o 255s αα-=-=,所以;5s 5in 5c 2os 555αα⎛⎫--=- ⎪ ⎪⎝⎭-=-(2)角的终边绕原点O 按逆时针方向旋转,得到角,απ2π2α+则,,π5sin cos 25αα⎛⎫+==- ⎪⎝⎭π25cos sin 25αα⎛⎫+=-= ⎪⎝⎭所以点Q 的坐标为.255,55⎛⎫- ⎪ ⎪⎝⎭18.(1)1m =-(2)选择①,不存在;选择②,,;选择③,,12ω=ππ,Z 6k k -+∈1ω=ππ,Z 122k k -+∈【分析】(1)利用二倍角公式以及辅助角公式化简函数,根据,即可求解;(0)1f =(2)根据奇函数性质、三角函数图象的性质以及三角函数的单调性,即可逐个条件进行判断和求解.【详解】(1)2()2cos 23sin cos f x x x x m ωωω=++,πcos 23sin212sin 216x x m x m ωωω⎛⎫=+++=+++ ⎪⎝⎭又,所以.1(0)2112f m =⨯++=1m =-(2)由(1)知,,()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭选择①:因为是奇函数,()f x 所以与已知矛盾,所以不存在.()00f =()f x 选择②:因为图象的两条相邻对称轴之间的距离是,()f x π所以,,,π2T =2πT =2π21T ω==12ω=则,()π2sin 6f x x ⎛⎫=+ ⎪⎝⎭令,()π2sin 06f x x ⎛⎫=+= ⎪⎝⎭解得.ππ,Z 6k x k -+∈=即零点为.()f x ππ,Z 6k k -+∈选择③:对于,,()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭0ω>令,,πππ2π22π,Z 262k x k k ω-+≤+≤+∈ππ3π2π22π,Z 262k x k k ω+≤+≤+∈解得,,ππππ,Z 36k k x k ωωωω-+≤≤+∈ππ2ππ,Z 63k k x k ωωωω+≤≤+∈即增区间为,()f x ππππ,,Z 36k k k ωωωω⎡⎤-++∈⎢⎥⎣⎦减区间为,()f x ππ2ππ,,Z 63k k k ωωωω⎡⎤++∈⎢⎥⎣⎦因为在区间上单调递增,在区间上单调递减,()f x π0,6⎡⎤⎢⎥⎣⎦ππ,63⎡⎤⎢⎥⎣⎦所以时符合,0k =即在上单调递增,在上单调递减,()f x ππ,36ωω⎡⎤-⎢⎥⎣⎦π2π,63ωω⎡⎤⎢⎥⎣⎦所以且,π03ππ66ωω⎧-≤⎪⎪⎨⎪≥⎪⎩2ππ33ππ66ωω⎧≥⎪⎪⎨⎪≤⎪⎩解得,则,1ω=()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭所以令,()π2sin 206f x x ⎛⎫=+= ⎪⎝⎭解得,ππ,Z 122k x k =-+∈即零点为.()f x ππ,Z 122k k -+∈。

2024年高考数学真题分类汇编05:三角函数与解三角形

2024年高考数学真题分类汇编05:三角函数与解三角形

三角函数与解三角形一、单选题1.(2024·全国)已知cos(),tan tan 2m a b a b +==,则cos()a b -=()A .3m-B .3m-C .3m D .3m2.(2024·全国)当[0,2]x p Î时,曲线sin y x =与2sin 36y x p æö=-ç÷èø的交点个数为()A .3B .4C .6D .83.(2024·全国)设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x Î-时,曲线()y f x =与()y g x =恰有一个交点,则=a ()A .1-B .12C .1D .24.(2024·全国)已知cos cos sin a a a =-πtan 4a æö+=ç÷èø()A .1B .1CD .15.(2024·全国)在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A .32B C D 6.(2024·全国)设函数()2e 2sin 1x xf x x +=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A .16B .13C .12D .237.(2024·北京)已知()()sin 0f x x w w =>,()11f x =-,()21f x =,12min π||2x x -=,则w =()A .1B .2C .3D .48.(2024·天津)已知函数()()πsin303f x x w w æö=+>ç÷èø的最小正周期为π.则函数在ππ,126éù-êúëû的最小值是()A .B .32-C .0D .329.(2024·上海)下列函数()f x 的最小正周期是2π的是()A .sin cos x x +B .sin cos x xC .22sin cos x x+D .22sin cos x x-二、多选题10.(2024·全国)对于函数()sin 2f x x =和π()sin(2)4g x x =-,下列说法正确的有()A .()f x 与()g x 有相同的零点B .()f x 与()g x 有相同的最大值C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图像有相同的对称轴三、填空题11.(2024·全国)已知a 为第一象限角,b 为第三象限角,tan tan 4a b +=,tan tan 1a b ,则sin()a b +=.12.(2024·全国)函数()sin f x x x =在[]0,π上的最大值是.13.(2024·北京)已知ππ,63a éùÎêúëû,且α与β的终边关于原点对称,则cos b 的最大值为.四、解答题14.(2024·全国)记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3,求c .15.(2024·全国)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长.16.(2024·北京)在△ABC 中,7a =,A 为钝角,sin 2cos B B =.(1)求A Ð;(2)从条件①、条件②和条件③这三个条件中选择一个作为已知,求△ABC 的面积.①7b =;②13cos 14B =;③sin c A =注:如果选择条件①、条件②和条件③分别解答,按第一个解答计分.17.(2024·天津)在ABC 中,92cos 5163a B b c ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -.参考答案:1.A【分析】根据两角和的余弦可求cos cos ,sin sin a b a b 的关系,结合tan tan a b 的值可求前者,故可求()cos a b -的值.【解析】因为()cos m a b +=,所以cos cos sin sin m a b a b -=,而tan tan 2a b =,所以sin sin 2cos cos a b a b =,故cos cos 2cos cos m a b a b -=即cos cos m a b =-,从而sin sin 2m a b =-,故()cos 3m a b -=-,故选:A.2.C【分析】画出两函数在[]0,2π上的图象,根据图象即可求解【解析】因为函数sin y x =的的最小正周期为2πT =,函数π2sin 36y x æö=-ç÷èø的最小正周期为2π3T =,所以在[]0,2πx Î上函数π2sin 36y x æö=-ç÷èø有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3.D【分析】解法一:令()()21,cos a x F x ax G x =-=+,分析可知曲线()y F x =与()y G x =恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得2a =,并代入检验即可;解法二:令()()()(),1,1h x f x g x x =-Î-,可知()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即可得2a =,并代入检验即可.【解析】解法一:令()()f x g x =,即2(1)1cos 2a x x ax +-=+,可得21cos a x ax -=+,令()()21,cos a x F x ax G x =-=+,原题意等价于当(1,1)x Î-时,曲线()y F x =与()y G x =恰有一个交点,注意到()(),F x G x 均为偶函数,可知该交点只能在y 轴上,可得()()00F G =,即11a -=,解得2a =,若2a =,令()()F x G x =,可得221cos 0x x +-=因为()1,1x Î-,则220,1cos 0x x ³-³,当且仅当0x =时,等号成立,可得221cos 0x x +-³,当且仅当0x =时,等号成立,则方程221cos 0x x +-=有且仅有一个实根0,即曲线()y F x =与()y G x =恰有一个交点,所以2a =符合题意;综上所述:2a =.解法二:令()()()2()1cos ,1,1h x f x g x ax a x x =-=+--Î-,原题意等价于()h x 有且仅有一个零点,因为()()()()221cos 1cos h x a x a x ax a x h x -=-+---=+--=,则()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即()020h a =-=,解得2a =,若2a =,则()()221cos ,1,1h x x x x =+-Î-,又因为220,1cos 0x x ³-³当且仅当0x =时,等号成立,可得()0h x ³,当且仅当0x =时,等号成立,即()h x 有且仅有一个零点0,所以2a =符合题意;故选:D.4.B【分析】先将cos cos sin aa -a 弦化切求得tan a ,再根据两角和的正切公式即可求解.【解析】因为cos cos sin aa a =-所以11tan =-atan 1Þa =,所以tan 1tan 11tan 4a +p æö==a +ç÷-a èø,故选:B.5.C【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【解析】因为29,34B b ac p ==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=故选:C.6.A【分析】借助导数的几何意义计算可得其在点()0,1处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【解析】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+×¢=+,则()()()()()02e 2cos010e 2sin 000310f ++-+´¢==+,即该切线方程为13y x -=,即31y x =+,令0x =,则1y =,令0y =,则13x =-,故该切线与两坐标轴所围成的三角形面积1111236S =´´-=.故选:A.7.B【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【解析】由题意可知:1x 为()f x 的最小值点,2x 为()f x 的最大值点,则12min π22T x x -==,即πT =,且0w >,所以2π2Tw ==.故选:B.8.A【分析】先由诱导公式化简,结合周期公式求出w ,得()sin2f x x =-,再整体求出,126éùÎ-êúëûππx 时,2x 的范围,结合正弦三角函数图象特征即可求解.【解析】()()πsin3sin 3πsin 33f x x x x w w w æö=+=+=-ç÷èø,由2ππ3T w ==得23w =,即()sin2f x x =-,当,126éùÎ-êúëûππx 时,ππ2,63x éùÎ-êúëû,画出()sin2f x x =-图象,如下图,由图可知,()sin2f x x =-在ππ,126éù-êúëû上递减,所以,当π6x =时,()min πsin 3f x =-=故选:A 9.A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可.【解析】对A ,πsin cos 4x x x æö+=+ç÷èø,周期2πT =,故A 正确;对B ,1sin cos sin22x x x =,周期2ππ2T ==,故B 错误;对于选项C ,22sin cos 1x x +=,是常值函数,不存在最小正周期,故C 错误;对于选项D ,22sin cos cos2x x x -=-,周期2ππ2T ==,故D 错误,故选:A .10.BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【解析】A 选项,令()sin 20f x x ==,解得π,2k x k =ÎZ ,即为()f x 零点,令π()sin(2)04g x x =-=,解得ππ,28k x k =+ÎZ ,即为()g x 零点,显然(),()f x g x 零点不同,A 选项错误;B 选项,显然max max ()()1f x g x ==,B 选项正确;C 选项,根据周期公式,(),()f x g x 的周期均为2ππ2=,C 选项正确;D 选项,根据正弦函数的性质()f x 的对称轴满足πππ2π,224k x k x k =+Û=+ÎZ ,()g x 的对称轴满足πππ3π2π,4228k x k x k -=+Û=+ÎZ ,显然(),()f x g x 图像的对称轴不同,D 选项错误.故选:BC11.3-【分析】法一:根据两角和与差的正切公式得()tan a b +=-a b +的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【解析】法一:由题意得()tan tan tan1tan tan a b a b a b ++===--因为π3π2π,2π,2ππ,2π22k k m m a b æöæöÎ+Î++ç÷ç÷èøèø,,Z k m Î,则()()()22ππ,22π2πm k m k a b +Î++++,,Z k m Î,又因为()tan 0a b +=-<,则()()3π22π,22π2π2m k m k a b æö+Î++++ç÷èø,,Z k m Î,则()sin 0a b +<,则()()sin cos a b a b +=-+()()22sin cos 1a b a b +++=,解得()sin 3a b +=-.法二:因为a 为第一象限角,b 为第三象限角,则cos 0,cos 0a b ><,cos a =,cos b ==则sin()sin cos cos sin cos cos (tan tan )a b a b a b a b a b +=+=+4cos cos 3a b ====-故答案为:12.2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【解析】()πsin 2sin 3f x x x x æö==-ç÷èø,当[]0,πx Î时,ππ2π,333x éù-Î-êúëû,当ππ32x -=时,即5π6x =时,()max 2f x =.故答案为:213.12-/0.5-【分析】首先得出π2π,Z k k b a =++Î,结合三角函数单调性即可求解最值.【解析】由题意π2π,Z k k b a =++Î,从而()cos cos π2πcos k b a a =++=-,因为ππ,63a éùÎêúëû,所以cos a 的取值范围是12éêëû,cos b 的取值范围是12éù-êúëû,当且仅当π3a =,即4π2π,Z 3k k b =+Î时,cos b 取得最大值,且最大值为12-.故答案为:12-.14.(1)π3B =(2)【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B =得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【解析】(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 222a b c C ab ab +-===,因为()0,πC Î,所以sin 0C >,从而sin C ===又因为sin C B =,即1cos 2B =,注意到()0,πB Î,所以π3B =.(2)由(1)可得π3B =,cos 2C =,()0,πC Î,从而π4C =,ππ5ππ3412A =--=,而5πππ1sin sin sin 12462A æöæö==+==ç÷ç÷èøèø由正弦定理有5πππsin sin sin 1234a b c==,从而,a b ====,由三角形面积公式可知,ABC的面积可表示为211sin 222ABCSab C ===,由已知ABC的面积为3,可得2338c =所以c =15.(1)π6A =(2)2【分析】(1)根据辅助角公式对条件sin 2A A =进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【解析】(1)方法一:常规方法(辅助角公式)由sin 2A A =可得1sin 122A A +=,即sin()1π3A +=,由于ππ4π(0,π)(,)333A A ÎÞ+Î,故ππ32A +=,解得π6A =方法二:常规方法(同角三角函数的基本关系)由sin 2A A =,又22sin cos 1A A +=,消去sin A 得到:224cos 30(2cos 0A A A -+=Û=,解得cos A =又(0,π)A Î,故π6A =方法三:利用极值点求解设()sin (0π)f x x x x =<<,则π()2sin (0π)3f x x x æö=+<<ç÷èø,显然π6x =时,max ()2f x =,注意到π()sin 22sin()3f A A A A ===+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos f A A A ¢==,即tan A =又(0,π)A Î,故π6A =方法四:利用向量数量积公式(柯西不等式)设(1,3),(sin ,cos )a b A A ==,由题意,sin 2a b A A ×==,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ×==,则2cos ,2cos ,1a b a b =Û=,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan A A A ×=Û=又(0,π)A Î,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,22sin 21t A A t ==+整理可得,2222(2(20((2t t t -+==-,解得tan22A t ==22tan 13t A t ==-,又(0,π)A Î,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =Û=,又,(0,π)B C Î,则sin sin 0B C ¹,进而cos 2B =,得到π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos C A B A B A B B A =--=+=+=由正弦定理可得,sin sin sin a b c A B C ==,即2ππ7πsin sin sin 6412b c==,解得b c ==故ABC的周长为216.(1)2π3A =;(2)选择①无解;选择②和③△ABC.【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B p =,结合(1)问答案即可排除;选择②,首先求出sin B =再代入式子得3b =,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c =,再利用正弦定理得到sin C =,再利用两角和的正弦公式即可求出sin B ,最后利用三角形面积公式即可;【解析】(1)由题意得2sin cos cos 7B B b B =,因为A 为钝角,则cos 0B ¹,则2sin B =,则7sin sin sin b a B A A ===,解得sin A =因为A 为钝角,则2π3A =.(2)选择①7b =,则sin 7B ===2π3A =,则B 为锐角,则3B p =,此时πA B +=,不合题意,舍弃;选择②13cos 14B =,因为B为三角形内角,则sin B ==则代入2sin 7B =得2147´=,解得3b =,()2π2π2πsin sin sin sin cos cos sin 333C A B B B B æö=+=+=+ç÷èø131********æö=+-´=ç÷èø,则11sin 7322ABC S ab C ==´´=.选择③sin c A =c =5c =,则由正弦定理得sin sin a c A C =5sin C =,解得sin 14C =,因为C 为三角形内角,则11cos 14C ==,则()2π2π2πsin sin sin sin cos cos sin 333B A C C C C æö=+=+=+ç÷èø11121421414æö=+-´=ç÷èø,则11sin 7522ABC S ac B ==´´=△17.(1)4(3)5764【分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【解析】(1)设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,即229254922316t t t t =+-´´´,解得2t =(负舍);则4,6a c ==.(2)法一:因为B 为三角形内角,所以sin B ==再根据正弦定理得sin sin a b A B =,即4sin A =sin A =法二:由余弦定理得2222225643cos 22564b c a A bc +-+-===´´,因为()0,πA Î,则sin A =(3)法一:因为9cos 016B =>,且()0,πB Î,所以π0,2B æöÎç÷èø,由(2)法一知sin B =,因为a b <,则A B <,所以3cos 4A ==,则3sin 22sin cos 24A A A ===2231cos 22cos 12148A A æö=-=´-=ç÷èø()1957cos 2cos cos 2sin sin 281664B A B A B A -=+=´=.法二:3sin 22sin cos 2448A A A ==´=,则2231cos 22cos 12148A A æö=-=´-=ç÷èø,因为B 为三角形内角,所以sin B ===所以()9157cos 2cos cos 2sin sin 216864B A B A B A -=+=´=。

高中数学三角函数与解三角形真题(解析版)

高中数学三角函数与解三角形真题(解析版)

专题04 高中数学三角函数与解三角形真题1.对任意闭区间I,用表示函数y=sinx在I上的最大值.若正数a满足,则a的值为.【答案】或【解析】由图像分析得或.2.已知x、y满足.则的取值范围是___________。

【答案】【解析】由于.由,知因此,当时, 有最小值-1,此吋,y可以取;当时, 有最大值此时,y可以取由的值域为,知的取值范围是。

故答案为:3.设函数.若对任意实数a,均有,则k的最小值为________.【答案】16【解析】由条件知,当且仅当时,取到最大值.根据条件,知任意一个长为1的开区间至少包含一个最大值点.从而,.反之,当时,任意一个开区间均包含的一个完整周期,此时,.综上,k 的最小值为,其中,表示不超过实数x 的最大整数.4.若tan cos αα=,则41cos sin αα+=__________. 【答案】2【解析】由tan cos αα=有2sin cos ,sin cos cos ααααα==,而22sin cos 1αα+=,求出15cos 2α-+=(负值舍去),所以244211215cos cos 2sin cos 215αααα⎛⎫-++=+=+= ⎪ ⎪-+⎝⎭。

5.【2015】设为正实数.若存在,使得,则的取值范围是______.【答案】【解析】 由.而,故已知条件等价于:存在整数,使得. ①当时,区间的长度不小于,故必存在满足式①.当时,注意到,.故只要考虑如下几种情形:(1),此时,,且,无解;(2),此时,;(3),此时,.综上,并注意到也满足条件,知.故答案为:6.在中,已知,则______.【答案】11【解析】由.7.设的内角的对边分别为,且满足.则______. 【答案】4【解析】解法1 有题设及余弦定理得.故.解法2 如图4,过点,垂足为.则.由题设得.又,联立解得.故.解法3 由射影定理得.又,与上式联立解得.故.8.满足的所有正整数的和是______.【答案】33.【解析】由正弦函数的凸性,知当时,.故,.因此,满足的正整数的所有值分别为10、11、12,其和为33. 9.若,则的取值范围为______. 【答案】【解析】题设不等式等价于.设,所以,所以上的增函数,所以,.故.由,知的取值范围是.故答案为:10.已知函数的最小值为.则实数的取值范围是________.【答案】【解析】令.于是,原函数化为.由内的最小值为,即.故. ①当,时,式①总成立;当时,;当时,.从而,.11.在△ABC中,BC=a,CA=b,AB=c.若b是a与c的等比中项,且sinA是sin(B-A)与sinC的等差中项,求cosB的值.【答案】【解析】由题意ac=b2,,整理即sin B=tan A.对ac=b2利用正弦定理并结合三项的等差数列得. 即.于是.即..令,则,解得.12.已知函数,其中,,且.(1)若对任意,都有,求的取值范围.(2)若,且存在,使,求的取值范围.【答案】(1)(2)【解析】(1).令.则.由题设知解得的取值范围为.(2)因为,所以,.故.从而,.由题设知.解得.故的取值范围是.1.已知,得,所以_____ 【答案】【解析】.2.在△ABC中,AB+AC=7,且三角形的面积为4,则sin∠A的最小值为________.【答案】【解析】由,又时取等号.3.设满足,则x的取值范围为________.【答案】【解析】由.令,,所以.4.计算的值为________.【答案】【解析】记,则,所以,. 5.函数的值域是________.【答案】【解析】,因为,所以. 故答案为:6.如图,在△ABD中,点C在AD上,,AB=CD=1.则AC=____.【答案】【解析】在△ABD中,(其中AD=x) ①在△BCD中,②由①②得,因为x+2>0,∴x3=2.即.故答案为:7.若边长为6的正△ABC的三个顶点到平面α的距离分别为1,2,3,则△ABC的重心G到平面α的距离为_______.【答案】【解析】(1)当△ABC的三个顶点在平面α的同侧时,由公式求得重心G到平面α的距离为2.(2)当△ABC的三个顶点中,其中一点与另两点分别在平面α的异侧时,求得重心G到平面α的距离分别为0,.故答案为:8.函数的所有零点之和等于________.【答案】60【解析】函数的零点即为方程2(5-x)sinπx在区间[0,10]上的解函数y=2sinπx 的图像与函数的图像在区间[0,10]上的交点的横坐标.因为函数y=2sinπx的图像与函数的图像均关于点(5,0)对称,且在区间[0,10]上共有12个交点(6组对称点).每组对称点的横坐标之和为10,即这12个点横坐标之和为60.所以函数y=2(5-x)sinπ-1(0≤x≤10)的所有零点之和等于60.故答案为:609.在△ABC中,,则________.【答案】【解析】因为所以注意到:故.故答案为:10.设的内角所对的边分别为,且成等差数列,则________. 【答案】【解析】分析:根据三角形内角和定理及其关系,用∠C表示∠A与∠B;根据成等差,得到,利用正弦定理实现边角转化。

专题06 三角函数及解三角形——2020年高考真题和模拟题理科数学分项汇编(解析版).docx

专题06 三角函数及解三角形——2020年高考真题和模拟题理科数学分项汇编(解析版).docx

专题06三角函数及解三角形2020年高考真题1. [2020年高考全国I卷理数】设函数f(x) = cos(®x + -)在[-”,兀]的图像大致如下图,则/(%)的最小正6周期为9 64兀3兀C. —D.兰3 2【答案】C【解析】由图可得:函数图象过点( 4 兀1T \将它代入函数/(兀)可得:cosl一- •<« + —1 = 0,又[-普,o]是函数/(兀)图象与x轴负半轴的第一个交点,十.I 4兀兀兀5 e 3所以-亍0+丁丐,解得r •2K _ 2兀_ 4兀所以函数/(%)最小正周期为=T=T=T2故选C.【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.2. [2020 年高考全国I 卷理数】已知cc G (0,7i),且3COS2Q-8COSQ =5 ,贝0 sin^z =A. B.【答案】A又 a e (0, n),.'. sin a = Jl-cos? a =•故选:A. 【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解 能力,属于基础题.3.【2020年高考全国II 卷理数】若a 为第四象限角,则B. cos2a<0D. sin2a<0 【答案】D【解析】方法-:由。

为第四象限角,可得亍2炽“<2卄2炽从Z,所以 3兀 + 4k 兀 < 2a < 4兀 + 4-kn, e Z此时2a 的终边落在第三、四象限及V 轴的非正半轴上,所以sin2a<0,故选:D.兀方法二:当& =——时,cos 2a = cos 由a 在第四象限可得:sin a <0, cos a > 0 ,则由2 a 蕃1 aaz Qz < ,选项C 错误,选项D 正确; 故选:D.【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转 化能力和计算求解能力.C. sin2a>0>0,选项B 错误;<0,选项A 错误;【解析】3cos2a-8cosa = 5 ,得6cos 2tz-8coscr-8 = 0 -【答案】A2【解析】在ABC中,cosC = —, AC = 4, BC = 3, 3根据余弦定理:AB2 =AC2+BC2-2AC BC COS C,7AB- =42+32-2X4X3X-,3可得AB2 = 9,即AB — 3 ,… AB2+BC2-AC2 9 + 9-16 1由cos B = ------------------------- = ------------ =—,2ABBC2x3x3 9故cos B =—.9故选:A.5. [2020年高考全国III卷理数】已知2tan^-tan(0+ —)=7,则tan^=A. -2B. -1【答案】D【解析】2 tan - tan | ^ + — | = 7 , z. 2tan^~ tan^ + ^ =7 ,I 4 丿 1 - tan令/ = tan&,/Hl,则2/—土 = 7,整理得严_4/ + 4 = 0,解得t = 2,即tan6» = 2.故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.6.【2020年高考北京】2020年3月14日是全球首个国际圆周率日(兀Day).历史上,求圆周率兀的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔•卡西的方法是:当正整数"充分大时,计算单位圆的内接正6“边形的周长和外切正6“边形(各边均与圆相切的正6“边形)的周长,将它们的算术平均数作为2兀的近似值.按照阿尔•卡西的方法,兀的近似值的表达式是2 71 、[/ — 71 -- 当“一 2571 6 _ 时,y = —1 二 2x^ + ^ = —+ 2^(^ e Z),3n < .30° 30°) 6n < .30° 30°) A. sin —— + tan ----- B. sin —— + tan ----- 1 n n 丿 I n n ) 3n (.60° 60°) 6n (.60° < 60°) c. sin ---- + tan ----- D. sin ----- + tan ----- I nn 丿 I nn ) 【答案】A 360° 60° 30° 【解析】单位圆内接正6〃边形的每条边所对应的圆周角为一 =——,每条边长为2sin —, nx6 n n 30° 所以,单位圆的内接正6〃边形的周长为12nsin ——, n30° 30° 单位圆的外切正6n 边形的每条边长为2tan —,其周长为12〃tan —, n n30° 30° 12nsin ----- 12ntan ---------.・.* 二 ----- n --------------- n _ 2( 30° 30°则 7i = 3n\ sin------ + tan --- I n n故选:A.【点睛】本题考查圆周率兀的近似值的计算,根据题意计算出单位圆内接正6〃边形和外切正6〃边形的 周长是解答的关键,考查计算能力,属于中等题.7. [2020年新高考全国I 卷】下图是函数y 二sin (亦+卩)的部分图像,贝!j sin (亦+卩)=【答案】BC=6“ sin 竺+ tan 竺, I n n ) A. sin(x + f)¥亠)【解析】由函数图像可知:- = -7T —— 2 3 71 _71 6~2 27T 则血=—=—=2,所以不选A, T 71 B.解得:cp 二 Ikn + 彳兀(£ e Z ),即函数的解析式为:y = sin| 2x + —TT + 2A ;7Z - | = sin| 2x + —+ —| = cos| 2x + — | = sin| — -2x I 3 丿(6 2丿(6丿(3 (\5/r而 cos I 2x + — I — - cos( — 2x) 故选:BC.【点睛】已知fix) =Asin(a}x +^)(A>0, e>0)的部分图象求其解析式时,A 比较容易看图得出,困难的 是求待定系数e 和0常用如下两种方法:竺即可求出e ;确定y 时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标xo,则令 exo+0 = O(或 a )xo+<p=7t'),即可求出 <p.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出co 和<p, 若对A, e 的符号或对°的范围有要求,则可用诱导公式变换使其符合要求.&【2020年高考全国I 卷理数】如图,在三棱锥P ABC 的平面展开图中,AC=1, AB = AD =也,佔丄AC, AB±AD, ZCAE=30°,贝0 cosZFCB= _______________ .【答案】4【解析】 AB 丄AC, AB = j3, AC = E由勾股定理得BC = V A B 2+AC 2 = 2 ‘71 F(P)同理得 BD =品,:.BF = BD = ^,在△4CE 中,AC = 1, AE = AD =运,ZCAE = 30 ,由余弦定理得 CF = 3+^2—240 AEcos30 =l + 3-2xlxV3x —= 1, 2:.CF = CE = 1,在 BCF 中,BC = 2, BF =愿,CF = 1,CF~ + BC 2 -BF 2由余弦定理得cos ZFCB = 七——2CFBC故答案为:—. 4【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题.9.【2020年高考全国III 卷理数】16.关于函数f (x) =sinx ——-—有如下四个命题: sinx®f (%)的图像关于y 轴对称.®f (x)的图像关于原点对称.1T®f (X )的图像关于直线x=3对称.®f (X )的最小值为2.其中所有真命题的序号是 __________ .【答案】②③所以,函数/(x)的图象不关于y 轴对称,命题①错误;对于命题②,函数/(X )的定义域为[x\x^kn,k^Z^ ,定义域关于原点对称, / ( -x) = sin (-%) + —r = - sin x - -— = -fsinx + -^―] = -/(%),sin (—兀) sinx I sinx)所以,函数/(x)的图象关于原点对称,命题②正确;1 + 4-6 2x1x2 【解析】对于命题①,A 7C \ . (7C ] 1(2 丿(2 ) .(7i' 7' 7 sm —+ x12所以,函数/(x)的图象关于直线x = |对称,命题③正确;对于命题④,当一7i<x<0时,sinx<0,贝J f(x} = sinx + — <0< 2 , sinx命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.JT 210.【2020年高考江苏】已知sin2(-+ <?) = -,则sin2a 的值是▲.4 3【解析】Qsin2(—+ cr) = (-^cosa-\——sin a)2 = —(1 + sin 2a)4 2 2 21 2 1— (1 + sin 2a) = —sin 2a =—2 3 3故答案为:-3【点睛】本题考查两角和正弦公式、二倍角正弦公式,考查基本分析求解能力,属基础题.11.【2020年高考北京】若函数/(x) = sin(x+^) + cosx的最大值为2,则常数0的一个取值为 _______________IT TT【答案辽(2唸+亍心均可)【解析】因为 (兀)=cos ©sin 兀 +(sin 0 + 1)cos 兀=Jcos? 0 +(sin 0 + 1)2 sin (兀+ 0), 所以Jcos?(p + (sin(p +1『=2,解得sin0 = l,故可取^ = ~-7T7T故答案为:-(2^ + -,^eZ 均可). 2 2【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数 学运算能力,属于基础题.1T12. [2020 年高考浙江】已知 tan& = 2,则 cos2& = _______ , tan(6>-一) = ______ .3 1【答案】V 巧cos 2 0-sin 2 0 _ 1-tan 2 _ 1 -22cos 2 ^ + sin 2 0 1 + tan 2 0 1 + 223 1故答案为: 【点睛】本题考查二倍角余弦公式以及弦化切、两角差正切公式,考查基本分析求解能力,属基础题.13. [2020年高考江苏】将函数y = 3sin(2x +^)的图象向右平移夕个单位长度,则平移后的图象中与y 轴最 4 6近的对称轴的方程是▲ • 【答案】2-峯 24V/ 'j I r jl【解析】y — 3sin[2(x ---- ) —] = 3 sin(2x ------ ) 6 4 12小 TC TC , , x 7 TT k/C 7 x2x ------ — —F k 兀G Z)x — ----------- 1 ---- (k G Z) 12 2 24 2当k = -1时兀=——• 24故答案为:x =———24 【点睛】本题考查三角函数图象变换、正弦函数对称轴,考查基本分析求解能力,属基础题.14. [2020年新高考全国I 卷】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔 及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧与直线BC 的切点,四边 形 DEFG 为矩形,BC 丄DG,垂足为 C, tanZODC= - , BH//DG , EF=12 cm, DE=2 cm, A 到直线5DE 和EF 的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为 ___________ cm 2.【解析】cos 20 = cos 2 0 - sin 2 0 = tan <9-1 l + tan& 2-11 + 2【答案】4 + »兀 2【解析】设05 = OA=r,由题意AM = AN = 1, EF = \2,所以NF = 5,因为 AP = 5,所以 ZAGP = 45\因为 BH//DG,所以 ZAH0 = 45°,因为AG 与圆弧4B 相切于A 点,所以Q4丄4G,即AOAH 为等腰直角三角形;在直角△0QD 中,0Q = 5_^r ,DQ = l-—r ,2 2因为 tanZ0DC = -^ = |,所以 21- —r = 25-^r , DQ 5 22 解得 r = 2A /2 ;等腰直角MAH 的面积为恥》2屈2尽4;I 所以阴影部分的面积为S] + S?—㊁兀=4 +三-•故答案为:4 + T.扇形A0B 的面积S 2 = =3乃,【点睛】本题主要考查三角函数在实际中应用,把阴影部分合理分割是求解的关键,以劳动实习为背景,体现了五育并举的育人方针.15.【2020 年高考全国II 卷理数】/XABC 中,sin2A —sin2B—sin2C= sinBsinC.(1)求A;(2)若BC=3,求zMBC周长的最大值.【解析】(1)由正弦定理和已知条件得BC2-AC2-AB2^AC AB,①由余弦定理得BC2 = AC2 +AB2- 2AC AB cos A,②由①,②得cos A =—.22兀因为0<4<兀,所以A =—.3(2)由正弦定理及(1)得上匕=少-=-?£ = 2巧,sin B sin C sin A从而AC = 2A/3 sin B , AB = 2^3 sin(兀一A - B) = 3 cos B一A/3 sin B.故BC + 4C + AB = 3 + 7^sinB + 3cosB = 3 + 2V^sin(B + ¥).X0<B<-,所以当B =-时,AABC周长取得最大值3 + 2^3-3 616.[2020年高考江苏】在A ABC中,角A, B, C的对边分别为°, b, c,已知a = 3,c =迈,B = 45。

专题05 三角函数-2023年高考数学真题题源解密(新高考)(解析版)

专题05  三角函数-2023年高考数学真题题源解密(新高考)(解析版)

专题05 三角函数目录一览2023真题展现考向一 三角函数的图象与性质考向二 三角恒等变换真题考查解读近年真题对比考向一 三角函数的图象与性质考向二 三角恒等变换考向三 同角三角函数间的基本关系命题规律解密名校模拟探源易错易混速记/二级结论速记考向一 三角函数的图象与性质1.(2023•新高考Ⅱ•第15题)已知函数f (x )=sin (ωx +φ),如图,A ,B 是直线y =12与曲线y =f (x )的两个交点,若|AB |=π6,则f (π)= .【答案】解:由题意:设A (x 1,12),B (x 2,12),则x 2﹣x 1=π6,由y =A sin (ωx +φ)的图象可知:ωx 2+φ﹣(ωx 1+φ)=5π6−π6=2π3,即ω(x 2﹣x 1)=2π3,∴ω=4,又f (2π3)=sin (8π3+φ)=0,∴8π3+φ=k π,k ∈Z ,即φ=−8π3+k π,k ∈Z ,观察图象,可知当k =2时,φ=−2π3满足条件,∴f (π)=sin (4π−2π3)=故答案为:2.(2023•新高考Ⅰ•第15题)已知函数f (x )=cos ωx ﹣1(ω>0)在区间[0,2π]有且仅有3个零点,则ω的取值范围是 .【答案】[2,3)【解答】解:x ∈[0,2π],函数的周期为2πω(ω>0),cos ωx ﹣1=0,可得cos ωx =1,函数f (x )=cos ωx ﹣1(ω>0)在区间[0,2π]有且仅有3个零点,可得2⋅2πω≤2π<3⋅2πω,所以2≤ω<3.考向二 三角恒等变换3.(2023•新高考Ⅱ•第7题)已知α为锐角,cos αsin α2=( )A B C D 【答案】D解:cos α则cos α=1−2si n 2α2,故2si n 2α2=1﹣cos αsi n 2α2=∵α为锐角,∴sin α2>0,∴sin α2=4.(2023•新高考Ⅰ•第8题)已知sin (α﹣β)=13,cos αsin β=16,则cos (2α+2β)=( )A .79B .19C .−19D .−79【答案】B解:因为sin (α﹣β)=sin αcos β﹣sin βcos α=13,cos αsin β=16,所以sin αcos β=12,所以sin (α+β)=sin αcos β+sin βcos α=12+16=23,则cos (2α+2β)=1﹣2sin 2(α+β)=1﹣2×49=19.【命题意图】考查同角三角函数的基本关系式、诱导公式、和角差角公式、三角函数的图象与性质、y=A sin (wx+ϕ)的图象与性质.应用三角公式进行化简、求值和恒等变形及恒等证明.【考查要点】三角函数高考必考.常考查和角差角公式、恒等变形化简求值、诱导公式、同角三角函数公式,辅助角公式等.常考查y=A sin (wx+ϕ)的图象与性质,涉及到增减性、周期性、对称性、图象平移、零点等.【得分要点】1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sinαcosα=tan α.2.诱导公式公式一:sin (α+2k π)=sin α,cos (α+2k π)=cos_α,其中k ∈Z .公式二:sin (π+α)=﹣sin_α,cos (π+α)=﹣cos_α,tan (π+α)=tan α.公式三:sin (﹣α)=﹣sin_α,cos (﹣α)=cos_α.公式四:sin (π﹣α)=sin α,cos (π﹣α)=﹣cos_α.公式五:sin (π2−α)=cos α,cos (π2−α)=sin α.公式六:sin (π2+α)=cos α,cos (π2+α)=﹣sin α.3.两角和与差的正弦、余弦、正切公式(1)C (α﹣β):cos (α﹣β)=cos αcos β+sin αsin β.(2)C (α+β):cos (α+β)=cos αcos β﹣sin αsin β.(3)S (α+β):sin (α+β)=sin αcos β+cos αsin β.(4)S (α﹣β):sin (α﹣β)=sin αcos β﹣cos αsin β.(5)T (α+β):tan (α+β)=tanαtanβ1−tanαtanβ.(6)T (α﹣β):tan (α﹣β)=tanα−tanβ1tanαtanβ.4.二倍角的正弦、余弦、正切公式(1)S 2α:sin 2α=2sin αcos α.(2)C 2α:cos 2α=cos 2α﹣sin 2α=2cos 2α﹣1=1﹣2sin 2α.(3)T 2α:tan 2α=2tanα1−tan 2α.5.正弦函数、余弦函数、正切函数的图象和性质R R k ∈Z y =sin x 的图象变换得到y =A sin (ωx +φ)(A >0,ω>0)的图象的步骤7.由y=Asin(ωx+φ)的部分图象确定其解析式在由图象求三角函数解析式时,若最大值为M,最小值为m,则A=M−m2,k=M m2,ω由周期T确定,即由2πω=T求出,φ由特殊点确定.考向一三角函数的图象与性质1.(2022•新高考Ⅰ)记函数f(x)=sin(ωx+)+b(ω>0)的最小正周期为T.若<T<π,且y=f(x)的图像关于点(,2)中心对称,则f()=( )A.1B.C.D.3【解答】解:函数f(x)=sin(ωx+)+b(ω>0)的最小正周期为T,则T=,由<T<π,得<<π,∴2<ω<3,∵y=f(x)的图像关于点(,2)中心对称,∴b=2,且sin(+)=0,则+=kπ,k∈Z.∴,k∈Z,取k=4,可得.∴f(x)=sin(x+)+2f()=sin(×+)+2=﹣1+2=1.故选:A.2.(多选)(2022•新高考Ⅱ)已知函数f(x)=sin(2x+φ)(0<φ<π)的图像关于点(,0)中心对称,则( )A.f(x)在区间(0,)单调递减B.f(x)在区间(﹣,)有两个极值点C.直线x=是曲线y=f(x)的对称轴D.直线y=﹣x是曲线y=f(x)的切线【解答】解:因为f(x)=sin(2x+φ)(0<φ<π)的图象关于点(,0)对称,所以+φ=kπ,k∈Z,所以φ=kπ﹣,因为0<φ<π,所以φ=,故f(x)=sin(2x+),令2x+,解得﹣<x<,故f(x)在(0,)单调递减,A正确;x∈(﹣,),2x+∈(,),根据函数的单调性,故函数f(x)在区间(﹣,)只有一个极值点,故B错误;令2x+=kπ+,k∈Z,得x=﹣,k∈Z,C显然错误;f(x)=sin(2x+),求导可得,f'(x)=,令f'(x)=﹣1,即,解得x=kπ或(k∈Z),故函数y=f(x)在点(0,)处的切线斜率为k=,故切线方程为y﹣,即y=,故D正确.故选:AD.3.(2021•新高考Ⅰ)下列区间中,函数f(x)=7sin(x﹣)单调递增的区间是( )A.(0,)B.(,π)C.(π,)D.(,2π)【解答】解:令,k∈Z.则,k∈Z.当k=0时,x∈[,],(0,)⊆[,],故选:A .考向二 三角恒等变换4.(2022•新高考Ⅱ)若sin (α+β)+cos (α+β)=2cos (α+)sin β,则( )A .tan (α﹣β)=1B .tan (α+β)=1C .tan (α﹣β)=﹣1D .tan (α+β)=﹣1【解答】解:解法一:因为sin (α+β)+cos (α+β)=2cos (α+)sin β,所以sin ()=2cos (α+)sin β,即sin ()=2cos (α+)sin β,所以sin ()cos β+sin βcos ()=2cos (α+)sin β,所以sin ()cos β﹣sin βcos ()=0,所以sin ()=0,所以=k π,k ∈Z ,所以α﹣β=k,所以tan (α﹣β)=﹣1.解法二:由题意可得,sin αcos β+cos αsin β+cos αcos β﹣sin αsin β=2(cos α﹣sin α)sin β,即sin αcos β﹣cos αsin β+cos αcos β+sin αsin β=0,所以sin (α﹣β)+cos (α﹣β)=0,故tan (α﹣β)=﹣1.故选:C .考向三 同角三角函数间的基本关系5.(2021•新高考Ⅰ)若tan θ=﹣2,则=( )A .﹣B .﹣C .D .【解答】解:由题意可得:===.故选:C.结合近三年命题规律,命制三角函数恒等变换题目,诸如“给值求角”“给值求值”“给角求值”,给定函数部分图象,求解函数解析式。

通用版五年高考2024_2025高考数学真题专题归纳专题06三角函数及解三角形含解析理

通用版五年高考2024_2025高考数学真题专题归纳专题06三角函数及解三角形含解析理

1 1
tan tan
2 2
1 1
22 22
3, 5
tan( ) tan 1 2 1 1 , 4 1 tan 1 2 3
11.(2024·江苏卷)已知 sin2 ( ) = 2 ,则 sin 2 的值是____.
4
3
【答案】 1 3
【解析】 sin2 ( ) ( 2 cos 2 sin )2 1 (1 sin 2 )
图1
9
图2
图3
4.【2024·全国Ⅱ卷】已知 α∈(0, ),2sin2α=cos2α+1,则 sinα= 2
A. 1 5
B. 5 5
C. 3 3
【答案】B
D. 2 5 5
【解析】
2sin 2α cos 2α 1,4sin α cos α 2 cos2 α .
α
0,
2
,
cos
α
0

sin α 0, 2sin α cos α ,又 sin2 cos2 1,5sin2 α 1,sin2 α 1 ,又 5
f
x
可得:
cos
4 9
6
0
.又
4 9
,
0
是函数
f
x 图象与
x
轴负半轴的第一个交点,
所以 4 ,解得: 3
9
62
2
所以函数
f
x 的最小正周期为T
2
2 3
4 3
2
2.(2024·新课标Ⅰ)已知 (0, π) ,且 3cos2 8cos 5 ,则 sin (
A5 3
B. 2 3
7.(2024·山东卷)下图是函数 y= sin(ωx+φ)的部分图像,则 sin(ωx+φ)= ( )

高三数学数学三角函数与解三角形多选题试题含答案

高三数学数学三角函数与解三角形多选题试题含答案

高三数学数学三角函数与解三角形多选题试题含答案一、三角函数与解三角形多选题1.已知函数()sin()(0)f x x ωϕω=+>满足()()00112f x f x =+=-,且()f x 在()00,1x x +上有最小值,无最大值.则( )A .0112f x ⎛⎫+=- ⎪⎝⎭B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在(0,2019)上的零点个数最少为1346个 【答案】AC 【分析】根据正弦函数图象的对称性可判断A ;根据已知三角函数值求角的方法,可得052,6x k k Z ωϕππ+=-∈,0(1)2,6x k k Z πωϕπ++=-∈,两式相减可求出ω,进而求得周期,从而可判断B 和C 选项;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,为了算出零点“至少”有多少个,可取(0)0f =,进而可判断D . 【详解】解:由题意得,()f x 在()00,1x x +的区间中点处取得最小值, 即0112f x ⎛⎫+=- ⎪⎝⎭,所以A 正确; 因为()()00112f x f x =+=-, 且()f x 在()00,1x x +上有最小值,无最大值, 所以不妨令052,6k k Z ωϕππ+=-∈, ()012,6x k k Z πωϕπ++=-∈,两式相减得,23πω=, 所以23T πω==,即B 错误,C 正确;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期, 当(0)0f =,即k ϕπ=时,()f x 在区间(0,2019)上的零点个数至少为673211345⨯-=个,即D 错误.故选:AC . 【点睛】本题考查与三角函数有关的命题的真假关系,结合三角函数的图象与性质,利用特殊值法以及三角函数的性质是解题的关键,综合性较强.2.在ABC 中,角,,A B C 所对的边分别为,,a b c ,下列命题正确的是( ) A .若::4:5:6a b c =,ABC 的最大内角是最小内角的2倍 B .若cos cos a B b A c -=,则ABC 一定为直角三角形 C .若4,5,6a b c ===,则ABC外接圆半径为7D .若()()()cos cos cos 1A B B C C A ---=,则ABC 一定是等边三角形 【答案】ABD 【分析】对于A 选项,求得2A C =,由此确定选项正确.对于B 选项,求得2A π=,由此确定选项正确.对于C 选项,利用正弦定理求得ABC 外接圆半径,由此确定选项错误.对于D 选项,证得()()()cos cos cos 1A B B C C A -=-=-=,得到A B C ==,确定选项正确. 【详解】对于A 选项,A 角最小,C 角最大.由余弦定理得253616453cos 0256604A +-===>⨯⨯,16253651cos 0245408C +-===>⨯⨯,2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭,cos2cos A C =.0,022A C ππ<<<<,则02A π<<,所以2A C =,所以A 选项正确.对于B 选项,cos cos a B b A c -=,由正弦定理得sin cos sin cos sin A B B A C -=,()sin cos cos sin sin sin cos cos sin A B A B A B A B A B -=+=+,cos sin 0=A B ,由于0,0A B ππ<<<<,所以2A π=,故B 选项正确.对于C 选项,16253651cos 245408C +-===⨯⨯,0C π<<,sin 8C ==, 设三角形ABC 外接圆半径为R,则2sin 2sin 7c cR R C C=⇒===,故C 选项错误.对于D 选项,0,0,A B A B ππππ<<-<-<-<-<,故()1cos 1A B -<-≤,同理可得()()1cos 1,1cos 1B C C A -<-≤-<-≤, 要使()()()cos cos cos 1A B B C C A ---=,则需()()()cos cos cos 1A B B C C A -=-=-=,所以0,0,0A B B C C A -=-=-=,所以A B C ==,所以D 选项正确. 故选:ABD 【点睛】利用正弦定理可求得三角形外接圆的半径R ,要注意公式是2sin aR A=,而不是sin aR A =.3.设函数()2sin sin 2cos2f x x x =++,给出下列四个结论:则正确结论的序号为( ) A .()20f >B .()f x 在53,2ππ⎛⎫--⎪⎝⎭上单调递增 C .()f x 的值域为[]12cos2,32cos2-++ D .()f x 在[]0,2π上的所有零点之和为4π 【答案】ABD 【分析】由()23sin 22cos2f =+,结合3224ππ<<,可判定A 正确;作出函数2sin sin y x x =+的图象,可得函数()f x 的值域及单调性,可判定B 正确,C 不正确;结合函数的图象,可得()f x 在[]0,2π上的所有零点之和,可判定D 正确. 【详解】由题意,函数()2sin sin 2cos2f x x x =++, 可得()22sin 2sin 22cos23sin 22cos2f =++=+ 因为3224ππ<<,所以sin 2cos20>->,所以()20f >,所以A 正确; 由3sin ,222sin sin ,sin ,222x k x k y x x k Z x k x k πππππππ≤≤+⎧=+=∈⎨-+≤≤+⎩,作出函数2sin sin y x x =+的图象,如图所示, 可得函数()f x 是以2π为周期的周期函数,由函数2sin sin y x x =+的图象可知,函数()f x 在3(,)2ππ上单调递增, 又由()f x 是以2π为周期的周期函数,可得函数()f x 在5(3,)2ππ--上单调递增, 所以B 是正确的;由由函数2sin sin y x x =+的图象可知,函数()f x 的值域为[2cos 2,32cos 2]+,所以C 不正确; 又由2223ππ<<,所以1cos 202-<<,则02cos21<-<, 令()0f x =,可得2sin sin 2cos2x x +=-,由图象可知,函数()f x 在[]0,2π上的所有零点之和为4π,所以D 正确. 故选:ABD.【点睛】本题主要考查了三角函数的图象与性质的综合应用,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查转化思想,以及数形结合思想的应用,以及推理与运算能力,属于中档试题.4.设函数g (x )=sinωx (ω>0)向左平移5πω个单位长度得到函数f (x ),已知f (x )在[0,2π]上有且只有5个零点,则下列结论正确的是( )A .f (x )的图象关于直线2x π=对称B .f (x )在(0,2π)上有且只有3个极大值点,f (x )在(0,2π)上有且只有2个极小值点C .f (x )在(0,)10π上单调递增 D .ω的取值范围是[1229,510) 【答案】CD 【分析】利用正弦函数的对称轴可知,A 不正确;由图可知()f x 在(0,2)π上还可能有3个极小值点,B 不正确;由2A B x x π≤<解得的结果可知,D 正确;根据()f x 在3(0,)10πω上递增,且31010ππω<,可知C 正确. 【详解】依题意得()()5f x g x πω=+sin[()]5x πωω=+sin()5x πω=+, 2T πω=,如图:对于A ,令52x k ππωπ+=+,k Z ∈,得310k x ππωω=+,k Z ∈,所以()f x 的图象关于直线310k x ππωω=+(k Z ∈)对称,故A 不正确; 对于B ,根据图象可知,2A B x x π≤<,()f x 在(0,2)π有3个极大值点,()f x 在(0,2)π有2个或3个极小值点,故B 不正确, 对于D ,因为5522452525A x T ππππωωωω=-+=-+⨯=,22933555B x T ππππωωωω=-+=-+⨯=,所以2429255πππωω≤<,解得1229510ω≤<,所以D 正确;对于C ,因为1123545410T ππππωωωω-+=-+⨯=,由图可知()f x 在3(0,)10πω上递增,因为29310ω<<,所以33(1)0101010πππωω-=-<,所以()f x 在(0,)10π上单调递增,故C 正确;故选:CD. 【点睛】本题考查了三角函数的相位变换,考查了正弦函数的对称轴和单调性和周期性,考查了极值点的概念,考查了函数的零点,考查了数形结合思想,属于中档题.5.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法正确的是( )A .函数()y f x =的周期为πB .函数()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦单调递减 C .函数()y f x =的图象关于直线512x π=-对称 D .该图象向右平移6π个单位可得2sin 2y x =的图象 【答案】ACD 【分析】先根据图像求出()y f x =的解析式,再分别验证A 、B 、C 、D 是否正确. 对于A :利用周期公式求周期;对于B :利用复合函数“同增异减”求单调区间; 对于C :计算512f π⎛-⎫⎪⎝⎭,看512x π=-是否经过顶点; 对于D :利用“左加右减”判断. 【详解】由图像可知:A =2,周期24,2312T T ππππω⎛⎫=-=∴==⎪⎝⎭; 由=2sin 2212122f ππϕπϕ⎧⎛⎫⎛⎫⨯+= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎪<⎪⎩解得:3πϕ=故函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭对于A :4312T πππ⎛⎫=-= ⎪⎝⎭,故A 正确; 对于B :当236x ππ-≤≤- 时203x ππ-≤+≤,所以()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦上不单调.故B 错误; 对于C :当512x π=-时255s 2121232in f πππ⎛⎫⎛⎫=-=- ⎪ ⎭⎝-⎪⎭+⎝⨯,即直线512x π=-是()y f x =的一条对称轴.故C 正确;对于D :()y f x =向右平移6π个单位得到2sin 222sin 263y x x ππ⎛⎫=-⨯+= ⎪⎝⎭,故D 正确. 故选:ACD 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值;(2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.6.已知4παπ≤≤,32ππβ≤≤,4sin 25α=,cos()10αβ+=-,则( )A .cos α=B .sin cos αα-=C .34πβα-= D .cos cos 5αβ=-【答案】BC 【分析】先根据4sin 25α=,判断角α的范围,再根据cos2α求cos α; 根据平方关系,判断sin cos αα-的值;利用公式cos()cos[()2]βααβα-=+-求值,并根据角的范围判断角βα-的值;利用公式()cos βα+和()cos βα-,联合求cos cos αβ.【详解】 ①因为4παπ≤≤,所以222παπ≤≤,又4sin 205α=>,故有22παπ≤≤,42ππα≤≤,解出2231cos 22cos 1cos cos 555αααα=-=-⇒=⇒=,故A 错误; ②()21sin cos 1sin 25ααα-=-=, 由①知:42ππα≤≤,所以sin cos αα>,所以sin cos 5αα-=,故B 正确; ③由①知:42ππα≤≤,而32ππβ≤≤,所以524παβπ≤+≤,又cos()010αβ+=-<,所以5342ππαβ≤+≤,解得sin()10αβ+=-,所以34cos()cos[()2]1051052βααβα⎛⎫⎛⎫-=+-=--+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭又因为5342ππαβ≤+≤,22ππα-≤-≤-, 所以4πβαπ≤-≤,有34πβα-=,故C 正确;④由cos()cos cos sin sin 1010αβαβαβ+=-⇒-=-,由③知,cos()cos cos sin sin 2βααβαβ-=+=-,两式联立得:cos cos 10αβ=-,故D 错误. 故选:BC 【点睛】关键点点睛:本题的关键是三角函数恒等变形的灵活应用,尤其是确定角的范围,根据三角函数值4sin 25α=,确定22παπ≤≤,且cos()010αβ+=-<,进一步确定5342ππαβ≤+≤,这些都是确定函数值的正负,以及角的大小的依据.7.已知函数)()lg1( 2.7)x x f x x e e e -=+-+≈⋯,若不等式(sin cos )2(sin 2)f f t θθθ+<--对任意R θ∈恒成立,则实数t 的可能取值为( )A .1BC .3D .4【答案】CD 【分析】令)()lgx x g x x e e -=+-,则()()1f x g x =+,可判断()g x 是奇函数且单调递增,不等式可变形可得(sin cos )(sin 2)g g t θθθ+<-,所以sin cos sin 2t θθθ>++,令()sin cos sin 2h θθθθ=++,换元法求出()h θ的最大值,()max t h θ>即可. 【详解】令)()lgx x g x x e e -=+-,则()()1f x g x =+,()g x 的定义域为R ,))()()lglgx x x x g x g x x e e x e e ---+=+-++-0=,所以()()g x g x -=-,所以()g x 是奇函数, 不等式(sin cos )2(sin 2)f f t θθθ+<--等价于[](sin cos )1(sin 2)1f f t θθθ+-<---,即(sin cos )(sin 2)(sin 2)g g t g t θθθθ+<--=-,当0x >时y x =单调递增,可得)lgy x =单调递增,x y e =单调递增,x y e -=单调递减,所以)()lgx x g x x e e -=+-在()0,∞+单调递增,又因为)()lg x x g x x e e -=+-为奇函数,所以)()lgx x g x x e e -=+-在R 上单调递增,所以sin cos sin 2t θθθ+<-,即sin cos sin 2t θθθ>++, 令()sin cos sin 2h θθθθ=++,只需()max t h θ>,令sin cos m θθ⎡+=∈⎣,则21sin 2m θ=+,2sin 21m θ=-, 所以()21h m m m =+-,对称轴为12m =-,所以m =()max 211h m ==,所以1t >可得实数t 的可能取值为3或4,故选:CD 【点睛】关键点点睛:本题解题的关键点是构造函数()g x 奇函数且是增函数,将原不等式脱掉f 转化为函数恒成立问题.8.已知函数()cos f x x x =-,则下列说法正确的是( ) A .()f x 的图象关于点,06π⎛⎫⎪⎝⎭中心对称B .()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减 C .()f x 在()0,2π上有且仅有1个最小值点 D .()f x 的值域为[]1,2- 【答案】BC 【分析】利用特殊值法可判断A 选项的正误;化简函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上的解析式,利用正弦型函数的单调性可判断B 选项的正误;由()()f x f x π+=可得()f x 的周期为π,再在[]0,π上讨论函数()f x 的单调性、最值,可判断CD 选项的正误.【详解】对于A 选项,因为06f π⎛⎫-= ⎪⎝⎭,2f π⎛⎫= ⎪⎝⎭62f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭, 所以()f x 的图象不关于点,06π⎛⎫⎪⎝⎭中心对称,故A 错误;对于B 选项,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,()cos 2sin 6f x x x x π⎛⎫=+=+ ⎪⎝⎭,27,636x πππ⎡⎤+∈⎢⎥⎣⎦,所以,函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,B 选项正确; 对于C 选项,()()()cos sin cos f x x x x x πππ+=+-+=--()cos x x f x =-=,所以π为函数()f x 的周期.当0,2x π⎡⎤∈⎢⎥⎣⎦时,()cos 2sin 6f x x x x π⎛⎫=-=- ⎪⎝⎭,,663x πππ⎡⎤-∈-⎢⎥⎣⎦,所以()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,()()min 01f x f ==-,()max 2f x f π⎛⎫== ⎪⎝⎭由B 选项可知,函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,()max 2f x f π⎛⎫== ⎪⎝⎭()()min1f x f π==-.所以,函数()f x 在()0,2π上有且只有1个最小值点,C 选项正确;对于D 选项,由C 选项可知,函数()f x 的值域为⎡-⎣,D 选项错误.故选:BC. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).二、数列多选题9.已知数列{}n a ,{}n b 满足,11a =,11n n n a a a +=+,1(1)n n b n a =+,若23100100122223100b b b T b =++++,则( ) A .n a n =B .1n n b n =+C .100100101T =D .10099100T = 【答案】BC【分析】 先证明数列1n a 是等差数列得1n a n=,进而得1(1)1n n n b n a n ==++,进一步得()211111n b n n n n n ==-++,再结合裂项求和得100100101T =. 【详解】 解:因为11n n n a a a +=+,两边取倒数得: 1111n n a a +=+,即1111n n a a , 所以数列1n a 是等差数列,公差为1,首项为111a , 故()1111n n n a =+-⨯=,所以1n a n=, 所以1(1)1n n n b n a n ==++,故()211111n b n n n n n ==-++, 所以31002100122211112310022334100101b b b T b =++++=++++⨯⨯⨯ 11111111100122334100101101101⎛⎫⎛⎫⎛⎫=+-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故BC 正确,AD 错误;故选:BC【点睛】本题考查数列通项公式的求解,裂项求和,考查运算求解能力,是中档题.本题解题的关键在于证明数列1na 是等差数列,进而结合裂项求和求解100T .10.数列{}n a 满足11a =,且对任意的*n ∈N 都有11n n a a a n +=++,则下列说法中正确的是( )A .(1)2n n n a +=B .数列1n a ⎧⎫⎨⎬⎩⎭的前2020项的和为20202021 C .数列1n a ⎧⎫⎨⎬⎩⎭的前2020项的和为40402021 D .数列{}n a 的第50项为2550【答案】AC【分析】 用累加法求得通项公式,然后由裂项相消法求1n a ⎧⎫⎨⎬⎩⎭的和即可得. 【详解】因为11n n a a a n +=++,11a =,所以11n n a a n +-=+,所以2n ≥时,121321(1)()()()1232n n n n n a a a a a a a a n -+=+-+-++-=++++=, 11a =也适合此式,所以(1)2n n n a +=, 501275a =,A 正确,D 错误,12112()(1)1n a n n n n ==-++, 数列1n a ⎧⎫⎨⎬⎩⎭的前2020项和为202011111404021223202020212021S ⎛⎫=-+-++-= ⎪⎝⎭,B 错,C 正确.故选:AC .【点睛】 本题考查用累加法数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法;(3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.。

高考数学三角函数与解三角真题训练100题含参考答案

高考数学三角函数与解三角真题训练100题含参考答案
(1)求 的解析式;
(2)求 在 上的单调增区间.
89.已知函数f(x)=2sin ωx cos ωx+ cos 2ωx(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求f(x)的单调递增区间.
90.已知向量 , , .
(1)求函数 的最小正周期及 取得最大值时对应的 的值;
(2)在锐角三角形 中,角 、 、 的对边为 、 、 ,若 , ,求三角形 面积的最大值并说明此时该三角形的形状.
A.90°B.60°C.45°D.30°
39.已知函数 的部分图像如图所示,将 图像上所有点的横坐标缩小到原来的 (纵坐标不变),所得图像对应的函数 解析式为()
A. B.
C. D.
40.函数 在 的图象大致为()
A. B.
C. D.
41.已知 , ,则 的值为
A. B. C. D.
42.已知 中,角 , , 所对的边分别为 , , .已知 , , 的面积 ,则 的外接圆的直径为()
19.如图,在扇形OAB中, ,半径OA=2,在 上取一点M,连接OM,过M点分别向线段OA,OB作垂线,垂足分别为E,F,得到一个四边形MEOF.设 ,则四边形MEOF的面积为()
A. B.
C. D.
20.设 , , 为同一平面内具有相同起点的任意三个非零向量,且满足 与 不共线,
, ,则 的值一定等于()
55.在 中, , , ,则 ________.
56.在锐角 中, , , 分别为角 , , 的对边,且 , ,则 面积的取值范围为______.
57.用列举法写出 __________.
58.在△ABC中,∠B=75°,∠C=60°,c=1,则最小边的边长为______________________ .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

间为( )
(A) (k 1 , k 3), k Z
4
4
(B) (2k 1 , 2k 3), k Z
4
4
(C) (k 1 , k 3), k Z 44
(D) (2k 1 , 2k 3), k Z 44
【解析】由五点作图知,
1 4 5 4
+ +
2 3 2
,解得 =
单调,则
的最大值为
(A)11 (B)9 (C)7 (D)5
考点:三角函数的性质
三、三角函数图像变换(3 题)
π 9.(2016 年 2 卷 7)若将函数 y=2sin 2x 的图像向左平移 个单位长度,则平移后图象的对
12
称轴为
(A) x kπ π k Z (B) x kπ π k Z
17
2ac
17
即 36 17 b2 15 ,解得 b 2 .
3.(2016 年 1 卷 17) ABC 的内角 A,B,C 的对边分别为 a,b,c,已知
2 cos C(a cos B +b cos A) c.
(I)求 C;
(II)若 c 7, ABC 的面积为 3 3 ,求 A ABC 的周长. 2
2
2
sin B sin C 2 . 3
(2)由(1)得 sin B sin C 2 ,又 cos B cos C 1 ,因为 A B C π ,
3
6
所以 cos A cos π B C cos B C sin B sinC cos B cos C 1 .
2
又因为 A 0 ,π ,所以 A 60 , sin A 3 , cos A 1 .
26
26
(C) x kπ π k Z (D) x kπ π k Z
2 12
2 12
【解析】平移后图像表达式为
y
2
sin
2
x
π 12
,令
2
x
π 12

+
Байду номын сангаас
π 2
,得对称轴方程:
x kπ π k Z ,故选 B.
26
10.(2016 年 3 卷 14)函数 y sin x 3 cos x 的图像可由函数 y sin x 3 cos x 的图像
a2
的面积为
.
3sin A
(1)求 sinBsinC 的值; (2)若 6cosBcosC 1, a 3 ,求△ABC 的周长.
解析 (1)因为 △ABC 的面积 S a2 且 S 1 bc sin A ,所以 a2 1 bc sin A ,即
3sinA
2
3sin A 2
a2 3 bc sin2 A .由正弦定理得 sin2 A 3 sin B sin C sin2 A ,由 sin A 0 ,得
π C= .
2
3
(2)由余弦定理得:c2=a2+b2-2ab·cosC,7=a2+b2-2ab· 1 ,(a+b)2-3ab=7, 2
S= 1 ab·sinC= 3 ab= 3 3 ,所以 ab=6,所以(a+b)2-18=7,a+b=5,
2
4
2
所以△ABC 的周长为 a+b+c=5+ 7 .
4. (2017 年 1 卷 17) △ABC 的内角 A , B , C 的对边分别为 a , b , c ,已知 △ABC
2
12
个单位长度,得到曲线 C2
【解析】:熟悉两种常见的三角函数变换,先变周期和先变相位不一致。
先变周期:
y
cos
x
sin
x
2
y
sin
2x
2
y
sin
2x
2 3
sin
2
x
12
2
先变相位:
y
cos
x
sin
x
2
y
sin
x
2
6
sin
x
2 3
y
sin
2
x
2 3
【解析】(1)2cosC(acosB+bcosA)=c,由正弦定理得:2cosC(sinA·cosB+sinB·cosA)=sinC,
2cosC·sin(A+B)=sinC.因为 A+B+C=π,A,B,C∈(0,π),所以 sin(A+B)=sinC>0,
所以
2cosC=1,cosC=
1
.因为
C∈(0,π),所以
2 BE ,解得 BE = 6 + 2 ,平移 AD ,当 D 与 C 重 sin 30o sin 75o
合时,AB 最短,此时与 AB 交于 F,在△BCF 中,∠B=∠BFC=75°,
BF
∠FCB=30°, 由 正 弦 定 理 知 ,
BC
,即
sin FCB sin BFC
BF 2 ,解得 BF= 6 2 ,所以 AB 的取值范围为( sin 30o sin 75o
5
13
5
13
sin B sin A C sin Acos C cos Asin C 63 ,由正弦定理得: b a 解得 b 21 .
65
sin B sin A
13
2. (2017 年 2 卷 17)△ABC 的内角 A, B, C 的对边分别为 a, b, c ,已知
sin A C 8sin2 B .
考点:本题主要考查诱导公式与两角和与差的正余弦公式.
2.(2016 年 3 卷)(5)若 tan 3 ,则 cos2 2 sin 2 (

4
64
(A)
25
48
(B)
25
(C) 1
16
(D)
25
【 解 析 】 由 tan 3 , 得 sin 3 , cos 4 或 sin 3 , cos 4 , 所 以
2 (1)求 cos B ; (2)若 a c 6 ,△ABC 的面积为 2,求 b.
解析 (1)依题得 sin B 8sin2 B 8 1 cos B 4(1 cos B) .
2
2
因为 sin2 B cos2 B 1 ,所以16(1 cos B)2 cos2 B 1 ,所以 (17 cos B 15)(cos B 1) 0 ,得
x 0,
2







【解析】 f x 1 cos2 x 3 cos x 3 cos2 x 3 cos x 1
4
4
cos x
3 2
2
1,
x
0,
2
,则
cos
x
0,1
,当
cos
x
3
时,取得最大值 1.
2
6.(2015 年 1 卷 8)函数 f (x) = cos( x ) 的部分图像如图所示,则 f (x) 的单调递减区
4
5
5
5
5
cos2 2sin 2 16 4 12 64 ,故选 A. 25 25 25
考点:1、同角三角函数间的基本关系;2、倍角公式.
3.(2016

2

9)若
cos
π 4
3 5
,则
sin
2
=
7 (A)
25
1 (B)
5
(C) 1 5
(D) 7 25
【解析】∵
cos
4
3 5

sin
2
cos
π 2
2
2 cos2
π 4
1
7 25
,故选
D.
二、三角函数性质(5 题)
4.(2017年3卷6)设函数 f (x) cos(x π ) ,则下列结论错误的是() 3
A. f (x) 的一个周期为 2π
B. y f (x) 的图像关于直线 x 8π 对 3

C. f (x ) 的一个零点为 x π 6
6 2 , 6+ 2 ).
考点:正余弦定理;数形结合思想
二、分割两个三角形的解三角形问题
6.(2016 年 3 卷 8)在 △ABC 中, B = π , BC 边上的高等于 1 BC ,则 cos A = (

4
3
(A) 3 10 10
(B) 10 10
(C) - 10 10
(D) - 3 10 10
,= 4
,所以
f
(x)
cos(
x
),
4
令 2k x 2k , k Z ,解得 2k 1 < x < 2k 3 , k Z ,故单调减区间为(
4
4
4
2k 1 , 2k 3 ), k Z ,故选 D. 考点:三角函数图像与性质
4
4
7. (2015 年 2 卷 10)如图,长方形 ABCD 的边 AB=2,BC=1,O 是 AB 的中点,点 P 沿 着边 BC,CD 与 DA 运动,记∠BOP=x.将动点 P 到 A、B 两点距离之和表示为 x 的函数 f(x), 则 f(x)的图像大致为
全国卷历年高考三角函数及解三角形真题归类分析
三角函数
一、三角恒等变换(3 题)
1.(2015 年 1 卷 2) sin 20o cos10o cos160o sin10o =( )
(A) 3 2
3
(B)
2
(C) 1 2
1
(D)
2
【解析】原式= sin 20o cos10o cos 20o sin10o = sin 30o = 1 ,故选 D. 2
相关文档
最新文档