高二数学人教B选修第章综合素质检测

合集下载

高中数学人教B版选修1-2学业分层测评 章末综合测评2 Word版含答案

高中数学人教B版选修1-2学业分层测评 章末综合测评2 Word版含答案

章末综合测评(二) 推理与证明(时间分钟,满分分)一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的.).数列,,,,,,…中的等于( )-=,故=+×=.【解析】观察知数列{}满足:=,+【答案】.用反证法证明命题“设,为实数,则方程++=至少有一个实根”时,要做的假设是( ).方程++=没有实根.方程++=至多有一个实根.方程++=至多有两个实根.方程++=恰好有两个实根【解析】方程++=至少有一个实根的反面是方程++=没有实根,故应选.【答案】.下列推理过程是类比推理的是( ).人们通过大量试验得出掷硬币出现正面的概率为.科学家通过研究老鹰的眼睛发明了电子鹰眼.通过检测溶液的值得出溶液的酸碱性.数学中由周期函数的定义判断某函数是否为周期函数【解析】为归纳推理,,均为演绎推理,为类比推理.【答案】.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形内角和是°归纳出所有三角形的内角和都是°;③由()=,满足(-)=-(),∈,推出()=是奇函数;④三角形内角和是°,四边形内角和是°,五边形内角和是°,由此得凸多边形内角和是(-)·°..①③④.①②.②④.①②④【解析】合情推理分为类比推理和归纳推理,①是类比推理,②④是归纳推理,③是演绎推理.【答案】.设=+,=,则,的大小关系是( )>=>(+)<【解析】因为=+>=>,故>.【答案】.将平面向量的数量运算与实数的乘法运算相类比,易得到下列结论:①·=·;②(·)·=·(·);③·(+)=·+·;④·=;⑤由·=·(≠),可得=.以上通过类比得到的结论中,正确的个数是( )个个个个【解析】①③正确;②④⑤错误.【答案】.证明命题:“()=+在(,+∞)上是增函数”.现给出的证法如下:因为()=+,所以′()=-.因为>,所以>,<<.所以->,即′()>.所以()在(,+∞)上是增函数,使用的证明方法是( )【导学号:】.综合法.分析法.反证法.以上都不是【解析】从已知条件出发利用已知的定理证得结论,是综合法.。

人教版数学高二-人教B版选修2-1练习 综合水平测试

人教版数学高二-人教B版选修2-1练习 综合水平测试

综合水平测试一、选择题:本大题共12小题,每小题5分,共60分.1.命题“∀x∈,x2-a≤0”为真命题的一个充分不必要条件是()A. a≥4B. a≤4C. a≥5D. a≤5解析:本题考查全称量词的意义与充分必要条件的应用.∵∀x ∈,1≤x2≤4,∴要使x2-a≤0为真,则a≥x2,则a≥4,本题求的是充分不必要条件,结合选项,只有C符合,故选C.答案:C2. 已知空间向量a=(t,1,t),b=(t-2,t,1),则|a-b|的最小值为()A. 2B. 3C. 2D. 4解析:本题主要考查空间向量的坐标运算以及简单的二次函数求最值.|a-b|=2(t-1)2+4≥2,故选C.答案:C3. 若实数k满足0<k<9,则曲线x225-y29-k=1与曲线x225-k-y29=1的()A. 离心率相等B. 虚半轴长相等C. 实半轴长相等D. 焦距相等解析:本题主要考查双曲线基本量之间的关系.由0<k<9,易知两曲线均为双曲线且焦点都在x轴上,由25+9-k=25-k+9,得两双曲线的焦距相等,选D.答案:D4.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(綈q );④(綈p )∨q 中,真命题是( )A. ①③B. ①④C. ②③D. ②④解析:本题主要考查不等式的性质、命题与复合命题真假性的判断.注意綈p ,綈q 只对命题的结论进行否定,复合命题p ∧q 要两个命题全为真才为真,p ∨q 只要两个命题有一个为真就为真.由不等式的性质可知,命题p 是真命题,命题q 为假命题,故①p ∧q 为假命题,②p ∨q 为真命题,③綈q 为真命题,则p ∧(綈q )为真命题,④綈p 为假命题,则(綈p )∨q 为假命题,所以选C.答案:C5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点.若△AF 1B 的周长为43,则C 的方程为( )A. x 23+y 22=1 B. x 23+y 2=1 C. x 212+y 28=1D. x 212+y 24=1解析:本题主要考查椭圆的定义及几何性质.由椭圆的性质知|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,∴△AF 1B 的周长=|AF 1|+|AF 2|+|BF 1|+|BF 2|=43,∴a = 3.又e =33,∴c =1.∴b 2=a 2-c 2=2,∴椭圆的方程为x 23+y 22=1,故选A.答案:A6.下列叙述中正确的是( )A. 若a ,b ,c ∈R ,则“ax 2+bx +c ≥0”的充分条件是“b 2-4ac ≤0”B. 若a ,b ,c ∈R ,则“ab 2>cb 2”的充要条件是“a >c ”C. 命题“对任意x ∈R ,有x 2≥0”的否定是“存在x ∈R ,有x 2≥0”D. l 是一条直线,α,β是两个不同的平面,若l ⊥α,l ⊥β,则α∥β解析:由b 2-4ac ≤0推不出ax 2+bx +c ≥0,这是因为a 的符号不确定,所以A 不正确;当b 2=0时,由a >c 推不出ab 2>cb 2,所以B 不正确;“对任意x ∈R ,有x 2≥0”的否定是“存在x ∈R ,有x 2<0”,所以C 不正确.选D.答案:D7.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A. x 25-y 220=1 B. x 220-y 25=1 C. 3x 225-3y 2100=1D. 3x 2100-3y 225=1解析:由题意知,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为y=2x ,所以ba =2,即b 2=4a 2,又双曲线的一个焦点是直线l 与x 轴的交点,所以该焦点的坐标为(-5,0),所以c =5,即a 2+b 2=25,联立得⎩⎨⎧b 2=4a 2,a 2+b 2=25,解得a 2=5,b 2=20,故双曲线的方程为x 25-y 220=1,故选A.答案:A8. 已知四面体ABCD 中,AB 、AC 、AD 两两垂直,给出下列命题:①AB →·CD →=AC →·BD →=AD →·BC →; ②|AB →+AC →+AD →|2=|AB →|2+|AC →|2+|AD →|2.则下列关于以上两个命题真假性的判断正确的是( ) A. ①真、②真 B. ①真、②假 C. ①假、②假 D. ①假、②真解析:由AB ⊥AC 、AB ⊥AD ,得AB ⊥平面ACD ,故AB ⊥CD ,即有AB →·CD →=0,同理,AC →·BD →=AD →·BC →=0.于是,命题①为真命题.由于AB 、AC 、AD 为同一顶点出发的三条棱,可构造一个长方体,则AB →+AC →+AD →为以A 为起点的长方体的体对角线所对应的向量,从而|AB →+AC →+AD →|为长方体的体对角线的长,而|AB →|2+|AC →|2+|AD →|2亦表示体对角线的长,故命题②亦真.答案:A9. 直线4kx -4y -k =0与抛物线y 2=x 交于A 、B 两点,若|AB |=4,则弦AB 的中点到直线x +12=0的距离等于( )A.74 B .2 C.94D .4解析:直线4kx -4y -k =0,即y =k (x -14),即直线4kx -4y -k =0过抛物线y 2=x 的焦点(14,0).设A (x 1,y 1),B (x 2,y 2)则|AB |=x 1+x 2+12=4,故x 1+x 2=72,则弦AB 的中点的横坐标是74,所以弦AB 的中点到直线x +12=0的距离是74+12=94.答案:C10. 直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A. 110B. 25C. 3010D. 22解析:本题主要考查空间角的求法、空间向量在立体几何中的应用,意在考查考生的空间想象能力和运算求解能力.建立如图所示的空间直角坐标系C -xyz ,设BC =2,则B (0,2,0),A (2,0,0),M (1,1,2),N (1,0,2),所以BM →=(1,-1,2),AN →=(-1,0,2),故BM 与AN 所成角θ的余弦值cos θ=|BM →·AN →||BM →|·|AN →|=36×5=3010.答案:C11.直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分又不必要条件解析:本题主要考查直线与圆的位置关系、三角形的面积、充分必要条件等基础知识,意在考查考生的转化和化归能力、逻辑推理能力和运算求解能力. 若k =1,则直线l :y =x +1与圆相交于(0,1),(-1,0)两点,所以△OAB 的面积S △OAB =12×1×1=12,所以“k =1”⇒“△OAB 的面积为12”;若△OAB 的面积为12,则k =±1,所以“△OAB 的面积为12”D ⇒/“k =1”,所以“k =1”是“△OAB 的面积为12”的充分而不必要条件,故选A.答案:A12. 已知一抛物线关于x 轴对称,它的顶点在坐标原点O ,并且它的焦点F 是椭圆x 24+y 22=1的右顶点,经过点F 且倾斜角为π3的直线交抛物线于A ,B 两点,则弦AB 的长度为( )A. 154 B.5 C. 203D. 323解析:本题主要考查椭圆、抛物线的概念及抛物线的焦点弦长公式.依题意,抛物线的焦点为F (2,0),则抛物线方程为y 2=8x .直线AB 的倾斜角为π3,斜率为3,故方程为y =3(x -2),联立方程⎩⎨⎧y =3(x -2)y 2=8x消去y ,得3x 2-20x +12=0.可设A (x 1,y 1),B (x 2,y 2),由根与系数的关系,得x 1+x 2=203,所以由抛物线的焦点弦长公式,得|AB |=x 1+x 2+4=203+4=323,故选D.答案:D二、填空题:本大题共4小题,每小题5分,共20分. 13.命题“∃x ∈R,2x 2-3ax +9<0”为假命题,则实数a 的取值范围是________.解析:∵∃x ∈R,2x 2-3ax +9<0为假命题, ∴∀x ∈R,2x 2-3ax +9≥0为真命题, ∴Δ=9a 2-4×2×9≤0,即a 2≤8, ∴-22≤a ≤2 2. 答案:14.设双曲线C 经过点(2,2),且与y 24-x 2=1具有相同渐近线,则C 的方程为________;渐近线方程为________.解析:本题主要考查圆锥曲线的定义与性质,意在考查考生对圆锥曲线的定义及性质的掌握情况.∵与双曲线y 24-x 2=1有相同渐近线的双曲线方程为y 24-x 2=k ,将点(2,2)代入,得k =-3,∴双曲线C 的方程为x 23-y 212=1,其渐近线方程为x 23-y 212=0,即y =±2x .答案:x 23-y 212=1 y =±2x15.若方程x 24-t +y 2t -1=1所表示的曲线为C ,给出下列四个命题:①若C 为椭圆,则1<t <4且t ≠52; ②若C 为双曲线,则t >4或t <1;③曲线C 不可能是圆;④若C 表示椭圆,且长轴在x 轴上,则1<t <32.其中正确的命题是________(把所有正确命题的序号都填在横线上).解析:若为椭圆⎩⎪⎨⎪⎧4-t >0,t -1>0,4-t ≠t -1,即1<t <4,且t ≠52;若为双曲线,则(4-t )(t -1)<0,即t >4或t <1;当t =52时,表示圆,若C 表示长轴在x 轴上的椭圆,则1<t <52,故①②正确.答案:①②16. 如图,平面ABCD ⊥平面ABEF ,四边形ABCD 是正方形,四边形ABEF 是矩形,且AF =12AD =a ,G 是EF 的中点,则GB 与平面AGC 所成角的正弦值为________.解析:如图,以A 为原点建立空间直角坐标系,则A (0,0,0),B (0,2a,0),C (0,2a,2a ),G (a ,a,0),F (a,0,0),AG →=(a ,a,0),AC →=(0,2a,2a ),BG →=(a ,-a,0),BC →=(0,0,2a ),设平面AGC 的法向量为n 1=(x 1,y 1,1),由⎩⎨⎧AG →·n 1=0,AC →·n 1=0⇒⎩⎨⎧ax 1+ay 1=02ay 1+2a =0⇒⎩⎨⎧x 1=1,y 1=-1⇒n 1=(1,-1,1).sin θ=BG →·n 1|BG →||n 1|=2a 2a ×3=63.答案:63三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)已知a =(x,4,1),b =(-2,y ,-1),c =(3,-2,z ),a ∥b ,b ⊥c ,求:(1)a ,b ,c ;(2)a +c 与b +c 所成角的余弦值.解:(1)因为a ∥b ,所以x -2=4y =1-1,解得x =2,y =-4,这时a =(2,4,1),b =(-2,-4,-1),又因为b ⊥c ,所以b ·c =0,即-6+8-z =0,解得z =2,于是c =(3,-2,2).(2)由(1)得a +c =(5,2,3),b +c =(1,-6,1),因此a +c 与b +c 所成角的余弦值等于cos θ=5-12+338×38=-219.18.(12分)已知命题p :方程x 22m -y 2m -1=1表示焦点在y 轴上的椭圆,命题q :双曲线y 25-x 2m =1的离心率e ∈(1,2),若p ,q 只有一个为真,求实数m 的取值范围.解:将方程x 22m -y 2m -1=1改写为x 22m +y 21-m=1,只有当1-m >2m >0,即0<m <13时,方程表示的曲线是焦点在y 轴上的椭圆,所以,命题p 等价于0<m <13;因为双曲线y 25-x 2m =1的离心率e ∈(1,2),所以m >0,且1<5+m 5<4,解得0<m <15;所以命题q 等价于0<m <15;若p 真q 假,则m ∈∅;若p 假q 真,则13≤m <15. 综上,m 的取值范围为13≤m <15.19.(12分)在长方体ABCD -A 1B 1C 1D 1中,AA 1=2AB =2BC ,E 、F 、E 1分别是棱AA 1,BB 1,A 1B 1的中点.(1)求证:CE ∥平面C 1E 1F ; (2)求证:平面C 1E 1F ⊥平面CEF .解:如图所示,以D 为原点,DA ,DC ,DD 1所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,设BC =1,则C (0,1,0),E (1,0,1),C 1(0,1,2),F (1,1,1),E 1(1,12,2). (1)设平面C 1E 1F 的法向量n =(x ,y ,z ). ∵C 1E 1→=(1,-12,0),FC 1→=(-1,0,1),∴⎩⎨⎧n ·C 1E 1→=0,n ·FC 1→=0,即⎩⎪⎨⎪⎧x -12y =0,-x +z =0.取n =(1,2,1).∵CE →=(1,-1,1),n ·CE →=1-2+1=0, ∴CE →⊥n .又∵CE ⊄平面C 1E 1F , ∴CE ∥平面C 1E 1F .(2)设平面EFC 的法向量为m =(a ,b ,c ),由EF →=(0,1,0),FC →=(-1,0,-1),∴⎩⎨⎧m ·EF →=0,m ·FC →=0,即⎩⎨⎧b =0,-a -c =0.取m =(-1,0,1).∵m ·n =1×(-1)+2×0+1×1=-1+1=0, ∴平面C 1E 1F ⊥平面CEF .20. (20分)设曲线方程为x 2+y24=1,过点M (0,1)的直线l 交曲线于点A 、B ,O 是坐标原点,点P 满足OP →=12(OA →+OB →).当l 绕点M 旋转时,求动点P 的轨迹方程.解:直线l 过点M (0,1),设其斜率为k ,则l 的方程为y =kx +1. 设A (x 1,y 1),B (x 2,y 2),由题设可得点A 、B 的坐标(x 1,y 1)、(x 2,y 2)是方程组⎩⎪⎨⎪⎧y =kx +1, ①x 2+y 24=1 ②的解.将①代入②并化简得(4+k 2)x 2+2kx -3=0,所以⎩⎪⎨⎪⎧x 1+x 2=-2k 4+k2,y 1+y 2=84+k 2.于是OP →=12(OA →+OB →)=(x 1+x 22,y 1+y 22)=(-k 4+k 2,44+k 2). 设点P 的坐标(x ,y ),则⎩⎪⎨⎪⎧x =-k 4+k 2,y =44+k2,消去参数k 得4x 2+y 2-y =0. ③当k 不存在时,AB 中点为坐标原点, 即点P (0,0),也满足方程③.所以点P 的轨迹方程为4x 2+y 2-y =0.21.(12分)如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C .(1)证明:AC =AB 1;(2)若AC ⊥AB 1,∠CBB 1=60°,AB =BC ,求二面角A -A 1B 1-C 1的余弦值.解:(1)连接BC 1,交B 1C 于点O ,连接AO .因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为B 1C 及BC 1的中点.又AB ⊥B 1C ,所以B 1C ⊥平面ABO .由于AO ⊂平面ABO ,故B 1C ⊥AO .又B 1O =CO ,故AC =AB 1.(2)因为AC ⊥AB 1,且O 为B 1C 的中点,所以AO =CO . 又因为AB =BC ,所以△BOA ≌△BOC .故OA ⊥OB ,从而OA ,OB ,OB 1两两互相垂直.以O 为坐标原点,OB →的方向为x 轴正方向,|OB →|为单位长,建立如图所示的空间直角坐标系O -xyz .因为∠CBB 1=60°,所以△CBB 1为等边三角形.又AB =BC ,则 A (0,0,33),B (1,0,0),B 1(0,33,0),C (0,-33,0). AB 1→=(0,33,-33),A 1B 1→=AB →=(1,0,-33),B 1C 1→=BC →=(-1,-33,0).设n =(x ,y ,z )是平面AA 1B 1的法向量,则⎩⎨⎧n ·AB 1→=0,n ·A 1B 1→=0,即⎩⎨⎧33y -33z =0,x -33z =0.所以可取n =(1,3,3).设m 是平面A 1B 1C 1的法向量,则⎩⎨⎧m ·A 1B 1→=0,m ·B 1C 1→=0.同理可取m =(1,-3,3). 则cos 〈n ,m 〉=n ·m |n ||m |=17.所以二面角A -A 1B 1-C 1的余弦值为17.22.(12分)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B .已知|AB |=32|F 1F 2|.(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过原点O 的直线l 与该圆相切.求直线l 的斜率.解:(1)设椭圆右焦点F 2的坐标为(c,0).由|AB |=32|F 1F 2|,可得a 2+b 2=3c 2,又b 2=a 2-c 2,则c 2a 2=12.所以,椭圆的离心率e =22.(2)由(1)知a 2=2c 2,b 2=c 2.故椭圆方程为x 22c 2+y2c 2=1.设P (x 0,y 0),由F 1(-c,0),B (0,c ),有F 1P →=(x 0+c ,y 0),F 1B →=(c ,c ).由已知,有F 1P →·F 1B →=0,即(x 0+c )c +y 0c =0. 又c ≠0,故有x 0+y 0+c =0. ①又因为点P 在椭圆上,故x 202c 2+y 20c 2=1. ②由①和②可得3x 20+4cx 0=0.而点P 不是椭圆的顶点,故x 0=-43c ,代入①得y 0=c 3,则点P 的坐标为(-4c 3,c3).设圆的圆心为T (x 1,y 1),则x 1=-43c +02=-23c ,y 1=c 3+c 2=23c ,进而圆的半径r =(x 1-0)2+(y 1-c )2=53c .设直线l 的斜率为k ,依题意,直线l 的方程为y =kx .由l 与圆相切,可得|kx 1-y 1|k 2+1=r ,即|k (-2c 3)-2c 3|k 2+1=53c ,整理得k 2-8k +1=0,解得k =4±15.所以,直线l 的斜率为4+15或4-15.。

高二数学选修第1章综合素质检测

高二数学选修第1章综合素质检测

第一章综合素质检测时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题p :任意x ∈R ,sin x ≤1,则它的否定是( ) A .存在x ∈R ,sin x ≥1 B .任意x ∈R ,sin x ≥1 C .存在x ∈R ,sin x >1 D .任意x ∈R ,sin x >12.两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 0=0垂直的充要条件是( ) A .A 1A 2+B 1B 2=0 B .A 1A 2-B 1B 2=0 C.A 1A 2B 1B 2=-1 D.B 1B 2A 1A 2=13.设M 、N 是两个集合,则“M ∪N ≠∅”是“M ∩N ≠∅”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件4.命题p :x =π是y =|sin x |的一条对称轴,命题q :2π是y =|sin x |的最小正周期,下列新命题:①p ∨q ;②p ∧q ;③綈p ;④綈q .其中真命题有( )A .0个B .1个C .2个D .3个5.(2010·湖南文,2)下列命题中的假命题...是( ) A .∃x ∈R ,lg x =0 B .∃x ∈R ,tan x =1 C .∀x ∈R ,x 3>0 D .∀x ∈R,2x >0 6.有下列四个命题①“若b =3,则b 2=9”的逆命题; ②“全等三角形的面积相等”的否命题; ③“若c ≤1,则x 2+2x +c =0有实根”;④“若A ∪B =A ,则A ⊆B ”的逆否命题. 其中真命题的个数是( ) A .1B .2C .3D .47.B =60°是△ABC 三个内角A 、B 、C 成等差数列的( ) A .充分而不必要条件 B .充要条件C .必要而不充分条件D .既不充分也不必要条件 8.“a =-1”是方程“a 2x 2+(a +2)y 2+2ax +a =0”表示圆的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件 9.下列语句是命题的个数为( )①空集是任何集合的真子集; ②x 2-3x -4=0; ③3x -2>0; ④把门关上; ⑤垂直于同一条直线的两直线必平行吗? A .1个B .2个C .3个D .4个10.给出命题:“已知a ,b ,c ,d 是实数,若a =b ,c =d ,则a +c =b +d ”,对其原命题、逆命题、否命题、逆否命题而言,真命题的个数是( )A .0B .2C .3D .4 11.下列命题为特称命题的是( )A .偶函数的图象关于y 轴对称B .正四棱柱都是平行六面体C .不相交的两条直线是平行直线D .存在实数大于等于312.已知实数a >1,命题p :函数y =log 12(x 2+2x +a )的定义域为R ,命题q :|x |<1是x <a的充分不必要条件,则( )A .p 或q 为真命题B .p 且q 为假命题C .綈p 且q 为真命题D .綈p 或綈q 为真命题二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上) 13.圆x 2+y 2+Dx +Ey +F =0与x 轴相切的一个充分非必要条件是________. 14.命题“到圆心的距离不等于半径的直线不是圆的切线”的逆否命题是________. 15.条件p :|x +1|>2;条件q :13-x >1,则¬p 是¬q 的________条件.16.给出下列四个命题:①若命题p :“x >2”为真命题,则命题q :“x ≥2”为真命题; ②y =2-x (x >0)的反函数是y =-log 2x (x >0);③在△ABC 中,sin A >sin B 的充要条件是A >B ;④平行于同一平面的两直线平行.其中所有正确命题的序号是________.三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)写出命题:“若x2+x≤0,则|2x+1|<1”的逆命题、否命题、逆否命题,并判断它们的真假.18.(本题满分12分)“菱形的对角线互相垂直”,将此命题写成“若p则q”的形式,写出它的逆命题、否命题、逆否命题,并指出其真假.19.(本题满分12分)证明一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0.20.(本题满分12分)已知p:函数f(x)=lg(ax2-x+116a)的定义域为R;q:a≥1.如果命题“p∨q为真,p∧q为假”,求实数a的取值范围.21.(本题满分12分)(1)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的充分条件?若存在,求出p的取值范围.(2)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的必要条件?若存在,求出p的取值范围.22.(本题满分14分)已知数列{a n}的前n项的和为S n=(n+1)2+t,(1)证明:t=-1是{a n}成等差数列的必要条件;(2)试问:t=-1时,{a n}是否成等差数列.1[答案] C[解析] 全称命题的否定为特称命题,故选C. 2[答案] A3[答案] B[解析] 由韦恩图易知“M ∪N ≠∅”⇒/ “M ∩N ≠∅”,且“M ∩N ≠∅”⇒“M ∪N ≠∅”,本题既考查了对集合中交集、并集概念的理解,又考查了对充分条件、必要条件等概念的掌握情况.4[答案] C[解析] 由题意知p 真q 假,则①④为真命题,故选C. 5[答案] C[解析] 本题主要考查全称命题和存在性命题真假的判断. 对于选项C ,∃x ∈R ,x 3≤0是真命题,故C 是假命题.6[答案] A[解析] “若b =3,则b 2=9”的逆命题:“若b 2=9,则b =3”假; “全等三角形的面积相等”的否命题是:“不全等的三角形,面积不相等”假; 若c ≤1,则方程x 2+2x +c =0中,Δ=4-4c =4(1-c )≥0,故方程有实根; “若A ∪B =A ,则A ⊆B ”为假,故其逆否命题为假. 7[答案] B[解析] 在△ABC 中,若B =60°,则A +C =120°, ∴2B =A +C ,则A 、B 、C 成等差数列;若三个内角A 、B 、C 成等差,则2B =A +C , 又A +B +C =180°,∴3B =180°,B =60°. 8[答案] C[解析] 当a =-1时,方程为x 2+y 2-2x -1=0, 即(x -1)2+y 2=2,若a 2x 2+(a +2)y 2+2ax +a =0表示圆,则应满足 ⎩⎪⎨⎪⎧a 2=a +2≠0(2a )2-4a 3>0,解得a =-1,故选C. 9[答案] A[解析] ①假命题.因为空集是空集的子集而不是真子集.②③是开语句,不是命题. ④是祈使句,不是命题. ⑤是疑问句,不是命题. 故只有①是命题,应选A. 10[答案] B[解析] 原命题为真,逆命题为假,故逆否命题为真,否命题为假,所以真命题有两个. 11[答案] D [解析] A 、B 、C 三个答案中都含有“所有”这个全称量词,只有D 答案中有存在量词“存在”.12[答案] A[解析] 命题p :当a >1时Δ=4-4a <0,即x 2+2x +a >0恒成立,故函数y =log 12(x 2+2x +a )的定义域为R ,即命题p 是真命题;命题q :当a >1时|x |<1⇔-1<x <1⇒x <a 但x <a ⇒/ -1<x <1,即|x |<1是x <a 的充分不必要条件,故命题q 也是真命题,故得命题p 或q 是真命题,因而选A.13[答案] D =0,E ≠0,F =014[答案] 圆的切线到圆心的距离等于圆的半径 15[答案] 充分不必要条件[解析] p :|x +1|>2,x +1>2或x +1<-2,∴x >1或x <-3;q :13-x >1,x -23-x >0,(x -2)(x -3)<0,∴2<x <3, ¬p :-3≤x ≤1;¬q :x ≥3或x ≤2. ¬p ⇒¬q ,而¬q ⇒/ ¬p . 16[答案] ①③[解析] y =2-x (x >0)的反函数为y =-log 2x (0<x <1),故②错误;如图.a ∥α,b ∥α,而a 与b 不平行,④错误; 在△ABC 中,A >B ⇔a >b ⇔2R sin A >2R sin B .(2R 为△ABC 外接圆直径)⇔sin A >sin B ,故③正确;x >2为真,x ≥2为真,故①正确. 17[解析] 逆命题:若|2x +1|<1,则x 2+x ≤0,为真; 否命题:若x 2+x >0,则|2x +1|≥1,为真. 逆否命题:若|2x +1|≥1,则x 2+x >0,为假. 18[解析] “若p 则q ”形式:“若一个四边形是菱形,则它的对角线互相垂直”逆命题:“若一个四边形的对角线互相垂直,则它是菱形”,假. 否命题:“若一个四边形不是菱形,则它的对角线不垂直”,假. 逆否命题:“若一个四边形的对角线不垂直,则它不是菱形”,真. 19[证明] 必要性:由于方程ax 2+bx +c =0有一个正根和一个负根.所以Δ=b 2-4ac >0,x 1x 2=ca<0,所以ac <0.充分性:由ac <0,可推得b 2-4ac >0,及x 1x 2=ca<0.所以方程ax 2+bx +c =0有两个相异实根,且两根异号.即方程ax 2+bx +c =0有一正根和一负根.综上可知:一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0. [点评] 证明充要条件,即证明原命题和逆命题都成立.证明充要性时一定要注意分类讨论,要搞清它的叙述格式,避免在论证时将充分性错当必要性证,而又将必要性错当充分性证.20[解析] 由p 真可知⎩⎪⎨⎪⎧a >0Δ=1-4a ·116a <0,解得a >2, 由p ∨q 为真,p ∧q 为假知,p 和q 中一个为真、一个为假. 若p 真q 假时a 不存在,若p 假q 真时1≤a ≤2. 综上,实数a 的取值范围是1≤a ≤2.21[解析] (1)由4x +p <0⇒x <-p4.x 2-x -2>0⇒x >2或x <-1, 依题意必须有: -p4≤-1⇒p ≥4. ∴当p ≥4为实数时,使4x +p <0是x 2-x -2>0的充分条件.(2)∵当x >2时,找不到任何一个p 使x <-14p ,∴不存在实数p ,使4x +p <0是x 2-x -2>0的必要条件.22[解析] (1)证明:∵a n =S n -S n -1=(n +1)2+t -(n -1+1)2-t =2n +1 (n ≥2),∵{a n }为等差数列,∴a 1=3=S 1=4+t ,∴t =-1.∴t =-1是{a n }成等差数列的必要条件. (2)当t =-1时, S n =(n +1)2-1,a n =S n -S n -1=2n +1 (n ≥2),d =a n -a n -1=2.而a 1=S 1=3也满足上式. ∴t =-1时,{a n }成等差数列.。

高二数学(人教B版)选修2-1单元 综合能力测试题2-推荐下载

高二数学(人教B版)选修2-1单元 综合能力测试题2-推荐下载

15
A. 4 53
B. 2 53
C. 2 13
53
D. 2 [答案] C
[解析] ∵A(3,3,1),B(1,0,5), 3
∴中点坐标为 M(2,2,3). 53
∴|CM|= 2 ,∴选 C. π
5.(2010·浙江文,6)设 0<x<2,则“xsin2x<1”是“xsinx<1”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 [答案] B
综合能力测试题二
时间 120 分钟,满分 150 分.
一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分,每小题有 4 个选项,其中有且仅有 一个是正确的,把正确的选项填在答题卡中)
1.已知命题“非空集合 M 的元素都是集合 P 的元素”是假命题,那么在命题:
①M 的元素都不是 P 的元素; ②M 中有不属于 P 的元素; ③M 中有 P 的元素; ④M 中元素不都是 P 的元素 中,真命题的个数为( ) A.1 个 B.2 个 C.3 个 D.4 个 [答案] B [解析] 若命题 P 错误,则¬P 正确,命题②④正确,故选 B. 2.设直线 l1、l2 的方向向量分别为 a=(2,-2,-2),b=(2,0,4),则直线 l1、l2 的夹角是( )
14
B. 2 7
C. 2
D. 14
[答案] B
[解析] P 点坐标为(0,52,52),由距离公式得|A→P|=
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力通根保1据护过生高管产中线工资0不艺料仅高试可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时各卷,类调需管控要路试在习验最题;大到对限位设度。备内在进来管行确路调保敷整机设使组过其高程在中1正资中常料,工试要况卷加下安强与全看过,25度并52工且22作尽护下可1关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编工保写况护复进层杂行防设自腐备动跨与处接装理地置,线高尤弯中其曲资要半料避径试免标卷错高调误等试高,方中要案资求,料技编试术写5卷交、重保底电要护。气设装管设备置线备高4动敷调、中作设试电资,技高气料并术中课试3且中资件、卷拒包料中管试绝含试调路验动线卷试敷方作槽技设案,、术技以来管术及避架系免等统不多启必项动要方方高式案中,;资为对料解整试决套卷高启突中动然语过停文程机电中。气高因课中此件资,中料电管试力壁卷高薄电中、气资接设料口备试不进卷严行保等调护问试装题工置,作调合并试理且技利进术用行,管过要线关求敷运电设行力技高保术中护。资装线料置缆试做敷卷到设技准原术确则指灵:导活在。。分对对线于于盒调差处试动,过保当程护不中装同高置电中高压资中回料资路试料交卷试叉技卷时术调,问试应题技采,术用作是金为指属调发隔试电板人机进员一行,变隔需压开要器处在组理事在;前发同掌生一握内线图部槽纸故内资障,料时强、,电设需回备要路制进须造行同厂外时家部切出电断具源习高高题中中电资资源料料,试试线卷卷缆试切敷验除设报从完告而毕与采,相用要关高进技中行术资检资料查料试和,卷检并主测且要处了保理解护。现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

高二数学 人教版选修2-1习题 本册综合素质检测1 Word版含答案

高二数学   人教版选修2-1习题 本册综合素质检测1 Word版含答案

本册综合素质检测(一)时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.命题“∀a 、b ∈R ,如果a =b ,则a 2=ab ”的否命题是( )A .∀a 、b ∈R ,如果a 2=ab ,则a =bB .∀a 、b ∈R ,如果a 2=ab ,则a ≠bC .∀a 、b ∈R ,如果a 2≠ab ,则a ≠bD .∀a 、b ∈R ,如果a ≠b ,则a 2≠ab [答案] D[解析] 否命题既否定条件,又否定结论,故原命题的否命题是“∀a 、b ∈R ,如果a ≠b ,则a 2≠ab ”.2.下列说法中正确的是( )A .“x >5”是“x >3”的必要条件B .命题“∀x ∈R ,x 2+1>0”的否定是“∃x ∈R ,x 2+1≤0”C .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数D .设p 、q 是简单命题,若p ∨q 是真命题,则p ∧q 也是真命题 [答案] B[解析] 命题“∀x ∈R ,x 2+1>0”的否定是“∃x ∈R ,x 2+1≤0”,故选B.3.已知A 、B 、C 三点不共线,对于平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的是( )A.OM →=OA →+OB →+OC →B.OM →=2OA →-OB →-OC →C.OM →=OA →+12OB →+13OC →D.OM →=12OA →+13OB →+16OC →[答案] D[解析] 若点M 与点A 、B 、C 一定共面,则OM →=xOA →+yOB →+zOC →且x +y +z =1,故选D. 4.已知方程x 21+k +y 24-k=1表示双曲线,则k 的取值范围是( )A .-1<k <4B .k <-1或k >4C .k <-1D .k >4[答案] B[解析] 由题意,得(1+k )(4-k )<0,∴(k +1)(k -4)>0,∴k >4或k <-1.5.设l 、m 、n 均为直线,其中m 、n 在平面α内,则“l ⊥α”是“l ⊥m 且l ⊥n ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[答案] A[解析] ∵l ⊥α,m ⊂α,n ⊂α,∵l ⊥m 且l ⊥n ,故充分性成立;又l ⊥m 且l ⊥n 时,m 、n ⊂α,不一定有m 与n 相交,∴l ⊥α不一定成立,∴必要性不成立,故选A.6.设p :2x 2-3x +1≤0,q :x 2-(2a +1)x +a (a +1)≤0,若¬p 是¬q 的必要不充分条件,则实数a 的取值范围是( )A .[0,12]B .(0,12)C .(-∞,0]∪[12,+∞)D .(-∞,0)∪(12,+∞)[答案] A[解析] 由2x 2-3x +1≤0,得12≤x ≤1,¬p 为x <12或x >1,由x 2-(2a +1)x +a (a +1)≤0得a ≤x ≤a +1,¬q 为x <a 或x >a +1.若¬p 是¬q 的必要不充分条件,应有⎩⎪⎨⎪⎧a ≤12,a +1>1或⎩⎪⎨⎪⎧a +1≥1,a <12,所以0≤a ≤12.故选A.7.如图所示,椭圆的中心在原点,焦点F 1、F 2在x 轴上,A 、B 是椭圆的顶点,P 是椭圆上一点,且PF 1⊥x 轴,PF 2∥AB ,则此椭圆的离心率是( )A.12 B .55 C.13 D .22[答案] B[解析] 点P 的坐标(-c ,b 2a ),于是k AB =-b a ,kPF 2=-b 22ac ,由k AB =kPF 2得b =2c ,故e =c a =55. 8.设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点P (k ,-2)与点F 的距离为4,则k 等于( )A .4B .4或-4C .-2D .-2或2[答案] B[解析] 由题设条件可设抛物线方程为x 2=-2py (p >0),又点P 在抛物线上,则k 2=4p , ∵|PF |=4∴p2+2=4,即p =4,∴k =±4.9.已知a 、b 是两异面直线,A 、B ∈a ,C 、D ∈b ,AC ⊥b ,BD ⊥b 且AB =2,CD =1,则直线a 、b 所成的角为( )A .30°B .60°C .90°D .45°[答案] B[解析] 由于AB →=AC →+CD →+DB →,∴AB →·CD →=(AC →+CD →+DB →)·CD →=CD →2=1.cos 〈AB →,CD →〉=AB →·CD →|AB →|·|CD →|=12⇒〈AB →,CD →〉=60°,故选B.10.设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( )A .y =x -1或y =-x +1B .y =33(x -1)或y =-33(x -1) C .y =3(x -1)或y =-3(x -1) D .y =22(x -1)或y =-22(x -1) [答案] C[解析] 由抛物线方程y 2=4x 知焦点F (1,0),准线x =-1,设直线l :x =my +1,代入y 2=4x 中消去x 得,y 2-4my -4=0.由根与系数的关系得,y 1+y 2=4m ,y 1y 2=-4, 设A (x 1,y 1),B (x 2,y 2),则y 1>0>y 2, ∵|AF |=3|BF |,∴y 1=-3y 2,由⎩⎪⎨⎪⎧y 1y 2=-4y 1=-3y 2,解得y 2=-23,∴y 1=2 3.∴m =y 1+y 24=33,∴直线l 的方程为x =33y +1. 由对称性知,这样的直线有两条.11.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A.x 24-y 24=1 B .y 24-x 24=1 C.y 24-x 28=1 D .x 28-y 24=1[答案] B[解析] 由题意知,焦点在y 轴上,且2a +2b =22c ,即a +b =2c ,又a =2,且a 2+b 2=c 2,所以a =2,b =2.所以双曲线的标准方程为y 24-x 24=1.12.在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =12P A ,点O 、D 分别是AC 、PC 的中点,OP⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值为( )A.216 B .833 C.21060D .21030[答案] D[解析] ∵OP ⊥平面ABC ,OA =OC ,AB =BC , ∴OA ⊥OB ,OA ⊥OP ,OB ⊥OP .以O 为原点,建立如图所示的空间直角坐标系O -xyz . 设AB =a ,则A (22a,0,0)、B (0,22a,0)、C (-22a,0,0). 设OP =h ,则P (0,0,h ), ∵P A =2a ,∴h =142a . ∴OD →=(-24a,0,144a ).由条件可以求得平面PBC 的法向量n =(-1,1,77), ∴cos 〈OD →,n 〉=OD →·n |OD →||n |=21030.设OD 与平面PBC 所成的角为θ, 则sin θ=|cos 〈OD →,n 〉|=21030.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为y =34x ,则此双曲线的离心率为________.[答案] 54[解析] 由题意知b a =34,∴b 2a 2=916,∴c 2-a 2a 2=916,∴e 2=2516,∴e =54.14.已知在空间四边形OABC 中,OA →=a 、OB →=b 、OC →=c ,点M 在OA 上,且OM =3MA ,N 为BC 中点,用a 、b 、c 表示MN →,则MN →等于________.[答案] -34a +12b +12c[解析] 显然MN →=ON →-OM →=12(OB →+OC →)-34OA →=12b +12c -34a .15.若双曲线x 2m -y 2m +2=1的一个焦点与抛物线y 2=8x 的焦点相同,则实数m =________.[答案] 1[解析] ∵抛物线y 2=8x 的焦点坐标为(2,0),∴双曲线x 2m -y 2m +2=1的一个焦点为(2,0),∴a 2=m ,b 2=m +2,∴c 2=2m +2=4,∴m =1.16.过二面角α-l -β内一点P 作P A ⊥α于A ,作PB ⊥β于B ,若P A =5,PB =8,AB =7,则二面角α-l -β的度数为________.[答案] 120°[解析] 设P A →=a ,PB →=b ,由条件知|a |=5,|b |=8,|AB →|=7, ∴AB 2=|AB →|2=|b -a | =|b |2+|a |2-2a ·b =64+25-2a ·b =49, ∴a ·b =20,∴cos 〈a ,b 〉=a ·b |a |·|b |=12, ∴〈a ,b 〉=60°,∴二面角α-l -β为120°.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)已知命题p :“方程x 2a -1+y 27-a =1表示焦点在y 轴上的椭圆”;命题q :“∃x ∈R ,使得x 2-(a -1)x +1<0”.(1)若命题p 为真命题,求实数a 的取值范围; (2)若命题p ∧q 为真命题,求实数a 的取值范围. [解析] (1)若命题p 为真命题,则有 ⎩⎪⎨⎪⎧a -1>07-a >07-a >a -1,∴1<a <4.故实数a 的取值范围是(1,4).(2)若命题p ∧q 为真命题,则p 真、q 真,由(1)知p 真,1<a <4. 若q 真,则不等式x 2-(a -1)x +1<0有解,即Δ=(a -1)2-4>0, ∴a 2-2a -3>0,∴a >3或a <-1. 又∵1<a <4,∴3<a <4. 故实数a 的取值范围是(3,4).18.(本小题满分12分)已知椭圆C 的中心在坐标原点,焦点坐标为(2,0),短轴长为4 3.(1)求椭圆C 的标准方程及离心率;(2)设P 是椭圆C 上一点,且点P 与椭圆C 的两个焦点F 1、F 2构成一个直角三角形,且|PF 1|>|PF 2|,求|PF 1||PF 2|的值.[解析] (1)设椭圆C 的标准方程为x 2a 2+y 2b 2=1.由题意得c =2,b =23,∴a =4.故椭圆C 的标准方程为x 216+y 212=1,离心率e =c a =12.(2)当点P 为短轴的一个端点时,∠F 1PO =30°, ∴∠F 1PF 2=60°.故不论点P 在椭圆C 上的任何位置时,∠F 1PF 2≠90°. ∵|PF 1|>|PF 2|,∴∠PF 2F 1=90°. ∴|PF 2|=b 2a =124=3.又∵|PF 1|+|PF 2|=2a =8, ∴|PF 1|=5,∴|PF 1||PF 2|=53.19.(本小题满分12分)已知抛物线y 2=4x 截直线y =2x +m 所得弦长|AB |=3 5.(1)求m 的值;(2)设P 是x 轴上的点,且△ABP 的面积为9,求点P 的坐标. [思路分析] (1)由弦长公式建立关于m 的方程求解; (2)设出P 点坐标,根据面积S =12|AB |·d 求解.[解析] (1)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =2x +m ,y 2=4x 得4x 2+4(m -1)x +m 2=0, 由根与系数的关系得x 1+x 2=1-m ,x 1·x 2=m 24,∴|AB |=1+k 2(x 1+x 2)2-4x 1x 2 =1+22(1-m )2-4×m 24=5(1-2m ),∵|AB |=35,∴5(1-2m )=35,解得m =-4. (2)设P (a,0),P 到直线AB 的距离为d , 则d =|2a -0-4|22+(-1)2=2|a -2|5,又S △ABP =12|AB |·d ,则d =2·S △ABP |AB |,∴2|a -2|5=2×935,∴|a -2|=3,∴a =5或a =-1,故点P 的坐标为(5,0)或(-1,0).20.(本小题满分12分)(2015·湖南澧县一中高二期中测试)如图,四边形ABCD 是正方形,四边形BDEF 是矩形,AB =2BF ,DE ⊥平面ABCD .(1)求证:CF ∥平面ADE ; (2)求二面角C -EF -B 的余弦值. [解析] (1)∵四边形ABCD 是正方形, ∴AD ∥BC .又∵四边形BDEF 是矩形,∴BF ∥DE .又∵BC ∩BF =B ,BC ⊂平面BCF ,BF ⊂平面BCF ,AD ⊂平面ADE ,DE ⊂平面ADE , ∴平面BCF ∥平面ADE ,又∵CF ⊂平面BCF ,∴CF ∥平面ADE .(2)建立如图所示的空间直角坐标系D -xyz .设AB =a ,则BF =a2,则B (a ,-a,0)、C (a,0,0)、E (0,0,a 2)、F (a ,-a ,a2).∴CE →=(-a,0,a 2)、CF →=(0,-a ,a 2)、BE →=(-a ,a ,a 2)、BF →=(0,0,a 2).设平面CEF 的一个法向量为n 1=(x 1,y 1,z 1),平面BEF 的一个法向量为n 2=(x 2,y 2,z 2). 则⎩⎪⎨⎪⎧n 1·CE →=0n 1·CF →=0,⎩⎪⎨⎪⎧n 2·BE →=0n 2·BF →=0.即⎩⎨⎧-ax 1+a2z 1=0-ay 1+a2z 1=0,⎩⎨⎧-ax 2+ay 2+a2z 2=0a2z 2=0,解得⎩⎪⎨⎪⎧ x 1=1y 1=1z 1=2,⎩⎪⎨⎪⎧x 2=1y 2=1z 2=0.∴n 1=(1,1,2),n 2=(1,1,0). cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=223=33.∴二面角C -EF -B 的余弦值是33. 21.(本小题满分12分)设双曲线C :x 2a 2-y 2=1(a >0)与直线l :x +y =1相交于两个不同的点A 、B .(1)求双曲线C 的离心率e 的取值范围;(2)设直线l 与y 轴的交点为P ,且P A →=512PB →,求a 的值.[解析] (1)由C 与l 相交于两个不同的点,故知方程组⎩⎪⎨⎪⎧x 2a 2-y 2=1x +y =1,有两组不同的实数解,消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0.①所以⎩⎪⎨⎪⎧1-a 2≠04a 4+8a 2(1-a 2)>0,解得0<a <2且a ≠1,双曲线的离心率e =1+a 2a =1a 2+1, ∵0<a <2且a ≠1,∴e >62,且e ≠2,即离心率e 的取值范围为(62,2)∪(2,+∞) (2)设A (x 1,y 1)、B (x 2,y 2)、P (0,1),∵P A →=512PB →,∴(x 1,y 1-1)=512(x 2,y 2-1).由此得x 1=512x 2,由于x 1、x 2都是方程①的根,且1-a 2≠0,所以1712x 2=-2a 21-a 2,512x 22=-2a 21-a 2. 消去x 2得,-2a 21-a 2=28960. 由a >0,所以a =1713.22.(本小题满分14分)(2014·天津理,17)如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.(1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -P 的余弦值.[解析] 解法一:依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2),由E 为棱PC 的中点, 得E (1,1,1).(1)BE →=(0,1,1)、DC →=(2,0,0),故BE →·DC →=0,所以BE ⊥DC .(2)BD →=(-1,2,0)、PB →=(1,0,-2),设n =(x ,y ,z )为平面PBD 的法向量,则 ⎩⎪⎨⎪⎧n ·BD →=0n ·PB →=0,即⎩⎪⎨⎪⎧-x +2y =0x -2z =0,不妨令y =1,可得n =(2,1,1)为平面PBD 的一个法向量,于是有 cos 〈n ,BE →〉=n ·BE →|n |·|BE →|=26×2=33.所以,直线BE 与平面PBD 所成角的正弦值为33. (3)向量BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0),由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1.故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ),由BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ),解得λ=34,即BF →=(-12,12,32).设n 1=(x 1,y 1,z 1)为平面F AB 的法向量,则 ⎩⎪⎨⎪⎧ n 1·AB →=0n 1·B F →=0,即⎩⎪⎨⎪⎧x 1=0-12x 1+12y 1+32z 1=0, 不妨令z 1=1,可得n 1=(0,-3,1)为平面F AB 的一个法向量,取平面ABP 的法向量n 2=(0,1,0),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-310×1=-31010.易知,二面角F -AB -P 是锐角,所以其余弦值为31010.解法二:(1)证明:如图,取PD 中点M ,连接EM 、AM .由于E 、M 分别为PC 、PD 的中点,故EM ∥DC ,且EM =12DC ,又由已知,可得EM ∥AB 且EM =AB ,故四边形ABEM 为平行四边形,所以BE ∥AM .因为P A ⊥底面ABCD ,故P A ⊥CD ,而CD ⊥DA ,从而CD⊥平面P AD ,因为AM ⊂平面P AD ,于是CD ⊥AM ,又BE ∥AM ,所以BE ⊥CD . (2)连接BM ,由(1)有CD ⊥平面P AD ,得CD ⊥PD ,而EM ∥CD ,故PD ⊥EM ,又因为AD =AP ,M 为PD 的中点,故PD ⊥AM ,可得PD ⊥BE ,所以PD ⊥平面BEM ,故平面BEM ⊥平面PBD ,所以,直线BE 在平面PBD 内的射影为直线BM ,而BE ⊥EM ,可得∠EBM 为锐角,故∠EBM 为直线BE 与平面PBD 所成的角.依题意,有PD =22,而M 为PD 中点,可得AM =2,进而BE =2,故在直角三角形BEM 中,tan ∠EBM =EM BE =AB BE =12,因此sin ∠EBM =33.所以,直线BE 与平面PBD 所成角的正弦值为33. (3)如图,在△P AC 中,过点F 作FH ∥P A 交AC 于点H ,因为P A ⊥底面ABCD ,故FH ⊥底面ABCD ,从而FH ⊥AC ,又BF ⊥AC ,得AC ⊥平面FHB ,因此AC ⊥BH ,在底面ABCD 内,可得CH =3HA ,从而CF =3FP .在平面PDC 内,作FG ∥DC 交PD 于点G ,于是DG =3GP ,由于DC ∥AB ,故GF ∥AB ,所以A 、B 、F 、G 四点共面,由AB ⊥P A ,AB ⊥AD ,得AB ⊥平面P AD ,故AB ⊥AG ,所以∠P AG 为二面角F -AB -P 的平面角.在△P AG 中,P A =2,PG =14PD =22,∠APG =45°,由余弦定理可得AG =102,cos ∠P AG =31010. 所以,二面角F -AB -P 的余弦值为31010.。

高二数学(人教B版)选修2-1单元 第1章综合素质检测

高二数学(人教B版)选修2-1单元 第1章综合素质检测

第一章综合素质检测时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中)1.“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件[答案] A[解析]y=cos2ax-sin2ax=cos2ax,周期T=2π|2a|=π|a|=π,则a=±1.故选A.2.若条件p:|x+1|≤4,条件q:x2<5x-6,则綈p是綈q的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分又不必要条件[答案] B[解析]綈p:{x|x<-5或x>3},綈q:{x|x≤2或x≥3},∴綈p⇒綈q,綈q綈p.故选B.3.已知m、n是不同的直线,α、β、γ是不同的平面,有以下四个命题:①若α∥β,α∥γ,则β∥γ;②若α⊥β,m∥α,则m⊥β;③若m⊥α,m∥β,则α⊥β;④若m∥n,n⊂α,则m∥α.其中真命题的序号是()A.①③B.①④C.②③D.②④[答案] A[解析]①正确,排除C、D;m⊥α,m∥β,∴β内存在直线n∥m,∴n⊥α,∴α⊥β,③正确,排除B.故选A.4.下列命题中,真命题是()A.∀x∈R,x>0B .如果x <2,那么x <1C .∃x ∈R ,x 2≤-1D .∀x ∈R ,使x 2+1≠0[答案] D[解析] A 显然是假命题,B 中若x ∈[1,2)虽然x <2但x 不小于1.C 中不存在x ,使得x 2≤-1,D 中对∀x ∈R 总有x 2+1≥1,∴x 2+1≠0,故D 是真命题,选D.5.(2009·山东烟台3月考)已知m ,n 是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若m ⊥α,n ⊥β,m ⊥n ,则α⊥β;②若m ∥α,n ∥β,m ⊥n ,则α∥β;③若m ⊥α,n ∥β,m ⊥n ,则α∥β;④若m ⊥α,n ∥β,α∥β,则m ⊥n .其中正确命题的个数为( )A .1B .2C .3D .4[答案] B[解析] ①④正确,②③不正确.故选B.6.“m =12”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件[答案] B[解析] 直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直的充要条件是:(m +2)(m -2)+3m (m +2)=0,解得m =12或m =-2,故应选B. 7.(2010·广东文,8)“x >0”是“3x 2>0”成立的( )A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件 [答案] A[解析] 本题考查了充要条件的判定问题,这类问题的判断一般分两个方向进行,x >0显然能推出3x 2>0,而3x 2>0⇔|x |>0⇔x ≠0,不能推出x >0,故选A.8.已知命题p :∀x ∈R ,sin x ≥0,则下面说法正确的是( )A .綈p 是存在性命题,且是真命题B .綈p 是全称命题,且是真命题C .綈p 是全称命题,且是假命题D .綈p 是存在性命题,且是假命题[答案] A[解析] 綈p :∃x ∈R ,sin x <0,所以是存在性命题也是真命题.故选A.9.给出命题p :“若AB →·BC →>0,则△ABC 为锐角三角形”;命题q :“实数a 、b 、c 满足b 2=ac ,则a 、b 、c 成等比数列”.那么下列结论正确的是( )A .p 且q 与p 或q 都为真B .p 且q 为真而p 或q 为假C .p 且q 为假且p 或q 为假D .p 且q 为假而p 或q 为真[答案] C[解析] p :若AB →·BC →>0,则∠B >90°所以△ABC 为钝角三角形,故p 为假命题.q :a 、b 、c 均为零时b 2=ac 但a 、b 、c 不成等比数列,故q 为假命题,所以p 且q 为假,p 或q 也为假,故选C.10.下列有关命题的说法错误的是( )A .命题“若x 2-3x +2=0,则x =1”的逆否命题为:若x ≠1,则x 2-3x +2≠0B .x =1是x 2-3x +2=0的充分不必要条件C .若p ∧q 为假命题,则p ,q 均为假命题D .对于命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0[答案] C[解析] p ∧q 为假,则p ,q 至少一个为假.故选C.11.(2009·天津高考)设x ∈R ,则“x =1”是“x 3=x ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 [答案] A[解析] x =1⇒x 3=x ,但x 3=x x =1,故选A. 12.用反证法证明命题:若系数为整数的一元二次方程ax 2+bx +c =0(a ≠0)有有理数根,那么a 、b 、c 中至少有一个是偶数,下列假设中正确的是( )A .假设a 、b 、c 都是偶数B .假设a 、b 、c 都不是偶数C .假设a 、b 、c 至多有一个是偶数D .假设a 、b 、c 至多有两个是偶数[答案] B[解析] a 、b 、c 中至少有一个是偶数的否定是a 、b 、c 都不是偶数,故选B.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.“|x -2|<2成立”是“x (x -3)<0成立”的________条件.[答案] 必要不充分[解析] 由|x -2|<2得-2<x -2<2⇔-1<x <3.由x (x -3)<0⇔0<x <3,显然-1<x <3⇐0<x <3.14.设p :方程x 2+2mx +1=0有两个不相等的正根;q :方程x 2+2(m -2)x -3m +10=0无实根,则使p ∨q 为真,p ∧q 为假的实数m 的取值范围是________.[答案] (-∞,-2]∪[-1,3)[解析] 对于方程x 2+2mx +1=0有两个不等正根,∴⎩⎪⎨⎪⎧Δ=4m 2-4>0,-2m >0.∴m <-1, 方程x 2+2(m -2)x -3m +10=0无实根,Δ=4(m -2)2-4(-3m +10)<0,∴-2<m <3,若p 真q 假,则m ≤-2;若p 假q 真,则-1≤m <3.15.函数y =ax 2+bx +c (a ≠0)的图象过原点的充要条件是________________.[答案] c =016.设A 、B 为两个集合,下列四个命题:①AB ⇔对∀x ∈A ,有x ∉B ; ②AB ⇔A ∩B =∅; ③AB ⇔A ⊉B ; ④A B ⇔∃x ∈A ,使得x ∉B ,其中真命题的序号是________________. [答案] ④[解析] 通过举反例说明:若A ={1,2,3},B ={1,2,4},满足A B ,但1∈A 且1∈B ,A ∩B ={1,2},所以①,②是假命题;若A ={1,2,4},B ={1} 满足A B ,但B ⊆A ,所以③是假命题;只有④为真命题.三、解答题(本大题共6个大题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)写出命题“若x -2+(y +1)2=0,则x =2且y =-1”的逆命题、否命题、逆否命题,并判断它们的真假.[解析] 逆命题:若x =2且y =-1,则x -2+(y +1)2=0;(真) 否命题:若x -2+(y +1)2≠0,则x ≠2或y ≠-1;(真)逆否命题:若x ≠2或y ≠-1,则x -2+(y +1)2≠0(真)18.(本题满分12分)已知a >0设命题p :函数y =(1ax 为增函数. 命题q :当x ∈[12,2]时函数f (x )=x +1x >1a恒成立. 如果p ∨q 为真命题,p ∧q 为假命题,求a 的范围.[解析] 当y =(1a)x 为增函数,得0<a <1. 当x ∈[12,2]时,因为f (x )在[12,1]上为减函数,在[1,2]上为增函数. ∴f (x )在x ∈[12,2]上最小值为f (1)=2. 当x ∈[12,2]时,由函数f (x )=x +1x >1a恒成立. 得2>1a 解得a >12. 如果p 真且q 假,则0<a ≤12; 如果p 假且q 真,则a ≥1.所以a 的取值范围为(0,12]∪[1,+∞). 19.(本题满分12分)已知a >0,函数f (x )=ax -bx 2.(1)当b >0时,若对任意x ∈R ,都有f (x )≤1,证明a ≤2b ;(2)当b >1时,证明:对任意x ∈[0,1],|f (x )|≤1的充要条件是b -1≤a ≤2b .[证明] (1)∵f (x )=-b (x -a 2b )2+a 24b对任意x ∈R ,都有f (x )≤1,∴f (a 2b )=a 24b≤1. 又∵a >0,b >0,∴a 2≤4b ,即a ≤2b .(2)必要性:对任意x ∈[0,1],|f (x )|≤1,即-1≤f (x )≤1,∴f (1)≥-1,即a -b ≥-1,∴a ≥b -1.∵b >1,∴0<1b<1,∴f ⎝⎛⎭⎫1b ≤1. 即a ·1b -b ·(1b)2≤1, ∴ab -1≤1,∴a ≤2b .所以b -1≤a ≤2b .充分性:∵b >1,∴f (x )的图象是开口向下的抛物线.由a ≤2b ,得0<a 2b <a 2b≤1. ∴0<a 2b <1. ∴y max =f (a 2b )=a 24b =(a 2b)2≤1. ∴f (x )≤1.∵f (0)=0,∴f (0)>-1.又∵f (1)=a -b ,由b -1≤a ,即a ≥b -1,知f (1)≥b -1-b =-1.而函数f (x )在(0,a 2b)上单调递增,在⎣⎡⎭⎫a 2b ,1上单调递减,所以当x ∈[0,1]时,f (x )≥-1.综上所述,当b >1时,对任意x ∈[0,1],|f (x )|≤1的充要条件是b -1≤a ≤2b .20.(本小题满分12分)求使函数f (x )=(a 2+4a -5)x 2-4(a -1)x +3的图象全在x 轴上方成立的充要条件.[解析] 要使函数f (x )的图象全在x 轴上方的充要条件是:⎩⎪⎨⎪⎧a 2+4a -5>0Δ=16(a -1)2-4(a 2+4a -5)×3<0, 或⎩⎨⎧a 2+4a -5=0y >0 解得1<a <19或a =1.所以使函数f (x )的图象全在x 轴上方的充要条件是1≤a <19.21.(本小题满分12分)已知命题p :lg (x 2-2x -2)≥0;命题q :|1-x 2|<1.若p 是真命题,q 是假命题,求实数x 的取值范围.[解析] 由lg (x 2-2x -2)≥0得x 2-2x -2≥1,即x 2-2x -3≥0,即(x -3)(x +1)≥0,∴x ≥3或x ≤-1.由|1-x2|<1,-1<1-x2<1∴0<x<4.∵命题q为假,∴x≤0或x≥4,则{x|x≥3或x≤-1}∩{x|x≤0或x≥4}={x|x≤-1或x≥4},∴满足条件的实数x的取值范围为(-∞,-1]∪[4,+∞).22.(本小题满分14分)证明二次函数f(x)=ax2+bx+c(a≠0)的两个零点在点(m,0)的两侧的充要条件是af(m)<0.[解析]充分性:设△=b2-4ac≤0则af(x)=a2x2+abx+ac=a2(x+b2a )2-b24+ac=a2(x+b2a)2-14(b2-4ac)≥0,所以af(m)≥0,这与af(m)<0矛盾,即b2-4ac>0.故二次函数f(x)=ax2+bx+c(a≠0)有两个不等的零点,设为x1,x2,且x1<x2,从而f(x)=a(x-x1)(x-x2),af(m)=a2(m-x1)(m-x2)<0,所以x1<m<x2.必要性:设x1,x2是方程的两个零点,且x1<x2,由题意知x1<m<x2,因为f(x)=a(x-x1)(x-x2),且x1<m<x2.∴af(m)=a2(m-x1)(m-x2)<0,即af(m)<0.综上所述,二次函数f(x)的两个零点在点(m,0)的两侧的充要条件是af(m)<0.。

人教B版数学·选修2-3综合素质测试 Word版含解析

人教B版数学·选修2-3综合素质测试  Word版含解析

选修-综合素质测试本测试仅供教师备用,学生书中没有。

时间分钟,满分分。

一、选择题(本大题共个小题,每小题分,共分,在每小题给出的四个选项中,只有一项是符合题目要求的.).六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ).种.种.种.种答案]解析]分两类:最左端排甲有=种不同的排法,最左端排乙,由于甲不能排在最右端,所以有=种不同的排法,由加法原理可得满足条件的排法共有种..(·新课标Ⅱ理,)根据下面给出的年至年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( ).逐年比较,年减少二氧化硫排放量的效果最显著.年我国治理二氧化硫排放显现成效.年以来我国二氧化硫年排放量呈减少趋势.年以来我国二氧化硫年排放量与年份正相关答案]解析]考查正、负相关及对柱形图的理解.由柱形图得,从年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关,故选..(--)(∈)展开式中的常数项是( ).-.-..答案]解析]本小题考查二项展开式的指定项的求法.+=()-·(--)=(-)(-),令-=,∴=,∴==..设随机变量服从二项分布~(,),则等于( ).(-)..以上都不对.-答案]解析]因为~(,),(())=(-)],(())=(),所以==(-).故选..某地区空气质量监测资料表明,一天的空气质量为优良的概率是,连续两天为优良的概率是,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )....答案]解析]本题考查条件概率的求法.设=“某一天的空气质量为优良”,=“随后一天的空气质量为优良”,则()===,故选..(·广东理,)袋中共有个除了颜色外完全相同的球,其中有个白球,个红球.从袋中任取个球,所取的个球中恰有个白球,个红球的概率为( )....答案]解析]从袋中任取个球共有=种,其中恰好个白球个红球共有=种,所以恰好个白球个红球的概率为=,故选..某校高三年级举行一次演讲比赛共有位同学参赛,其中一班有位,二班有位,其他班有位,若采用抽签方式确定他们的演讲顺序,则一班位同学恰好被排在一起,而二班位同学没有被排在一起的概率为( )....答案]解析]基本事件总数为,而事件包括的基本事件可按“捆绑法”与“插空法”求解.个人的演讲顺序有种可能,即基本事件总数为,一班同学被排在一起,二班的同学没有被排在一起这样来考虑:先将一班的位同学当作一个元素与其他班的位同学一起排列有种,二班的位同学插入到上述个元素所留个空当中,有种方法.依分步计数原理得不同的排法有··种.∴所求概率为=.故选..为了评价某个电视栏目的改革效果,在改革前后分别从居民点随机抽取了位居民进行调查,经过计算χ的观测值χ=,根据这一数据分析,下列说法正确的是( ).有的人认为该栏目优秀.有的人认为栏目是否优秀与改革有关.有的把握认为电视栏目是否优秀与改革有关系。

高二数学选修1-2全册第1章综合素质检测

高二数学选修1-2全册第1章综合素质检测

第一章综合素质检测时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列各量之间存在相关关系的是()①正方体的体积与棱长间的关系;②一块农田的水稻产量与施肥量之间的关系;③人的身高与年龄;④家庭的支出与收入;⑤某户家庭用电量与电价间的关系.A.②③B.③④C.④⑤D.②③④[答案] D2.工人月工资(元)依劳动生产率(千元)变化的回归直线方程y=60+90x,下列判断正确的是()A.劳动生产率为1 000元时,工资为150元B.劳动生产率为1 000元时,工资提高150元C.劳动生产率提高1 000元时,工资提高90元D.劳动生产率为1 000元时,工资为90元[答案] C3.对于回归分析,下列说法错误的是()A.在回归分析中,变量间的关系若是非确定性关系,则因变量不能由自变量唯一确定B.线性相关系数可以是正的或负的C.回归分析中,如果r2=1,说明x与y之间完全线性相关D.样本相关系数r∈(-∞,+∞)[答案] D[解析]在回归分析中,样本相关系数r的范围是|r|≤1.4.身高与体重有关,可以用__________分析来分析()A.残差B.回归C.二维条形图D.独立检验[答案] B[解析] 身高与体重问题具有线性相关关系,故可用回归分析来分析.5.变量x 与y 具有线性相关关系,当x 取值16,14,12,8时,通过观察得到y 的值分别是11,9,8,5.若在实际问题中,y 最大取值是10,则x 的最大取值不能超过( )A .16B .17C .15D .12[答案] C6.(2010·临沂高三模拟)已知x 、y 的取值如下表所示:若从散点图分析,y 与x 线性相关,且y =0.95x +a ,则a 的值等于( ) A .2.6 B .6.3 C .2D .4.5[答案] A[解析] ∵x =2,y =4.5而回归直线方程过样本中心点(2,4.5) ∴a ^=y -0.95x =4.5-0.95×2=2.6,故选A.7.对于P (K 2≥k ),当K >2.706时,就约有( )把握认为“X 与Y 有关系”.( ) A .99% B .95% C .90%D .以上不对[答案] C8.一位母亲记录了她儿子3周岁到9周岁的身高,建立了她儿子身高y 与年龄x 的回归模型y ^=73.93+7.19x ,她用这个模型预测她儿子10周岁时的身高,则下面的叙述正确的是( )A .她儿子10周岁时的身高一定是145.83cmB .她儿子10周岁时的身高在145.83cm 以上C .她儿子10周岁时的身高在145.83cm 左右D .她儿子10周岁时的身高在145.83cm 以下 [答案] C9.在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是( ) A .总偏差平方和 B .残差平方和 C .回归平方和D .相关指数R 2[答案] B10.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )A.y ^=1.23x +4 B.y ^=1.23x +5 C.y ^=1.23x +0.08 D.y ^=0.08x +1.23 [答案] C[解析] 回归直线方程一定经过样本点的中心,检验知y ^=1.23x +0.08符合题意. 11.回归分析中,相关指数R 2的值越大,说明残差平方和( ) A .越小 B .越大 C .可能大也可能小D .以上都不对[答案] A[解析] R 2的值越大,拟合效果越好,残差平方和应越小. 12.下列四个命题正确的是( )①在线性回归模型中,e ^是b ^x +a ^预报真实值y 的随机误差,它是一个观测的量 ②残差平方和越小的模型,拟合的效果越好 ③用R 2来刻画回归方程,R 2越小,拟合的效果越好④在残差图中,残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,若带状区域宽度越窄,说明拟合精度越高,回归方程的预报精度越高.A .①③B .②④C .①④D .②③[答案] B[解析] e ^是一个不可观测的量,故①不正确;R 2越小,残差平方和越大,即模型的拟合效果越差,故③不正确;②④是正确的.二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上) 13.对一质点的运动过程观测了4次,得到如表所示的数据,则刻画y 与x 的关系的线性回归方程为________.[答案] y ^=1.7x -0.514.已知样本数为11,计算得∑11i =1x i =510,∑11i =1y i =214,回归方程为y ^=0.3x +a ^,则x ≈______,a ^≈________.[答案] 46.36;5.55[解析]由题意,x=111∑11i=1x i=51011≈46.36,y=111∑11i=1y i=21411,因为y=0.3x+a^,所以21411=0.3×51011+a^,可求得a^≈5.55.15.在对某小学的学生进行吃零食的调查中,得到如下表数据:[答案] 3.68916.在研究身高与体重的关系时,求得相关指数R2≈____________,可以叙述为“身高解释了64%的体重变化”,而随机误差贡献了剩余的36%,所以,身高对体重的效应比随机误差的效应大得多.[答案]0.64三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)考察黄烟经过培养液处理与是否跟发生青花病的关系.调查了457株黄烟,得到下表中数据,请根据数据作统计分析.[解析]K2=457×(25×142-80×210)2235×222×105×352≈41.61由于41.61>10.828,说明黄烟经过培养液处理与是否跟发生黄花病是有关系的.18.(本题满分12分)(2009·辽宁文,20)某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品.从两个分厂生产的零件中抽出500件,量其内径尺寸的结果如下表:甲厂(2)由于以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.附:χ2=n (n 11n 22-n 1221n 1+n 2+n +1n +2,k 0.05 0.013.841 6.635.[解析] 2×2联表的独立性检验.(1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360500=72%;乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500=64%.(2)χ2=1000×(360×500×500×680×320≈7.35>6.635,所以有99%的把握认为“两个分厂生产的零件的质量有差异”.19.(本题满分12分)在一段时间内,某种商品的价格x 元和需求量y 件之间的一组数据为求出Y 对x [解析] x =15(14+16+18+20+22)=18,y =15(12+10+7+5+3)=7.4,∑5i =1x 2i =142+162+182+202+222=1660,∑5i =1y 2i =122+102+72+52+32=327,∑5i =1x i y i =14×12+16×10+18×7+20×5+22×3=620,∴b ^=∑5 i =1x i y i -5x ·y ∑5i =1x 2i -5x2=620-5×18×7.41660-5×182=-4640=-1.15. ∴a ^=7.4+1.15×18=28.1.∴回归直线方程为y ^=-1.15x +28.1. 列出残差表为:∴∑5i =1 (y i -y i )2=0.3,∑ i =1 (y i -y )2=53.2, R 2=1-∑5i =1(y i -y ^i )2∑5 i =1 (y i -y )2≈0.994.∴R 2=0.994.因而拟合效果较好!20.(本题满分12分)某工业部门进行一项研究,分析该部门的产量与生产费用之间的关系,从该部门内随机抽选了10个企业为样本,有如下资料:(1)计算x (2)对这两个变量之间是否线性相关进行检验; (3)设回归方程为y ^=b ^x +a ^,求回归系数.[解析] 根据数据可得: x =77.7,y=165.7,∑10i =1x 2i =70903,∑10i =1y 2i =277119, ∑10i =1x i y i =132938,所以r =0.808,即x 与y 之间的相关系数r ≈0.808;(2)因为r >0.75,所以可认为x 与y 之间具有线性相关关系; (3)b ^=0.398,a ^=134.8.21.(本题满分12分)对不同的麦堆测得如下表6组数据:已知[解析] ∑6i =1x i =21.58,∑6i =1y i =26523,∑6i =1x 2i =80.9374,∑6i =1y 2i =176598625.∑6 i =1x i y i =109230.58.根据公式计算得b ^=∑6 i =1x i y i -6x y∑6i =1x 2i -6x2≈4165.85,a ^≈-10562.7.所求回归方程为y ^=4165.85x -10562.7.22.(本题满分14分)为了研究子女吸烟与父母吸烟的关系,调查了一千多名青少年及其家长,数据如下:[解析] 三维柱形图:由图形观察:底面副对角线上两个柱体高度的乘积要大一些,因此可以在某种程度上认为“子女吸烟与父母吸烟有关”.由列联表中的数据得到K 2的观测值k , k =1520×(237×522-83×678)2915×605×320×1200≈32.52>6.635.所以有99%的把握认为“父母吸烟影响子女”.。

人教B版高中数学高二选修1-2模块综合测评1

人教B版高中数学高二选修1-2模块综合测评1

模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数z=-1+2i,则z的虚部为()A.1B.-1C.2D.-2【解析】∵z=-1+2i,∴z=-1-2i,∴z的虚部为-2.【答案】 D2.根据二分法求方程x2-2=0的根得到的程序框图可称为()A.工序流程图B.程序流程图C.知识结构图D.组织结构图【解析】由于该框图是动态的且可以通过计算机来完成,故该程序框图称为程序流程图.【答案】 B3.利用独立性检测来考查两个分类变量X,Y是否有关系,当随机变量χ2的值()A.越大,“X与Y有关系”成立的可能性越大B.越大,“X与Y有关系”成立的可能性越小C.越小,“X与Y有关系”成立的可能性越大D.与“X与Y有关系”成立的可能性无关【解析】由χ2的意义可知,χ2越大,说明X与Y有关系的可能性越大.【答案】 A4.(2015·安庆高二检测)用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除”.则假设的内容是()【导学号:37820061】A.a,b都能被5整除B.a,b都不能被5整除C.a不能被5整除D.a,b有1个不能被5整除【解析】“至少有1个”的否定为“一个也没有”,故应假设“a,b都不能被5整除”.【答案】 B5.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误【解析】一般的演绎推理是三段论推理:大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理对特殊情况作出的判断.此题的推理不符合上述特征,故选C.【答案】 C6.(2015·深圳高二检测)在两个变量的回归分析中,作散点图是为了()A.直接求出回归直线方程B.直接求出回归方程C.根据经验选定回归方程的类型D.估计回归方程的参数【解析】散点图的作用在于判断两个变量更近似于什么样的函数关系,便于选择合适的函数模型.【答案】 C7.(2015·南阳高二检测)已知i为虚数单位,则复平面内表示复数z=i3+i的点在()A.第一象限B.第二象限C.第三象限D.第四象限【解析】因为i3+i=i(3-i)(3+i)(3-i)=1+3i10=110+310i,所以复平面内表示复数i3+i 的点的坐标是⎝⎛⎭⎪⎫110,310,该点位于第一象限,选A.【答案】 A8.给出下面类比推理:①“若2a<2b,则a<b”类比推出“若a2<b2,则a<b”;②“(a+b)c=ac+bc(c≠0)”类比推出“a+bc=ac+bc(c≠0)”;③“a,b∈R,若a-b=0,则a=b”类比推出“a,b∈C,若a-b=0,则a=b”;④“a,b∈R,若a-b>0,则a>b”类比推出“a,b∈C,若a-b>0,则a>b(C为复数集)”.其中结论正确的个数为()A.1B.2C.3D.4【解析】①显然是错误的;因为复数不能比较大小,所以④也是错误的,②③正确,故选B.【答案】 B9.如果执行如图1所示的程序框图,输入x=4.5,则输出的数i等于()图1A.2B.3C.4D.5【解析】 依次执行为x =4.5,i =1;x =3.5,i =2;x =2.5,i =3;x =1.5;i =4;x =0.5<1,此时退出循环,故选C.【答案】 C10.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 33=( ) A.3 B.-3 C.6D.-6【解析】 a 1=3,a 2=6,a 3=a 2-a 1=3,a 4=a 3-a 2=-3,a 5=a 4-a 3=-6,a 6=a 5-a 4=-3,a 7=a 6-a 5=3,a 8=a 7-a 6=6,…,观察可知{a n }是周期为6的周期数列,故a 33=a 3=3. 【答案】 A11.(2015·青岛高二检测)下列推理合理的是( ) A.f (x )是增函数,则f ′(x )>0B.因为a >b (a ,b ∈R ),则a +2i >b +2i(i 是虚数单位)C.α,β是锐角△ABC 的两个内角,则sin α>cos βD.A 是三角形ABC 的内角,若cos A >0,则此三角形为锐角三角形 【解析】 A 不正确,若f (x )是增函数,则f ′(x )≥0;B 不正确,复数一般不比较大小;C 正确,∵α+β>π2,∴α>π2-β,∴sin α>cos β;D 不正确,只有cos A >0,cos B >0,cos C >0,才能说明此三角形为锐角三角形.【答案】 C12.有人收集了春节期间平均气温x 与某取暖商品销售额y 的有关数据如下表:归方程y ^=b ^x +a ^的系数b ^=-2.4,则预测平均气温为-8℃时该商品销售额为( )A.34.6万元B.35.6万元C.36.6万元D.37.6万元【解析】 x -=-2-3-5-64=-4,y -=20+23+27+304=25,所以这组数据的样本中心点是(-4,25). 因为b ^=-2.4,把样本中心点代入线性回归方程得a ^=15.4, 所以线性回归方程为y ^=-2.4x +15.4. 当x =-8时,y =34.6.故选A. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.已知复数z =m 2(1+i)-m (m +i)(m ∈R ),若z 是实数,则m 的值为________.【导学号:37820062】【解析】 z =m 2+m 2i -m 2-m i =(m 2-m )i , ∴m 2-m =0,∴m=0或1.【答案】0或114.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:“是”或“否”).【解析】因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,即ba+b=1858,dc+d=2742,两者相差较大,所以经直观分析,收看新闻节目的观众与年龄是有关的.【答案】是15.(2016·天津一中检测)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________.【解析】已知等式可改写为:13+23=(1+2)2;13+23+33=(1+2+3)2;13+23+33+43=(1+2+3+4)2,由此可得第五个等式为:13+23+33+43+53+63=(1+2+3+4+5+6)2=212.【答案】13+23+33+43+53+63=21216.(2016·江西吉安高二检测)已知等差数列{a n}中,有a11+a12+…+a2010=a1+a2+…+a3030,则在等比数列{b n}中,会有类似的结论________.【解析】由等比数列的性质可知,b1b30=b2b29=…=b11b20,∴10b11b12 (20)30b1b2 (30)【答案】10b11b12 (20)30b1b2…b30三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)(2016·哈三中模拟)设z=(1-4i)(1+i)+2+4i3+4i,求|z|.【解】z=1+i-4i+4+2+4i3+4i=7+i3+4i,∴|z|=|7+i||3+4i|=525= 2.18.(本小题满分12分)我校学生会有如下部门:文娱部、体育部、宣传部、生活部、学习部.请画出学生会的组织结构图.【解】学生会的组织结构图如图.19.(本小题满分12分)调查某桑场采桑员和辅助工中患桑毛虫皮炎发情况结果如下表:采桑不采桑合计患者人数181230健康人数57883合计2390认为两者有关系会犯错误的概率是多少?【解】n11=18,n12=12,n21=5,n22=78,所以n1+=n11+n12=30,n2+=n21+n22=83,n+1=n11+n21=23,n+2=n12+n22=90,n=113.所以χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2=113×(18×78-5×12)230×83×23×90=39.6>6.635.所以有99%的把握认为“患桑毛虫皮炎病与采桑”有关系.认为两者有关系会犯错误的概率是1%.20.(本小题满分12分)已知非零实数a ,b ,c 构成公差不为0的等差数列,求证:1a ,1b ,1c 不能构成等差数列.【导学号:37820063】【证明】 假设1a ,1b ,1c 能构成等差数列,则2b =1a +1c ,因此b (a +c )=2ac . 而由于a ,b ,c 构成等差数列,且公差d ≠0,可得2b =a +c , ∴(a +c )2=4ac ,即(a -c )2=0,于是得a =b =c , 这与a ,b ,c 构成公差不为0的等差数列矛盾. 故假设不成立,即1a ,1b ,1c 不能构成等差数列.21.(本小题满分12分)已知a 2+b 2=1,x 2+y 2=1,求证:ax +by ≤1(分别用综合法、分析法证明).【证明】 综合法:∵2ax ≤a 2+x 2,2by ≤b 2+y 2, ∴2(ax +by )≤(a 2+b 2)+(x 2+y 2). 又∵a 2+b 2=1,x 2+y 2=1, ∴2(ax +by )≤2,∴ax +by ≤1. 分析法:要证ax +by ≤1成立, 只要证1-(ax +by )≥0,只要证2-2ax -2by ≥0, 又∵a 2+b 2=1,x 2+y 2=1,∴只要证a 2+b 2+x 2+y 2-2ax -2by ≥0, 即证(a -x )2+(b -y )2≥0,显然成立.22.(本小题满分12分)某班5名学生的数学和物理成绩如下表:学生学科成绩A B C D E 数学成绩(x ) 88 76 73 66 63 物理成绩(y )7865716461(1)画出散点图;(2)求物理成绩y 对数学成绩x 的回归直线方程; (3)一名学生的数学成绩是96,试预测他的物理成绩. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:【解】 (1)散点图如图,(2) x -=15×(88+76+73+66+63)=73.2, y -=15×(78+65+71+64+61)=67.8.=88×78+76×65+73×71+66×64+63×61=25 054. =882+762+732+662+632=27 174.所以b ^==25 054-5×73.2×67.827 174-5×73.22≈0.625.a ^=y --b ^x -≈67.8-0.625×73.2=22.05. 所以y 对x 的回归直线方程是 y ^=0.625x +22.05.(3)x =96,则y ^=0.625×96+22.05≈82,即可以预测他的物理成绩是82分.。

高中数学人教b版高二选修1-1章末综合测评(第一章)_word版含解析

高中数学人教b版高二选修1-1章末综合测评(第一章)_word版含解析

高中数学人教b版高二选修1-1章末综合测评(第一章)_word版含解析章末综合测评(一)常用逻辑用语(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.“经过两条相交直线有且只有一个平面”是()A.全称命题B.存在性命题C.p∨q形式D.p∧q形式【解析】此命题暗含了“任意”两字,即经过任意两条相交直线有且只有一个平面.【答案】 A2.设x∈R,则“x>1”是“x3>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】由于函数f(x)=x3在R上为增函数,所以当x>1时,x3>1成立,反过来,当x3>1时,x>1也成立.因此“x>1”是“x3>1”的充要条件,故选C.【答案】 C3.命题“∀x∈R,x2≠x”的否定是()A.∀x∉R,x2≠x B.∀x∈R,x2=xC.∃x∉R,x2≠x D.∃x∈R,x2=x【解析】全称命题的否定,需要把全称量词改为特称量词,并否定结论.【答案】 D4.全称命题“∀x∈Z,2x+1是整数”的逆命题是()A.若2x+1是整数,则x∈ZB.若2x+1是奇数,则x∈ZC.若2x+1是偶数,则x∈ZD.若2x+1能被3整除,则x∈Z【解析】易知逆命题为:若2x+1是整数,则x∈Z.【答案】 A5.已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是()A.p∧綈q B.綈p∧qC.綈p∧綈q D.p∧q【解析】命题p为真命题,命题q为假命题,所以命题綈q为真命题,所以p∧綈q为真命题,故选A.【答案】 A6.命题“全等三角形的面积一定都相等”的否定是() A.全等三角形的面积不一定都相等B.不全等三角形的面积不一定都相等C.存在两个不全等三角形的面积相等D.存在两个全等三角形的面积不相等【解析】命题是省略量词的全称命题.易知选D.【答案】 D7.原命题为“若a n+a n+12<a n,n∈N+,则{a n}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是() A.真,真,真B.假,假,真C.真,真,假D.假,假,假【解析】从原命题的真假入手,由于a n+a n+12<a n⇔a n+1<a n⇔{a n}为递减数列,即原命题和逆命题均为真命题,又原命题与逆否命题同真同假,则逆命题、否命题和逆否命题均为真命题,选A.【答案】 A8.给定两个命题p,q.若綈p是q的必要而不充分条件,则p是綈q的() A.充分而不必要条件B.必要而不充分条件C .充要条件D .既不充分也不必要条件【解析】 q ⇒綈p 等价于p ⇒綈q ,綈pDq 等价于綈qD p .故p 是綈q 的充分而不必要条件.【答案】 A9.一元二次方程ax 2+4x +3=0(a ≠0)有一个正根和一个负根的充分不必要条件是( )A .a <0B .a >0C .a <-1D .a >1【解析】 一元二次方程ax 2+4x +3=0(a ≠0)有一个正根和一个负根⇔3a<0,解得a <0,故a <-1是它的一个充分不必要条件.【答案】 C10.设集合U ={(x ,y )|x ∈R ,y ∈R },A ={(x ,y )|2x -y +m >0},B ={(x ,y )|x +y -n ≤0},那么点P (2,3)∈A ∩(∁U B )的充要条件是( )A .m >-1,n <5B .m <-1,n <5C .m >-1,n >5D .m <-1,n >5【解析】 ∵P (2,3)∈A ∩(∁U B ),∴满足⎩⎨⎧ 2×2-3+m >0,2+3-n >0,故⎩⎨⎧m >-1,n <5. 【答案】 A11.下列叙述中正确的是( )A .若a ,b ,c ∈R ,则“ax 2+bx +c ≥0”的充分条件是“b 2-4ac ≤0”B .若a ,b ,c ∈R ,则“ab 2>cb 2”的充要条件是“a >c ”C .命题“对任意x ∈R ,有x 2≥0”的否定是“存在x ∈R ,有x 2≥0”D .l 是一条直线,α,β是两个不同的平面,若l ⊥α,l ⊥β,则α∥β【解析】 由于“若b 2-4ac ≤0,则ax 2+bx +c ≥0”是假命题,所以“ax 2+bx +c ≥0”的充分条件不是“b 2-4ac ≤0”,A 错;∵ab 2>cb 2,且b 2>0,∴a >c .而a >c 时,若b 2=0,则ab 2>cb 2不成立,由此知“ab 2>cb 2”是“a >c ”的充分不必要条件,B 错;“对任意x ∈R ,有x 2≥0”的否定是“存在x ∈R ,有x 2<0”,C 错;由l ⊥α,l ⊥β,可得α∥β,理由是:垂直于同一条直线的两个平面平行,D 正确.【答案】 D12.下列命题中真命题的个数为( )①命题“若x =y ,则sin x =sin y ”的逆否命题为真命题;②设α,β∈⎝ ⎛⎭⎪⎫-π2,π2,则“α<β ”是“tan α<tan β ”的充要条件; ③命题“自然数是整数”是真命题;④命题“∀x ∈R ,x 2+x +1<0”的否定是“∃x 0∈R ,x 20+x 0+1<0.” A .1 B .2 C .3 D .4【解析】 ①命题“若x =y ,则sin x =sin y ”为真命题,所以其逆否命题为真命题;②因为x ∈⎝ ⎛⎭⎪⎫-π2,π2 时,正切函数y =tan x 是增函数,所以当α,β∈⎝ ⎛⎭⎪⎫-π2,π2时,α<β⇔tan α<tan β,所以“α<β”是“tan α<tan β”的充要条件,即②是真命题;③命题“自然数是整数”是全称命题,省略了“所有的”,故③是真命题;④命题“∀x ∈R ,x 2+x +1<0”的否定是“∃x 0∈R ,x 20+x 0+1≥0”,故④是假命题.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.设p :x >2或x <23;q :x >2或x <-1,则綈p 是綈q 的________条件. 【解析】 綈p :23≤x ≤2.綈q :-1≤x ≤2.綈p ⇒綈q ,但綈qD綈p .∴綈p 是綈q 的充分不必要条件.【答案】 充分不必要 14.若命题“对于任意实数x ,都有x 2+ax -4a >0且x 2-2ax +1>0”是假命题,则实数a 的取值范围是________.【解析】 若对于任意实数x ,都有x 2+ax -4a >0,则Δ=a 2+16a <0,即-16<a <0;若对于任意实数x ,都有x 2-2ax +1>0,则Δ=4a 2-4<0,即-1<a <1,故命题“对于任意实数x ,都有x 2+ax -4a >0且x 2-2ax +1>0”是真命题时,有a ∈(-1,0).而命题“对于任意实数 x ,都有x 2+ax -4a >0且x 2-2ax +1>0”是假命题,故a ∈(-∞,-1]∪[0,+∞).【答案】 (-∞,-1]∪[0,+∞)15.给出下列四个命题:①“若xy =1,则x ,y 互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b ≤-1,则关于x 的方程x 2-2bx +b 2+b =0有实数根”的逆否命题; ④若sin α+cos α>1,则α必定是锐角.其中是真命题的有________.(请把所有真命题的序号都填上).【解析】 ②可利用逆命题与否命题同真假来判断,易知“相似三角形的周长相等”的逆命题为假,故其否命题为假.④中α应为第一象限角.【答案】 ①③16.已知p :-4<x -a <4,q :(x -2)(3-x )>0,若綈p 是綈q 的充分条件,则实数a 的取值范围是________.【解析】 p :a -4<x <a +4,q :2<x <3,∵綈p 是綈q 的充分条件(即綈p ⇒綈q ),∴q ⇒p ,∴⎩⎨⎧a -4≤2,a +4≥3,∴-1≤a ≤6. 【答案】 [-1,6]三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)指出下列命题的构成形式,并写出构成它的命题:(1)36是6与18的倍数;(2)方程x 2+3x -4=0的根是x =±1;(3)不等式x 2-x -12>0的解集是{x |x >4或x <-3}.【解】 (1)这个命题是p ∧q 的形式,其中p :36是6的倍数;q :36是18的倍数.(2)这个命题是p ∨q 的形式,其中p :方程x 2+3x -4=0的根是x =1;q :方程x 2+3x -4=0的根是x =-1.(3)这个命题是p ∨q 的形式,其中p :不等式x 2-x -12>0的解集是{x |x >4};q :不等式x 2-x -12>0的解集是{x |x <-3}.18.(本小题满分12分)写出下列命题的逆命题、否命题、逆否命题,并判断其真假.(1)全等三角形一定相似;(2)末位数字是零的自然数能被5整除.【解】(1)逆命题:若两个三角形相似,则它们一定全等,为假命题;否命题:若两个三角形不全等,则它们一定不相似,为假命题;逆否命题:若两个三角形不相似,则它们一定不全等,为真命题.(2)逆命题:若一个自然数能被5整除,则它的末位数字是零,为假命题;否命题:若一个自然数的末位数字不是零,则它不能被5整除,为假命题;逆否命题:若一个自然数不能被5整除,则它的末位数字不是零,为真命题.19.(本小题满分12分)写出下列命题的否定并判断真假:(1)所有自然数的平方是正数;(2)任何实数x都是方程5x-12=0的根;(3)∀x∈R,x2-3x+3>0;(4)有些质数不是奇数. 【解】(1)所有自然数的平方是正数,假命题;否定:有些自然数的平方不是正数,真命题.(2)任何实数x都是方程5x-12=0的根,假命题;否定:∃x0∈R,5x0-12≠0,真命题.(3)∀x∈R,x2-3x+3>0,真命题;否定:∃x0∈R,x20-3x0+3≤0,假命题.(4)有些质数不是奇数,真命题;否定:所有的质数都是奇数,假命题.20.(本小题满分12分)设p:“∃x0∈R,x20-ax0+1=0”,q:“函数y=x2-2ax +a2+1在x∈[0,+∞)上的值域为[1,+∞)”,若“p∨q”是假命题,求实数a的取值范围.【解】由x20-ax0+1=0有实根,得Δ=a2-4≥0⇒a≥2或a≤-2.因为命题p为真命题的范围是a≥2或a≤-2.由函数y=x2-2ax+a2+1在x∈[0,+∞)上的值域为[1,+∞),得a≥0.因此命题q为真命题的范围是a≥0.根据p ∨q 为假命题知:p ,q 均是假命题,p 为假命题对应的范围是-2<a <2,q 为假命题对应的范围是a <0.这样得到二者均为假命题的范围就是⎩⎨⎧-2<a <2,a <0⇒-2<a <0. 21.(本小题满分12分)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0;命题q :实数x 满足x 2-5x +6≤0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)若p 是q 成立的必要不充分条件,求实数a 的取值范围.【解】 (1)由x 2-4ax +3a 2<0,得(x -3a )·(x -a )<0,又a >0,所以a <x <3a ,当a =1时,1<x <3,即p 为真命题时,实数x 的取值范围是1<x <3,由x 2-5x +6≤0得2≤x ≤3,所以q 为真时,实数x 的取值范围是2≤x ≤3.若p ∧q 为真,则2≤x <3,所以实数x 的取值范围是[2,3).(2)设A ={x |a <x <3a },B ={x |2≤x ≤3},由题意可知q 是p 的充分不必要条件,则B A ,所以⎩⎨⎧0<a <2,3a >3⇒1<a <2,所以实数a 的取值范围是(1,2). 22.(本小题满分12分)已知二次函数f (x )=ax 2+x ,对任意x ∈[0,1],|f (x )|≤1恒成立,试求实数a 的取值范围.【解】 由f (x )=ax 2+x 是二次函数,知a ≠0.|f (x )|≤1⇔-1≤f (x )≤1⇔-1≤ax 2+x ≤1,x ∈[0,1],①当x =0,a ≠0时,①式显然成立;当x ∈(0,1]时,①式化为-1x 2-1x ≤a ≤1x 2-1x, 当x ∈(0,1]时恒成立.设t =1x,则t ∈[1,+∞),所以-t 2-t ≤a ≤t 2-t . 令f (t )=-t 2-t =-⎝ ⎛⎭⎪⎫t +122+14,t ∈[1,+∞), 所以f (t )max =-2.令g (t )=t 2-t =⎝ ⎛⎭⎪⎫t -122-14,t ∈[1,+∞), 所以g (t )min =0.所以只需-2≤a ≤0.综上所述,实数a 的取值范围是[-2,0).。

高二数学(人教B版)选修2-1单元 综合能力测试题1

高二数学(人教B版)选修2-1单元 综合能力测试题1

综合能力测试题一时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中)1.“a =b ”是“直线y =x +2与圆(x -a )2+(y -b )2=2相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件 [答案] A[解析] 圆心(a ,b ),半径r =2,若a =b ,则圆心(a ,b )到直线y =x +2的距离d =r . ∴直线与圆相切,若直线与圆相切则|a -b +2|2=2,此时a =b 或a -b =-4,∴是充分不必要条件,故应选A.2.设命题甲为“点P 的坐标适合方程F (x ,y )=0”;命题乙为:“点P 在曲线C 上;命题丙为:“点Q 的坐标不适合方程F (x ,y )=0”;命题丁为:“点Q 不在曲线C 上”,已知甲是乙的必要条件,但不是充分条件,那么( )A .丙是丁的充分条件,但不是丁的必要条件B .丙是丁的必要条件,但不是丁的充分条件C .丙是丁的充要条件D .丙既不是丁的充分条件,也不是丁的必要条件 [答案] A[解析] 由已知条件,得“乙⇒甲”,即“点P 在曲线C 上,则点P 的坐标适合方程F (x ,y )=0”,它的逆否命题是:“若点P 的坐标不适合方程F (x ,y )=0,则点P 不在曲线C 上”,即“丙⇒丁”.3.给出下列关于互不相同的直线m ,l ,n 和平面α,β的四个命题: ① m ⊂α,l ∩α=A ,点A ∉m ,则l 与m 不共面;②m ,l 是异面直线,l ∥α,m ∥α,且n ⊥l ,n ⊥m ,则n ⊥α; ③若l ∥α,m ∥β,α∥β,则l ∥m ;④若l ⊂α,m ⊂α,l ∩m =A ,l ∥β,m ∥β,则α∥β. 其中为假命题的是( )A .①B .②C .③D .④ [答案] C[解析] 逐一验证①由异面直线的判定定理得l 与m 为异面直线,故①正确. ②由线面垂直的判定定理知②正确. ③l 可能与m 相交或异面,故③错误.④由线面垂直的判定定理得α∥β,故④正确,故选C.4.设P 为双曲线x 2-y212=1上的一点,F 1,F 2是该双曲线的两个焦点,若|PF 1|∶|PF 2|=3∶2,则ΔPF 1F 2的面积为( )A .63B .12C .12 3D .24[答案] B[解析] ∵|PF 1|∶|PF 2|=3∶2, 又有|PF 1|-|PF 2|=2, ∴|PF 1|=6,|PF 2|=4, 又∵|F 1F 2|=2c =213,∴(213)2=62+42,∴∠F 1PF 2=90°, ∴SΔPF 1F 2=12×6×4=12.5.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为( )A .3 2B .2 6C .27D .4 2[答案] C[解析] 由题意c =2,焦点在x 轴上,故该椭圆方程为x 2a 2+y 2a 2-4=1,与x +3y +4=0联立方程组,令Δ=0,解得a =7.6.设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线的点P (k ,-2)与点F 的距离为4,则k 等于( )A .4B .4或-4C .-2D .-2或2[答案] B[解析] 由题设条件可设抛物线方程为x 2=-2py (p >0),又点P 在抛物线上,则k 2=4p , ∵|PF |=4∴p2+2=4,即p =4,∴k =±4.7.设集合M ={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R },N ={(x ,y )|x 2-y =0},则集合M ∩N中元素的个数为( )A .1个B .2个C .3个D .4个[答案] B8.若PO ⊥平面ABC ,O 为垂足,∠ABC =90°,∠BAC =30°,BC =5,PA =PB =PC =10,则PO 的长等于( )A .5B .5 3C .10D .10 3[答案] B9.已知圆x 2+y 2=1,点A (1,0),△ABC 内接于圆,且∠BAC =60°,当BC 在圆上运动时,BC 中点的轨迹方程是( )A .x 2+y 2=12B .x 2+y 2=14C .x 2+y 2=12(x <12)D .x 2+y 2=14(x <14[答案] D10.在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算结果为向量BD 1→的是( ) ①(A 1D 1→-A 1A →)-AB →; ②(BC →+BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→; ④(B 1D 1→+A 1A →)+DD 1→. A .①② B .②③ C .③④D .①④[答案] A11.如图所示,在直二面角α—l —β中,A ,B ∈l ,AC ⊂α,AC ⊥l ,BD ⊂β,BD ⊥l ,|AC |=6,|AB |=8,|BD |=24,则线段CD 的长是( )A .25B .26C .27D .28[答案] B[解析] ∵AC ⊥AB ,BD ⊥AB ,∴AC →·AB →=0,BD →·AB →=0,AC →·BD →=0,CD →=CA →+AB →+BD →, ∴|CD →|2=|CA →+AB →+BD →|2=676, ∴|CD →|=26.12.在空间直角坐标系O -xyz 中,已知点P (2cos x +1,2cos2x +2,0)和点Q (cos x ,-1,3),其中x ∈[0,π],若直线OP 与直线OQ 垂直,则x 的值为( )A.π2B.π3C.π2或π3D.π2或π6[答案] C[解析] 由题意得OP →⊥OQ →,得cos x (2cos x +1)-(2cos2x +2)=0,利用cos2x =2cos 2x -1,化简后得2cos 2x -cos x =0,于是cos x =0或cos x =12,因为x ∈[0,π],所以x =π2或π3.二、填空题(本大题共4个小题,每空4分,共16分,把正确答案填在题中横线上) 13.命题“若a >b ,则3a >3b -1”的否命题为________. [答案] 若a ≤b ,则3a≤3b-1[解析] “a >b ”的否命题是“a ≤b ”,“3a >3b -1”的否命题是“3a ≤3b -1”. ∴原命题的否命题是“若a ≤b ,则3a ≤3b -1”.14.如果过两点A (a,0)和B (0,a )的直线与抛物线y =x 2-2x -3没有交点,那么实数a 的取值范围是____.[答案] (-∞,-134)[解析] 过A 、B 两点的直线为:x +y =a 与抛物线y =x 2-2x -3联立得x 2-x -a -3=0,因为直线x 与抛物线没有交点,则方程无解.即Δ=1+4(a +3)<0,解之a <-13415.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角的大小是________.[答案] π6[解析] 取AC 中点E ,连接BE ,则BE ⊥平面ACC 1A 1,∴∠BC 1E 为线面角. 由已知得BE =32,BC 1=3, ∴sin ∠BC 1E =12,∴∠BC 1E =π6.16.与椭圆x 29+y 25=1有公共焦点,且两条渐近线互相垂直的双曲线方程为________.[答案] x 2-y 2=2三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)如图,已知正方体ABCD -A 1B 1C 1D 1,分别求出平面ABC 1D 1和平面A 1B 1CD 的一个法向量,并证明这两个平面互相垂直.[解析] 设D 为原点,分别以DA ,DC ,DD 1为x 轴、y 轴、z 轴建立空间直角坐标系则D (0,0,0),A (1,0,0),B (1,1,0),C (0,1,0),D 1(0,0,1),A 1(1,0,1),B 1(1,1,1),C 1(0,1,1).则AB →=(0,1,0),BC 1→=(-1,0,1).设平面ABC 1D 1的一个法向量为n 1=(x ,y ,z ),则 n 1·AB →=y =0,n 1·BC 1→=-x +z =0,不妨令x =1,则z =1.故n 1=(1,0,1),设平面A 1B 1CD 的一个法向量为n 2,同理,可求n 2=(-1,0,1), ∵n 1·n 2=(1,0,1)·(-1,0,1)=-1+0+1=0, ∴n 1⊥n 2.∴平面ABC 1D 1⊥平面A 1B 1CD .18.(本小题满分12分)已知条件p :|5x -1|>a 和条件q :12x 2-3x +1>0,请选取适当的实数a 的值,分别利用所给的两个条件作为A ,B 构造命题:若A 则B .使得构造的原命题为真命题,而其逆命题为假命题,并说明为什么这一命题是符合要求的命题.[解析] 已知条件p 即5x -1<-a 或5x -1>a ,∴x <1-a 5或x >1+a5已知条件q 即2x 2-3x +1>0,∴x <12或x >1.令a =4,则p 即x <-35或x >1,此时必有p ⇒q 成立,反之不然,故可以选取的一个实数是a =4,A 为p ,B 为q ,对应的命题是“若A 则B ”.由以上过程可知,这一命题的原命题为真命题,但它的逆命题为假命题.19.(本小题满分12分)设命题p :函数f (x )=lg(ax 2-x +116a )的定义域为R ;命题q :不等式2x +1<1+ax 对一切正实数均成立.如果命题p 或q 为真命题,命题p 且q 为假命题,求实数a 的取值范围.[解析] 命题p 为真命题⇔f (x )=lg(ax 2-x +116a )的定义域为R ⇔ax 2-x +116a >0对任意实数x 均成立⇔a >2,所以命题p 为真命题⇔a >2.命题q 为真命题⇔2x +1-1<ax 对一切正实数均成立⇔a >2x +1-1x =2x x (2x +1+1)=22x +1+1对一切正实数x 均成立,由于x >0,所以2x +1>1,所以2x +1+1>2,所以22x +1+1,所以命题q 为真命题⇔a ≥1.由题意知p 与q 有且只有一个是真命题.当p 真q 假时,a 不存在;当p 假q 真时,a ∈[1,2].综上知a ∈[1,2].20.(本小题满分12分)设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点.(1)若P 是第一象限内该椭圆上的一点,且PF 1→·PF 2→=-54P 的坐标;(2)设过定点M (0,2)的直线l 与椭圆交于不同的两点A ,B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.[解析] (1)由题意得a =2,b =1,c =3,∴F 1(-3,0),F 2(3,0).设P (x ,y )(x >0,y >0),则PF 1→·PF 2→=(-3-x ,-y )·(3-x ,-y )=x 2+y 2-3=-54,联立⎩⎨⎧x 2+y 2=74,x24+y 2=1,解得⎩⎪⎨⎪⎧x 2=1,y 2=34,∴⎩⎪⎨⎪⎧x =1,y =32,∴P (1,32). (2)显然k =0不满足题设条件.可设直线l 的方程为y =kx +2,设A (x 1,y 1),B (x 2,y 2).联立⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +2,∴x 2+4(kx +2)2=4, ∴(1+4k 2)x 2+16kx +12=0, ∴x 1x 2=121+4k 2,x 1+x 2=-16k1+4k2, 由Δ=(16k )2-4·(1+4k 2)·12>0,16k 2-3(1+4k 2)>0,4k 2-3>0,得k 2>34①.又∠AOB 为锐角,∴cos ∠AOB >0,∴OA →·OB →>0, ∴OA →·OB →=x 1x 2+y 1y 2>0.又y 1y 2=(kx 1+2)(kx 2+2) =k 2x 1x 2+2k (x 1+x 2)+4,∴x 1x 2+y 1y 2=(1+k 2)x 1x 2+2k (x 1+x 2)+4=(1+k 2)·121+4k 2+2k ·(-16k 1+4k 2)+4=12(1+k 2)1+4k 2-2k ·16k 1+4k 2+4=4(4-k 2)1+4k2>0,∴0<k 2<4②. 综合①②可知34<k 2<4,∴k 的取值范围是(-2,-32)∪(32,2). 21.(本小题满分12分)(2010·天津理,20)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程;(2)设直线l 与椭圆相交于不同的两点A ,B .已知点A 的坐标为(-a,0),点Q (0,y 0)在线段AB 的垂直平分线上,且QA →·QB →=4.求y 0的值.[解析] (1)解:由e =c a =32,得3a 2=4c 2,再由c 2=a 2-b 2,得a =2b .由题意可知12×2a ×2b =4,即ab =2.解方程组⎩⎪⎨⎪⎧a =2b ,ab =2,得a =2,b =1,所以椭圆的方程为x 24+y 2=1.(2)由(1)可知A (-2,0),设B 点的坐标为(x 1,y 1),直线l 的斜率为k ,则直线l 的方程为y =k (x +2).于是A 、B 两点的坐标满足方程组⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1. 由方程组消去y 并整理,得 (1+4k 2)x 2+16k 2x +(16k 2-4)=0. 由-2x 1=16k 2-41+4k 2,得x 1=2-8k 21+4k 2,从而y 1=4k 1+4k 2. 设线段AB 的中点为M ,则M 的坐标为⎝⎛⎭⎫-8k 21+4k 2,2k 1+4k 2. 以下分两种情况:①当k =0时,点B 的坐标为(2,0),线段AB 的垂直平分线为y 轴,于是QA →=(-2,-y 0),QB →=(2,-y 0),由QA →·QB →=4,得y 0=±2 2.②当k ≠0时,线段AB 的垂直平分线方程为 y -2k 1+4k 2=-1k ⎝⎛⎭⎫x +8k 21+4k 2.令x =0,解得y 0=-6k1+4k 2.由QA →=(-2,-y 0),QB →=(x 1,y 1-y 0). QA →·QB →=-2x 1-y 0(y 1-y 0)=-2(2-8k 2)1+4k 2+6k 1+4k 2⎝⎛⎭⎫4k 1+4k 2+6k 1+4k 2 =4(16k 4+15k 2-1)(1+4k 2)2=4, 整理得7k 2=2,故k =±147,所以y 0=±2145. 综上,y 0=±22或y 0=±2145.22.(本小题满分14分)如图所示,四棱锥S -ABCD 的底面是矩形,AB =a ,AD =2,SA =1,且SA ⊥底面ABCD ,若边BC 上存在异于B ,C 的一点P ,使得PS →⊥PD →.(1)求a 的最大值;(2)当a 取最大值时,求异面直线AP 与SD 所成角的大小; (3)当a 取最大值时,求平面SCD 的一个单位法向量n 0及点P 到平面SCD 的距离.[解析] (1)建立如图空间直角坐标系,设|BP →|=x , 则A (0,0,0),S (0,0,1),D (0,2,0),P (a ,x,0), ∴PS →=(-a ,-x,1), PD →=(-a,2-x,0).∵PS →⊥PD →,∴PS →·PD →=0,即a 2-x (2-x )=0. 即a 2=-x 2+2x =-(x -1)2+1, 则x =1∈(0,2)时,a 的最大值为1.(2)由(1)可知,当a 取最大值时,AP →=(1,1,0), SD →=(0,2,-1),∴cos<AP →,SD →>=AP →·SD →|AP →|·|SD →|=105.∴异面直线AP 与SD 所成角的大小为arccos 105. (3)设平面SCD 的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧ n ⊥SC →n ⊥SD →∴⎩⎪⎨⎪⎧n ·SC →=0n ·SD →=0 ∵C (1,2,0),SC →=(1,2,-1), SD →=(0,2,-1)∴⎩⎪⎨⎪⎧x +2y -z =02y -z =0, 取y =1,则z =2,x =0,∴n =(0,1,2), ∴n 0=n |n |=15(0,1,2)=(0,55,255).∵P 到平面SCD 的距离d 等于PC →在n 0上的射影长,∴d =|PC →||cos<PC →,n 0>|=|PC →·n 0||n 0|=|PC →·n 0|=|(0,1,0)·(0,55,255)|=55.。

高中数学 模块综合测评 新人教B版高二选修1-1数学试题

高中数学 模块综合测评 新人教B版高二选修1-1数学试题

模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a ,b 是实数,则“a >b ”是“a 2>b 2”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【解析】 设a =1,b =-2,则有a >b ,但a 2<b 2,故a >bD a 2>b 2;设a =-2,b =1,显然a 2>b 2,但a <b ,即a 2>b 2Da >b .故“a >b ”是“a 2>b 2”的既不充分也不必要条件.【答案】 D2.过点P (1,-3)的抛物线的标准方程为( ) A .x 2=13y 或x 2=-13yB .x 2=13yC .y 2=-9x 或x 2=13yD .x 2=-13y 或y 2=9x【解析】P (1,-3)在第四象限,所以抛物线只能开口向右或向下,设方程为y 2=2px (p >0)或x 2=-2py (p >0),代入P (1,-3)得y 2=9x 或x 2=-13y .故选D.【答案】 D3.下列命题中,正确命题的个数是( )①命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x ≠1,则x 2-3x +2≠0”; ②“p ∨q 为真”是“p ∧q 为真”的充分不必要条件; ③若p ∧q 为假命题,则p ,q 均为假命题;④对命题p :∃x 0∈R ,使得x 20+x 0+1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0. A .1 B .2 C .3D .4【解析】①正确;②由p ∨q 为真可知,p ,q 至少有一个是真命题即可,所以p ∧q 不一定是真命题;反之,p ∧q 是真命题,p ,q 均为真命题,所以p ∨q 一定是真命题,②不正确;③若p ∧q 为假命题,则p ,q 至少有一个假命题,③不正确;④正确.【答案】 B4.函数f (x )=x 2+2xf ′(1),则f (-1)与f (1)的大小关系为( ) A .f (-1)=f (1) B .f (-1)<f (1) C .f (-1)>f (1)D .无法确定【解析】f ′(x )=2x +2f ′(1),令x =1,得f ′(1)=2+2f ′(1),∴f ′(1)=-2. ∴f (x )=x 2+2x ·f ′(1)=x 2-4x ,f (1)=-3,f (-1)=5.∴f (-1)>f (1). 【答案】 C5.命题“∀x ∈[0,+∞),x 3+x ≥0”的否定是( ) A .∀x ∈(-∞,0),x 3+x <0 B .∀x ∈(-∞,0),x 3+x ≥0 C .∃x 0∈[0,+∞),x 30+x 0<0 D .∃x 0∈[0,+∞),x 30+x 0≥0【解析】 故原命题的否定为:∃x 0∈[0,+∞),x 30+x 0<0.故选C. 【答案】 C6.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A.x 23+y 24=1B.x 24+y 23=1 C.x 24+y 22=1 D.x 24+y 23=1 【解析】 右焦点为F (1,0)说明两层含义:椭圆的焦点在x 轴上;c =1.又离心率为c a =12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y 23=1,故选D.【答案】 D7.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( ) 【导学号:25650148】A .1 B.32C .2D .3【解析】 因为双曲线的离心率e =c a=2,所以b =3a ,所以双曲线的渐近线方程为y=±b a x =±3x ,与抛物线的准线x =-p 2相交于A ⎝ ⎛⎭⎪⎫-p 2,32p ,B ⎝ ⎛⎭⎪⎫-p 2,-32p ,所以△AOB的面积为12×p2×3p =3,又p >0,所以p =2.【答案】 C8.点P 在曲线y =x 3-x +3上移动,过点P 的切线的倾斜角的取值X 围为( )A .[0,π) B.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎦⎥⎤π2,3π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π【解析】f ′(x )=3x 2-1≥-1,即切线的斜率k ≥-1,所以切线的倾斜角的X 围为⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π.【答案】 B9.若直线mx +ny =4与圆x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .至少一个B .2个C .1个D .0个 【解析】 圆心到直线的距离为d =4m 2+n 2>2,∴m 2+n 2<2,∴m 2+n 2<4. 将P (m ,n )代入x 29+y 24得:m 29+n 24=4m 2+9n 236<9m 2+n 236<1.∴P (m ,n )在椭圆内部,∴一定有两个交点. 【答案】 B10.若函数f (x )=kx 3+3(k -1)x 2-k 2+1在区间(0,4)上是减函数,则k 的取值X 围是( )A.⎝⎛⎭⎪⎫-∞,13B.⎝ ⎛⎦⎥⎤0,13 C.⎣⎢⎡⎭⎪⎫0,13D.⎝⎛⎦⎥⎤-∞,13【解析】f ′(x )=3kx 2+6(k -1)x . 由题意知3kx 2+6(k -1)x ≤0,即kx +2k -2≤0在(0,4)上恒成立, 得k ≤2x +2,x ∈(0,4), 又13<2x +2<1,∴k ≤13. 【答案】 D11.若直线y =2x 与双曲线x 2a 2-y 2b2=1(a >0,b >0)有公共点,则双曲线的离心率的取值X围为( )A .(1, 5)B .(5,+∞)C .(1, 5]D .[5,+∞)【解析】 双曲线的两条渐近线中斜率为正的渐近线为y =b a x .由条件知,应有b a>2,故e =c a =a 2+b 2a=1+⎝ ⎛⎭⎪⎫b a 2> 5.【答案】 B12.若0<x 1<x 2<1,则( ) A .e x 2-e x 1>ln x 2-ln x 1 B .e x 2-e x 1<ln x 2-ln x 1 C .x 2e x 1>x 1e x 2 D .x 2e x 1<x 1e x 2【解析】 设f (x )=e x-ln x (0<x <1), 则f ′(x )=e x-1x =x e x -1x.令f ′(x )=0,得x e x-1=0.根据函数y =e x与y =1x的图象,可知两函数图象交点x 0∈(0,1),因此函数f (x )在(0,1)上不是单调函数,故A ,B 选项不正确.设g (x )=e xx(0<x <1),则g ′(x )=e xx -1x 2. 又0<x <1,∴g ′(x )<0.∴函数g (x )在(0,1)上是减函数. 又0<x 1<x 2<1,∴g (x 1)>g (x 2), ∴x 2e x 1>x 1e x 2. 【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知a ,b ,c ∈R ,命题“若a +b +c =3,则a 2+b 2+c 2≥3”的否命题是________. 【解析】a +b +c =3的否定是a +b +c ≠3,a 2+b 2+c 2≥3的否定是a 2+b 2+c 2<3.【答案】 若a +b +c ≠3,则a 2+b 2+c 2<3 14.曲线y =x e x+2x +1在点(0,1)处的切线方程为 ________. 【导学号:25650149】【解析】y ′=e x +x e x +2,k =y ′|x =0=e 0+0+2=3, 所以切线方程为y -1=3(x -0),即3x -y +1=0. 【答案】 3x -y +1=015.如图1为函数f (x )=ax 3+bx 2+cx +d 的图象,f ′(x )为函数f (x )的导函数,则不等式xf ′(x )<0的解集为________.图1【解析】 当x <0时,f ′(x )>0,此时f (x )为增函数, 由图象可知x ∈(-∞,-3);当x >0时,f ′(x )<0,此时f (x )为减函数,由图象可知x ∈(0, 2). ∴xf ′(x )<0的解集为(-∞,-3)∪(0, 2). 【答案】 (-∞,-3)∪(0, 2)16.若O 和F 分别是椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为________.【解析】 由椭圆x 24+y 23=1可得点F (-1,0),点O (0,0),设P (x ,y ),-2≤x ≤2,则OP →·FP →=x 2+x +y 2=x 2+x +3⎝ ⎛⎭⎪⎫1-x 24=14x 2+x +3=14(x +2)2+2,当且仅当x =2时,OP →·FP →取得最大值6.【答案】 6三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设命题p :方程x 21-2m +y 2m +4=1表示的曲线是双曲线;命题q :∃x ∈R,3x 2+2mx +m +6<0.若命题p ∧q 为假命题,p ∨q 为真命题,某某数m 的取值X 围.【解】 对于命题p ,因为方程x 21-2m +y 2m +4=1表示的曲线是双曲线,所以(1-2m )(m+4)<0,解得m <-4或m >12,则命题p :m <-4或m >12.对于命题q ,因为∃x ∈R,3x 2+2mx +m +6<0,即不等式3x 2+2mx +m +6<0在实数集R 上有解,所以Δ=(2m )2-4×3×(m +6)>0, 解得m <-3或m >6. 则命题q :m <-3或m >6.因为命题p ∧q 为假命题,p ∨q 为真命题,所以命题p 与命题q 有且只有一个为真命题. 若命题p 为真命题且命题q 为假命题, 即⎩⎪⎨⎪⎧ m <-4或m >12,-3≤m ≤6,得12<m ≤6; 若命题p 为假命题且命题q 为真命题, 即⎩⎪⎨⎪⎧-4≤m ≤12,m <-3或m >6,得-4≤m <-3.综上,实数m 的取值X 围为[-4,-3)∪⎝ ⎛⎦⎥⎤12,6.18.(本小题满分12分)设函数f (x )=x 3+bx 2+cx (x ∈R ),已知g (x )=f (x )-f ′(x )是奇函数.(1)求b ,c 的值;(2)求g (x )的单调区间与极值. 【解】 (1)∵f (x )=x 3+bx 2+cx , ∴f ′(x )=3x 2+2bx +c . 从而g (x )=f (x )-f ′(x ) =x 3+bx 2+cx -(3x 2+2bx +c ) =x 3+(b -3)x 2+(c -2b )x -c ∵g (x )是奇函数,∴-x 3+(b -3)x 2-(c -2b )x -c =-[x 3+(b -3)x 2+(c -2b )x -c ] 得(b -3)x 2-c =0对x ∈R 都成立.∴⎩⎪⎨⎪⎧b -3=0,c =0,得b =3,c =0.(2)由(1)知g (x )=x 3-6x ,从而g ′(x )=3x 2-6,由此可知,(-∞,-2)和(2,+∞)是函数g (x )的单调递增区间;(-2, 2)是函数g (x )的单调递减区间.g (x )在x =-2时,取得极大值,极大值为42,g (x )在x =2时,取得极小值,极小值为-4 2.19.(本小题满分12分)已知抛物线y 2=4x 截直线y =2x +b 所得的弦长为|AB |=3 5. (1)求b 的值;(2)在x 轴上求一点P ,使△APB 的面积为39.【解】 (1)联立方程组⎩⎪⎨⎪⎧y 2=4x ,y =2x +b ,消去y ,得方程:4x 2+(4b -4)x +b 2=0,设A (x 1,y 1),B (x 2,y 2),x 1+x 2=1-b ,x 1x 2=b 24,|AB |=5x 1+x 22-4x 1x 2=51-b 2-b 2=35,解得b =-4.(2)将b =-4代入直线y =2x +b ,得AB 所在的直线方程为2x -y -4=0, 设P (a,0),则P 到直线AB 的距离为d =|2a -4|5.△APB 的面积S =12×|2a -4|5×35=39,则a =-11或15,所以P 点的坐标为(-11,0)或(15,0).20.(本小题满分12分)某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x (单位:元,0≤x ≤30)的平方成正比,已知商品单价降低2元时,一星期多卖出24件.(1)将一个星期的商品销售利润表示成x 的函数; (2)如何定价才能使一个星期的商品销售利润最大?【解】 (1)设商品降低x 元时,多卖出的商品件数为kx 2,若记商品在一个星期的销售利润为f (x ),则依题意有f (x )=(30-x -9)·(432+kx 2) =(21-x )·(432+kx 2),又由已知条件24=k ·22,于是有k =6,所以f (x )=-6x 3+126x 2-432x +9 072,x ∈[0,30]. (2)根据(1),有f ′(x )=-18x 2+252x -432 =-18(x -2)(x -12).当x 变化时,f (x )与f ′(x )的变化情况如下表:故x =因为f (0)=9 072,f (12)=11 664,所以定价为30-12=18(元)能使一个星期的商品销售利润最大. 21.(本小题满分12分)已知函数f (x )=12x 2+a ln x (a <0).(1)若a =-1,求函数f (x )的极值;(2)若∀x >0,不等式f (x )≥0恒成立,某某数a 的取值X 围. 【解】 由题意,x >0.(1)当a =-1时,f (x )=12x 2-ln x ,f ′(x )=x -1x,令f ′(x )=x -1x>0,解得x >1,所以f (x )的单调增区间为(1,+∞);f ′(x )=x -1x<0,得0<x <1,所以f (x )的单调减区间为(0,1),所以函数f (x )在x =1处有极小值f (1)=12.(2)因为a <0,f ′(x )=x +a x. 令f ′(x )=0,所以x =-a , 列表:这时f (=-a2+a ln -a ,因为∀x >0,不等式f (x )≥0恒成立, 所以-a2+a ln -a ≥0,所以a ≥-e ,所以a 的取值X 围为[-e,0).22.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点A ⎝ ⎛⎭⎪⎫1,32,且离心率e =12.(1)求椭圆C 的标准方程;(2)若直线l :y =kx +m (k ≠0)与椭圆交于不同的两点M 、N ,且线段MN 的垂直平分线过定点G ⎝ ⎛⎭⎪⎫18,0,求k 的取值X 围. 【导学号:25650150】【解】 (1)由题意e =12,即e =c a =12,∴a =2c .∴b 2=a 2-c 2=(2c )2-c 2=3c 2.∴椭圆C 的方程可设为x 24c 2+y 23c2=1.代入A ⎝ ⎛⎭⎪⎫1,32,得14c 2+⎝ ⎛⎭⎪⎫3223c 2=1. 解得c 2=1,∴所求椭圆C 的方程为x 24+y 23=1,(2)由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +m ,消去y ,得(3+4k 2)x 2+8kmx +4m 2-12=0. 由题意,Δ=(8km )2-4(3+4k 2)(4m 2-12)>0, 整理得:3+4k 2-m 2>0,① 设M (x 1,y 1),N (x 2,y 2),MN 的中点为P (x 0,y 0), x 0=x 1+x 22=-4km3+4k 2,y 0=kx 0+m =3m3+4k2. 由已知,MN ⊥GP ,即k MN ·k GP =-1, 即k ·3m3+4k2-0-4km 3+4k 2-18=-1,整理得:m =-3+4k28k .代入①式,并整理得:k 2>120, 即|k |>510,∴k ∈⎝ ⎛⎭⎪⎫-∞,-510∪⎝ ⎛⎭⎪⎫510,+∞.。

人教B版高中数学选修综合素质检测(1)

人教B版高中数学选修综合素质检测(1)

第二章综合素质检测时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中)1.双曲线x 2m -y 2n=1(mn ≠0)的离心率为2,有一个焦点与抛物线y 2=4x 的焦点重合,则mn 的值为( )A.316B.38 C.163D.83[答案] A[解析] 依题意,e =m +nm=2,c =1, 即:⎩⎪⎨⎪⎧m +n =1,1m =2,解得m =14,n =34,mn =316,选A.2.与抛物线x 2=4y 关于直线x +y =0对称的抛物线的焦点坐标是( ) A .(1,0) B .(116,0)C .(-1,0)D .(0,-116)[答案] C[解析] x 2=4y 关于x +y =0,对称的曲线为y 2=-4x ,其焦点为(-1,0). 3.过点C (4,0)的直线与双曲线x 24-y 212=1的右支交于A 、B 两点,则直线AB 的斜率k的取值范围是( )A .|k |≥1B .|k |> 3C .|k |≤ 3D .|k |<1[答案] B[解析] 如图所示,l 1平行于y =3x ,l 2平行于y =-3x ,由图可看出,当过C 由l 1位置逆时针方向转到l 2位置之间的直线与双曲线x 24-y 212=1的右支都有两个交点,此时k >3或k <- 3.4.椭圆x 212+y 23=1的一个焦点为F 1,点P 的椭圆上.如果线段PF 1的中点M 在y 轴上,那么点M 的纵坐标是( )A .±34B .±32C .±22D .±34[答案] A[解析] 由条件可得F 1(-3,0),PF 1的中点在y 轴上,∴P 点坐标(3,y 0).又P 在x 212+y 23=1的椭圆上得y 0=±32. ∴M 在坐标⎝ ⎛⎭⎪⎫0,±34,故选A. 5.已知|AB →|=3,A 、B 分别在y 轴和x 轴上运动;O 为原点,若OP →=13OA →+23OB →,则点P 的轨迹方程是( )A.x 24+y 2=1B .x 2+y 24=1C.x 29+y 2=1D .x 2+y 29=1[答案] A[解析] 设P (x ,y ),A (0,y 0),B (x 0,0),由题知(x ,y )=13(0,y 0)+23(x 0,0),即x =23x 0,y =13y 0,∴x 0=32x ,y 0=3y ,又∵|AB →|=3,∴x 20+y 20=9, ∴x 24+y 2=1即为点P 的轨迹方程.6.如图,在同一坐标系中,方程a2x2+b2y2=1与ax+by2=0(a>b>0)的曲线大致是( )[答案] D[解析] 解法一:将方程a2x2+b2y2=1与ax+by2=0转化为标准方程:x21a2+y21b2=1,y2=-abx.因为a>b>0,因此1b>1a>0,所以由椭圆的焦点在y轴,抛物线的开口向左,则D 选项正确.解法二:将方程ax+by2=0中的y换成-y,其结果不变,即说明ax+by2=0的图形关于x轴对称;排除B、C,又椭圆的焦点在y轴上,故选D.7.(2010·天津理,5)已知双曲线x2a2-y2b2=1(a>0,b>0)的一条渐近线方程是y=3 x,它的一个焦点在抛物线y2=24x的准线上.则双曲线的方程为( ) A.x236-y2108=1 B.x29-y227=1C.x2108-y236=1 D.x227-y29=1[答案] B[解析] 由题易知ba=3①且双曲线焦点为(6,0)、(-6,0),则由a2+b2=36②由①②知:a=3,b=33,∴双曲线方程为x29-y227=1,故选B.8.F1,F2是椭圆的两个焦点,A是椭圆上任一点,过任何一焦点向∠F1AF2的外角平分线作垂线,垂足为P,则P点的轨迹是( )A.圆B.椭圆C.双曲线D.抛物线[答案] A[解析] 如图所示:∠BAF 1为外角,AP 为外角角平分线l 所在直线设长轴长为2a (a >0),∠BAF 1=∠CAF 2, ∴AP 平分∠CAF 2,延长F 2P 交F 1A 于C , ∴C 、F 2关于P 对称,∴AC =AF 2.设F 2为(c,0),F 1为(-c,0),P 为(x ,y ), ∴c 为(2x -c,2y )∵AC =AF 2,AF 2+AF 1=2a , ∴F 1C =2a ,即4x 2+4y 2=4a 2, ∴轨迹为圆,选A.9.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线的准线的交点为B ,点A 在抛物线的准线上的射影为C ,若AF →=FB →,BA →·BC →=48,则抛物线方程为( )A .y 2=8xB .y 2=4xC .y 2=6xD .y 2=42x[答案] B[解析] 如图,∵AF →=FB →,|FD →|=p ,∴|AC |=2p ,∴|AF |=|FB |=2p , 又BA →·BC →=48, ∴|BC |2=48,∴在Rt△ABC 中,(4p )2-(2p )2=48, ∴p =2,∴y 2=4x .10.若椭圆x 2a 2+y 2b 2=(a >b >0)和圆x 2+y 2=(b2+c )2(c 为椭圆的半焦距)有四个不同的交点,则椭圆的离心率e 的取值范围是( )A .(55,35) B .(25,55) C .(25,35) D .(0,55) [答案] A[解析] 要保证椭圆与圆的4个交点,只要保证圆的半径b <b2+c <a 即可.⎩⎪⎨⎪⎧b <b 2+c b 2+c <a⇒⎩⎨⎧2b <b +2cb +2c <2a⇒⎩⎨⎧2c >b , ①2(a -c )>b . ②由①得4c 2>b 2=a 2-c 2,5c 2>a 2,c 2a 2>15,e 2>15,e >55,由②得4(a 2+c 2-2ac )>b 2=a 2-c 2,得3a 2-8ac +5c 2>0,两边同除以a 2,得5e 2-8e +3>0,(e -1)(5e -3)>0,e >1(舍去)或e <35,则55<e <35. 11.过点M (-2,0)的直线l 与椭圆x 2+2y 2=2交于点P 1,P 2,线段P 1P 2的中点设为P ,设直线l 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值等于( )A .2B .-2 C.12D .-12[答案] D[解析] 设直线l 的方程y =k 1(x +2)将y =k 1(x +2)代入x 2+2y 2=2中得(1+2k 21)x 2+8k 21x +8k 21-2=0.设P (x 0,y 0)则x 0=-4k 211+2k 21,y 0=k 1(x 0+2)=2k 11+2k 21∴k 2=y 0-0x 0-0=-12k 1∴k 1k 2=-12k 1·k 1=-12.故选D.12.B 地在A 地的正东方向4km 处,C 地在B 地的北偏东30°方向2km 处,河流的沿岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2km ,现要在曲线PQ 上选一处M 建一座码头, 向B 、C 两地运转货物.经测算,从M 到B 、C 两地修建公路的费用都是a 万元/km ,那么修建这两条公路的总费用最低是( )A .(7+1)a 万元B .(27-2)a 万元C .27a 万元D .(7-1)a 万元[答案] B[解析] 设总费用为y 万元,则y =a ·(MB +MC )∵河流的沿岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2km , ∴曲线PG 是双曲线的一支,B 为焦点,且a =1,c =2. 由双曲线定义,得MA -MB =2a ,即MB =MA -2, ∴y =a ·(MA +MC -2)≥a ·(AC -2).以直线AB 为x 轴,中点为坐标原点,建立直角坐标系,则A (-2,0),C (3,3). ∴AC =(3+2)2+(3)2=27, 故y ≥(27-2)a (万元).二、填空题(本大题共4个小题,每空4分,共16分,把正确答案填在题中横线上) 13.过抛物线y 2=4x 的焦点作倾斜角为3π4的直线,与抛物线交于P ,Q 两点,O 为坐标原点,则△POQ 的面积等于________.[答案] 2 2[解析] 设P (x 1,y 1),Q (x 2,y 2),F 为抛物线焦点,由⎩⎨⎧y =-(x -1),y 2=4x ,得y 2+4y-4=0,|y 1-y 2|=42+42=42,S △POQ =12|OF |·|y 1-y 2|=2 2.14.点P (8,1)平分双曲线x 2-4y 2=4的一条弦,则这条弦所在的直线方程是________.[答案] 2x -y -15=0[解析] 设弦的两端点分别为A (x 1,y 1),B (x 2,y 2),则x 21-4y 21=4,x 22-4y 22=4,两式相减,得(x 1+x 2)(x 1-x 2)-4(y 1+y 2)(y 1-y 2)=0.∵AB 的中点为P (8,1), ∴x 1+x 2=16,y 1+y 2=2,∴y 1-y 2x 1-x 2=2, ∴直线AB 的方程为y -1=2(x -8), 即2x -y -15=0.15.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程是________.[答案] (x -10)2+y 2=36(y ≠0)[解析] 设A (x ,y ),则D (x 2,y2),由|CD |=3和两点间距离公式求得方程,同时结合图形,除去A ,C ,D 三点共线的情况.16.下列四个关于圆锥曲线的命题:①设A ,B 为两个定点,k 为非零常数,若|PA →|-|PB →|=k ,则动点P 的轨迹为双曲线;②过定点C 上一定点A 作圆的动弦AB ,O 为坐标原点,若OP →=12(OA →+OB →),则动点P 的轨迹为椭圆;③方程2x 2-5x +2=0的两根可分别作为椭圆和双曲线的离心率;④双曲线x 225-y 29=1与椭圆x 235+y 2=1有相同的焦点.其中真命题的序号为________.[答案] ③④三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)已知抛物线的顶点在原点,它的准线过双曲线x 2a 2-y 2b2=1的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线交点为P (32,6),求抛物线方程和双曲线方程.[解析] 依题意,设抛物线方程为y 2=2px ,(p >0), ∵点(32,6)在抛物线上,∴6=2p ×32,∴p =2,∴所求抛物线方程为y 2=4x .∵双曲线左焦点在抛物线的准线x =-1上, ∴c =1,即a 2+b 2=1,又点(32,6)在双曲线上,∴94a 2-6b2=1,由⎩⎪⎨⎪⎧a 2+b 2=1,94a 2-6b2=1,解得:a 2=14,b 2=34.∴所求双曲线方程为 4x 2-43y 2=1.18.(本小题满分12分)已知定点A (a,0),其中0<a <3,它到椭圆x 29+y 24=1上点的距离的最小值为1,求a 的值.[解析] 设椭圆上任一点为P (x ,y )(-3≤x ≤3),则|PA |2=(x -a )2+y 2=(x -a )2+19(36-4x 2)=59(x -95a )2+4-45a 2,当0<a ≤53时,有0<95a ≤3.∴当x =95a 时,|PA |2min =4-45a 2=1,得a =152>53(舍), 当53<a <3时,有3<95a <275, 当且仅当x =3时,|PA |2min =a 2-6a +9=1,故a =2或a =4(舍),综上得a =2.19.(本小题满分12分)已知双曲线与椭圆x 29+y 225=1有公共焦点F 1、F 2,它们的离心率之和为245,(1)求双曲线的标准方程;(2)设P 是双曲线与椭圆的一个交点,求cos∠F 1PF 2的值. [解析] (1)在椭圆x 29+y 225=1中,a 2=25,b 2=9,∴c =a 2-b 2=4,焦点在y 轴上,离心率为e =45.由题意得:所求双曲线的半焦距c =4, 离心率e ′=245-45=2,又∵e ′=c a ′=4a ′=2, ∴双曲线的实半轴为a ′=2, 则b ′2=c 2-a ′2=16-4=12, ∴所求双曲线的标准方程为y 24-x 212=1.(2)由双曲线、椭圆的对称性可知,不论点P 在哪一个象限,cos∠F 1PF 2的值是相同的,设点P 是双曲线与椭圆在第一象限的交点,其中|PF 1|>|PF 2|由定义可知|PF 1|+|PF 2|=10① |PF 1|-|PF 2|=4②由①、②得|PF 1|=7,|PF 2|=3.又∵|F 1F 2|=8,在△F 1PF 2中,由余弦定理得 cos∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=72+32-822×7×3=-17, ∴cos∠F 1PF 2的值为-17.20.(本小题满分12分)(2010·辽宁文,20)设F 1,F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b>0)的左、右焦点,过F 2的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,F 1到直线l 的距离为2 3.(1)求椭圆C 的焦距;(2)如果AF 2→=2F 2B →,求椭圆C 的方程.[解析] 本题考查圆锥曲线中椭圆与直线的位置关系,第(1)问较基础,第(2)问中计算是关键之处.解:(1)设焦距为2c ,则F 1(-c,0)F 2(c,0) ∵k l =tan60°= 3 ∴l 的方程为y =3(x -c )即:3x -y -3c =0 ∵f 1到直线l 的距离为2 3∴|-3c -3c |(3)2+(-1)2=23c 2=3c =2 3∴c =2∴椭圆C 的焦距为4(2)设A (x 1,y 1)B (x 2,y )由题可知y 1<0,y 2>0 直线l 的方程为y =3(x -2)⎩⎪⎨⎪⎧y =3(x -2)x 2a 2+y 2b2=1得(3a 2+b 2)y 2+43b 2y -3b 2(a 2-4)=0由韦达定理可得⎩⎪⎨⎪⎧y 1+y 2=43b23a +b2 ①y 1,y 2=-3b 2(a 2-4)3a 2+b2②∵AF →=2F 2B →∴-y 1=2y 2,代入①②得⎩⎪⎨⎪⎧-y 2=-43b23a 2+b 2③-2y 22=-3b 2(a 2-4)3a 2+b2④③2④得12=48b 4(3a 2+b 2)2·3a 2+b 23b 2(a 2-4)=16b 2(3a 2+b 2)(a -4)⑤ 又a 2=b 2+4 ⑥ 由⑤⑥解得a 2=9 b 2=5 ∴椭圆C 的方程为x 29+y 25=121.(本小题满分12分)已知椭圆长轴|A 1A 2|=6,焦距|F 1F 2|=42,过椭圆的左焦点F 1作直线交椭圆于M 、N 两点,设∠F 2F 1M =α(0≤α≤π),问α取何值时,|MN |等于椭圆的短轴的长.[解析] 如图所示,a =3,c =22,b =1,∴椭圆方程为x 29+y 2=1.设过F 1的直线方程为y =k (x +22).∴⎩⎪⎨⎪⎧y =k (x +22), ①x 29+y 2=1. ②①代入②,整理得(1+9k 2)x 2+362k 2x +72k 2-9=0, ∴x 1+x 2=-362k 21+9k 2,x 1·x 2=72k 2-91+9k 2.代入|MN |=[(x 1+x 2)2-4x 1x 2](1+k 2),整理得|MN |=6(k 2+1)1+9k 2.∵6(k 2+1)1+9k 2=2,∴k =±33. 即tan α=±33,∴α=π6或α=5π6.22.(本小题满分14分)如右图,已知点F (1,0),直线l :x =-1,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且OP →·QF →=FP →·FQ →.(1)求动点P 的轨迹C 的方程;(2)过点F 的直线交轨迹C 于A ,B 两点,交直线l 于点M ,已知MA →=λ1AF →,MB →=λ2BF →,求λ1+λ2的值.[解析] 设点P (x ,y ),则Q (-1,y ),由QP →·QF →=FP →·FQ →,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),化简整理,得y 2=4x . 即动点P 的轨迹C 的方程为y 2=4x . (2)设直线AB 的方程为x =my +1(m ≠0),A (x 1,y 1),B (x 2,y 2),又M (-1,-2m),联立方程组⎩⎨⎧y 2=4x ,x =my +1,消去x 化简整理,得y 2-4my -4=0,Δ=(-4m )2+16>0,由根与系数的关系,得y 1+y 2=4m ,y 1y 2=-4. 由MA →=λ1AF →,MB →=λ2BF →,得y 1+2m =-λ1y 1,y 2+2m=-λ2y 2,整理得λ1=-1-2my 1,λ2=-1-2my 2,∴λ1+λ2=-2-2m (1y 1+1y 2)=-2-2m ·y 1+y 2y 1y 2=-2-2m ·4m-4=0.即λ1+λ2的值为0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章综合素质检测时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中)1.在以下命题中,不正确的个数为( ) ①|a |-|b |=|a +b |是a ,b 共线的充要条件; ②若a ∥b ,则存在唯一的实数λ,使a =λb ;③对于空间任意一点O 和不共线的三点A ,B ,C ,若OP →=2OA →-2OB →-OC →,则P ,A ,B ,C 四点共面;④若{a ,b ,c }为空间的一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底; ⑤|(a ·b )c |=|a |·|b |·|c |. A .2个 B .3个 C .4个 D .5个 [答案] C[解析] ①|a |-|b |=|a +b |⇒a 与b 的夹角为π,故是充分不必要条件,①不正确.②b 为非零向量,故不正确.③2-2-1≠1,故不正确.④正确.⑤不正确.2.在正三棱柱ABC —A 1B 1C 1D 1中,若AB =2BB 1,则AB 1与C 1B 所成角的大小为( ) A .60° B .90° C .105° D .75° [答案] B[解析] 建立空间直角坐标系,可求AB 1→·BC 1→=0,故成90°.3.已知△ABC ,AB →=c ,AC →=b ,BC →=a ,用向量a ,b ,c 的数量积的形式表示△ABC 为锐角三角形的充要条件是( )A .b·c >0,a·c >0B .a·b >0,b·c >0,a·c >0C .a·b >0D .a·b >0,b·c >0,a·c <0[答案] D[解析] 由数量积的意义知D 成立.4.已知点A (1,0,0),B (0,1,0),C (0,0,1),若存在点D, 使得DB ∥AC ,DC ∥AB ,则点D 的坐标为( )A .(-1,1,1)B .(-1,1,1)或(1,-1,-1)C .(-12,12,12)D .(-12,12,12)或(1,-1,1)[答案] A[解析] 代入坐标运算得D (-1,1,1),故选A.5.已知A (2,-5,1),B (2,-2,4),C (1,-4,1),则向量AB →与AC →的夹角为( ) A .30° B .45° C .60° D .90° [答案] C[解析] ∵A (2,-5,1),B (2,-2,4),C (1,-4,1), ∴AB →=(0,3,3),AC →=(-1,1,0). ∴cos 〈AB →,AC →〉=AB →·AC →|AB →||AC →|=12,∴选C.6.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点,那么AM 与CN 所成的角的余弦值是( )A.32B.102C.35D.25 [答案] D[解析] 以D 为坐标原点DA →、DC →、DD 1→为x 轴、y 轴、z 轴建立空间直角坐标系,则AM→=(0,12,1),CN →=(1,0,12),∴cos θ=|AM →·CN →||AM →||CN →|=25(用基向量表示亦可).7.下面命题中,正确命题的个数为( )①若n 1,n 2分别是平面α,β的法向量,则n 1∥n 2⇔α∥β; ②若n 1,n 2分别是平面α,β的法向量,则α⊥β⇔n 1·n 2=0; ③若n 是平面α的法向量且a 与α共面,则n·a =0; ④若两个平面的法向量不垂直,则这两个平面一定不垂直. A .1个 B .2个 C .3个 D .4个 [答案] D[解析] ①②③④均正确,故选D.8.直线l 1的方向向量v 1=(1,0,-1);直线l 2的方向向量v 2=(-2,0,2),则直线l 1 与l 2的位置关系是( )A .平行B .相交C .异面D .平行或重合 [答案] D[解析] ∵v 2=-2v 1,∴l 1∥l 2或l 1与l 2重合.9.如图,在棱长为3的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱A 1B 1、A 1D 1的中点,则点B 到平面AMN 的距离是( )A.92B. 3C.655D .2[答案] D[解析] 以AB →、AD →、AA 1→为x 轴,y 轴,z 轴的正向建立直角坐标系,则M (32,0,3),N (0,32,3),A (0,0,0),∵n =(2,2,-1),AB →=(3,0,0), ∴d =|AB →·n ||n |=2,故选D.10.如右图所示,正方体ABCD —A ′B ′C ′D ′中,M 是AB 的中点,则sin 〈DB ′→,CM →〉的值为( )A.12 B.21015 C.23 D.1115[答案] B[解析] 以DA ,DC ,DD ′所在直线分别为x ,y ,z 轴建立直角坐标系Oxyz ,设正方体棱长为1,则D (0,0,0),B ′(1,1,1),C (0,1,0),M (1,12,0),则DB ′→=(1,1,1),CM →=(1,-12,0),cos 〈DB ′→,CM →〉=1515,则sin 〈DB ′→,CM →〉=21015. 11.在棱长为a 的正方体OABC -O ′A ′B ′C ′中,E 、F 分别是棱AB 、BC 上的动点,且AE =BF ,则异面直线A ′F 与C ′E 所成角的大小为( )A .锐角B .直角C .钝角D .不确定[答案] B[解析] 如图,以O 为原点建立空间直角坐标系,设AE =BF =x ,则A ′(a,0,a )、F (a -x ,a,0)、C ′(0,a ,a )、E (a ,x,0),A ′F →-(-x ,a ,-a ),C ′E →=(a ,x -a ,-a ),∴A ′F →·C ′E →=-xa +a (x -a )+a 2=0, ∴A ′F ⊥C ′E .12.如图,四面体P -ABC 中,PC ⊥面ABC ,AB =BC =CA =PC ,那么二面角B -P A -C 的余弦值为( )A.22B.33C.77D.57[答案] C[解析] 如图,作BD ⊥AP 于D ,作CE ⊥AP 于E ,设AB =1,则易得CE =22,EP =22,P A =PB =2,AB =1,可以求得BD =144,ED =24. ∵BC →=BD →+DE →+EC →,∴BC →2=BD →2+DE →2+2BD →·DE →+2DE →+EC →+2EC →·BD →. ∴EC →·BD →=-14.∴cos 〈BD →,EC →〉=-77.∴cos 〈DB →,EC →〉=77.二、解答题(本大题共4小题,每空4分,共16分,把正确答案填在题中横线上) 13.设|m |=1,|n |=2,2m +n 与m -3n 垂直,a =4m -n ,b =7m +2n ,则〈a ,b 〉=________. [答案] 0[解析] 由于(2m +n )·(m -3n )=0, 可得:m ·n =-2,则: a·b =(4m -n )·(7m +2n )=18. |a |=(4m -n )2=6, |b |=(7m +2n )2=3,cos 〈a ,b 〉=186×3=1,∴〈a ,b 〉=0.14.边长为1的等边三角形ABC 中,沿BC 边高线AD 折起,使得折后二面角B -AD -C 为60°,点D 到平面ABC 的距离为________.[答案]1510[解析] 如图所示,AD ⊥面BCD ,AD =32,BD =CD =BC =12,∴V A -BCD =13×AD ×S △BCD .又∵V A -BCD =V D -ABC =13×h ×S △ABC ,∴由等积法可解得h =1510.15.如图所示,在三棱锥P —ABC 中,P A =PB =PC =BC ,且∠BAC =90°,则P A 与底面ABC 所成的角为________.[答案] 60°[解析] 由于P A =PB =PC ,故P 在底面ABC 上的射影为△ABC 外心,由于△ABC 为直角三角形,不妨设OB =OC ,所以OP ⊥面ABC ,∠P AO 为所求角,不妨设BC =1,则OA =12,cos ∠P AO =12,所以∠P AO =60°.16.已知A 、B 、C 三点共线,则对空间任一点O ,存在三个不为零的实数λ、m 、n 使λOA →+mOB →+nOC →=0,那么λ+m +n 的值等于________.[答案] 0[解析] 由λOA →+mOB →+nOC →=0,得OA →=-m λOB →-n λOC →.根据空间直线的向量参数方程有-m λ-nλ=1⇔-m -n =λ⇒m +n +λ=0.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)在正方体ABCD -A 1B 1C 1D 1中,P 是DD 1的中点,O 为底面ABCD 的中心,求证:B 1O →是平面P AC 的法向量.[解析] 建立空间直角坐标系,不妨设正方体的棱长为 2.则A (2,0,0),P (0,0,1),C (0,2,0),B 1(2,2,2),O (1,1,0),于是OB 1→=(1,1,2)AC →=(-2,2,0),AP →=(-2,0,1),由于OB 1→·AC →=-2+2=0,及OB 1→·AP →=-2+2=0,∴OB 1→⊥AC →,OB 1→⊥AP →.∴AC ∩AP =A ,∴OB 1→⊥平面P AC , 即OB 1→是平面P AC 的法向量.18.(本小题满分12分)(2009·陕西)如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,AC =AA 1=3,∠ABC =60°.(1)证明:AB ⊥A 1C ;(2)求二面角A -A 1C -B 的大小.[解析] (1)证明:∵三棱柱ABC -A 1B 1C 1为直三棱柱,∴AA 1⊥AB ,AA 1⊥AC .在△ABC 中,AB =1,AC =3,∠ABC =60°,由正弦定理得∠ACB =30°, ∴∠BAC =90°,即AB ⊥AC . 如图,建立空间直角坐标系, 则A (0,0,0),B (1,0,0), C (0,3,0),A 1(0,0,3), ∴AB →=(1,0,0), A 1C →=(0,3,-3),∵AB →·A 1C →=1×0+0×3+0×(-3)=0, ∴AB ⊥A 1C .(2)解:如图,可取m =AB →=(1,0,0)为平面AA 1C 的法向量, 设平面A 1BC 的法向量为n =(l ,m ,n ), 则BC →·n =0,A 1C →·n =0,又BC →=(-1,3,0),∴⎩⎪⎨⎪⎧-l +3m =0,3m -3n =0,∴l =3m ,n =m . 不妨取m =1,则n =(3,1,1). cos 〈m ,n 〉=m ·n |m ||n |=3×1+1×0+1×0(3)2+12+1212+02+02=155, ∴二面角A -A 1C -B 的大小为arccos155. 19.(本小题满分12分)如图的多面体是底面为平行四边形的直四棱柱ABCD -A 1B 1C 1D 1,经平面AEFG 所截后得到的图形,其中∠BAE =∠GAD =45°,AB =2AD =2,∠BAD =60°.(1)求证:BD ⊥平面ADG ;(2)求平面AEFG 与平面ABCD 所成锐二面角的余弦值.[解析] (1)证明:在△BAD 中,AB =2AD =2,∠BAD =60°,由余弦定理得,BD =3, ∴AB 2=AD 2+BD 2,∴AD ⊥BD ,又GD ⊥平面ABCD ,∴GD ⊥BD , GD ∩AD =D ,∴BD ⊥平面ADG ,(2)以D 为坐标原点,建立如图所示的空间直角坐标系D -xyz , 则有A (1,0,0),B (0,3,0),G (0,0,1),E (0,3,2), AG →=(-1,0,1),AE →=(-1,3,2), 设平面AEFG 法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·AG →=-x +z =0m ·AE →=-x +3y +2z =0,取m =(1,-33,1),平面ABCD 的一个法向量n =DG →=(0,0,1), 设平面AEFG 与面ABCD 所成锐二面角为θ, 则cos θ=|m·n ||m ||n |=217.20.(本小题满分12分)(2008·江苏)如图,设动点P 在棱长为1正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,记D 1PD 1B =λ.当∠APC 为钝角时,求λ的取值范围.[解析] 由题设可知,以DA →、DC →、DD 1→为单位正交基底,建立如图所示的空间直角坐标系D -xyz ,则有A (1,0,0),B (1,1,0),C (0,1,0),D 1(0,0,1).由D 1B →=(1 ,1,-1)得D 1P →=λD 1B →=(λ,λ,-λ),所以P A →=PD 1→+D 1A →=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1),PC →=PD 1→+D 1C →=(-λ,-λ,λ)+(0,1,-1)=(-λ,1-λ,λ-1).显然∠APC 不是平角,所以∠APC 为钝角等价于cos ∠APC =cos<P A →,PC →>=P A →·PC →|P A →|·|PC →|<0,这等价于P A →·PC →<0,即(1-λ)(-λ)+(-λ)(1-λ)+(λ-1)2=(λ-1)(3λ-1)<0,得13<λ<1.因此,λ的取值范围为⎝⎛⎭⎫13,1.21.(本小题满分12分)(2009·山东)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB =4,BC =CD =2,AA 1=2,E ,E 1,F 分别是棱AD ,AA 1,AB 的中点.(1)证明:直线EE 1∥平面FCC 1; (2)求二面角B -FC 1-C 的余弦值.[解析] (1)因为F 为AB 的中点,CD =2,AB =4,AB ∥CD ,所以CD 綊AF , 因此四边形AFCD 为平行四边形, 所以AD ∥FC .又CC 1∥DD 1,FC ∩CC 1=C ,FC ⊂平面FCC 1,CC 1⊂平面FCC 1,所以平面ADD 1A 1∥平面FCC 1,又EE 1⊂平面ADD 1A 1, 所以EE 1∥平面FCC 1.(2)过D 作DR ⊥CD 交于AB 于R ,以D 为坐标原点建立如图所示的空间直角坐标系. 则F (3,1,0),B (3,3,0),C (0,2,0),C 1(0,2,2) 所以FB →=(0,2,0),BC 1→=(-3,-1,2),DB →=(3,3,0). 由FB =CB =CD =DF ,所以DB ⊥FC . 又CC 1⊥平面ABCD ,所以DB →为平面FCC 1的一个法向量. 设平面BFC 1的一个法向量为n =(x ,y ,z ), 则由⎩⎪⎨⎪⎧n ⊥FB →n ⊥BC 1→得⎩⎪⎨⎪⎧(x ,y ,z ),(0,2,0)=0(x ,y ,z ),(-3,-1,2)=0即⎩⎪⎨⎪⎧2y =0,-3x -y +2z =0.取x =1得⎩⎪⎨⎪⎧ y =0z =32,因此n =⎝⎛⎭⎫1,0,32, 所以cos<DB →,n >=DB →·n |DB →||n |=33+9×1+34=17=77. 故所求二面角的余弦值为77. 22.(本小题满分14分)已知长方体AC 1中,棱AB =BC =3,棱BB 1=4,连接B 1C ,过点B 作B 1C 的垂线交于CC 1于E ,交B 1C 于F .(1)求证:A 1C ⊥平面EBD ;(2)求点A 到平面A 1B 1C 的距离;(3)求ED 与平面A 1B 1C 所成角的正弦值.[解析] (1)证明:建立如右图所示的空间直角坐标系A -xyz ,设|CE |=a ,则C (3,3,0),B 1(3,0,4),A 1(0,0,4),B (3,0,0),D (0,3,0).设E (3,3,a ),则A 1C →=(3,3,-4),B 1C →=(0,3,-4),BD →=(-3,3,0),BE →=(0,3,a ).由BE ⊥B 1C ,知BE →·B 1C →=0,即0·0+3·3+a ·(-4)=0.∴a =94. ∴E (3,3,94),BE →=(0,3,94), ∴A 1C →·BE →=0,A 1C →·BD →=0,∴A 1C ⊥BE ,A 1C ⊥BD .又BE ∩BD =B ,∴A 1C ⊥平面EBD .(2)易证A 1B 1⊥BE ,∴BE →可看作平面A 1B 1C 的法向量n =(0,3,94), CA →=(-3,-3,0).∴点A 到平面A 1B 1C 的距离d =|CA →·n ||n |=125.(3)ED →=(-3,0,-94), 设ED 与平面A 1B 1C 所成角为θ.则sin θ=|DE →·n ||DE →||n |=|3·0+0·3+94+94|32+02+(94)2·02+32+(94)2=925 即ED 与平面A 1B 1C 1所成角的正弦值为925.。

相关文档
最新文档