2011年高考全国卷2理科数学试题及答案(已排版)
2011年高考全国2卷理科数学(精编WORD版)有答案
![2011年高考全国2卷理科数学(精编WORD版)有答案](https://img.taocdn.com/s3/m/e7b98b9325c52cc58ad6bebb.png)
20XX年普通高等学校招生全国统一考试全国H卷理科数学(必修+选修II)一、选择题:(每小题5分,共60分)1 •复数z =1 i , z为z的共轭复数,则zz - z -1 =()A • -2iB • -iC • iD • 2i2 .函数y = 2. x (x _ 0 )的反函数为( )2 2x w f x , c A• y ( x R) B. y (x_0)4 42 2C • y=4x ( x R)D • y=4x ( x_0 )3 .下面四个条件中,使a b成立的充分而不必要条件是( )A • a b 1 B. a b -1 c. a2 b2D. a3 b34 .设S n为等差数列ta n』的前n项和,若a1 = 1,公差d = 2, S k 2 _ S^ ~ 24,则k =()A. 8B. 7 C . 6 D. 55. 设函数f(x)=cos^x (⑷>0 ),将y = f(x )的图象向右平移§个单位长度后,所的图象与原图象重合,则■的最小值等于( )A. 1B. 3C. 6 D . 936. 已知直二面角〉-| - [,点A : , AC _丨,C为垂足,8 '■ , BD _丨,D为垂足,若AB =2,AC =BD =1,则D到平面ABC的距离等于( )朋友1本,则不同的赠送方法共有( )7. 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )=1.8. 曲线y =e 在点0,2处的切线与直线 丫 =0和y 二x 围成的三角形的面积为112, A . -B . -C . -D . 1 32359.设f x 是周期为2的奇函数,当0空x 乞1时,f x =2x 1 -X ,则f()=()A . 2B . ,3C .、2D . 1第 n 卷 (非选择题共90分)注意事项:1. 答题前,考生先在答题卡上用直径0 . 5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码卜的准考证号、姓名和科目.2. 第n 卷共2页,请用直径 0 . 5毫米黑色墨水签字笔在答题卡上各题的答题区域 内作答,在试题卷上作答无效.3. 第n 卷共10小题,共90分. 二、填空题:(每小题5分,共20分)B . 10 种C . 18 种D . 20 种10 .已知抛物线2C : y = 4x 的焦点为F ,直线y=2x-4与C 交于RB 两点,则cos_AFB =()11 .已知平面:-截一球面得圆M ,过圆心M 且与〉成60°二面角的平面1截该球面得圆N .若该球面的半径为 4,圆M 的面积为4二,则圆N 的面积为( )12 .设向量a, b, c 满足1…飞,C . 11二D . 13 ■: a -c,b - c4C贝OO6的最大值等于B .13. 的二项展开式中,x的系数与X9的系数之差为 ____________ .兀J514. 已知二三(一,二),sin ,则tan 2—.2 52 215. 已知F l、F2分别为双曲线C:— -- 1的左、右焦点,点A C,点M的坐标为9 27(2,0 ), AM 为N RAF?的平分线,则AF2 = __________________ .16. 已知点E、F分别在正方体ABCD-AB|C1D1的棱BB1、CC1上,且B1^ = 2EB ,CF =2FC1,则面AEF与面ABC所成的二面角的正切值等于 _______________ .三、解答题:(本大题共6小题,共70分)17. (本小题满分10分)「ABC的内角A、B、C的对边分别为a、b、c .已知A -C =900, a c =、.2b,求C .18. (本小题满分12分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3 •设车主购买保险相互独立.(I)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(n)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X的期望.19.(本小题满分12分)如图,四棱锥S-ABCD中,AB//CD , BC _CD,侧面SAB 为等边三角形,AB=BC=2,CD =SD=1.(I)证明:SD _平面SAB ;(n)求AB与平面SBC所成角的大小.1 - a n 1 1 - a n20.(本小题满分12分)设数列'a 满足厲=0且=1.(i)求「aj的通项公式;(n)设b n「一®1,记S n J b k,证明:S n :: 1 •21.(本小题满分12分)已知O为坐标原点,F为椭圆C :2X2 - 1在y轴正半轴上的焦点,过F且斜率为-的2OA OB 0^ =0 •直线丨与C交于A、B两点, 点P满足(i)证明:点P在C 上;(n)设点P关于点O的对称点为Q ,证明:A、P、B Q四点在同一圆上.22.(本小题满分12分)2x(i)设函数f x = In 1 • x - ,证明:当x 0 时,f x 10 ;x+2(n)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续9 1抽取20次,设抽得的20个号码互不相同的概率为p,证明:p ::: ( )192•10 e•67 •2011年普通高等学校招生全国统一考试理科数学试题(必修+选修II )参考答案和评分参考评分说明:1. 本解答给出了一种或儿种解法供參考,如果考生的解法与本解答不同,可根据 试题的主要考竇内咨比照评分参考制订相应的评分细则。
2011年高考全国二理科数学试题
![2011年高考全国二理科数学试题](https://img.taocdn.com/s3/m/06cb439b51e79b89680226ba.png)
2011年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页.考试结束后,将本试卷和答题卡一并交回.第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题上作答无效.3.第I 卷共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)复数z =1+i ,z 为z 的共轭复数,则z z -z -1= ( )(A )-2i (B )-i (C )i (D )2i(2)函数y =2x (x ≥0)的反函数为 ( )(A )y =24x(x ∈R ) (B )y =24x (x ≥0) (C )y =24x (x ∈R ) (D )y =24x (x ≥0)(3)下面四个条件中,使a >b 成立的充分而不必要的条件是( )(A )a >b +1 (B )a >b -1 (C )2a >2b (D )3a >3b(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差d = 2, 224k k S S +-=,则k = ( )(A ) 8 (B) 7 (C) 6 (D) 5(5) 设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A ) 13 (B )3 (C )6 (D )9(6)已知直二面角α -l -β, 点A ∈α ,AC ⊥ l ,C 为垂足,B ∈β,BD ⊥l ,D 为垂足,若AB=2,AC=BD=1,则D 到平面ABC 的距离等于( )(A )23 (B )33 (C) 63 (D) 1(7) 某中学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )(A )4种 (B) 10种 (C) 18种 (D) 20种(8)曲线y=e -2x +1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为(A ) 13 (B ) (C ) 23 (D )1注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己凡人名字、准考证号填写清楚,然后贴好条形码,请认真核条形码上凡人准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.第Ⅱ卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效)(18)(本小题满分12分)(注意:在试题卷上作答无效)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种概率;(Ⅱ)X 表示该地的100位车主中,甲、乙两种保险都不购买的车主数.求X 的期望.(19)如图,四棱锥S-ABCD 中,AB//DC,BC ⊥CD ,侧面SAB 为等边三角形,AB=BC=2,CD=SD=1.(Ⅰ)证明: SD ⊥平面SAB;(Ⅱ)求AB 与平面SBC 所成角的大小.D SCB A(20)(本小题满分12分)(注意:在试题卷上作答无效)设数列{}n a 满足10a =且111111n n a a +-=--.(I )求{}n a 的通项公式;(II )设11n n a b n +-=,记1n n k k S b==∑,证明:1n S <.(21)已知O 为坐标原点,F 为椭圆22:12y C x +=在y 轴正半轴上的焦点,过F 且斜率为-2的直线l 与C 交与A 、B两点,点P 满足0.OA OB OP ++= (Ⅰ)证明:点P 在C 上;(Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.(22)(本小题满分12分)(注意:在试题卷上答无效) (Ⅰ)设函数2()ln(1)2xf x x x =+-+,证明:当x >0时,()f x >0;(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互补相同的概率为p .证明:p <(910)19<21e .。
2011年高考全国2卷理科数学(精编WORD版)有标准答案
![2011年高考全国2卷理科数学(精编WORD版)有标准答案](https://img.taocdn.com/s3/m/b8768940e009581b6bd9ebd9.png)
20XX 年普通高等学校招生全国统一考试全国Ⅱ卷理科数学(必修+选修II)一、选择题:(每小题5分,共60分)1.复数1z i =+,z 为z 的共轭复数,则1zz z --=( )A.2i - B.i - C .i D.2i2.函数y =0x ≥)的反函数为( )A .24x y =(x R ∈) B.24x y =(0x ≥) C .24y x =(x R ∈) D .24y x =(0x ≥)3.下面四个条件中,使a b >成立的充分而不必要条件是( )A.1a b >+ B.1a b >- C .22a b >D .33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =( )A.8 B.7 C.6D.55.设函数()cos f x x ω=(0ω>),将()y f x =的图象向右平移3π个单位长度后,所的图象与原图象重合,则ω的最小值等于( )A.13B.3 C.6 D.96.已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂足,若2,1AB AC BD ===,则D 到平面ABC 的距离等于( )A.3B . C. D .1 7.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )A.4种 B .10种 C.18种D .20种8.曲线21x y e -=+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为( )A.13 B.12 C .23 D.19.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则5()2f -=( )A.12- B.14- C.14 D .1210.已知抛物线2:4C y x =的焦点为F ,直线24y x =-与C 交于,A B 两点,则cos AFB ∠=( )A .45 B .35 C .35- D.45- 11.已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为( )A .7πB .9π C.11πD.13π12.设向量,,a b c 满足011,,,602a b a b a c b c ==⋅=---=,则c 的最大值等于( )A .2B .C .。
2011年高考新课标Ⅱ理科数学试题及答案(精校版-解析版-word版)
![2011年高考新课标Ⅱ理科数学试题及答案(精校版-解析版-word版)](https://img.taocdn.com/s3/m/0497e7e1aef8941ea76e05ac.png)
2011年普通高等学校招生全国统一考试(新课标Ⅱ卷)理 科 数 学第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.复数212ii+-的共轭复数是( ) A .35i -B .35iC .i -D .i2.下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ) A .3y x = B .||1y x =+ C .21y x =-+ D .||2x y -=3.执行右面的程序框图,如果输入的N 是6,那么输出的p 是( )A .120B .720C .1440D .50404.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A .13B .12C .23D .345.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ=( )A .45-B .35-C .35D .456.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )A. B. C. D.7.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A , B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( )ABC .2D .38.51()(2)a x x x x+-的展开式中各项系数的和为2,则该展开式中常数项为( )A .- 40B .- 20C .20D .409.由曲线y =2y x =-及y 轴所围成的图形的面积为( )A .103B .4C .163D .610.已知a 与b 均为单位向量,其夹角为θ,有下列四个命题中真命题是( )12:+10,3P πθ⎡⎫>⇔∈⎪⎢⎣⎭a b 22:1,3P πθπ⎛⎤+>⇔∈ ⎥⎝⎦a b3:10,3P πθ⎡⎫->⇔∈⎪⎢⎣⎭a b 4:1,3P πθπ⎛⎤->⇔∈ ⎥⎝⎦a bA . P 1,P 4B .P 1,P 3C .P 2,P 3D .P 2,P 411.设函数()sin()cos()(0,||)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( ) A .()f x 在(0,)2π单调递减 B .()f x 在3(,)44ππ单调递减 C .()f x 在(0,)2π单调递增D .()f x 在3(,)44ππ单调递增 12.函数11y x =-的图像与函数2sin ,(24)y x x π=-≤≤的图像所有交点的横坐标之和等于( ) A .2B .4C .6D .8第Ⅱ卷本卷包括必考题和选考题两部分. 第13题~第21题为必考题,每个试题考生必须做答. 第22题~第24题为选考题,考生根据要求做答. 二、填空题:(本大题共4小题,每小题5分.)13.若变量x , y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值为 .14.在平面直角坐标系xoy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为 . 15.已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,AB BC ==则棱锥O -ABCD 的体积为 .16.在△ABC中,60,B AC ==2AB BC +的最大值为 . 三、解答题:(解答应写出文字说明,证明过程或演算步骤.)17.(满分12分)等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设31323log log log n n b a a a =+++L L ,求数列1{}n b 的前n 项和.18.(满分12分)如图,四棱锥P -ABCD 中,底面ABCD为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .(Ⅰ)证明:P A ⊥BD ;(Ⅱ)若PD =AD ,求二面角A -PB -C 的余弦值.19.(满分12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果: A 配方的频数分布表(Ⅱ)已知用B 配方生成的一件产品的利润y (单位:元)与其质量指标值t 的关系式为2(94)2(94102)4(102),t <y ,t <,t -⎧⎪=≤⎨⎪≥⎩,从用B 配方生产的产品中任取一件,其利润记为X (单位:元),求X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)20.(满分12分)在平面直角坐标系xOy 中,已知点A (0, -1),B 点在直线y =-3上,M 点满足//MB OA uuu r uu r, MA AB MB BA ⋅=⋅uuu r uu u r uuu r uu r ,M 点的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值 . 21.(满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 请考生在第22、23、24题中任选一题做答,如果多做,按所做的第一题计分,做答时请写清题号.22.(满分10分)【选修4-1:几何证明选讲】如图,D ,E 分别为△ABC 的边AB ,AC 上的点,且不与△ABC 的顶点重合. 已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程x 2-14x +mn =0的两个根. (Ⅰ)证明:C 、B 、D 、E 四点共圆;(Ⅱ)若∠A =90º,且m =4,n =6,求C 、B 、D 、E 所在圆的半径. 23.(满分10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,曲线C 1的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是C 1上的动点,P 点满足2OP OM =uu u v uuu v,P 点的轨迹为曲线C 2.(Ⅰ)求C 2的方程;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |. 24.(满分10分)【选修4-5:不等式选讲】设函数()||3f x x a x =-+,其中0a >. (Ⅰ)当1a =时,求不等式()32f x x ≥+的解集; (Ⅱ)若不等式()0f x ≤的解集为{|1}x x ≤-,求a 的值.2011年普通高等学校招生全国统一考试(新课标Ⅱ卷)理 科 数 学(参考答案)一、选择题: 1.【答案C 】 解析:212i i+-=(2)(12),5i i i ++=共轭复数为C.2. 【答案B 】解析:由图像知选B. 3. 【答案B 】解析:框图表示1n n a n a -=⋅,且11a =所求6a =720,故选B. 4. 【答案A 】解析:每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为P =3193=,故选A. 5. 【答案B 】解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,故选B. 6. 【答案D 】解析:条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的. 故选D. 7. 【答案B 】解析:通径|AB |=222b a a=得2222222b a a c a =⇒-=,故选B.8. 【答案D 】解析:由51()(2)a x x x x+-的展开式中各项系数的和为2,得a =1(令x =1). 故原式=511()(2)x x x x+-,所以通项521552155(2)()(1)2r r r r r r r r T C x x C x ----+=-=-,由5-2r =1得r =2,对应的常数项=80,由5-2r =-1得r =3,对应的常数项=-40,故所求的常数项为40,故选D . 9. 【答案C 】解析:用定积分求解342420021162)(2)|323S x dx x x x =-+=-+=⎰,故选C.10. 【答案A 】解析:由||1+=>a b 得1cos 2θ>-2[0,)3πθ⇒∈.由||1-=>a b 得1cos 2θ<(,]3πθπ⇒∈,故选A.11. 【答案A 】解析:())(0,||)42f x x ππωϕωϕ=++><的最小正周期为π,所以2ω=,又()()f x f x -=,∴ f (x )为偶函数,=+,4k k Z πϕπ∴∈,())2f x x x π∴+=,故选A. 12. 【答案D 】解析:11y x =-的对称中心是(1,0)也是2sin (24)y x x π=-≤≤的中心,24x -≤≤他们的图像在x =1的左侧有4个交点,则x =1右侧必有4个交点. 不妨把他们的横坐标由小到大设为x 1,x 2,x 3,x 4,x 5,x 6,x 7,x 8,则182736452x x x x x x x x +=+=+=+=,故选D . 二、填空题: 13. 【答案-6】解析:画出可行域如图,当直线2z x y =+过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =-.14. 【答案221168x y ∴+=】解析:由416c a a ⎧=⎪⎨⎪=⎩得a =4,c =b =8,221168x y ∴+=. 15.【答案解析:设ABCD 所在的截面圆的圆心为M ,则AM==,OM22=,1623O ABCD V -=⨯⨯=16.【答案】解析:00120120A C C A +=⇒=-,0(0,120)A ∈,22sin sin sin BC ACBC A A B==⇒=,022sin 2sin(120)sin sin sin AB ACAB C A A A C B==⇒==-=+,2AB BC ∴+=5sin ))A A A A ϕϕ+=+=+,故最大值是 .三、解答题:17.解析:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32349a a =所以219q =. 由条件可知a >0,故13q =. 由12231a a +=得12231a a q +=,所以113a =. 故数列{a n }的通项式为13n n a =. (Ⅱ )31323(1)log log log =(12)2n n n n b a a a n +=+++-+++=-,故12112()(1)1n b n n n n =-=--++,121111111122((1)()())22311n nb b b n n n +++=--+-++-=-++,所以数列1{}n b 的前n 项和为21nn -+. 18.解析:(Ⅰ)因为602DAB AB AD ∠=︒=,,由余弦定理得BD =,从而BD 2+AD 2= AB 2,故BD ⊥AD ,又PD ⊥底面ABCD ,可得BD ⊥PD ,所以BD ⊥平面P AD ,故 PA ⊥BD .(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D -xyz ,则(1,0)A,(0B ,(C -,(0,0,1)P . (AB =-uu u r,1)PB =-,u u r(1,0,0)BC =-u uu r ,设平面PAB 的法向量为n =(x , y , z ),则00AB PB ⎧⋅=⎪⎨⋅=⎪⎩uuu r uu rn n,即 00x z ⎧-=⎪-=,因此可取=n ,设平面PBC 的法向量为m,则0PBBC ⎧⋅=⎪⎨⋅=⎪⎩uur uu ur m m ,可取(0,1,=-m ,cos ,<>==m n A-PB-C的余弦值为. 19.解析:(Ⅰ)由试验结果知,用A 配方生产的产品中优质的平率为228=0.3100+,所以用A 配方生产的产品的优质品率的估计值为0.3 . 由试验结果知,用B 配方生产的产品中优质品的频率为32100.42100+=,所以用B 配方生产的产品的优质品率的估计值为0.42 .(Ⅱ)用B 配方生产的100件产品中,其质量指标值落入区间[90, 94), [94, 102), [102, 110]的频率分别为0.04,0.54,0.42,因此 P (X =-2)=0.04,P (X =2)=0.54,P (X =4)=0.42, 即X 的分布列为X 20.解析:(Ⅰ)设M (x , y ),由已知得B (x , -3),A (0, -1). 所以,1)(MA x y -=--u u u r,(03)MB y =--,u u u r,(,2)B x A =-u u u r . 再由题意可知()0MA MB MB AB ++⋅=u u u r u u u r u u u r u u u r ,即(,42)(,2)0x y x ---⋅-=. 所以曲线C 的方程式为2124y x =-. (Ⅱ)设P (x 0, y 0)为曲线C :2124y x =-上一点,因为12y x =,所以l 的斜率为012x,因此直线l 的方程为0001()2y y x x x -=-,即2000220x x y y x -+-=. 则O 点到l的距离2d =又200124y x =-,所以2014122x d +==≥,当20x =0时取等号,所以O 点到l 距离的最小值为2.21.解析:(Ⅰ)221(ln )()(1)x x b x f x x x α+-'=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)11(1)2f f =⎧⎪⎨'=-⎪⎩,即1122b a b =⎧⎪⎨-=-⎪⎩,解得1a =,1b =.(Ⅱ)由(Ⅰ)知ln 1()1x f x x x =++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x ---+=+--.考虑函数2(1)(1)()2ln k x h x x x --=+(0)x >,则22(1)(1)2'()k x x h x x -++=. (i)设0k ≤,由222(1)(1)()k x x h x x+--'=知,当1x ≠时,()0h x '<. 而(1)0h =,故当(0,1)x ∈时,()0h x >,可得21()01h x x>-;当x ∈(1,+∞)时,h (x )<0,可得21()01h x x >-,从而当x >0,且x ≠1时,ln ()01x k f x x x -+>-,即ln ()1x kf x x x >+-.(ii )设0<k <1. 由于当x ∈(1,k-11)时,(k -1)(x 2 +1)+2x >0,故h ´(x )>0,而h (1)=0,故当x ∈(1,k -11)时,h (x )>0,可得211x - h (x )<0,与题设矛盾. (iii )设k ≥1. 此时h ´(x )>0,而h (1)=0,故当x ∈(1,+∞)时,h (x)>0,可得211x -h (x )<0,与题设矛盾.综上可得,k 的取值范围为(-∞,0].22.解析:(Ⅰ)连结DE ,根据题意在△ADE 和△ACB 中,AD ×AB =mn =AE ×AC ,即ABAEAC AD =,又∠DAE =∠CAB ,从而△ADE ∽△ACB ,因此∠ADE =∠ACB ,所以C 、B 、D 、E 四点共圆.(Ⅱ)m =4,n =6,方程x 2-14x +mn =0的两根为2,12. 即AD =2,AB =12,取CE 的中点G ,DB 的中点F ,分别过G 、F 作AC 、AB 的垂线,两垂线交于点H ,连结D 、H ,因为C 、B 、D 、E 四点共圆,所以圆心为H ,半径为DH . 由于∠A =90º,故GH ∥AB ,HF ∥AC . 从而HF =AG =5,DF =5,故半径为23.解析:(I )设P (x , y ),则由条件知(,)22x y M . 由于M 点在C 1上,所以2cos 222sin 2xy αα⎧=⎪⎪⎨⎪=+⎪⎩,即4cos 44sin x y αα=⎧⎨=+⎩,从而C 2的参数方程为4cos 44sin x y αα=⎧⎨=+⎩(α为参数).(Ⅱ)曲线C 1的极坐标方程为4sin ρθ=,曲线C 2的极坐标方程为8sin ρθ=. 射线3πθ=与C 1的交点A 的极径为14sin3πρ=,射线3πθ=与C 2的交点B 的极径为28sin3πρ=.所以21||||AB ρρ-==24.解析:(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥. 由此可得3x ≥或1x ≤-. 故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-.(Ⅱ)由()0f x ≤ 得||30x a x -+≤,此不等式化为不等式组30x ax a x ≥⎧⎨-+≤⎩或30x a a x x ≤⎧⎨-+≤⎩,即4x a a x ≥⎧⎪⎨≤⎪⎩或2x aa a ≤⎧⎪⎨≤-⎪⎩,因为0a >,所以不等式组的解集为{}|2ax x ≤-,由题设可得12a -=-,故2a =.。
2011年高考数学(理)真题(Word版)——全国卷(试题+答案解析)
![2011年高考数学(理)真题(Word版)——全国卷(试题+答案解析)](https://img.taocdn.com/s3/m/7ce6acf50242a8956bece4dd.png)
2011年普通高等学校招生全国统一考试(全国卷)理科数学(必修+选修II )第Ⅰ卷一、选择题1.复数1z i =+,z 为z 的共轭复数,则1zz z --=A .2i -B .i -C .iD .2i2.函数2(0)y x x =≥的反函数为A .2()4x y x R =∈B .2(0)4x y x =≥C .24y x =()x R ∈ D .24(0)y x x =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是A .1a b +>B .1a b ->C .22a b >D .33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =A .8B .7C .6D .55.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .96.已知直二面角α− ι−β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于A .23B .33C .63D .17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有 A .4种 B .10种 C .18种 D .20种 8.曲线y=2xe -+1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为A .13 B .12C .23D .19.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=A .45B .35C .35-D .45-11.已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为A .7πB .9πC .11πD .13π12.设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于A .2B .3C .2D .1第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分把答案填在题中横线上 (注意:在.试卷上作答无效.......) 13.(1-x )20的二项展开式中,x 的系数与x 9的系数之差为: .2y 214.已知a ∈(2π,π),sinα=55,则tan2α=15.已知F 1、F 2分别为双曲线C : 29x - 227y =1的左、右焦点,点A ∈C ,点M 的坐标为(2,0),AM 为∠F 1AF 2∠的平分线.则|AF 2| = .16.己知点E 、F 分别在正方体ABCD -A 1B 2C 3D 4的棱BB 1 、CC 1上,且B 1E =2EB, CF=2FC 1,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤 17.(本小题满分l0分)(注意:在试题卷上.....作答无效....) △ABC 的内角A 、B 、C 的对边分别为a 、b 、c .己知A —C =90°,a+c=2b ,求C .18.(本小题满分12分)(注意:在试题卷上作答无效.........) 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立(I )求该地1位车主至少购买甲、乙两种保险中的l 种的概率;(Ⅱ)X 表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。
2011年高考理科数学试题及答案-全国卷2课件.doc
![2011年高考理科数学试题及答案-全国卷2课件.doc](https://img.taocdn.com/s3/m/aacecb6603d8ce2f006623ae.png)
2011 年普通高等学校招生全国统一考试(全国卷2)数学(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.a i,则 a1.a 为正实数,i 为虚数单位, 2iA.2 B. 3 C. 2 D.12.已知M,N 为集合I 的非空真子集,且M ,N 不相等,若N e I M ,则M N A.M B.N C.I D.23.已知 F 是抛物线y=x 的焦点,A,B 是该抛物线上的两点,AF BF =3,则线段AB 的中点到y 轴的距离为A.34B.1 C.54D.744.△ABC的三个内角A,B,C所对的边分别为a,b,c,a sinAsinB+b c os2A= 2a ,则2A= 2a ,则b aA.2 3 B.2 2 C. 3 D. 2 5.从1,2,3,4,5 中任取 2 各不同的数,事件A=“取到的 2 个数之和为偶数”,事件B=“取到的 2 个数均为偶数”,则P(B︱A)=A.18B.14C.25D.126.执行右面的程序框图,如果输入的n 是4,则输出的P 是A.8B.5C.3D. 217.设sin(+ )= ,则sin 24 3A.79B.19C.19D.798.如图,四棱锥S—ABCD的底面为正方形,SD 底面ABCD,则下列结论中不正.确..的是A.A C⊥SBB.A B∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角9.设函数 f (x)121x,xlog21x, x,则满足 f (x) 2 的x 的取值范围是1A.[ 1,2] B.[0,2] C.[1,+ ] D.[0,+ ]10.若a,b,c均为单位向量,且a b0 ,(a c) (b c) 0 ,则| a b c| 的最大值为A. 2 1 B.1 C. 2 D.211.函数 f ( x) 的定义域为R,f ( 1) 2 ,对任意x R,f ( x) 2 ,则 f (x) 2x 4 的解集为A.(1,1)B.(1,+ )C.(,1)D.(,+ )12.已知球的直径SC=4,A,B 是该球球面上的两点,AB= 3 ,ASC BSC 30 ,则棱锥S—ABC的体积为A.3 3 B.2 3 C. 3 D.1第Ⅱ卷本卷包括必考题和选考题两部分.第13 题-第21 题为必考题,每个试题考生都必须做答.第22 题-第24 题为选考题,考生根据要求做答.二、填空题:本大题共 4 小题,每小题 5 分.2 2x y13.已知点(2,3)在双曲线C:1(a 0,b 0)2 2a b 上,C的焦距为4,则它的离心率为.14.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:y?0.254 x0.321.由回归直线方程可知,家庭年收入每增加 1 万元,年饮食支出平均增加____________万元.15.一个正三棱柱的侧棱长和底面边长相等,体积为 2 3 ,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是.16.已知函数 f (x) =Atan(x+ )(0,| | ),y= f (x)2的部分图像如下图,则)f ( .24三、解答题:解答应写文字说明,证明过程或演算步骤.17.(本小题满分12 分)已知等差数列{a n}满足a2=0,a6+a8=-10(I)求数列{a n}的通项公式;(II)求数列ann21的前n 项和.18.(本小题满分12 分)如图,四边形ABCD为正方形,PD⊥平面ABCD,P D∥QA,QA =AB= 12P D.(I)证明:平面PQC⊥平面DCQ;(II)求二面角Q—BP—C 的余弦值.19.(本小题满分12 分)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙.(I)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X 的分布列和数学期望;(II)试验时每大块地分成8 小块,即n =8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm 2)如下表:品种甲403 397 390 404 388 400 412 406品种乙419 403 412 418 408 423 400 413 分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据1 2 2x ,x , , s2 x x x x x n x ,其中x 为样本平均x21 的的样本方差[( ) ( ) ( ) ]2 n1 2n数.20.(本小题满分12 分)如图,已知椭圆C1 的中心在原点O,长轴左、右端点M,N 在x轴上,椭圆C2 的短轴为MN,且C1,C2 的离心率都为e,直线l⊥MN,l 与C1 交于两点,与C2 交于两点,这四点按纵坐标从大到小依次为A,B,C,D.1e ,求BC 与AD 的比值;(I)设2(II)当e变化时,是否存在直线l,使得 B O∥AN,并说明理由.21.(本小题满分12 分)2已知函数 f ( x) ln x ax (2 a)x .(I)讨论f (x) 的单调性;(II)设a0 ,证明:当1 1 10 x时, f ( x) f ( x) ;a a a(III)若函数y f (x) 的图像与x轴交于A,B 两点,线段AB 中点的横坐标为x0,证明: f (x0)<0.请考生在第22、23、24 三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.(本小题满分10 分)选修4-1:几何证明选讲如图,A,B,C,D 四点在同一圆上,AD 的延长线与BC的延长线交于E点,且EC=ED.(I)证明:CD// AB;(II)延长C D到F,延长D C到G,使得EF=EG,证明:A,B,G,F四点共圆.23.(本小题满分10 分)选修4-4:坐标系统与参数方程在平面直角坐标系xOy 中,曲线C1 的参数方程为xycossin(为参数),曲线C2 的参数方程为x y a cosb sin(a b 0 ,为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=与C1,C2 各有一个交点.当=0时,这两个交点间的距离为2,当=时,这两个交点重合.2 (I)分别说明C1,C2 是什么曲线,并求出 a 与b 的值;时,l 与C1,C2 的交点分别为A1,B1,当=时,l 与C1,C2的交点为A2,B2,求四(II)设当=4 4边形A1A2B2B1 的面积.24.(本小题满分10 分)选修4-5:不等式选讲已知函数 f ( x) =| x-2| | x-5| .(I)证明: 3 ≤f (x) ≤3;2 8 x+15 的解集.(II)求不等式 f (x) ≥x参考答案评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题不给中间分.一、选择题1— 5 BACDB 6—10 CADDB 11—12 BC二、填空题13.214.0.25415.2 316. 3三、解答题17.解:(I)设等差数列{ a n} 的公差为d,由已知条件可得a d0,12a 12d 10, 1解得a1 1, d 1.故数列{a } 的通项公式为a 2 n. ⋯⋯⋯⋯⋯⋯ 5 分n n(II)设数列a a an n的前项和为,即 2{ } n SS a1 1 ,故S1 1,n n nn 12 2 2S a a a n nn1 2 .2 2 4 2 所以,当n 1时,Saaaaan21nn 1 n a1n 1n22 2 2 1 1 12 n1 ()n 1n2 4 221 2 1 (1 )n 1n22nn n 2.所以nS1.nn2综上,数列ann{ } n S.的前项和⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 12分n 1nn 12218.解:如图, 以 D 为坐标原点,线段 DA 的长为单位长, 射线D A 为x 轴的正半轴建立空间直角坐标系 D — xyz.(I )依题意有 Q (1,1,0),C (0,0,1),P (0,2,0).则D Q (1,1,0), DC (0,0,1), PQ ( 1, 1,0).所以 PQDQ 0, PQ DC0.即 PQ ⊥DQ ,PQ ⊥DC. 故 PQ ⊥平面 DCQ.又 PQ 平面 PQC ,所以平面 PQC ⊥平面 DCQ. ⋯ ⋯ ⋯ ⋯ 6 分 (II )依题意有 B ( 1,0,1), CB ,0,)1( ( 12B , P .)1设n (x, y, z) 是平面 PBC 的法向量,则n CB0, x 0,即x 2y z 0.n BP 0,因此可取 n (0, 1, 2).m BP0, 设m 是平面 PBQ 的法向量,则m PQ0.可取15m (1,1,1)所. 以 cos m,n. 5故二面角 Q — BP — C 的余弦值为155.⋯ ⋯ ⋯ ⋯ ⋯ ⋯12 分19.解:(I)X 可能的取值为0,1,2,3,4,且1 1P(X 0) ,4C 7081 3C C 84 4P(X 1) ,4C 3582 2C C 184 4P(X 2) ,4C 3583 1C C 84 4P(X 3) ,4C 3581 1P(X 4) .4C 708即X 的分布列为⋯⋯⋯⋯⋯⋯ 4 分X 的数学期望为1 8 18 8 1E(X)0 1 2 3 4 2. ⋯⋯⋯⋯⋯⋯ 6 分70 35 35 35 70(II)品种甲的每公顷产量的样本平均数和样本方差分别为:x 甲18(403 397 390 404 388 400 412 406) 400,S 甲182 2 2 2 2 2 2 2(3 ( 3) ( 10) 4 ( 12) 0 12 6 ) 57.25.⋯⋯⋯⋯⋯⋯8 分品种乙的每公顷产量的样本平均数和样本方差分别为:x 乙18(419 403 412 418 408 423 400 413) 412, 12 2 2 2 2 2 2 2 2S (7 ( 9) 0 6 ( 4) 11 ( 12) 1 ) 56.乙8⋯⋯⋯⋯⋯⋯10 分由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.20.解:(I)因为C1,C2 的离心率相同,故依题意可设2 2 2 2 2x y b y xC1 : 2 2 1,C2 : 4 2 1,( a b 0)a b a al : x t (| t | a),分别与C1,C2 的方程联立,求得线直设a b2 2 2 2A(t , a t ), B(t, a t ).b a ⋯⋯⋯⋯⋯⋯4 分当1 3e时,b a, 分别用y , y 表示A,B 的纵坐标,可知A B2 222| y | b 3B| BC |:| AD | .22| y | a 4A ⋯⋯⋯⋯⋯⋯6 分(II)t=0时的l 不符合题意.t 0时,BO//AN 当且仅当BO 的斜率k BO与AN 的斜率k AN 相等,即b a2 2 2 2a t a ta bt t a,解得2 2ab 1 et a.2 2 2a b e21 e 2因为t a e e | | ,又0 1,所以1,解得 1.2e 2所以当02e时,不存在直线l,使得BO//AN;2当22e 1时,存在直线l使得BO//AN. ⋯⋯⋯⋯⋯⋯12 分21.解:(I)f (x)的定义域为(0, ),1 (2x 1)( a x 1)f ( x) 2 a x (2 a) .x x(i)若a 0,则f( x) 0,所以f (x)在(0, )单调增加.(ii)若1 a 0, f (x) 0 x ,则由得a且当1 1x (0, )时, f (x) 0,当x时, f (x) 0.a a所以在1单调增加,在( 1 , )f (x) (0, )a a单调减少. ⋯⋯⋯⋯⋯⋯4 分(II)设函数1 1g( x) f ( x) f ( x),a a则g(x) ln(1 ax) ln(1 ax) 2ax ,3 2a a 2a xg ( x) 2a .2 21 ax 1 ax 1 a x当10 x时, g (x) 0,而g (0) 0,所以g( x) 0 .a故当0 x 1a时,1 1f ( x) f ( x).a a⋯⋯⋯⋯⋯⋯8 分(III)由(I)可得,当 a 0时,函数y f (x) 的图像与x轴至多有一个交点,1 1故a 0 ,从而 f (x) 的最大值为f ( ),且f ( ) 0.a a1不妨设A( x ,0), B(x ,0),0 x x ,则0x x .1 2 1 2 1 2a2 1 1由(II)得 f ( x1 ) f ( x1) f (x1) 0.a a a2 x x 1从而 1 2x x x,于是.2 1 0a 2 a由(I)知,f(x ) 0. ⋯⋯⋯⋯⋯⋯12 分22.解:(I)因为E C=ED,所以∠EDC=∠ECD.因为A,B,C,D 四点在同一圆上,所以∠EDC=∠EBA.故∠ECD=∠EBA,所以CD//AB. ⋯⋯⋯⋯ 5 分(II)由(I)知,AE=BE,因为E F=FG,故∠EFD=∠EGC从而∠FED=∠GEC.连结A F,BG,则△EFA≌△EGB,故∠FAE=∠GBE,又CD//AB,∠EDC=∠ECD,所以∠FAB=∠GBA.所以∠AFG+∠GBA=180°.故A,B,G,F四点共圆⋯⋯⋯⋯10 分23.解:(I)C1 是圆,C2 是椭圆.当0时,射线l与C1,C2 交点的直角坐标分别为(1,0),(a,0),因为这两点间的距离为2,所以a=3.当时,射线l与C1,C2 交点的直角坐标分别为(0,1),(0,b),因为这两点重合,所以b=1. 22x2 2 1 2 1.(II)C1,C2的普通方程分别为x y 和y9当42时,射线l与C1 交点A1 的横坐标为x ,与C2 交点B1的横坐标为2x 3 1 0.10当4 时,射线l与C1,C2 的两个交点A2,B2 分别与A1,B1 关于x轴对称,因此,四边形A1A2B2B1为梯形.(2 x 2x)(x x) 22 5 故四边形A1A2B2B1 的面积为.⋯⋯⋯⋯10 分24.解:3, x 2,(I)f (x) | x 2 | | x 5 | 2x 7, 2 x 5,3, x 5.当2 x 5时, 3 2x 7 3.所以 3 f (x) 3. ⋯⋯⋯⋯⋯⋯ 5 分(II)由(I)可知,当 2x 2时, f ( x) x 8x 15的解集为空集;当 22 x 5时, f ( x) x 8x 15的解集为{ x |53 x 5};当 2x 5时, f ( x) x 8x 15的解集为{ x|5x 6} .综上,不等式 2f (x) x 8x 15的解集为{x| 5 3 x 6}. ⋯⋯⋯⋯10分。
2011年普通高等学校招生全国统一考试数学理试题(全国卷,含答案).doc
![2011年普通高等学校招生全国统一考试数学理试题(全国卷,含答案).doc](https://img.taocdn.com/s3/m/ef1ba6db0b1c59eef8c7b4ea.png)
2011 年普通高等学校招生全国统一考试数学理试题(全国卷,含答案)本试卷分第Ⅰ卷 ( 选择题 ) 和第Ⅱ卷 ( 非选择题 ) 两部分。
第Ⅰ卷 1 至 2 页。
第Ⅱ卷 3 至 4 页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前, 考生在答题卡上务必用直径0.5 毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用 橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
..........3.第Ⅰ卷共 l2 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是 符合题目要求的。
一、选择题(1) 复数 z 1i , z 为 z 的共轭复数,则 zz z 1( A ) 2i( B ) i( C ) i( D ) 2i【答案】 B(2) 函数 y 2 x( x 0) 的反函数为( A ) yx 2( x R)( B )4( C )y 4x 2( x R)( )Dyx 2( x 0)4y 4x 2 ( x 0) 【答案】 B(3) 下面四个条件中,使 a b 成立的充分而不必要的条件是( A ) a >b 1( B ) a >b 1(C ) a 2> b 2( D ) a 3> b 3【答案】 A(4) 设 S n 为等差数列a n 的前 n 项和,若 a 1 1,公差 d2 , S k 2 S k 24 ,则 k( A ) 8 (B ) 7( C ) 6( D ) 5【答案】 D(5) 设函数 f ( x) cos x(0) ,将 yf ( x) 的图像向右平移个单位长度后,所得的图3像与原图像重合,则的最小值等于( A )1(B ) 3(C ) 6( D ) 93【答案】 C(6) 已知直二面角l , 点 A , AC l , C 为垂足 , B , BD l , D 为垂足.若 AB2, AC BD 1,则 D 到平面 ABC 的距离等于2 (B) 36 (D) 1(A)3 (C)33【答案】 CA(7) 某同学有同样的画册 2 本,同样的集邮册 3 本,从中取出 4 本赠送给 4 位朋友每位朋友 1 本,则不同的赠送方法共有(A) 4 种(B)10 种(C)18 种(D)20 种lD【答案】 BCB E(8) 曲线 y e 2 x1在点 (0,2) 处的切线与直线 y 0 和 y x 围 成的三角形的面积为(A)1(B)1 (C)2 (D)1323【答案】 A(9) 设 f ( x) 是周期为 2 的奇函数,当 0x 1 时, f (x)2x(1 x) , 则 f (5 )11112(A) -(B)(C)(D)2442【答案】 A(10) 已知抛物线C : y 24x 的焦点为 F ,直线 y2x 4 与 C 交于 A , B 两点.则cos AFB(A)4(B)3 (C)3 (D)4 5555【答案】 D(11) 已知平面 α截一球面得圆 M ,过圆心 M 且与 α 成 600 二面角的平面 β 截该球面得圆 N .若该球面的半径为 4,圆 M 的面积为 4 ,则圆 N 的面积为(A) 7 (B) 9(C)11(D)13【答案】 D(12) r r rr rr r 1 rr r rr设向量 a , b , c 满足 | a | | b |1, agb, ac,bc60 ,则 | c | 的最大值2等于(A) 2 (B)3(c)2(D) 1【答案】 AB绝密★启用前2011 年普通高等学校招生全国统一考试ACD理科数学 ( 必修 +选修 II)第Ⅱ卷注意事项:1 答题前,考生先在答题卡上用直径0. 5 毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2011年高考全国卷Ⅱ数学(理)试题(真题)
![2011年高考全国卷Ⅱ数学(理)试题(真题)](https://img.taocdn.com/s3/m/08fc6fd880eb6294dd886cfc.png)
2011年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页,第II 卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题上作答无效........。
3.第I 卷共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(2)函数y =x ≥0)的反函数为(A )y =24x (x ∈R ) (B )y =24x (x ≥0) (C )y =24x (x ∈R ) (D )y =24x (x ≥0)(3)下面四个条件中,使a >b 成立的充分而不必要的条件是(A )a >b +1 (B )a >b -1 (C )2a >2b (D )3a >3b(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差d = 2, 224k k S S +-=,则k =(A ) 8 (B) 7 (C) 6 (D) 5(5) 设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 (6)已知直二面角α –ι- β, 点A ∈α ,AC ⊥ ι ,C 为垂足,B ∈β,BD ⊥ ι,D为垂足,若AB=2,AC=BD=1,则D 到平面ABC 的距离等于( )(A )3(B (C) (D) 1 (7) 某中学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )(A )4种 (B) 10种 (C) 18种 (D)20种(8)曲线21x y e -=+在点(0,2)处的切线与直线0y =和y x =围成的三角形的面积为(A )13 (B )12 (C )23 (D )1(9)设()f x 是周期为2的奇函数,当01x ≤≤时,()f x 2(1)x x =-,则5()2f -= (A )12-(B )14- (C )14 (D )12 (10)已知抛物线C:2y =4x 的焦点为F ,直线y=2x-4与C 交于A,B 两点,则cos (A) 54 (B)53 (C).—53 (D) —54(11)已知平面α截一球面得圆M,过圆心M 且与 成60 二面角的平面β截该球面得N 。
2011年全国高考2卷理科数学试题及答案
![2011年全国高考2卷理科数学试题及答案](https://img.taocdn.com/s3/m/8123b532f68a6529647d27284b73f242326c3143.png)
2011年全国高考2卷理科数学试题及答案2011年普通高等学校招生全国统一考试(全国卷II)数学本试卷共4页,共三大题21小题,总分150分,考试时间120分钟。
考生答题前需在试题卷和答题卡上填写姓名和准考证号,并将准考证号条形码粘贴在答题卡上的指定位置。
选择题需用2B铅笔将答案标号涂黑,如需更改,需用橡皮擦干净后重新涂写。
填空题和解答题需使用0.5毫米黑色墨水签字笔在答题卡上的对应区域内回答,试题卷上的回答无效。
考试结束时,请一并上交试题卷和答题卡。
一、选择题本大题共12小题,每小题5分,共60分。
在每小题的四个选项中,只有一项是符合题目要求的。
1.已知复数z=1+i,z为其共轭复数,则zz-z-1=A)-2i(B)-i(C)i(D)2i2.函数y=2x(x≥0)的反函数为A)y=(x∈R)B)y=(x≥0)C)y=4x2(x∈R)D)y=4x2(x≥0)3.以下四个条件中,使a>b成立的充分必要条件是A)a>b+1B)a>b-1C)a>bD)以上条件都是4.设Sn为等差数列{an}的前n项和,若a1=1,公差d=2,且Sk+2-Sk=24,则k=A)8(B)7(C)6(D)55.已知函数f(x)=cosωx(ω>0),将y=f(x)的图像向右平移2π/3个单位长度后,所得的图像与原图像重合,则ω的最小值等于A)1/3B)3C)6D)96.已知直二面角α-ℓ-β,点A∈α,AC⊥ℓ,C为垂足,B∈β,BD⊥ℓ,D为垂足,且AB=2,AC=BD=1,则D到平面ABC的距离等于A)2√3/3B)√2C)1D)2√3/37.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有A)4种B)10种C)18种D)20种8.曲线y=e2x+1在点(0,2)处的切线与直线y=-x和y=x围成的三角形的面积为A)1/12B)1/2C)1/3D)1/329.设f(x)是周期为2的奇函数,当-1≤x≤1时,f(x)=2x(1-x),则f(-5/4)=A)-11/16B)-1/4C)1/4D)11/16210.已知抛物线C:y=4x的焦点为F,直线y=2x-4与C交于A、B两点,则cos∠AFB=(A)解析:首先,求出抛物线C的准线方程为y=-4x,焦点为F(0,1)。
2011年高考理科数学(全国卷)(含答案)
![2011年高考理科数学(全国卷)(含答案)](https://img.taocdn.com/s3/m/6f3fd8f54693daef5ef73d9e.png)
2011年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷....上作答无效。
...... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题 (1)复数1z i =+,z 为z 的共轭复数,则1zz z --= (A )2i - (B )i - (C )i (D )2i(2)函数2(0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥(3)下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = (A )8 (B )7 (C )6 (D )5(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13 (B )3 (C )6 (D )9(6)已知直二面角α –ι- β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于 (A)23 (B)33 (C)63(D) 1(7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有(A)4种 (B)10种 (C)18种 (D)20种(8)曲线y=2xe-+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为(A)13(B)12(C)23(D)1(9)设()f x是周期为2的奇函数,当0≤x≤1时,()f x=2(1)x x-,则5 ()2f-=(A) -12(B)14- (C)14(D)12(10)已知抛物线C:24y x=的焦点为F,直线24y x=-与C交于A,B两点.则cos AFB∠=(A)45(B)35(C)35- (D)45-(11)已知平面α截一球面得圆M,过圆心M且与α成060二面角的平面β截该球面得圆N.若该球面的半径为4,圆M的面积为4π,则圆N的面积为(A)7π (B)9π (C)11π (D)13π(12)设向量a,b,c满足a=b =1,a b =12-,,a cb c--=060,则c的最大值等于(A)2 (B)3 (c)2 (D)1第Ⅱ卷注意事项:1、答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2011年全国Ⅱ高考试题(理)
![2011年全国Ⅱ高考试题(理)](https://img.taocdn.com/s3/m/8576bfb8fd0a79563c1e72bd.png)
2011年普通高等数学招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第二卷3至4页.考试结束后,将本试卷和答题卡一并交回.参考公式: 如果事件A 、B 互斥,那么球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么其中R 表示球的半径)()()(B P A P B A P ⋅=⋅球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率:其中R 表示球的半径()(1)k k n kn n P k C P P -=- 第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数1z i =+,z 为z 的共轭复数,则1zz z --=A .2i -B .i -C .iD .2i2.函数y =x ≥0)的反函数为A .2()4x y x R =∈ B .2(0)4x y x =≥ C .24()y x x R =∈D .24(0)y x x =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是A .1a b >+B .1a b >-C .22a b > D .33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =公差2d =,224k k S S +-=,则k =A .8B .7C .6D .55.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .96.已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂足.若2AB =,1AC BD ==,则D 平面ABC 的距离等于A B C D .17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有A .4种B .10种C .18种D .20种8.曲线21x y e -=+的点(0,2)处的切线与直线0y =和y x =围成的三角形的面积为A .13B .12C .23D .19.设()f x 是周期为2的奇函数,当01x ≤≤时,()2(1)f x x x =-,则5()2f -=A .12-B .14-C .14D .1210.已知抛物线2:4C y x =的焦点为F ,直线24y x =-与C 交于,A B 两点,则cos AFB ∠=A .45B .35C .35-D .45-11.已知平面α截一球面得圆M ,过圆心M 且与α成60二面角的平面截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为A .7πB .9πC .11πD .13π12.设向量,,a b c 满足||||1a b == ,12a b ⋅=- ,,60a c b c <-->=,则||c 的最大值等于A .2B CD .1第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.20(1的二项展开式中,x 的系数与9x 的系数之差为 . 14.已知(,)2παπ∈,sin 5α=,则tan 2α= . 15.已知1F 、2F 分别为双曲线22:1927x y C -=的左、右焦点,点A C ∈,点M 的坐标为(2,0),AM 为12F AF ∠的平分线,则2||AF = .16.已知点E 、F 分别在正方体1111ABCD A B C D -的棱1BB 、1CC 上,且12B E EB =,12CF FC =,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知90A C -=,a c +=,求C . 18.(本小题满分12分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)X 表示该地的100位车主中,甲、乙两种保险都不购买的车主数.求X 的期望. 19.(本小题满分12分)如图,四棱锥S ABCD -中,AB ∥CD ,BC CD ⊥,侧面SAB 为等边三角形.2AB BC ==,1CD SD ==. (1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成的角的大小.20.(本小题满分12分)ASD BC设数列{}n a 满足10a =且111111n na a +-=--.(1)求{}n a 的通项公式; (2)设n b =,记1nn kk S b==∑,证明:1n S <.21.(本小题满分12分)已知O 为坐标原点,F 为椭圆22:12y C x +=在y 轴正半轴上的焦点,过F且斜率为l 与C 交于A 、B 两点,点P 满足0OA OB OP ++= .(1)证明:点P 在C 上;(2)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上. 22.(本小题满分12分) (1)设函数2()ln(1)2xf x x x =+-+,证明:当0x >时,()0f x >; (2)从编号1到100的100张卡片中每次随机抽取一张,然后施加,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为p .证明:19291()10p e<<.数学试题参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力二、填空题.本题考查基础知识,基本概念和基本运算技巧 13. 14. 15. 16.三、解答题17.。
2011年全国统一高考数学试卷(理科)(新课标)(含解析版)
![2011年全国统一高考数学试卷(理科)(新课标)(含解析版)](https://img.taocdn.com/s3/m/480e351d4693daef5ff73d96.png)
【解答】解:根据题意可知:tanθ=2,
所以 cos2θ=
=
=,
则 cos2θ=2cos2θ﹣1=2× ﹣1=﹣ .
故选:B. 【点评】此题考查学生掌握直线的斜率与倾斜角之间的关系,灵活运用同角三角函数间的基本关系
化简求值,是一道中档题. 6.(5 分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )
为 C 的实轴长的 2 倍,则 C 的离心率为( )
A.
B.
C.2
D.3
【考点】DA:二项式定理. 菁优网版权所有
【专题】11:计算题. 【分析】给 x 赋值 1 求出各项系数和,列出方程求出 a;将问题转化为二项式的系数和;利用二项
C.2
D.3
8.(5 分)
的展开式中各项系数的和为 2,则该展开式中常数项为( )
A.﹣40
B.﹣20
C.20
D.40
9.(5 分)由曲线 y= ,直线 y=x﹣2 及 y 轴所围成的图形的面积为( )
A.
B.4
C.
D.6
10.(5 分)已知 与 均为单位向量,其夹角为 θ,有下列四个命题 P1:| + |>1⇔θ∈[0, );
2011 年全国统一高考数学试卷(理科)(新课标)
一、选择题(共 12 小题,每小题 5 分,满分 60 分) 1.(5 分)复数 的共轭复数是( )
A.
ቤተ መጻሕፍቲ ባይዱ
B.
C.﹣i
D.i
2.(5 分)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( )
A.y=2x3
B.y=|x|+1
C.y=﹣x2+4
第 3 页(共 15 页)
2011高考全国2卷数学理科试题及答案详解
![2011高考全国2卷数学理科试题及答案详解](https://img.taocdn.com/s3/m/f47eda0ba0116c175e0e482f.png)
2011年普通高等学校招生全国统一考试 全国卷2理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数1z i =+,z 为z 的共轭复数,则1zz z --= (A )2i - (B )i - (C )i (D )2i(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥(3)下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224A n S S +-=,则k = (A )8 (B )7 (C )6 (D )5(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A )13(B )3 (C )6 (D )9(6)已知直二面角α− ι−β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂[来源:Z§xx§]足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于(A)3 (B)3 (C)3(D) 1(7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友 每位朋友1本,则不同的赠送方法共有(A)4种 (B)10种 (C)18种 (D)20种[来源:学科网](8)曲线y=2x e -+1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为 (A)13 (B)12 (C)23(D)1(9)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -= (A) -12 (B)1 4- (C)14 (D)12(10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠= (A)45 (B)35 (C)35- (D)45-(11)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N.若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为 (A)7π (B)9π (C)11π (D)13π(12)设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于 (A)2 (B)3 (c)2 (D)1第Ⅱ卷 注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011年高考全国卷2理科数学试题及答案(已排版)
![2011年高考全国卷2理科数学试题及答案(已排版)](https://img.taocdn.com/s3/m/6943bc012e3f5727a5e962c6.png)
2011年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数1z i =+,z 为z 的共轭复数,则1zz z --= (A )2i - (B )i - (C )i (D )2i (2)函数2(0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ (3)下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224A n S S +-=,则k = (A )8 (B )7 (C )6 (D )5 (5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9(6)已知直二面角α− ι−β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于 (A)23 (B)33 (C)63(D) 1 (7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友 每位朋友1本,则不同的赠送方法共有 (A)4种 (B)10种 (C)18种 (D)20种(8)曲线y=2x e -+1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为(A)13 (B)12 (C)23(D)1(9)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=(A) -12 (B)1 4- (C)14 (D)12(10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=(A)45 (B)35 (C)35- (D)45-(11)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N.若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π(12)设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于(A)2 (B)32 第Ⅱ卷(第Ⅱ卷共l0小题,共90分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(A) 1 3
(B) 3
( C) 6 ( D) 9
(6) 已知直二面角α - ι - β,点 A∈α, AC⊥ι, C 为垂足, B∈β, BD⊥ι, D 为
垂足.若 AB=2,AC=BD=,1 则 D 到平面 ABC的距离等于
(A) 2 (B) 3
3 (C) 3
1 (Ⅱ)设 bn
an 1 , 记Sn n
n
bk , 证明: Sn p 1.
k1
2/6
(21)已知 O 为坐标原点, F 为椭圆 C : x2 y2 1在 y 轴正半轴上的焦点,过 F 且斜率 2 uuur uuur uuur
为 - 2 的直线 l 与 C交与 A、B 两点,点 P 满 足 OA OB OP 0. ( Ⅰ) 证明:点 P 在 C 上; (Ⅱ)设点 P 关于点 O的对称点为 Q,证明: A、 P、 B、 Q四点在同一圆上 .
arcsin
. …… 12 分
7
设 D (1,0,0) , 则 A(2,2,0) 、 B(0,2,0) .
又设 S( x, y, z) , 则 x 0, y 0, z 0 .
uur
uur
uuur
( Ⅰ ) AS ( x 2, y 2, z), BS ( x, y 2, z), DS ( x 1, y, z) ,
(A) 4 (B) 3 (C)
3 (D)
4
5
5
5
5
(11) 已知平面α截一球面得圆 M,过圆心 M且与α成 600 二面角的平面β截该球面得圆
N.若该球面的半径为 4,圆 M的面积为 4 ,则圆 N 的面积为
(A)7
(B)9
(C)11
(D)13
(12) 设向量 a,b,c 满足 a = b =1 , agb =
26 , x2
4
26 ,
4
x1 x2
2 , y1 y2
2
2( x1 x2) 2 1,
由题意得 x3 ( x1 x2)
2 2 , y3
( y1 y2 )
2
1, 所以点 P 的坐标为 (
, 1) .
2
经验证点 P 的坐标 (
2 ,
1) 满足方程 x2
y2
1, 故点 P 在椭圆 C 上 … 6 分
3
.
DE
2
作 FG BC , 垂足为 G , 则 FG DC 1 . 连结 SG. 则 SG BC .
又 BC FG , SGI FG G , 故 BC 平面 SFG , 平面 SBC 平面 SFG . …… 9 分
作 FH SG, H 为垂足 , 则 FH 平面 SBC .
SF FG FH
SG
3 , 即 F 到平面 SBC 的距离为 21 .
写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,
用橡
皮擦干净后,再选涂其他答案标号,在试题.卷.上.作.答.无.效.。...
3.第Ⅰ卷共 l2 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题
甲种保险的概率为 0. 3, 设各车主购买保险相互独立 (I) 求该地 1 位车主至少购买甲、乙两种保险中的 l 种的概率; ( Ⅱ )X 表示该地的 l00 位车主中,甲、乙两种保险都不购买的车主数。求 X 的期望。
(20)设数列 an 满足 a1 0 且 1
1 1.
1 an 1 1 an
(Ⅰ)求 an 的通项公式;
取 p 2 得 a ( 3,0,2) , 又 AB ( 2,0,0),
uuur r
uuur r AB a
21
cos AB ,a uuur r
.
| AB | | a | 7
……………… 9 分
故 AB 与平面 SBC所成的角为 arcsin 21 . 7
(20) 【解析】 ( Ⅰ ) 由题设 1
1
1,
另解 : 由已知易求得 SD 1, AD
2
5, SA 2 , 于是 SA2 SD2 AD . 可知 SD SA , 同理可得
SD SB, 又 SAI SB S . 所以 SD 平面 SAB. ……………… 6 分 ( Ⅱ ) 由 AB 平面 SDE 知,平面 ABCD 平面 SDE .
作 SF DE , 垂足为 F , 则 SF 平面 ABCD,SF SD SE
p
.
证 明:
pp
( 9 )19 10
p
1 e2
连续
3/6
(18) 【解析】记 A 表示事件 : 该地的 1 位车主购买甲种保险; B 表示事件 : 该地的 1 位车主购买乙种保险但不购买甲 种保险; C 表示事件 : 该地的 1 位车主至少购买甲、乙两种保险中的 l 种; D 表示事件 : 该地的 1 位车主甲、乙两种保险都不购买 .
1 an 1 1 an
……………… 12 分
即{ 1 }是公差为 1 的等差数列 . 1 an
又 1 =1 , 故 1 =n .
1 a1
1 an
1 所以 an 1 n
1 bn
an 1 n
…………………………… 5 分 ( Ⅱ) 由 ( Ⅰ ) 得
n1 n n 1g n
1
1,
n n1
n
n1
Sn
bk
(
k1
。
1/6
(14) 已知 a∈( , ) ,sin α= 5 ,则 tan2 α=
2
5
(15) 已知 F1、 F2分别为双曲线 C:
x2 -
y2 =1 的左、右焦点,点 A∈ C,点 M的坐标为 (2 ,
9 27
0) ,AM为∠ F1AF2∠的平分线.则 | AF2| = . (16) 己知点 E、 F 分别在正方体 ABCD- A1B2C3D4 的棱 BB1 、CC1 上,且 B1E=2EB, CF=2FC1,
(22)(本小题满分 12 分)(注意:在.试.题.卷.上.作.答.无.效. )
(Ⅰ)设函数 f ( x) ln(1 x) 2x ,证明:当 x>0 时, f ( x)>0 ; x2
(Ⅱ)从编号 1 到 100 的 100 张卡片中每次随即抽取一张,然后放回,用这种方式
抽取 20 次,设抽得的 20 个号码互不相同的概率为
uur uur 由 | AS| | BS |得
(x 2)2 ( y 2)2 z2
x2 ( y 2)2 z2 ,
故 x 1. uuur
由 | DS | 1得 y 2 z2 1,
uur 又由 | BS| 2 得 x2 ( y 2) 2 z2 4 ,
即 y2
z2
4y 1 0, 故 y
1 ,z
3
.
2
2
……………… 3 分
k1 k
1 )1
k1
1
1………………………… 12 分
n1
5/6
(21) 【解析】 (I) F (0,1) , l 的方程为 y 4x2 2 2x 1 0 .
2 x 1 , 代入 x2 y2 1 并化简得 2
………………………… 2 分
设 A( x1 , y1), B(x 2 , y2 ), P ( x3, y3 ) , 则 x1
( Ⅱ ) 设平面 SBC的法向量 a (m, n, p) ,
……………… 6 分
r uur r uur r uur r uur 则 a BS, a CB, a BS 0,a CB 0 .
uur 又 BS
(1,
3,
3
),
uur CB
(0, 2,0) ,
22
故
m
3n 2
2n 0
3 p 0, 2
r
uuur
2011 年普通高等学校招生全国统一考试 理科数学 ( 必修 +选修 II)
本试卷分第Ⅰ卷 (选择题 ) 和第Ⅱ卷 ( 非选择题 ) 两部分。第Ⅰ卷 1 至 2 页。第Ⅱ卷 3
至 4 页。考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
注意事项:
1.答题前,考生在答题卡上务必用直径
0.5 毫米黑色墨水签字笔将自己的姓名、准考证号填
(I) P( A) 0.5 , P(B ) 0.3 , C A B …………………………… 3 分
P(C ) P( A B) P( A) P( B ) 0.8 …………………………… 6 分
( Ⅱ ) D C , P(D ) 1 P(C ) 1 0.8 0.2
X : B (100,0.2) , 即 X 服从二项分布 , …………………………… 10 分
7
7
4/6
由于 ED / / BC , 所以 ED / / 平面 SBC , E 到平面 SBC 的距离 d 也为
21
.
7
设 AB 与平面 SBC所成的角为 , 则 sin
d
21
,
EB 7
解法二:以 C 为原点 , 射线 CD 为 x 轴的正半轴 , 建立如
图所示的空间直角坐标系 C xyz .
21
6 (D) 1 3
(7) 某同学有同样的画册 2 本,同样的集邮册 3 本,从中取出 4 本赠送给 4 位朋友
每位朋友 1 本,则不同的赠送方法共有
(A)4 种 (B)10 种 (C)18 种 (D)20 种
(8) 曲线 y= e 2x +1 在点 (0 , 2) 处的切线与直线 y=0 和 y=x 围 成的三角形的面积为
所以期望 EX 100 0.2 20 .
…………………………… 12 分