最新高一数学必修5不等式知识点总结优秀名师资料
(完整版)高中数学知识汇总——不等式
必修 5 第 3 章不等式知识汇总一、常用的不等式的基天性质:( 1 )a b b a (反对称性)( 2 )a b,b c a c (传达性)( 3 )a b a c b c (可加性,也叫移项法例)( 4 )a b,c0ac bc (不等式两边乘同一个正数,不等号方向不变!)a b, c0ac bc (不等式两边乘同一个负数,不等号方向改变!)a ba cb d (同向不等式相加,不等号方向不变!)( 5 )cda b0ac bd0 (正数同向不等式相乘,不等号方向不变!)( 6 )cd0( 7 )a b0, n N , n1a n b n0 (正数乘方法例)( 8 )a b0, n N , n1n a n b0 (正数开方法例)二、一元二次不等式及其解法1 、三个“二次”间的关系(以下a> 0)△= b 2 - 4ac△> 0△=0△< 0二次函数y y yy=ax 2+bx+cx0x的图象x1x20x 一元二次方程有两个不等实根x1, x2有两个相等实根b无实根ax2+bx+c= 0的根x1< x2x1= x 2=2a一元二次不等式b{x|x < x1或x> x2 }R{x|x≠}2aax2+bx+c >0的解集一元二次不等式{x|x1< x < x2 }ΦΦax2+bx+c <0的解集2 、一元二次不等式的一般解法:一看二次项的系数,二算△,三绘图并据图写解集;3、含参数不等式的解法:分类议论;4 、不等式恒建立问题的解决:即不等式解集为R;5 、高次不等式的解法:数轴标根法(也叫穿针引线法)用曲线自右往左、自上往下挨次穿过,遇偶次重根穿而可是,遇奇次重根一次穿过。
三、基本不等式1 、关于随意两个正数a bab 。
a, b ,它们的算术均匀数是,几何均匀数是22 、基本不等式:关于随意 a 0, b 0 ,都有a b2 ab )此中等号建立的条件是 a b 。
高一必修5不等式知识点
高一必修5不等式知识点不等式是数学中的重要概念之一,它描述了数之间大小关系的不同情况。
在高中数学课程中,不等式的学习是必不可少的,而高一必修5则是学生们初次接触并系统学习不等式的阶段。
本文将为大家介绍高一必修5中的不等式知识点,包括基本概念、性质和解不等式的方法。
一、基本概念在学习不等式之前,我们先来了解一下一些基本概念。
首先是不等号的含义,大于号">"表示大于关系,小于号"<"表示小于关系,而大于等于号"≥"表示大于或等于关系,小于等于号"≤"表示小于或等于关系。
不等式由两个数之间的关系和一个不等号构成,如a>b、c≥d等。
我们可以将不等式理解为一个数轴上的区域,满足不等式的数所构成的集合。
二、性质不等式具有一些重要性质,对于学习和解决不等式问题非常有帮助。
1. 传递性:如果a>b,b>c,那么a>c。
这是因为不等式的比较关系具有传递性,如果一个数大于另一个数,而后者又大于另一个数,那么前者一定大于后者。
2. 加法性:如果a>b,那么a+c>b+c。
这是因为两边同时加上同一个数,不等式的关系仍然成立。
3. 减法性:如果a>b,那么a-c>b-c。
和加法性类似,两边同时减去同一个数,不等式的大小关系不变。
4. 乘法性:如果a>b,且c>0,那么ac>bc。
这是因为两边同乘以一个正数时,不等号的方向不变;而如果c<0,则不等号的方向会改变。
5. 除法性:如果a>b,且c>0,那么a/c>b/c。
和乘法性类似,两边同除以一个正数时,不等号的方向仍然不变;当c<0时,不等号的方向会改变。
三、解不等式的方法解不等式是数学中常见的问题,我们有一些常用的方法来求解不等式。
1. 图像法:将不等式对应的数轴画出来,并标出关键点,然后根据不等号的类型进行填色,最后得到不等式的解集。
完整版)高中数学不等式知识点总结
完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。
②传递性:a>b。
b>c则a>c。
③可加性:a>b等价于a+c>b+c,其中c为任意实数。
同向可加性:a>b,c>d,则a+c>b+d。
异向可减性:a>b,cb-d。
④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。
⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。
异向正数可除性:a>b>0,0bc。
a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。
⑧倒数法则:a>b>0,则1/a<1/b。
2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。
a^2+b^2>=2ab,当且仅当a=b时取等号。
a+b/2>=√ab,当且仅当a=b时取等号。
a+b+c/3>=∛abc,当且仅当a=b=c时取等号。
a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。
a+b+c>=3√abc,当且仅当a=b=c时取等号。
a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。
a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。
3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。
a+b)/2<=√(a^2+b^2),对任意实数a,b成立。
a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。
a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。
a+b)/2>=√ab,对任意正实数a,b成立。
高中不等式知识点总结(最新最全)
高中不等式知识点总结(最新最全)不等式的定义a^2+b^2≥2ab,通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。
总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
1.不等式的解法(1)同解不等式((1)与同解;(2)与同解,与同解;(3)与同解);2.一元一次不等式情况分别解之。
3.一元二次不等式或分及情况分别解之,还要注意的三种情况,即或或,最好联系二次函数的图象。
4.分式不等式分式不等式的等价变形:>0f(x)·g(x)>0,≥0。
5.简单的绝对值不等式解绝对值不等式常用以下等价变形:|x|0),|x|>ax2>a2x>a或x<-a(a>0)。
一般地有:|f(x)|g(x)f(x)>g(x)或f(x)6.指数不等式;;8.线性规划(1)平面区域一般地,二元一次不等式在平面直角坐标系中表示某一侧所有点组成的平面区域。
我们把直线画成虚线以表示区域不包括边界直线。
当我们在坐标系中画不等式所表示的平面区域时,此区域应包括边界直线,则把直线画成实线。
说明:由于直线同侧的所有点的坐标代入,得到实数符号都相同,所以只需在直线某一侧取一个特殊点,从的正负即可判断表示直线哪一侧的平面区域。
特别地,当时,通常把原点作为此特殊点。
(2)有关概念引例:设,式中变量满足条件,求的最大值和最小值。
由题意,变量所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域。
由图知,原点不在公共区域内,当时,,即点在直线:上,作一组平行于的直线:,,可知:当在的右上方时,直线上的点满足,即,而且,直线往右平移时,随之增大。
高中不等式知识点总结
高中不等式知识点总结一、知识点1.不等式性质比较大小方法:(1)作差比较法(2)作商比较法不等式的基本性质①对称性:a > bb > a②传递性: a > b, b > ca > c③可加性: a > b a + c > b + c④可积性: a > b, c > 0ac > bc;a > b, c < 0ac < bc;⑤加法法则: a > b, c > d a + c > b + d⑥乘法法则:a > b > 0, c > d > 0 ac > bd⑦乘方法则:a > b > 0, an > bn (n∈N)⑧开方法则:a > b > 0,2.算术平均数与几何平均数定理:(1)如果a、b∈R,那么a2 + b2 ≥2ab(当且仅当a=b时等号)(2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:如果为实数,则重要结论1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。
3.证明不等式的常用方法:比较法:比较法是最基本、最重要的方法。
当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。
综合法:以已知或已证明的不等式为基础,根据不等式的性质推导出待证明的不等式。
平均不等式常用于综合法的标度。
分析方法:不等式两边的关系不够清晰。
通过寻找不等式成立的充分条件,对待证明的不等式进行逐步转化,直到找到一个容易证明或已知成立的结论。
4.不等式的解法(1) 不等式的有关概念同解不等式:如果两个不等式有相同的解集,那么这两个不等式称为同解不等式。
同解变形:当一个不等式转化为另一个不等式时,如果这两个不等式是同解不等式,那么这种变形称为同解变形。
最新[高一数学]不等式知识点归纳与总结优秀名师资料
[高一数学]不等式知识点归纳与总结相信自己~你行的:授课教案教学标题期末复习(三) 教学目标 1 、不等式知识点归纳与总结重点:不等式基础知识点的熟练掌握教学重难点难点:不等式在实际应用中的相互转换上次作业检查授课内容:一、数列章节知识点复习等差数列等比数列a,a,da定义 nn,1n,1 ,q(q,0)an递推公式 n,m; a,a,daanmd,,,; a,aqa,aq,,nn,1nmnn,1nma,a,(n,1)d通项公式 n1n,1() a,q,0a,aq1n1中项 a,an,kn,k G,,aa(aa,0)A,n,kn,kn,kn,k2**() () nkNnk,,0,,,nkNnk,,0,,,(,1)naq,前项和 n1n S,(a,a),n1nn2,S1,aq,,,,aaqn1n1,(,1)q,1,1,qq,(1)nn, Snad,,n12重要性质a,a,a,aa,a,a,amnpq mnpq** (m,n,p,q,N,m,n,p,q)(m,n,p,q,N,m,n,p,q)1 等差数列(1)性质:a=an+b,即a是n的一次性函数,系数a为等差数列的公差; nndd,,,,22a (2) 等差{}前n项和即S是n的不含常数项的二次函数; nSAnBnnan,,,,,n,,,,n122,,,,ka若{a},{b}均为等差数列,则{a?n},{},{ka+c}(k,c为常数)均为等差数nnnnnk,i,1列;当m+n=p+q时,a+a=a+a,特例:a+a=a+a=a+a=…;当2n=p+q时,2a=a+a; mnpq1n2n-13n-2npq2? 等差数列依次每k项的和仍成等差数列,其公差为原公差的k倍;S,S,S,S,S...k2kk3k2kSa,奇nS,S,nd,? 若等差数列的项数为2,则 ; ,,nn,N,偶奇San,1偶自己决定自己的未来相信自己~你行的:S,n奇? 若等差数列的项数为,则,且,,,S,2n,1aS,S,a,,2n,1n,N,2n,1nn奇偶Sn,1偶121n,,,,n,n,nn,1,,2222(4)常用公式:?1+2+3 …+n = ? 123,,,?n,2621nn,,,,,3333 ? 123,,?n,,,2,,5nn[注]:熟悉常用通项:9,99,999,…; 5,55,555,…. ,a,10,1,,,a,10,1nn92 等比数列(1)性质 2当m+n=p+q时,aa=aa,特例:aa=aa=aa=…,当2n=p+q时,a=aa,数列{ka},mnpq1n2n-13n-2npqnk{a}成等比数列。
202X年高中数学人教版必修五不等式知识点最完全精炼总结
千里之行,始于足下。
202X年高中数学人教版必修五不等式学问点最完全精炼总结高中数学人教版必修五中的不等式部分是数学中格外重要的一个章节,把握好不等式的学问对于解决很多其他数学问题都是至关重要的。
下面是对202X年高中数学人教版必修五不等式学问点的最完全精炼总结,总计。
一、基本概念与性质1. 不等式的基本性质:加减等于一个不等式,两边乘(除)同一个正(负)数不等号方向不变,两边乘(除)同一个非负数不等号方向可能转变。
2. 确定值不等式的性质:|a| < b 等价于 -b < a < b;|a| > b 等价于a < -b 或 a > b。
3. 等式的确定值不等式:若 |a| = b,则 a = b 或 a = -b。
二、一次不等式1. 一次不等式的解集表示法:解集用数学符号表示为 { x | x ∈ R, x >a } 或 (a, +∞)。
2. 一次不等式的求解方法:移项、换边、乘除法求解。
3. 不等式的区间解法:将解集表示为一个或多个区间的并集。
4. 求不等式的整数解:通过查找使不等式成立的整数解来确定整数解集。
第1页/共3页锲而不舍,金石可镂。
5. 不等关系的性质:不等式两边同时加上(减去)一个相同的数不等号方向不变,两边同时乘(除)一个正数不等号方向不变,两边同时乘(除)一个负数不等号方向转变。
三、二次不等式1. 二次不等式的解集表示法:解集用数学符号表示为 { x | x ∈ R, x > a, x < b } 或 (a, b)。
2. 二次函数与二次不等式的关系:二次函数的图像与二次不等式的解集有亲密关系。
3. 二次不等式的判别法:依据二次不等式的判别式Δ = b^2 - 4ac 的正负确定二次不等式的解集。
4. 二次不等式的求解方法:配方法、因式分解法、二次函数法等。
5. 不等式组的解集:将多个不等式组合在一起,求解出满足全部不等式的解。
必修五不等式知识汇总5篇
必修五不等式知识汇总5篇第一篇:必修五不等式知识汇总必修五不等式知识汇总1.实数的三歧性:任意两个实数a、b,a>b,a=b,a0⇔a>b⎧⎪⎨a-b=0⇔a=b⎪⎩a-b<0⇔a.2.不等式的性质:性质1(对称性)a>b⇔bb,b>c⇒a>c;性质3(可加性)a>b⇒a+c>b+c.移项法则:不等式中的任意一项都可以变成它的相反数后从一边移到另一边.a>b⎫a>b⎫⎬⎬⇒acbc;c>0⎭c<0⎭性质5(同向可加性)a>b,c>d⇒a+c>b+d;性质6(同向可乘性)a>b>0⎫⎬⇒ac>bd; c>d>0⎭性质7(不等式的乘方法则)a>b>0⇒an>bn(n∈N+且n>1);性质8(不等式的开方法则)a>b>0⇒a>b(n∈N+且n>1).3.一元二次不等式与二次函数、一元二次方程的关系:4.常见不等式的解法:(1)分式不等式的解法f(x)A先通分化为一边为一边为0的形式,再等价转化为整式不等式.⇔A·B>0;Bg(x)⎧⎧B≥0B≤0⎪A·⎪A·AAA⎨⎨⇔A·B<0;≥0⇔;≤0⇔.BBB⎪B≠0⎪B≠0⎩⎩如果用去分母的方法,一定要考虑分母的符号.(2)高次不等式的解法只要求会解可化为一边为0,另一边可分解为一次或二次的积式的,解法用穿根法,要注意穿根时“奇过偶不过”.如(x-1)(x+1)2(x+2)3>0穿根时,-2点穿过,-1点返回,故解为x<-2或x>1.(3)含绝对值不等式的解法:一是令每个绝对值式为0,找出其零点作为分界点,分段讨论,二是平方法.(4)含根号的不等式解法,一是换元法,二是平方法.(5)解含参数的不等式时,要对参数分类讨论(常见的有一次项系数含字母、二次项系数含字母、二次不等式的判别式Δ、指对不等式中的底数含参数等).(6)超越不等式问题可用图象法.5.二元一次不等式Ax+By+C>0(或Ax+By+C<0)表示的平面区域.(1)在平面直角坐标系中作出直线Ax+By+C=0;(2)在直线的一侧任取一点P(x0,y0),特别地,当C≠0时,常把原点作为此特殊点.(3)若Ax0+By0+C>0,则包含点P的半平面为不等式Ax+By+C>0所表示的平面区域,不包含点P的半平面为不等式Ax+By+C<0所表示的平面区域.(4)主要看不等号与B的符号是否同向,若同向则在直线上方,若异向则在直线下方,简记为“同上异下”,这叫B值判断法.一般地说,直线不过原点时用原点判断法或B值判断法,直线过原点时用B值判断法或用(1,0)点判断.注意:画不等式Ax+By+C≥0(或Ax+By+C≤0)所表示的平面区域时,区域包括边界直线Ax+By+C=0上的点,因此应将其画为实线.把等号去掉,则直线为虚线.6.线性规划的有关概念(1)约束条件——目标函数中的变量所要满足的不等式组.(2)线性目标函数——目标函数关于变量是一次函数.(3)线性约束条件——约束条件是关于变量的一次不等式组.(4)可行解——满足线性约束条件的解.(5)可行域——由所有可行解组成的集合.(6)最优解——在可行域中使目标函数取得最值的解.(7)线性规划问题——求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.7.利用图解法解决线性规划问题的一般步骤(1)作出可行域.将约束条件中的每一个不等式所表示的平面区域作出,找出其公共部分.(2)作出目标函数的等值线.(3)确定最优解.①在可行域内平行移动目标函数等值线,最先通过或最后通过的顶点便是最优解对应的点,从而确定最优解.②利用围成可行域的直线的斜率来判断.若围成可行域的直线l1、l2、…、ln的斜率分别为k18.(1)重要不等式a2+b2≥2a·b(a、b∈R);a+b+(2)基本不等式ab(a、b∈R); 2(3)均值定理.①x、y∈(0,+∞),且xy=P(定值),那么当x=y时,x+y有最小值P.S2②x、y∈(0,+∞),且x+y=S(定值),那么当x=y时,xy 有最大值.4(4)证明不等式常用方法有:综合法、比较法、分析法、反证法及利用函数单调性等.误区警示:1.两个同向不等式的两边不能分别相减,也不能分别相除,在需要求差或商时,可利用不等式的性质转化为同向不等式相加或相乘.2.a≥b的含义是“a>b”或“a=b”,只要其中一个成立,则a≥b就成立.3.特别注意不等式性质成立的条件.对每一条性质,要弄清条件和结论,注意条件加强和放宽后,条件和结论之间关系发生的变化;避免由于忽略某些限制条件而造成解题失误,特别注意关于符号的限制条件.a>b>0⎫a>b⎫如:a>b⎫⎪1111⎬⇒⎬⎬但a>b⇒是错误的,⇒ac>bd是成立的,但ababc>d>0c>d⎭⎭⎪ab>0⎭⇒ac>bd是错误的.a>b>0⇒an>bn(n∈N*)是正确的,但a>b⇒an>bn是错误的,若规定n为正奇数时,a>b⇒an>bn是正确的.4.解决含有绝对值不等式问题的基本思想是设法去掉绝对值符号,化归为不含绝对值符号的不等式去解.脱去绝对值符号的方法主要有:(1)定义法:|x|≤a(a>0)⇔-a≤x≤a,|x|≥a(a>0)⇔x≥a或x≤-a 分段讨论,含多个绝对值符号(高考限于2个)的情形,可令每一个为0,找出分界点再分段,特别注意a>0的条件.(2)平方法:只有在不等式两端同号的情况下才适用.(3)客观题还常结合几何意义求解.5.在利用均值定理求最值时,要紧扣“一正、二定、三相等”的条件.“一正”是说每个项都必须为正值,“二定”是说各个项的和(或积)必须为定值.“三相等”是说各个项中字母取某个值时,能够使得各项的值相等.其中,通过对所给式进行巧妙分拆、变形、组合、添加系数使之能够出现定值是解题的关键.多次使用均值不等式时,要保持每次等号成立条件的一致性.6.①写一元二次不等式的解集时,一定要将图象的开口方向与判别式结合起来.②当二次项系数含有参数时,不能忽略二次项系数为零的情形.如ax2-ax-1<0的解-b+集为R,求实数a的范围.解答时应对a=0,a≠0进行分类讨论.还应注意a<02a-b-Δ<2a③解对数不等式时,莫忘定义域的限制.④换元法解不等式时,要注意把求得的新元的范围等价转化为原来未知数的取值范围.⑤解不等式的每一步变形要保持等价.7.解线性规划问题时:①在求解应用问题时要特别注意题目中变量的取值范围,防止将范围扩大.②对线性目标函数z=Ax+By中的B的符号一定要注意.当B>0时,直线过可行域且在y轴上截距最大时,z值最大,在y 轴上截距最小时,z值最小;当B<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.③解线性规划问题的关键步骤是在图上完成的,所以作图应尽可能精确,图上操作尽可能规范.求最优解时,若没有特殊要求,一般为边界交点.若实际问题要求的最优解是整数解.而我们利用图解法得到的解为非整数解,应作适当调整.其方法应以与线性目标函数直线的距离为依据,在直线附近寻求与直线距离最近的整点,但必须是在可行域内寻找.但考虑到作图毕竟还是会有误差,假若图上的最优点并不明显易辨时,应将最优解附近的整点都找出来,然后逐一检查,以“验明正身”.第二篇:必修五基本不等式知识点第三章:不等式、不等式解法、线性规划1.不等式的基本概念不等(等)号的定义:a-b>0⇔a>b;a-b=0⇔a=b;a-b<0⇔a<b.2.不等式的基本性质(1)a>b⇔b<a(对称性)(2)a>b,b>c⇒a>c(传递性)(3)a>b⇒a+c>b+c(加法单调性)(4)a>b,c>d⇒a+c>b+d(同向不等式相加)(5)a>b,c<d⇒a-c>b-d(异向不等式相减)(6)a.>b,c>0⇒ac>bc(7)a>b,c<0⇒ac<bc(乘法单调性)(8)a>b>0,c>d>0⇒ac>bd(同向不等式相乘)(9)a>b>0,0<c<d⇒11ab(异向不等式相除)(10)a>b,ab>0⇒<(倒数关系)>abcd(11)a>b>0⇒an>bn(n∈Z,且n>1)(平方法则)(12)a>b>0⇒a>b(n∈Z,且n>1)(开方法则)练习:(1)对于实数a,b,c中,给出下列命题:①若a>b,则ac>bc;②若ac>bc,则a>b;③若a<b<0,则a>ab>b;④若a<b<0,则⑤若a<b<0,则22222211<; abba>;⑥若a<b<0,则a>b; abab11⑦若c>a>b>0,则;⑧若a>b,>,则a>0,b<0。
(完整版)高中数学人教版必修五不等式知识点最完全精炼总结,推荐文档
△>0
Байду номын сангаас
ax
b(a
x 0)
x
b
a b
(a (a
0) 0)
a
△=0
△<0
y=ax2+bx+c
y
的图象
(a>0)
x1 O
x2x
y
O x1
x
y x
O
ax2+bx+c=0 有两相异实根 (a>0)的根 x1, x2 (x1<x2)
有两相等实根
x1=x2=
b 2a
ax2+bx+c>0 {x|x<x1,或 x>x2} {x|x≠ b }
一.不等式知识要点
1.两实数大小的比较
a b a b 0 a b a b 0 a b a b 0
2.不等式的性质:8条性质.
3.基 本不 等式 定理
且且且且 且且且且 且且且且 且且且且
a 2 b 2 2ab
a2
b2
1 (a b)2 2
值。
z ax by z x2 y2
z y x
6
练习:1.求满足 | x | + | y | ≤4 的整点(横、纵坐标为整数)的
个数。
2.且且且且且且且f
(x)
2
log2
x
1 log2
x
(0
x
1)
34.f(x)=x+ 1 且x4且且且且且 x1
4.求函数 f ( x) ( x 1)2 4 ( x 1) 的最小值.
(5)一元二次方程根的分布问题: 方法:依据二次函数的图像特征从:开口方向、判别式、对称 轴、
必修五数学基本不等式知识点总结
必修五数学基本不等式知识点总结
必修五数学基本不等式的知识点总结如下:
1. 基本不等式的定义:对于任意的实数a和b,有a≤b,即两个数的大小关系。
2. 数轴上的不等式:通过将不等式转化为数轴上的线段表示,可以直观地表示出不等式的解集。
3. 加法性质:对于任意的实数a、b和c,如果a≤b,则a+c≤b+c。
4. 减法性质:对于任意的实数a、b和c,如果a≤b,则a-c≤b-c。
5. 乘法性质:对于任意的实数a、b和c,如果a≤b且c≥0,则ac≤bc。
如果a≤b且c ≤0,则ac≥bc。
6. 除法性质:对于任意的实数a、b和c,如果a≤b且c>0,则a/c≤b/c。
如果a≤b且c<0,则a/c≥b/c。
7. 对称性:对于任意的实数a和b,如果a≤b,则b≥a,反之亦然。
8. 传递性:对于任意的实数a、b和c,如果a≤b且b≤c,则a≤c。
9. 绝对值不等式:对于任意的实数a,有|a|≥a或|a|≥-a。
10. 三角形不等式:对于任意的三角形的边a、b和c,有a+b>c、a+c>b和b+c>a。
以上就是必修五数学基本不等式的知识点总结。
必修五不等式知识点资料讲解
2a) 2a ⎭Rxxx ≠-不等式的基本知识(一)不等式与不等关系1、应用不等式(组)表示不等关系;不等式的主要性质:(1)对称性: a > b ⇔ b < a(2)传递性: a > b , b > c ⇒ a > c(3)加法法则: a > b ⇒ a + c > b + c ; a > b , c > d ⇒ a + c > b + d (同向可加)(4)乘法法则: a > b , c > 0 ⇒ ac > bc ;a >b ,c < 0 ⇒ ac < bca >b > 0,c >d > 0 ⇒ ac > bd (同向同正可乘)(5) 倒数法则: a > b , ab > 0 ⇒ 1 1<a b(6)乘方法则: a > b > 0 ⇒ a n > b n (n ∈ N * 且n > 1)(7)开方法则: a > b > 0 ⇒ n a > n b (n ∈ N * 且n > 1)2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)3、应用不等式性质证明不等式 (二)解不等式1、一元二次不等式的解法一元二次不等式 ax 2 + bx + c > 0或ax 2 + bx + c < 0(a ≠ 0)的解集:设相应的一元二次方程 ax 2 + bx + c = 0(a ≠ 0)的两根为 x 、x 且 x ≤ x , ∆ = b 2 - 4ac ,则 1 212不等式的解的各种情况如下表:∆> 0∆= 0 ∆< 0y = ax 2 + bx + cy = ax 2 + bx + c y = ax 2 + bx + c二次函数y = ax 2 + bx + c( a > 0 )的图象一元二次方程ax 2 + bx + c = 0 (a > 0 的根有两相异实根 有两相等实根x , x ( x < x ) x = x =- b1 2 1 2 1 2无实根ax 2 + bx + c > 0(a > 0)的解集{ x < x 或x > x}1 2⎧ b ⎫⎨⎬ ⎩(a>0)的解集{x xax2+bx+c<01<x<x2}∅∅2、简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现f(x)的符号变化规律,写出不等式的解集。
必修五不等式知识点
不等式的基本知识(一)不等式与不等关系1、应用不等式(组)表示不等关系;不等式的主要性质:(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>,(3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>,(同向可加)(4)乘法法则:bc ac c b a >⇒>>0,; bc ac c b a <⇒<>0,bd ac d c b a >⇒>>>>0,0(同向同正可乘)(5) 倒数法则:b a ab b a 110,<⇒>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且(7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)3、应用不等式性质证明不等式(二)解不等式1、一元二次不等式的解法一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:0>∆ 0=∆ 0<∆二次函数 c bx ax y ++=2(0>a )的图象c bx ax y ++=2 c bx ax y ++=2 c bx ax y ++=2一元二次方程 ()的根002>=++a c bx ax 有两相异实根)(,2121x x x x < 有两相等实根 a b x x 221-== 无实根 的解集)0(02>>++a c bx ax {}21x x x x x ><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2 R的解集)0(02><++a c bx ax {}21x x x x << ∅ ∅2、标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修5不等式知识点总结
精品文档
高一数学必修5不等式知识点总结
不等式是高一数学必修5非常重要的概念,有哪些知识点需要了解?下面学习
啦小编给大家带来高一数学必修5不等式知识点,希望对你有帮助。
高一数学必修5不等式知识点不等式(inequality)
用不等号将两个解析式连结起来所成的式子。
例如2x+2y?2xy,sinx?1,
ex>0 ,2xx是超越不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)?G(x,y,……,z )(其中不等号也可以为中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
不等式的最基本性质有:?如果x>y,那么yy;?如果x>y,y>z;那么x>z;?如果x>y,而z为任意实数,那么x+z>y+z;? 如果x>y,z>0,那么xz>yz;?如果x>y,z 由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式,其中比较有名的有:
柯西不等式:对于2n个任意实数x1,x2,…,xn和y1,y2,…,yn,恒有
(x1y1+x2y2+…+xnyn)2?(x12+x22+…+xn2)(y12+y22+…+yn2)。
排序不等式:对于两组有序的实数x1?x2?…?xn,y1?y2?…?yn,设yi1,
yi2,…,yin是后一组的任意一个
1 / 7
精品文档
排列,记S=x1yn+x2yn-1+…+xny1,M=x1yi1+x2yi2+…+xnyin,
L=x1y1+x2y2+…+xnyn,那么恒有S?M?L。
根据不等式的基本性质,也可以推出解不等式可遵循的一些同解原理。
主要的有:?不等式F(x)F(x)同解。
?如果不等式F(x) 0与不等式同解;不等式F(x)G(x) 不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号―>‖― ―?‖―?‖连接的不等式称为非严格不等式,或称广义不等式。
在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式.
如:甲大于乙(甲>乙),就是一个不等式.不等式不一定只有「>」,「0,即A>B.又同理可证:A>C,A>D.所以,A最大.
不等式是不包括等号在内的式子比如:(不等号大于等于号,小于等于号)只要用这些号放在式子里就是不等式咯..
1.符号: 不等式两边都乘以或除以一个负数,要改变不等号的方向。
.确定解集:
比两个值都大,就比大的还大;
比两个值都小,就比小的还小;
比大的大,比小的小,无解;
比小的大,比大的小,有解在中间。
2 / 7
精品文档
三个或三个以上不等式组成的不等式组,可以类推。
.另外,也可以在数轴上确定解集:
把每个不等式的解集在数轴上表示出来,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集
第2/6页
的线的条数与不等式的个数一样,那么这段就是不等式组的解集。
有几个就要几个。
1.不等式的基本性质:
性质1:如果a>b,b>c,那么a>c(不等式的传递性).
性质2:如果a>b,那么a+c>b+c(不等式的可加性).
性质3:如果a>b,c>0,那么ac>bc;如果a>b,cd,那么a+c>b+d.
性质5:如果a>b>0,c>d>0,那么ac>bd.
性质6:如果a>b>0,n?N,n>1,那么an>bn,且.
性质7:如果a>等于b c>b 那么c大于等于a
均值不等式
A+B/2>=根号下ab a+b>=2倍根号下ab(a>0,b>0)
当且仅当a=b时,式中等号成立
一元二次不等式
含有一个未知数且未知数的最高次数为2次的的不等式叫做一元二次不等式,它的一般形式是ax +bx+c>0或ax +bx+c 一元二次不等式的解法 1)当V("V"表示判别
3 / 7
精品文档
是,下同)=b -4ac>=0时,二次三项式,ax +bx+c有两个实根,那么ax +bx+c 总可分解为a(x-x1)(x-x2)的形式。
这样,解一元二次不等式就可归结为解两个一元一次不等式组。
一元二次不等式的解集就是这两个一元一次不等式组的解集的并集。
还是举个例子吧。
x -7x+6 利用十字相乘法
x -3
1x -2
得(2x-3)(x-2) 然后,分两种情况讨论:
一、2x-30
第2/6页
与X轴的两个交点,然后根据题目所需求的"0"
高一数学必修5不等式例题例1. 为了能有效地使用电力资源,宁波市电业局从xx年1月起进行居民峰谷用电试点,每天8:00
至22:00用电千瓦时元(―峰电‖ 价),22:00至次日8:00每千瓦时元(―谷电‖ 价),而目前不使用―峰谷‖电的居民用电每千瓦时元.当―峰电‖用量不超过每月总电量的百分之几时,使用―峰谷‖电合算?
分析:本题的一个不等量关系是由句子―当?峰电‘用量不超过每月总电量的百分之几时,使用?峰谷‘电合算‖得
4 / 7
精品文档
来的,文中带加点的字―不超过‖明显告诉我们该题是一道需用不等式来解的应用题.
解:设当―峰电‖用量占每月总用电量的百分率为x时,使用―峰谷‖电合算,月用电量总量为y.依题意得+(1-x)
解得x 答:当―峰电‖用量占每月总用电量的89?时,使用―峰谷‖电合算.
例2.
例:
生产安排模型:某工厂要安排生产?、?两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如表所示,表中右边一列是每日设备能力及原材料供应的限量,该工厂生产一单位产品?可获利2元,生产一单位产品?可获利3元,问应如何安排生产,使其获得最多?
解:
1、确定决策变量:设x1、x2为产品?、?的生产数量;
、明确目标函数:获利最大,即求2x1+3x2最大值;
、所满足的约束条件:
设备限制:x1+2x2?8
原材料A限制:4x1?16
原材料B限制:4x2?12
基本要求:x1,x2?0
用max代替最大值,(subject to 的简写)代替约束条
5 / 7
精品文档
件,则该模型可记为:
max z=2x1+ x1+2x2?8x1?16x2?1x1,x2?0
高一数学学习方法预习
如果你想把数学学好,单纯地做学校发的资料是远远不够的。
去学校旁边买一本侧重讲解的参考书。
在老师讲课之前,先把课本中要学习的内容看一遍(用心看),定义、公式可能记不住对吗?对,看着写着,一遍不行再来一遍,把这些基础弄清楚为止。
之后看你买的参考书,这比课本上所讲解的又深了一个层次,每讲解一个知识点,都会有一两个例题。
看完后,把课本、参考书上面的知识点再回顾一遍,做课本后面的习题。
听课
你的预习基本可以让你明白90%了,至于课堂,有的放矢吧。
你的选择有很多,如果你的知识点掌握的已经很好,你可以再进行回顾,也可以自己找题做;如果你的知识点掌握的不是太好,你可以跟着老师再把知识点记忆一下。
当老师拓展新的知识点时要认真听,再听一下,加深理解。
复习
对于各科而言,复习都很重要。
拿数学来说,好多同学认为就是不断的刷题。
其实不然,当你要做课后习题的时候,首先应先温习教材知识点,之后看你的课本后面是否有做错的题目,如果有,再做一遍,最后就是找题做了。
6 / 7
精品文档
看了的人还看了:
7 / 7。