2020-2021高一数学上期中试题及答案(1)

合集下载

2020-2021学年辽宁省辽南协作体高一上学期期中数学试卷(含解析)

2020-2021学年辽宁省辽南协作体高一上学期期中数学试卷(含解析)

2020-2021学年辽宁省辽南协作体高一上学期期中数学试卷一、单选题(本大题共8小题,共40.0分)1. 对于定义域和值域均为[0,1]的函数f(x),定义f 1(x)=f(x),f 2(x)=f(f 1(x)),…,f n (x)=f(f n−1(x)),n =1,2,3,….满足f n (x)=x 的点x ∈[0,1]称为f 的n 阶周期点.设f(x)={2x,0≤x ≤122−2x,12<x ≤1,则f 的n 阶周期点的个数是( ) A. 2nB. 2(2n −1)C. 2nD. 2n 2 2. 在下列句子的空缺处依次填入成语,最恰当的一组是( )小组内乌兹别克、沙特这些曾经的“苦主”,再加上澳大利亚接近35℃的温度,给亚洲杯国足占据八强乃至高位置的 蒙上了阴影。

劳累了一天,凌晨时分拖着疲惫的身体回到家里,窗外大雪纷飞,屋内却很温暖, ,带来了无限幸福。

公款支撑的演出市场多年异样繁荣,“中”字头演出团体业务接踵而来,而一些无依无靠的演艺公司在市场竞争中几无 。

A. 一隅之地 一席之地 立锥之地B. 一席之地 一隅之地 立锥之地C. 立锥之地 一席之地 一隅之地D. 一席之地 立锥之地 一隅之地3. 命题“∀x ∈R ,均有x 2+sinx +1<0”的否定为( )A. ∀∈R ,均有x 2+sinx +1≥0B. ∃x ∈R ,使得x 2+sinx +1<0C. ∃x ∈R ,使得x 2+sinx +1≥0D. ∀x ∈R ,均有x 2+sinx +1>0 4. 设函数f(x)的定义域为D ,如果对任意x 1∈D ,都存在唯一的x 2∈D ,使得f(x 1)+f(x 2)=m(m 为常数)成立,那么称函数f(x)在D 上具有性质Ψm .现有函数:①f(x)=3x ;②f(x)=3x ;③f(x)=log 3x ;④f(x)=tanx .其中,在其定义域上具有性质Ψm 的函数的序号是( )A. ①③B. ①④C. ②③D. ②④5.“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件6.拟定从甲地到乙地通话m分钟的电话费由f(m)=1.06(0.5⋅{m}+1)(元)决定,其中m>0,{m}是大于或等于m的最小整数,(如:{3}=3,{3.8}=4,{3.1}=4),则从甲地到乙地通话时间为5.5分钟的电话费为()A. 3.71元B. 3.97元C. 4.24元D. 4.77元7.已知集合,,则∪是:()A. B. C. D.8.二次函数y=x2−4x+3在区间(1,4]上的值域是()A. [−1,+∞)B. (0,3]C. [−1,3]D. (−1,3]二、多选题(本大题共4小题,共20.0分)9.已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则下列判断正确的是()A. M∪N={0,1,2,3,4}B. (∁U M)∩N={0,1}C. ∁U N={1,2,3}D. M∩N={0,4}10.已知定义在R上的函数f(x)的图象连续不断,若存在常数λ(λ∈R),使得f(x+λ)+λf(x)=0对任意的实数x恒成立,则称f(x)是回旋函数.给出下列四个命题中,正确的命题是()A. 函数f(x)=a(其中a为常数)为回旋函数的充要条件是λ=−1B. 若函数f(x)=a x(a>1)为回旋函数,则λ>1C. 函数f(x)=cosπx不是回旋函数D. 若f(x)是λ=2的回旋函数,则f(x)在[0,2020]上至少有1010个零点11.下列命题中,正确的有()A. 若a>b>0,则ac2>bc2B. 若a<b<0,则a2>ab>b2C. 若a>b>0且c>0,则b+ca+c >baD. 若a<b<0且c<0,则ca2<cb212.设函数f(x)是定义在实数集R上周期为2的偶函数,当0≤x≤1时,f(x)=1−√1−x2.若直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,则实数a的值可为()A. −14B. 0 C. −12D. 1−√2三、单空题(本大题共3小题,共15.0分)13.若关于x的不等式a≤34x2−3x+4≤b的解集恰好是[a,b],则a+b=______ .14.二次函数f(x)满足f(x)−f(x−1)=2x−2且f(0)=1.则函数y=f(x)−3的零点是______ .15.直线ax−by+2=0(a>0,b>0)与圆C:x2+y2+2x−2y=0交于两点A,B,当|AB|最大时,1a +4b的最小值为______.四、多空题(本大题共1小题,共5.0分)16.已知函数f(x)=x3−4x,g(x)=sinωx(ω>0).若∀x∈[−a,a],都有f(x)g(x)≤0,则a的最大值为(1);此时ω=(2).五、解答题(本大题共6小题,共70.0分)17.已知函数f(x)=x2+3|x−a|(a∈R).(Ⅰ)若f(x)在[−1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)−m(a);(Ⅱ)设b∈R,若|f(x)+b|≤3对x∈[−1,1]恒成立,求3a+b的取值范围.18.在数列{a n}中,a1=1,a n+1=1−14a n ,b n=12a n−1 ,其中n∈N∗.(1)求证:数列{b n}为等差数列;(2)设c n=b n+1·(13) b n,数列{c n}的前n项和为T n,求T n;(3)证明:1√b√b ⋯√b≤2√n−1(n∈N∗).19.某商场在春节期间,对顾客实行购物优惠活动,规定一次购物付款总额:①如果不超过200元,则不给予优惠;②如果超过200元但不超过500元,则按标价给予9折优惠(即按标价的90%出售);③如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.(Ⅰ)请写出购物金额(x元)与实付金额(y元)的函数关系式;(Ⅱ)若某人两次去购物,分别付款168元和423元,假设他一次性购买上述的商品,则应付款是多少?20. 已知集合A ={x|x−3x−7<0},B ={x|x 2−12x +20<0},C ={x|5−a <x <a},(1)求A ∪B ,(∁R A)∩B ;(2)若C ⊆(A ∪B),求实数a 的取值范围.21. (本小题满分14分)已知是定义在[−1,1]上的奇函数,当,且时有. (1)判断函数的单调性,并给予证明;(2)若对所有恒成立,求实数m 的取值范围.22. 已知函数f(x)={−x 2+x +1,x ≤1log 4x+1x−1,x >1, (1)求f(−2)的值;(2)若函数g(x)=f(x)−12,求函数g(x)的零点.【答案与解析】1.答案:C解析:解:当x∈[0,12]时,f1(x)=2x=x,解得x=0当x∈(12,1]时,f1(x)=2−2x=x,解得x=23∴f的1阶周期点的个数是2当x∈[0,14]时,f1(x)=2x,f2(x)=4x=x解得x=0当x∈(14,12]时,f1(x)=2x,f2(x)=2−4x=x解得x=25当x∈(12,34]时,f1(x)=2−2x,f2(x)=−2+4x=x解得x=23当x∈(34,1]时,f1(x)=2−2x,f2(x)=4−4x=x解得x=45∴f的2阶周期点的个数是22,当x∈[0,18],f1(x)=2x,f2(x)=4x,f3(x)=8x=x,x=0当x∈(18,14],f1(x)=2x,f2(x)=4x,f3(x)=2−8x=x,x=29当x∈(14,38],f1(x)=2x,f2(x)=2−4x,f3(x)=2−2(2−4x)=x,x=27…依此类推∴f的n阶周期点的个数是2n故选C.本题考查的知识点是归纳推理,方法是根据已知条件和递推关系,先求出f的1阶周期点的个数,2阶周期点的个数,然后总结归纳其中的规律,f的n阶周期点的个数.归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想),属于中档题.2.答案:B解析:成语的正确使用,要从成语的意思、感情色彩、修饰对象、使用范围等角度考虑,同时结合语境从词语与语境的语意关系、搭配关系等方面筛选.。

浙江省杭州之江高级中学2020-2021学年高一上学期期中考试数学试卷含解析 (1)

浙江省杭州之江高级中学2020-2021学年高一上学期期中考试数学试卷含解析 (1)

2020-2021学年浙江省杭州之江高级中学高一(上)期中数学试卷一、选择题(共10小题,每小题4分,共40分).1.已知集合A={1,2,3,4},B={2,5,6,7},则A∩B=()A.{0,2}B.{2}C.{﹣2,0,2}D.{﹣2,2}2.已知命题p:“∃x>0,使得x2﹣x﹣2>0”,则命题p的否定是()A.∀x≤0,总有x2﹣x﹣2>0B.∀x>0,总有x2﹣x﹣2≤0C.∃x>0,使得x2﹣x﹣2≤0D.∃x≤0,使得x2﹣x﹣2>03.“三角形为等边三角形”是“三角形为等腰三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.下列函数中表示同一函数的是()A.y=与B.f(x)=x2+1与g(t)=t2+1C.y=与D.y=与y=x﹣35.若a,b,c为实数,且a<b<0,则()A.ac2≤bc2B.C.ac<bc<0D.0<a2<b26.函数中,有()A.f(x)在(﹣1,+∞)上单调递增B.f(x)在(1,+∞)上单调递减C.f(x)在(1,+∞)上单调递增D.f(x)在(﹣1,+∞)上单调递减7.若正数x,y满足=1,则x+2y的最小值为()A.B.C.25D.278.定义在R上的偶函数f(x)满足:在x∈[0,+∞)上单调递减,则满足f(2x﹣1)<f(1)的x的取值范围是()A.(﹣1,0)B.(1,+∞)∪(﹣∞,0)C.(﹣∞,0)D.(0,1)9.已知集合A={x|ax2﹣2x+a=0}中至多含有一个元素,则实数a的取值范围()A.[﹣1,1]B.[1,+∞)∪(﹣∞,﹣1]C.[﹣1,1]∪{0}D.[1,+∞)∪(﹣∞,﹣1]∪{0}10.函数f(x)对任意x∈R,都有f(x)=f(x+12),y=f(x﹣1)的图形关于(1,0)对称,且f(8)=1,则f(2020)=()A.1B.﹣1C.0D.2二、填空题:本大题共7小题,多空题每小题6分,单空题每小题6分,共36分。

湖北省华中师范大学第一附属中学2020~2021学年第一学期期中检测高一数学试题及答案

湖北省华中师范大学第一附属中学2020~2021学年第一学期期中检测高一数学试题及答案

华中师大一附中2020~2021学年度上学期期中检测高一年级数学试题试卷总分150分 考试时间120分钟一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.已知A ={3-,0,1 },B ={4-,3-,1},则A ∪B 的真子集的个数为( )A .3B .7C .15D .312.钱大姐常说“便宜没好货”,她这句话中,“不便宜”是“好货”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件3.已知函数()f x 的定义域为(1,1)-,函数()(21)g x f x =-,则函数()g x 的定义域为 ( )A .(1,1)-B .(0, 1)C .(3,1)-D .((3),(1))f f - 4.若正实数a ,b 满足1a b +=,则12a b+的最小值为( )A.B .6C .D .3+5.函数(f x( )A .(,2]-∞B .[2,)+∞C .[0,2]D .[2,4]6.若关于x 的不等式2|1||2|1()x x a a a -+-≤++∈R 的解集为空集,则实数a 的取值范围是( ) A .10a -<<B .01a <<C .12a <<D .1a <-7.已知函数()f x 是定义在R 上的偶函数,且在(0,)+∞上单调递减,(2)0f -=,则不等式()0xf x > 的解集为( )A .(,2)(0,2)-∞-B .(,2)(2,)-∞-+∞C .(2,0)(0,2)-D .(2,0)(2,)-+∞8.已知函数2()2+1,[0,2]f x x x x =-+∈,函数()1,[1,1]g x ax x =-∈-,对于任意1[0,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立,则实数a 的取值范围是( )A .(,3]-∞-B .[3,)+∞C .(,3][3,)-∞-+∞D .(,3)(3,)-∞-+∞二、多选题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有若干个选项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分. 9.已知a ,b ,c 为互不相等的正数,且222a c bc +=,则下列关系中可能成立的是 ( )A .a b c >>B .c b a >>C .b a c >>D .a c b >> 10.下列各结论中正确的是( ) A .“0ab >”是“0ab>”的充要条件. B.函数y =2.C .命题“1x ∀>,20x x ->”的否定是“01x ∃≤,200x x -≤” . D .若函数21y x ax =-+有负值,则实数a 的取值范围是2a >或2a <-.11.定义域为R 的函数()f x 满足()()()f x y f x f y +=+,且当0x >时,()0f x >.以下结论正确的是( )A .()f x 为奇函数B .()f x 为偶函数C .()f x 为增函数D .()f x 为减函数12.设定义域为R 的函数1, 1|1|()1, 1x x f x x ⎧≠-⎪+=⎨⎪=-⎩,若关于x 的方程2[()]()0f x af x b ++=有且仅有三个不同的实数解x 1,x 2,x 3,且x 1 < x 2 < x 3.下列说法正确的是 ( )A .2221235x x x ++=B .10a b ++=C .1322x x x +>D .132x x +=-三、填空题(本大题共4小题,每小题5分,共20分) 13.已知集合{2,1}A =-,{|2}B x ax ==,若AB B =,则实数a 的取值集合为____________.14.关于x 的一元二次方程2210x kx k ++-=在区间(1,2)-内、外各有一个实数根,则实数k 的取值范围是___________.15.两次购买同一种物品,可以用两种不同的策略,第一种是不考虑物品价格的升降,每次购买这种物品的数量一定;第二种是不考虑物品价格的升降,每次购买这种物品所花的钱数一定.则第______种购物方式比较经济.16.已知函数2()=x ax a f x x++在(]0,1上单调递减,则实数a 的取值范围为____________.四、解答题(本大题共6小题,共70分) 17.(本小题满分10分)已知集合26{||1|2}{|1}4x A x x B x x -=-≤=<-,,定义{|}A B x x A x B -=∈∉且. (1)求A B -;(2)求B A -.18.(本题满分12分)已知非空集合()(){}2|312310A x x a x a =-++-<,集合(){}223|220B x x a a x a a =-++++<.命题p :x A ∈,命题q :x B ∈,若p 是q 的充分条件,求实数a 的取值范围.19.(本题满分12分)已知函数2()1mx nf x x +=+是定义在[1,1]-上的奇函数,且(1)1f = (1)求m ,n 的值;判断函数()f x 的单调性并用定义加以证明; (2)求使2(1)(1)0f a f a -+-<成立的实数a 的取值范围.20.(本题满分12分)已知函数2()(1)()f x x a x a =-++∈R .(1)若对于任意[1,2]x ∈,恒有2()2f x x ≥成立,求实数a 的取值范围; (2)若2a ≥,求函数()f x 在区间[0, 2]上的最大值()g a .21.(本题满分12分)华师一附中为了迎接建校70周年校庆,决定在学校艺术中心利用一侧原有墙体,建造一间墙高为3米,底面积为24平方米,且背面靠墙的长方体形状的荣誉室.由于荣誉室的后背靠墙,无需建造费用,甲工程队给出的报价为:荣誉室前面新建墙体的报价为每平方米400元,左右两面新建墙体报价为每平方米300元,屋顶和地面以及其他报价共计14400元.设荣誉室的左右两面墙的长度均为x 米(36)x ≤≤.(1)当左右两面墙的长度为多少时,甲工程队的整体报价最低?并求最低报价; (2)现有乙工程队也要参与此荣誉室的建造竞标,其给出的整体报价为1800(1)a x x+元(a>0),若无论左右两面墙的长度为多少米,乙工程队都能竞标成功(乙工程队的整体报价比甲工程队的整体报价更低),试求实数a 的取值范围.22.(本题满分12分)若函数()y f x =自变量的取值区间为[a , b ]时,函数值的取值区间恰为22[,]b a,就称区间[a , b ]为()y f x =的一个“和谐区间”.已知函数()g x 是定义在R 上的奇函数,当(0,)x ∈+∞时,()3g x x =-+.(1)求()g x 的解析式;(2)求函数()g x 在(0,)+∞内的“和谐区间”;(3)若以函数()g x 在定义域内所有“和谐区间”上的图像作为函数()y h x =的图像,是否存在实数m ,使集合2{(,)|()}{(,)|}x y y h x x y y x m ==+恰含有2个元素.若存在,求出实数m 的取值集合;若不存在,说明理由.高一年级数学试题参考答案一、单选题1.C 2.B 3.B 4.D 5.D 6.A 7.A 8.C 二、多选题9.BC 10.AD 11. AC 12.ABD 三、填空题13.{-1,0,2} 14.3,04⎛⎤- ⎥⎝⎦15.二 16.12a ≤-或1a ≥四、解答题17.解:{||1|2}{|13}A x x x x =-≤=-≤≤, (2)分26{|1}{|24}4x B x x x x -=<=<<- (4)分(1){|12}A B x x -=-≤≤ (7)分(2){|34}B A x x -=<< (10)分18.解:()(){}|2310A x x x a =---<⎡⎤⎣⎦,()(){}2|20B x x a x a ⎡⎤=--+<⎣⎦.∵22172024a a a ⎛⎫+-=-+> ⎪⎝⎭,∴22a a +>.∴{}2|2B x a x a =<<+. (2)分∵p 是q 的充分条件,∴A B ⊆. (3)分① 当1a =时,312a -=,A =∅,不符合题意; (5)分② 当1a >时,312a ->,{}|231A x x a =<<-,要使A B ⊆,则212312a a a a ⎧>⎪≤⎨⎪-≤+⎩ ∴12a <≤. (8)分③ 当1a <时,312a -<,{}|312A x a x =-<<,要使A B ⊆,则213122a a a a ⎧<⎪≤-⎨⎪≤+⎩ ∴112a ≤<. (11)分综上所述,实数a 的取值范围是1[,1)(1,2]2. (12)分19.(1)解法一:因为函数()f x 是定义在[-1,1]上的奇函数,则()()0011f f ⎧=⎪⎨=⎪⎩,得012n m n =⎧⎪⎨+=⎪⎩,解得20m n =⎧⎨=⎩, (2)分经检验2m =,0n =时,()221xf x x =+是定义在[1,1]-上的奇函数. (3)分法二:()f x 是定义在[1,1]-上的奇函数,则()()f x f x -=-,即2211mx n mx nx x -+--=++,则0n =,所以()21mxf x x =+,又因为()11f =,得2m =,所以2m =,0n =. ………………3分设12,[1,1]x x ∀∈-且12x x <,则()()22121221211212222222121212222(1)2(1)2()(1)11(1)(1)(1)(1)x x x x x x x x x x f x f x x x x x x x +-+---=-==++++++1211x x -≤<≤ 222112120,10,(1)(1)0x x x x x x ∴->-<++>()()120f x f x ∴-< ()()12f x f x ∴< ()f x ∴在[1,1]-上是增函数 (6)分(2)由(1)知()221xf x x =+,()f x 在[1,1]-上是增函数, 又因为()f x 是定义在[]1,1-上的奇函数,由()()2110f a f a -+-<,得()()211f a f a -<-, (7)分2211111111a a a a -≤-≤⎧⎪∴-≤-≤⎨⎪-<-⎩, (10)分即2020221a a a ≤≤⎧⎪≤≤⎨⎪-<<⎩,解得01a ≤<. 故实数a 的取值范围是[0,1). (12)分20.(1)解法一:对任意的[]1,2x ∈,恒有()22f x x ≥,即22(1)2x a x x -++≥,整理得23(1)0x a x -+≤对任意的[]1,2x ∈恒成立, (2)分构造函数()23(1)g x x a x =-+,其中[]1,2x ∈,则()max0g x ≤,即()()1020g g ⎧≤⎪⎨≤⎪⎩,…… 4分 即3(1)0122(1)0a a -+≤⎧⎨-+≤⎩,解得5a ≥,因此,实数a 的取值范围是[)5,+∞.………………6分解法二:对任意的[]1,2x ∈,恒有()22f x x ≥,即22(1)2x a x x -++≥,整理得23(1)0x a x -+≤对任意的[]1,2x ∈恒成立, (2)分max 1(3)6a x ∴+≥= (5)分因此,实数a 的取值范围是[)5,+∞. (6)分(2)()()22211(1)24a a f x x a x x ++⎛⎫=-++=--+⎪⎝⎭. 2a ≥ 102a +∴> (7)分①当122a +<,即23a ≤<时,函数()y f x =在10,2a +⎡⎤⎢⎥⎣⎦上单调递增, 在1,22a +⎡⎤⎢⎥⎣⎦上单调递减,此时()()21124a a g a f ++⎛⎫== ⎪⎝⎭; (9)分②当122a +≥,即3a ≥时,()y f x =在[0, 2]上单调递增,此时()()222g a f a ==-.………………11分 综上所述,2(1),23()422,3a a g a a a ⎧+≤<⎪=⎨⎪-≥⎩. (12)分21.(1)设甲工程队的总造价为y 元, 则72163006400144001800()14400(36)y x x x x x =⨯+⨯+=++≤≤, ………………2分161800()14400180021440028800x x ++≥⨯=, ………………4分 当且仅当16x x =,即x = 4时等号成立. ………………5分故当左右两侧墙的长度为4米时,甲工程队的报价最低,最低报价为28800元. ……6分(2)由题意可得161800(1)1800()14400a x x x x+++>对任意的[3,6]x ∈恒成立. 故2(4)(1)x a x x x ++>,从而2(4)1x a x +>+恒成立, ………………8分令1x t +=,22(4)(3)961x t t x t t++==+++,[4,7]t ∈. 又96y t t =++在[4,7]t ∈为增函数,故min 494y =. ………………11分所以a 的取值范围为49(0,)4. (12)分22.(1)因为()g x 为R 上的奇函数,∴(0)0g =又当(0,)x ∈+∞时,()3g x x =-+所以,当(,0)x ∈-∞时,()()(3)3g x g x x x =--=-+=--;3,0()0,03,0x x g x x x x --<⎧⎪∴==⎨⎪-+>⎩ (3)分 (2)设0a b <<,∵()g x 在(0,)+∞上递单调递减,2()32()3g b b b g a a a⎧==-+⎪⎪∴⎨⎪==-+⎪⎩,即,a b 是方程23x x =-+的两个不等正根. ∵0a b << ∴12a b =⎧⎨=⎩ ∴()g x 在(0,)+∞内的“和谐区间”为[1,2]. ………………6分 (3)设[a , b ]为()g x 的一个“和谐区间”,则22a b b a <⎧⎪⎨<⎪⎩,∴a ,b 同号. 当0a b <<时,同理可求()g x 在(,0)-∞内的“和谐区间”为[2,1]--.[1,2]3,()[2,1]3,h x x x x x -+∈⎧⎨----∈∴=⎩ (8)分依题意,抛物线2y x m =+与函数()h x 的图象有两个交点时,一个交点在第一象限,一个交点在第三象限.因此,m 应当使方程23x m x +=-+在[1,2]内恰有一个实数根,并且使方程23x m x +=--,在[2,1]--内恰有一个实数.由方程23x m x +=-+,即230x x m ++-=在[1,2]内恰有一根,令2()3F x x x m =++-,则(1)10(2)30F m F m =-≤⎧⎨=+≥⎩,解得31m -≤≤;由方程23x m x +=--,即230x x m +++=在[2,1]--内恰有一根,令2()3G x x x m =+++,则(1)30(2)50G m G m -=+≤⎧⎨-=+≥⎩,解得53m -≤≤-. 综上可知,实数m 的取值集合为{3}-. ………………12分(用图象法解答也相应给分)。

潍坊市2020-2021学年高一上学期期中数学试题(解析版)

潍坊市2020-2021学年高一上学期期中数学试题(解析版)
【详解】解: 不等式组 解得 ,所以不等式组的解集是 ,
关于 的不等式 解集包含 ,令 ,
,解得 ,
故选: .
【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.
二、多项选择题:本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得3分,有选错的得0分.
9.下列命题中是假命题的是().
A. , B. ,
C. , D. ,
【答案】ACD
【解析】
【分析】
举反例即可判断选项A、C,解方程 即可判断选项B、D.
(1)求 ;
(2)若 ,求实数 的取值范围.
【答案】(1) ;(2) .
【解析】
【分析】
(1)先求得集合A,再由集合的补集运算和交集运算可求得答案;
(2)分集合C为空集和不是空集两种情况分别建立不等式(组),可求得所求的范围.
【详解】解:( 时,满足 ,即 ,解得 .
【详解】对于A选项,函数 为奇函数,且该函数在定义域上不单调,A选项中的函数不合乎要求;
对于B选项,函数 为奇函数,且该函数在定义域上为减函数,B选项中的函数合乎要求;
对于C选项,当 时, ,则 ,
当 时, ,则 ,
又 ,所以,函数 为奇函数,
当 时,函数 单调递减;当 时,函数 单调递减.
由于函数 在 上连续,所以,函数 在 上为减函数,C选项中的函数合乎要求;
画出函数的图象,如图所示:
对于 :根据函数的图象, 的定义域为 ,值域为 ,故 错误;

2020-2021学年第一学期期中高一数学试卷及答案

2020-2021学年第一学期期中高一数学试卷及答案

高一级期中质量测试数学科试参考答案(第1页共4页)2020-2021学年度第一学期期中高中一年级质量测试数学科试卷参考答案题号123456789101112答案A C D A B D C A AB ABD AD BCD 三、13.1214.{x |x ≥−1且x ≠0}15.5≤4a −2b ≤1016.1516;0或1312.四、解答题17.解:(1)由图象观察可知f (x )的单调增区间为(0,2];……………………………………5分(2)函数f (x )的图象如图所示:……………………………………………7分f (x )<0的解集为(−∞,−4)∪(4,+∞).………………………………………………………10分18.解:因为A ∩B ={9},故9∈A 且9∈B ,………………………………………………1分所以2m −1=9,或者m 2=9,…………………………………………………………………3分解得m =5,或者=±3,…………………………………………………………………………5分当m =5时,A ={−4,9,25},B ={0,−4,9},A ∩B ={−4,9},不合题意;……………………7分当m =3时,B ={−2,−2,9},与集合元素的互异性矛盾;…………………………………9分当m=−3时,A={−4,−7,9},B={−8,4,9},A∩B={9},符合题意;……………………11分综上所述,m=−3.……………………………………………………………………………12分19.解:(1)已知x<2,∴x−2<0.……………………………………………………………1分∴4x+1x−2=4(x−2)+1x−2+8……………………………………………………………………2分∴−4(x−2)−1x−2≥4,……………………………………………………………………………3分当且仅当−4(x−2)=−1x−2,即x=32时等号成立.………………………………………………4分∴4(x−2)+1x−2≤−4……………………………………………………………………………5分∴4x+1x−2=4(x−2)+1x−2+8≤4∴4x+1x−2的最大值为4………………………………………………………………………6分(2)解:∵x+4y+xy=5,∴5−xy=x+4y≥24xy=4xy……………………………………………………………………7分当且仅当x=4y,x+4y+xy=5即x=2,y=12时,等号成立……………………………………………………………………8分∴xy+4xy−5≤0………………………………………………………………………………9分∴xy≤1………………………………………………………………………………………11分∴xy的最大值为1……………………………………………………………………………12分20.解:(1)f(x)为R上的奇函数,……………………………………………………………1分∴f(0)=0,得b=0,…………………………………………………………………………3分又f(1)=a+b2=12,∴a=1,…………………………………………………………………5分∴f(x)=xx2+1……………………………………………………………………………………6分高一级期中质量测试数学科试参考答案(第2页共4页)(2)f(x)在[1,+∞)上为减函数,……………………………………………………………7分证明如下:在[1,+∞)上任取x1和x2,且x1<x2,……………………………………………8分则f(x2)−f(x1)=x2x22+1−x1x21+1=(x21+1)x2-(x22+1)x1(x21+1)(x22+1)=x21x2-x22x1+x2-x1(x21+1)(x22+1)=(x1-x2)(x1x2-1)(x21+1)(x22+1)……………………9分∵x2>x1≥1,∴x1x2−1>0,x1−x2<0,…………………………………………………………10分∴f(x2)−f(x1)<0,即f(x2)<f(x1),………………………………………………………………11分∴f(x)在[1,+∞)上为减函数.…………………………………………………………………12分21.解:(1)由已知条件f(x)−g(x)=x+ax−2………………①………………………………1分①式中以−x代替x,得f(−x)−g(−x)=−x−ax−2………②………………………………2分因为f(x)是奇函数,g(x)是偶函数,故f(−x)=−f(x),g(−x)=g(x),②可化为−f(x)−g(x)=−x−ax−2………③…………………………………………………3分①−③,得2f(x)=2x+2ax,……………………………………………………………………4分故f(x)=x+ax,g(x)=2,x∈(−∞,0)∪(0,+∞);…………………………………………6分(2)由(1)知,f(x)+g(x)=x+ax+2,x∈[1,+∞),……………………………………………7分当a≥0时,函数f(x)+g(x)的值恒为正;……………………………………………………8分当a<0时,函数f(x)+g(x)=x+ax+2在[1,+∞)上为增函数,…………………………9分故当x=1时,f(x)有最小值3+a,故只需3+a>0,解得−3<a<0.………………………………………………………………11分综上所述,实数a的取值范围是(−3,+∞).………………………………………………12分高一级期中质量测试数学科试参考答案(第3页共4页)【法二:由(1)知,f(x)+g(x)=x+ax+2,……………………………………………………7分当x∈[1,+∞)时,f(x)+g(x)>0恒成立,等价于a>−(x2+2x),…………………………9分而二次函数y=−(x2+2x)=−(x+1)2+1在[1,+∞)上单调递减,………………………10分x=1时,y max=−3,.…………………………………………………………………………11分故a>−3………………………………………………………………………………………12分】22.解:(1)由题意知,y−x−(10+2p),…………………………………………2分将p=3−2x+1代入化简得y=16−4x+1−x(0≤x≤a).…………………………………………5分【注:没注明定义域,扣1分】(2)当a≥1时,y=17x+−24x+1×(x+1)=13,…………………………7分当且仅当4x+1=x+1,即x=1时,上式取等号.…………………………………………8分所以当a≥1时,促销费用投入1万元时,厂家的利润最大为13万元.…………………9分当0<a<1时,y=16−4x+1−x在(0,1)上单调递增,…………………………………………11分所以当0<a<1时,促销费用投入a万元时,厂家的利润最大为4161aa-万元………12分高一级期中质量测试数学科试参考答案(第4页共4页)。

2020-2021学年重庆市高一上学期期中数学试题(解析版)

2020-2021学年重庆市高一上学期期中数学试题(解析版)

2020-2021学年重庆市高一上学期期中数学试题一、单选题1.已知集合{0,1,2}A =,则A 的子集个数为( ) A .6 B .7 C .8 D .16【答案】C【分析】根据子集的个数为2n (n 为集合元素的个数),即可求得答案. 【详解】{0,1,2}A =.根据子集的个数为2,n (n 为集合元素的个数)∴A 的子集个数328=.故选:C .【点睛】本题考查了求集合子集个数问题,解题关键是掌握子集概念,考查了分析能力和计算能力,属于基础题.2.已知()f x 是偶函数,()g x 是奇函数,且2()()(1)f x g x x +=-,则(1)f -=( ) A .2 B .2- C .1 D .1-【答案】A【分析】分别取1x =和1x =-,代入函数根据奇偶性得到答案. 【详解】()f x 是偶函数,()g x 是奇函数,2()()(1)f x g x x +=-,取1x =得到(1)(1)0f g +=,即(1)(1)0f g ---=;取1x =-得到(1)(1)4f g -+-=; 解得(1)2f -= 故选:A【点睛】本题考查了根据函数奇偶性求函数值,意在考查学生对于函数性质的灵活运用. 3.2()4f x ax bx a =+-是偶函数,其定义域为[1,2]a a --,对实数m 满足2()(1)f x m ≤+恒成立,则m 的取值范围是( ) A .(,3][1,)-∞-+∞ B .[3,1]- C .(,1][3,)-∞-⋃+∞ D .[1,3]-【答案】A【分析】根据奇偶性得到0b =,1a =-得到2()4f x x =-+,计算函数的最大值,解不等式得到答案.【详解】2()4f x ax bx a =+-是偶函数,其定义域为[1,2]a a --,则0b =,且()12a a -=--即1a =-,故2()4f x x =-+,()max ()04f x f ==故24(1)m ≤+,解得m 1≥或3m ≤- 故选:A【点睛】本题考查了根据函数奇偶性求参数,函数最值,解不等式,意在考查学生的综合应用能力.4.若,a b ,R c ∈,a b >,则下列不等式成立的是 A .11a b< B .22a b > C .||||a cbc >D .()()2222a c b c +>+【答案】D【分析】结合不等式的性质,利用特殊值法确定. 【详解】当1,1a b ==-排除A ,B 当0c 排除C 故选:D【点睛】本题主要考查了不等式的性质,特殊值法,还考查了特殊与一般的思想,属于基础题.5.已知函数)25fx =+,则()f x 的解析式为( )A .()21f x x =+ B .()()212f x x x =+≥C .()2f x x =D .()()22f x x x =≥【答案】B【分析】利用换元法求函数解析式.【详解】2t =,则2t ≥,所以()()()()2224t 251,2,f t t t t =-+-+=+≥即()21f x x =+()2x ≥.故选:B【点睛】本题考查利用换元法求函数解析式,考查基本分析求解能力,属基础题.6.已知()f x 是定义域为R 的奇函数,当0x >时,()223f x x x =--,则不等式()20f x +<的解集是A .()() 5,22,1--⋃-B .()(),52,1-∞-⋃-C .()(,1)52,--⋃+∞D .(),1()2,5-∞-⋃【答案】B【分析】根据函数奇偶性的性质,求出函数当0x <时,函数的表达式,利用函数的单调性和奇偶性的关系即可解不等式. 【详解】解:若0x <,则0x ->,∵当0x >时,()223f x x x =--,∴()223f x x x -=+-,∵()f x 是定义域为R 的奇函数,∴()223()f x x x f x -=+-=-,即2()23f x x x =--+,0x <.①若20x +<,即2x <-,由()20f x +<得,()()222230x x -+-++<,解得5x <-或1x >-,此时5x <-;②若20x +>,即2x >-,由()20f x +<得,()()222230x x +-+-<,解得31x -<<,此时21x -<<,综上不等式的解为5x <-或21x -<<. 即不等式的解集为()(),52,1-∞-⋃-. 故选:B.【点睛】本题主要考查不等式的解法,利用函数的奇偶性的性质求出函数的解析式是解决本题的关键. 7.若函数()f x =R ,则实数a 的取值范围是( )A .(0,4)B .[0,2)C .[0,4)D .(2,4]【答案】C【分析】等价于不等式210ax ax ++>的解集为R, 结合二次函数的图象分析即得解. 【详解】由题得210ax ax ++>的解集为R, 当0a =时,1>0恒成立,所以0a =.当0a ≠时,240a a a >⎧⎨∆=-<⎩,所以04a <<. 综合得04a ≤<.故选:C【点睛】本题主要考查函数的定义域和二次函数的图象性质,意在考查学生对这些知识的理解掌握水平.8.设函数22,()6,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩是定义在R 上的增函数,则实数a 取值范围( )A .[)2,+∞B .[]0,3C .[]2,3D .[]2,4【答案】D【分析】画出函数22y x x =--的图象,结合图象及题意分析可得所求范围.【详解】画出函数22y x x =--的图象如下图所示,结合图象可得,要使函数()22,,6,,x x x a x ax x a ⎧--≥⎪=⎨-<⎪⎩是在R 上的增函数,需满足22226a a a a ≥⎧⎨--≥-⎩,解得24x ≤≤. 所以实数a 取值范围是[]2,4. 故选D .【点睛】解答本题的关键有两个:(1)画出函数的图象,结合图象求解,增强了解题的直观性和形象性;(2)讨论函数在实数集上的单调性时,除了考虑每个段上的单调性之外,还要考虑在分界点处的函数值的大小关系. 二、多选题9.若0a >,0b >,且2a b +=,则下列不等式恒成立的是( )A 1B .11ab≥ C .222a b +≥ D .112a b+≥【答案】BCD【分析】由条件可得12211112a a b a b a abb b ab ++=≥+==⇒≥⇒≥,结合2222()()a b a b ++,即可得出.【详解】因为0a >,0b >,所以12211112a a b a b a abb b ab ++=≥+≤==⇒≥⇒≥, 所以A 错,BD 对;因为22222()()(0)a b a b a b -+=-≥+,则22222()()2a b a b ++=,化为:222a b +,当且仅当1a b ==时取等号,C 对. 故选:BCD .【点睛】本题考查了不等式的基本性质以及重要不等式的应用,考查了推理能力与计算能力,属于基础题.10.给出下列命题,其中是错误命题的是( )A .若函数()f x 的定义域为[0,2],则函数(2)f x 的定义域为[0,4].B .函数1()f x x=的单调递减区间是(,0)(0,)-∞+∞ C .若定义在R 上的函数()f x 在区间(,0]-∞上是单调增函数,在区间(0,)+∞上也是单调增函数,则()f x 在R 上是单调增函数.D .1x 、2x 是()f x 在定义域内的任意两个值,且1x <2x ,若12()()f x f x >,则()f x 减函数.【答案】ABC【分析】对于A ,由于()f x 的定义域为[0,2],则由022x ≤≤可求出(2)f x 的定义域;对于B ,反比例函数的两个单调区间不连续,不能用并集符号连接;对于C ,举反例可判断;对于D ,利用单调性的定义判断即可【详解】解:对于A ,因为()f x 的定义域为[0,2],则函数(2)f x 中的2[0,2]x ∈,[0,1]x ∈,所以(2)f x 的定义域为[0,1],所以A 错误; 对于B ,反比例函数1()f x x=的单调递减区间为(,0)-∞和(0,)+∞,所以B 错误; 对于C ,当定义在R 上的函数()f x 在区间(,0]-∞上是单调增函数,在区间(0,)+∞上也是单调增函数,而()f x 在R 上不一定是单调增函数,如下图,显然,(1)(0)f f < 所以C 错误;对于D ,根据函数单调性的定义可得该选项是正确的, 故选:ABC11.若a ,b 为正数,则( )A .2+aba bB .当112a b+=时,2a b +≥C .当11a b a b+=+时,2a b +≥D .当1a b +=时,221113a b a b +≥++【答案】BCD【分析】利用基本不等式,逐一检验即可得解.【详解】解:对A ,因为+a b ≥2aba b≤+,当a b =时取等号,A 错误;对B ,()11111+=2+2=2222b a a b a b a b ⎛⎛⎫⎛⎫++≥+ ⎪ ⎪ ⎝⎭⎝⎭⎝,当a b =时取等号,B 正确;对C ,11=+=a ba b a b ab++,则1ab =,+2a b ≥=,当1a b ==时取等号,C 正确;对D ,()()()2222222211+111+111+b a a b a b a b a b a b a b b a ++⎛⎫+++=+++≥++ ⎪++⎝⎭2222()1a b ab a b =++=+=, 当12a b ==时取等号,即221113a b a b +≥++,D 正确.故选:BCD.【点睛】本题考查了基本不等式的应用,重点考查了运算能力,属中档题.12.已知连续函数f (x )对任意实数x 恒有f (x +y )=f (x )+f (y ),当x >0时,f (x )<0,f (1)=-2,则以下说法中正确的是( ) A .f (0)=0B .f (x )是R 上的奇函数C .f (x )在[-3,3]上的最大值是6D .不等式()232()(3)4f x f x f x -<+的解集为213x x ⎧⎫<<⎨⎬⎩⎭∣ 【答案】ABC【分析】根据函数()f x 对任意实数x 恒有()()()f x y f x f y +=+,令0x y ==,可得(0)0f =,判断奇偶性和单调性,即可判断选项;【详解】解:对于A ,函数()f x 对任意实数x 恒有()()()f x y f x f y +=+, 令0x y ==,可得(0)0f =,A 正确;对于B ,令x y =-,可得(0)()()0f f x f x =+-=,所以()()f x f x =--, 所以()f x 是奇函数;B 正确;对于C ,令x y <,则()()()()()f y f x f y f x f y x -=+-=-, 因为当x >0时,f (x )<0,所以()0f y x -<,即()()0f y f x -<, 所以()f x 在()()0,,,0+∞-∞均递减, 因为()0f x <,所以()f x 在R 上递减;12f ,可得(1)2f -=;令1y =,可得()()12f x f x +=-()24f =-, ()36f =-;()3(3)6f f =--=,()f x ∴在[3-,3]上的最大值是6,C 正确;对于D ,由不等式2(3)2()(3)4f x f x f x -<+的可得2(3)()()(3)4f x f x f x f x <+++, 即2(3)(23)4f x f x x <++,4(2)f =-,2(3)(23)(2)f x f x x f ∴<++-,则2(3)(52)f x f x <-,2352x x ∴>-,解得:23x <或1x >; D 不对;故选:ABC .【点睛】本题主要考查函数求值和性质问题,根据抽象函数条件的应用,赋值法是解决本题的关键. 三、填空题13.函数y _________. 【答案】[]2,5【分析】先求出函数的定义域,再结合复合函数的单调性可求出答案. 【详解】由题意,2450x x -++≥,解得15x -≤≤,故函数y []1,5-.函数y =二次函数245u x x =-++的对称轴为2x =,在[]1,5-上的增区间为[)1,2-,减区间为[]2,5,故函数y []2,5. 故答案为:[]2,5.【点睛】本题考查复合函数的单调性,考查二次函数单调性的应用,考查学生的推理能力,属于基础题.14.奇函数f (x )在(0,)+∞内单调递增且f (1)=0,则不等式()01f x x >-的解集为________. 【答案】{|1x x >或01x <<或1x <-}.【分析】根据题意,由函数()f x 的奇偶性与单调性分析可得当01x <<时,()0f x <,当1x >时,()0f x >,当10x -<<时,()0f x >,当1x <-时,()0f x <,而不等式()01f x x >-等价于1()0x f x >⎧⎨>⎩或1()0x f x <⎧⎨<⎩;分析可得答案.【详解】解:根据题意,()f x 在(0,)+∞内单调递增,且f (1)0=, 则当01x <<时,()0f x <,当1x >时,()0f x >,又由()f x 为奇函数,则当10x -<<时,()0f x >,当1x <-时,()0f x <, 不等式()01f x x >-,等价于1()0x f x >⎧⎨>⎩或1()0x f x <⎧⎨<⎩;解可得:1x >或01x <<或1x <-; 即不等式()01f x x >-的解集为{|1x x >或01x <<或1x <-}. 故答案为:{|1x x >或01x <<或1x <-}. 15.已知函数()f x 的定义域为()0,∞+,则函数1f x y +=__________. 【答案】(-1,1)【分析】先求()1f x +的定义域为()1,-+∞,再求不等式组21340x x x >-⎧⎨--+>⎩的解集可以得到函数的定义域.【详解】由题意210340x x x +>⎧⎨--+>⎩,解得11x -<<,即定义域为()1,1-.【点睛】已知函数()f x 的定义域D ,()g x 的定义域为E ,那么抽象函数()f g x ⎡⎤⎣⎦的定义域为不等式组()x Eg x D ∈⎧⎨∈⎩的解集.16.定义:如果函数()y f x =在区间[],a b 上存在00()x a x b <<,满足0()()()f b f a f x b a-=-,则称0x 是函数()y f x =在区间[],a b 上的一个均值点.已知函数2()1f x x mx =-++在区间[]1,1-上存在均值点,则实数m 的取值范围是________. 【答案】(0,2).【详解】试题分析:由题意设函数2()1f x x mx =-++在区间[1,1]-上的均值点为,则0(1)(1)()1(1)f f f x m --==--,易知函数2()1f x x mx =-++的对称轴为2m x =,①当12m≥即2m ≥时,有0(1)()(1)f m f x m f m -=-<=<=,显然不成立,不合题意;②当12m≤-即2m ≤-时,有0(1)()(1)f m f x m f m =<=<-=-,显然不成立,不合题意;③当112m -<<即22m -<<时,(1)当20m -<<有0(1)()()2m f f x f <≤,即214m m m <≤+,显然不成立;(2)当0m =时, 0()0f x m ==,此时01x =±,与011x -<<矛盾,即0m ≠;(3)当02m <<时,有0(1)()()2mf f x f -<≤,即214m m m -<≤+,解得02m <<,综上所述得实数m 的取值范围为(0,2).【解析】二次函数的性质. 四、解答题17.已知集合{}22|430,|03x A x x x B x x -⎧⎫=-+≤=>⎨⎬+⎩⎭(1)分别求A B ,R R A B ⋃();(2)若集合{|1},C x x a A C C =<<⋂=,求实数a 的取值范围. 【答案】(1)(2,3]A B ⋂=,(,2](3,)R R A B ⋃=-∞⋃+∞(2)3a ≤【分析】(1)化简集合,,A B 根据交集定义,补集定义和并集定义,即可求得答案; (2)由A C C =,所以C A ⊆,讨论C =∅和C ≠∅两种情况,即可得出实数a 的取值范围.【详解】(1)集合{}2|430[1,3]A x x x =-+≤=∴(,1)(3,)RA =-∞⋃+∞,[3,2]RB =-∴(2,3]A B ⋂=,(,2](3,)RR A B ⋃=-∞⋃+∞,(2)A C C =∴ 当C 为空集时,1a ≤∴ 当C 为非空集合时,可得 13a ≤<综上所述:a 的取值范围是3a ≤.【点睛】本题考查了不等式的解法,交集和补集的运算,解题关键是掌握集合的基本概念和不等式的解法,考查了计算能力,属于基础题.18.已知函数()f x 是定义在R 上的偶函数,已知当0x ≤时,()243f x x x =++.(1)求函数()f x 的解析式;(2)画出函数()f x 的图象,并写出函数()f x 的单调递增区间; (3)求()f x 在区间[]1,2-上的值域.【答案】(1)()2243,043,0x x x f x x x x ⎧-+>=⎨++≤⎩; (2)见解析; (3)[]1,3-.【分析】(1)设x >0,则﹣x <0,利用当x≤0时,f (x )=x 2+4x+3,结合函数为偶函数,即可求得函数解析式;(2)根据图象,可得函数的单调递增区间;(3)确定函数在区间[﹣1,2]上的单调性,从而可得函数在区间[﹣1,2]上的值域. 【详解】(1)∵函数()f x 是定义在R 上的偶函数∴对任意的x ∈R 都有()()f x f x -=成立∴当0x >时,0x -<即()()()()224343f x f x x x x x =-=-+-+=-+∴ ()2243,043,0x x x f x x x x ⎧-+>=⎨++≤⎩(2)图象如右图所示函数()f x 的单调递增区间为[]2,0-和[)2,+∞. (写成开区间也可以)(3)由图象,得函数的值域为[]1,3-.【点睛】本题考查函数的解析式,考查函数的单调性与值域,考查数形结合的数学思想,属于中档题.19.若二次函数()f x 满足11,()22f x f x x R ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭,且(0)1,(1)3f f =-=.(1)求()f x 的解析式;(2)若函数()(),()g x f x ax a R =-∈在3,2x ⎛⎤∈-∞ ⎥⎝⎦上递减,3,2⎡⎫+∞⎪⎢⎣⎭上递增,求a 的值及当[1,1]x ∈-时函数()g x 的值域.【答案】(1)2()1f x x x =-+(2)2a =,值域为[1,5]-. 【分析】(1)设二次函数的解析式为2()(),0f x ax bx c a =++≠,由11,()22f x f x x R ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭可得()f x 对称轴为12x =,结合条件,即可求得答案;(2)根据增减性可知32x =为函数()g x 的对称轴,即可得到a 的值,而根据()g x 在[1,1]x ∈-上递减可得出()g x 在[1,1]x ∈-上的值域.【详解】(1)设二次函数的解析式为2()(),0f x ax bx c a =++≠二次函数()f x 满足11,()22f x f x x R ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭∴二次函数()f x 的对称轴为:12x =. ∴122b a -=,可得:=-b a ——① 又(0)1f =,∴(0)1f c ==,可得:1c =.(1)3f -=.即:13a b -+=,可得:2a b -=——②由①②解得: 1,1a b ==-∴()f x 的解析式为2()1f x x x =-+.(2) 函数()(),()g x f x ax a R =-∈()g x 在3,2x ⎛⎤∈-∞ ⎥⎝⎦上递减,3,2⎡⎫+∞⎪⎢⎣⎭上递增. ∴()g x 的对称轴为32x =, 即:1322a +=.解得:2a =. ∴2()31g x x x =-+.()g x 在3,2x ⎛⎤∈-∞ ⎥⎝⎦上递减, ∴()g x 在[1,1]x ∈-上递减,则有:在[1,1]x ∈-上,min ()(1)1g x g ==-.函数()g x 在[1,1]x ∈-上的值域为[1,5]-【点睛】本题考查了待定系数法的运用以及对称轴的形式,根据增减性判断函数的对称轴及在区间上值域问题,解题关键是掌握二次函数的基础知识,考查了分析能力和计算能力,本题属中档题.20.已知函数24()x ax f x x++=为奇函数. (1)若函数()f x 在区间,2m m ⎡⎤⎢⎥⎣⎦(0m >)上为单调函数,求m 的取值范围; (2)若函数()f x 在区间[]1,k 上的最小值为3k ,求k 的值.【答案】(1)4m ≥或02m <≤;(2【分析】(1)函数()f x 为奇函数,可知对定义域内所有x 都满足()()f x f x -=-,结合解析式,可得0ax =恒成立,从而可求出a 的值,进而可求出()f x 的解析式,然后求出函数()f x 的单调区间,结合()f x 在区间,2m m ⎡⎤⎢⎥⎣⎦(0m >)上为单调函数,可求得m 的取值范围;(2)结合函数()f x 的单调性,分12k <≤和2k >两种情况,分别求出()f x 的最小值,令最小值等于3k ,可求出k 的值.【详解】(1)由题意,函数()f x 的定义域为()(),00,-∞+∞,因为函数()f x 为奇函数,所以对定义域内所有x 都满足()()f x f x -=-,即()()2244x a x x ax x x-+-+++=--, 整理可得,对()(),00,x ∈-∞+∞,0ax =恒成立,则0a =, 故244()x f x x x x +==+. 所以()f x 在()0,2上单调递减,在[)2,+∞上单调递增,又函数()f x 在区间,2m m ⎡⎤⎢⎥⎣⎦(0m >)上为单调函数,则2m ≤或22m ≥,解得4m ≥或02m <≤.(2)()f x 在()0,2上单调递减,在[)2,+∞上单调递增,若12k <≤,则()()min 43f x f k k k k ==+=,解得k =12k <≤,只有k =合题意;若2k >,则()()min 42232f x f k ==+=,解得43k =,不满足2k >,舍去.故k 【点睛】本题考查函数的奇偶性,考查函数单调性的应用,考查了函数的最值,利用对勾函数的单调性是解决本题的关键,考查学生的计算求解能力,属于基础题. 21.已知二次函数2()(0)f x ax x a =+≠.(1)当0a <时,若函数y a 的值;(2)当0a >时,求函数()()2||g x f x x x a =---的最小值()h a .【答案】(1)-4;(2)()0,1,a a h a a a a ⎧-<<⎪⎪=⎨⎪-≥⎪⎩ 【分析】(1)当0a <时,函数y 而可求出a 的值; (2)当0a >时,求出()g x 的表达式,分类讨论求出()g x 的最小值()h a 即可.【详解】(1)由题意,()0f x ≥,即()200ax x a +≥<,解得10x a≤≤-,即函数y 定义域为10,a ⎡⎤-⎢⎥⎣⎦, 又当0a <时,函数()2f x ax x =+的对称轴为12x a =-,21111222(4)f a a aa a ⎛⎫= ⎪⎝-=-⎭--,故函数y⎡⎢⎣,函数y1a -=4a =-. (2)由题意,0a >,2()||g x ax x x a =---,即()()22()2,,x a x ax g a a x a x ax -+≥-<⎧⎪=⎨⎪⎩, ①当01a <≤,则10a a≥>, x a ≥时,2min 1111(2)()()()g x g a a a a a a a-+=-==, x a <时,min ()(0)g x g a ==-, 若1a a a -≥-1a ≤≤, 若1a a a -<-,解得0a <<即0a <<min 1()g x a a =-1a ≤≤时,min ()g x a =-. ②当1a >时,1a a <, x a ≥时,33min ())2(g x g a a a a a a ==-+=-,x a <时,min ()(0)g x g a ==-,因为3a a a ->-,所以1a >时,min ()g x a =-.综上,函数()g x 的最小值()0,1,a a h a a a a ⎧-<<⎪⎪=⎨⎪-≥⎪⎩. 【点睛】本题考查函数的定义域与值域,考查二次函数的性质,考查函数的最小值,考查分类讨论的数学思想,考查学生的逻辑推理能力,属于中档题.22.定义在R 上的函数()f x 满足:①对一切x ∈R 恒有()0f x ≠;②对一切,x y R ∈恒有()()()f x y f x f y +=⋅;③当0x >时,()1f x >,且(1)2f =;④若对一切[,1]∈+x a a (其中0a <),不等式()224(2||2)f x a f x +≥-恒成立.(1)求(2),(3)f f 的值;(2)证明:函数()f x 是R 上的递增函数;(3)求实数a 的取值范围.【答案】(1)4,8(2)证明见解析(3)(,-∞ 【分析】1)用赋值法令1,1x y ==求解.(2)利用单调性的定义证明,任取12x x <,由 ()()()f x y f x f y +=⋅,则有()()()2211f x f x x f x =-,再由条件当0x >时,()1f x > 得到结论.(3)先利用()()()f x y f x f y +=⋅将4(2||2)-f x 转化为(2||)f x ,再将()22(2||)+≥f x a f x 恒成立,利用函数()f x 是R 上的递增函数,转化为222||≥+x a x 恒成立求解.【详解】(1)令1,1x y == 所以(2)(1)(1)4f f f =⋅=所以(3)(2)(1)8f f f =⋅=(2)因为()()()f x y f x f y +=⋅任取12x x <因为当0x >时,()1f x >所以()211f x x ->所以()()12f x f x <,所以函数()f x 是R 上的递增函数,(3)因为()4(2||2)2(2||2)[2(2||2)](2||)-=-=+-=f x f f x f x f x又因为()224(2||2)f x a f x +≥-恒成立且函数()f x 是R 上的递增函数,所以222||≥+x a x ,[,1]∈+x a a (其中0a <)恒成立所以222||+≥-a x x 若对一切[,1]∈+x a a (其中0a <),恒成立.当11a ≤-+ ,即2a ≤-时()()2max 143=+=---g x g a a a所以2243≥---a a a ,解得2a ≤-当21a -<≤-时,()max 1g x =解得21a -<≤-当10a -<≤,()()(){}max max ,1=+g x g a g a所以222≥--a a a 且221≥-+a a解得1a -<≤-综上:实数a 的取值范围(,-∞ 【点睛】本题主要考查了抽象函数的求值,单调性及其应用,还考查了分类讨论的思想和运算求解的能力,属于难题.。

2020-2021学年江苏省徐州一中高一(上)期中数学试卷及答案

2020-2021学年江苏省徐州一中高一(上)期中数学试卷及答案

2020-2021学年江苏省徐州一中高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={x|x2﹣3x﹣4<0},B={﹣4,1,3,5},则A∩B=()A.{﹣4,1}B.{1,5}C.{3,5}D.{1,3}2.(5分)已知幂函数f(x)=x a的图象过点(3,27),则f(2)=()A.4B.8C.9D.163.(5分)函数y=的定义域为()A.[﹣1,0)B.(0,+∞)C.[﹣1,0)∪(0,+∞)D.(﹣∞,0)∪(0,+∞)4.(5分)己知函数f(x)=,则f(f(4))的值为()A.﹣B.0C.1D.45.(5分)某中学高一年级的学生积极参加体育锻炼,其中有1056名学生喜欢足球或游泳,660名学生喜欢足球,902名学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数是()A.682B.616C.506D.4626.(5分)函数y=的值域是()A.(﹣∞,+∞)B.(﹣∞,)∪(﹣,+∞)C.(﹣∞,)∪(﹣,+∞)D.(﹣∞,﹣)∪(﹣,+∞)7.(5分)若关于x的不等式x2﹣2x+c2<0的解集为(a,b),则+的最小值为()A.9B.﹣9C.D.﹣8.(5分)已知f(x)是定义在R上的奇函数,对任意两个正数x1,x2,都有<0,且f(2)=0,则满足(x﹣1)f(x)>0的x的取值范围是()A.(﹣∞,﹣2)∪(0,1)∪(2,+∞)B.(﹣2,0)∪(1,2)C.(﹣2,1)∪(2,+∞)D.(﹣∞,﹣2)∪(1,2)二.选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,有选错的得0分,部分选对的得了分。

9.(5分)若a<b<0,则()A.|a|>|b|B.a2>b2C.<D.>10.(5分)下列函数与y=x2﹣2x+3的值域相间的是()A.y=4x(x≥)B.y=+2C.y=D.y=2x﹣11.(5分)已知2a=3.b=log32,则()A.a+b>2B.ab=1C.3b+3﹣b=D.=log91212.(5分)某学习小组在研究函数f(x)=的性质时,得出了如下的结论,其中正确的是()A.函数f(x)的图象关于y轴对称B.函数f(x)的图象关于点(2,0)中心对称C.函数f(x)在(﹣2,0)上是增函数D.函数f(x)在[0,2)上有最大值﹣三、填空题:本题共4小题,每小题5分,共20分。

湖南省三湘名校教育联盟2020-2021学年高一上学期期中考试数学试题 Word版含答案

湖南省三湘名校教育联盟2020-2021学年高一上学期期中考试数学试题 Word版含答案

绝密★启用前湖南省三湘名校教育联盟2020-2021高一期中考试试题数学本试卷共4页。

全卷满分150分,考试时间120分钟。

注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡,上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、单项选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={2,3,4,6,7},B={2,3,5,7},则A∩B=A.{2,3,5}B.{2,3,7}C.{2,3,5,7}D.{2,3,4,5,6,7}2.“a>c且b>d”是“a+b>c+d”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.中文“函数(function)”一词,最早是由近代数学家李善兰翻译出来的,之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,即函数指一个量随着另一个量的变化而变化,下列选项中两个函数相等的是A.f(x)g(x)=|x| B.f(x)=x(x∈R)与g(x)=x(x∈Z)C.f(x)=|x|与g(x)=x0x x0≥⎧⎨-<⎩,,D.f(x)=x-1与g(x)=2x1x1-+4.设a-b<0,c<0,则下列结论中正确的是A.ac2<bc2B.a2c>b2cC.11ab bc< D.c ca b>5.函数y的单调递增区间为A.(-∞,32] B.[32,+∞) C.[32,2] D.[1,32] 6.若不等式x 2+1>2mx 在R 上恒成立,则实数m 的取值范围是A.(-∞,-1)∪(1,+∞)B.(-∞,-1]∪[1,+∞)C.[-1,1]D.(-1,1)7.已知函数f(x)=()2x 4ax x 12a 3x 4a 5x 1⎧-+≤⎪⎨+-+>⎪⎩,,,若f(x)在R 上是增函数,则实数a 的取值范围是 A.(12,1] B.[12,32] C.(12,+∞) D.[1,2] 8.在R 上定义运算:A B =(A -2)·B ,若不等式(t -x)(x +t)<4对任意的x ∈R 恒成立,则实数t 的取值范围是A.(-3,1)B.(-1,2)C.(-1,3)D.(-∞,-1)∪(3,+∞)二、多项选择题:本题共4小题,每小题5分,共20分。

2020-2021学年浙江省杭州二中高一(上)期中数学试卷 (解析版)

2020-2021学年浙江省杭州二中高一(上)期中数学试卷 (解析版)

2020-2021学年浙江省杭州二中高一(上)期中数学试卷一、选择题(共12小题).1.已知集合A={a,b},B={a+1,3}(a,b∈R),若A∩B={2},则A∪B=()A.{2}B.{3}C.{1,2,3}D.{0,1,2}2.与函数f(x)=表示同一函数提()A.g(x)=B.g(x)=()2C.g(x)=x D.g(x)=|x|3.已知幂函数f(x)=x a的图象过点(9,3),若f(t)=2,则实数t的值为()A.B.C.±4D.44.己知函数y=f(x),x∈R,且f(0)=3,,,,…,,n∈N*,则函数y=f(x)的解析式可以是()A.f(x)=3×2x B.f(x)=3×4x C.f(x)=3×8x D.f(x)=4x5.设函数,则f(f(a))=2,则a=()A.0B.C.D.16.若2x﹣2y<3﹣x﹣3﹣y,则()A.y2>x2B.C.lg(y﹣x)>0D.7.设a=log0.20.3,b=log20.3,则()A.a+b<ab<0B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b 8.若对任意使得关于x的方程ax2+bx+c=0(ac≠0)有实数解的a,b,c均有(a﹣b)2+(b﹣a)2+(c﹣a)2≥rc2,则实数r的最大值是()A.1B.C.D.29.命题“∀x∈[1,3],x2﹣a≤0”是真命题的一个充分不必要条件是()A.a≥8B.a≥9C.a≥10D.a≥1110.《几何原本》中的几何代数法是以几何方法研究代数问题,这种方法是后西方数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.现有图形如图所示,C为线段AB上的点,且AC=a,BC=b,O为AB的中点,以AB为直径作半圆.过点C作AB的垂线交半圆于D,连结OD,AD,BD,过点C作OD的垂线,垂足为E.则该图形可以完成的所有的无字证明为()A.(a>0,b>0)B.a2+b2≥2ab(a>0,b>0)C.(a>0,b>0)D.(a≥0,b>0)11.华为5G通信编码的极化码技术方案基于矩阵的乘法,如:,其中c1=a1b11+a2b21,c2=a1b12+a2b22.已知定义在R上不恒为0的函数f(x),对任意a,b∈R有:且满足f(ab)=y1+y2,则()A.f(0)=0B.f(﹣1)=1C.f(x)是偶函数D.f(x)是奇函数12.定义域和值域均为[﹣a,a](常数a>0)的函数y=f(x)和y=g(x)的大致图象如图所示,则下列说法正确的有()A.方程f(f(x))=0可能存在五个解B.方程g(g(x))=0有且仅有一个解C.方程f(f(x))=0有两负数解和一正数解D.方程g(g(x))=0最多只有三个解二、填空题:单空题每题4分,多空题每题6分.13.函数f(x)=的值域是.14.函数f(x)=ln(x2﹣2x)的单调递增区间是.15.若函数f(x)=(x2﹣1)(x2+ax+b)对于任意x∈R都满足f(x)=f(x﹣4),则f(x)的最小值是.16.已知a、b、c为正实数,则代数式的最小值是.三、解答题:5小题,共74分.17.计算:(1);(2)lg5•(lg8+lg1000)+3lg22+lg+lg0.06.18.设常数a∈R,集合,B={x|x≤a﹣1}.(1)若a=2,求A∩B,A∩(∁R B);(2)若A∪B=R,求a的取值范围.19.某心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其注意力指数p 与听课时间t之间的关系满足如图所示的曲线.当t∈(0,14]时,曲线是二次函数图象的一部分,当t∈[14,40]时,曲线是函数y=log a(t﹣5)+83(a>0,且a≠1)图象的一部分.根据专家研究,当注意力指数p大于等于80时听课效果最佳.(1)试求p=f(t)的函数关系式;(2)一道数学难题,讲解需要22分钟,问老师能否经过合理安排在学生听课效果最佳时讲完?请说明理由.20.已知函数(a>0,a≠1).(1)若a>1,不等式f(x2+bx)+f(4﹣x)>0在x∈R上恒成立,求实数b的取值范围;(2)若且在[1,+∞)上的最小值为﹣2,求m的值.21.已知函数为奇函数.(1)求实数k的值;(2)判断并证明函数f(x)的单调性;(3)若存在α,β∈(1,+∞),使得函数f(x)在区间[α,β]上的值域为,求实数m的取值范围.22.设函数f(x)=ax2+|x﹣a|+b,a,b∈R.(1)若函数f(x)在[0,2]上单调递增,在(2,+∞)单调递减,求实数a的值;(2)若对任意的实数b∈[0,1]及任意的x∈[﹣3,3],不等式|f(x)|≤2恒成立,求实数a的取值范围.参考答案一、选择题:每小题4分,共40分.1.已知集合A={a,b},B={a+1,3}(a,b∈R),若A∩B={2},则A∪B=()A.{2}B.{3}C.{1,2,3}D.{0,1,2}解:∵A∩B={2},∴2∈B,2∈A,∴,解a=1,b=2,∴A={1,2},B={2,3},∴A∪B={1,2,3}.故选:C.2.与函数f(x)=表示同一函数提()A.g(x)=B.g(x)=()2C.g(x)=x D.g(x)=|x|解:对于A,g(x)==x的定义域是{x|x≠0},f(x)==|x|的定义域是R,定义域不同,对应关系也不同,不是同一函数;对于B,g(x)==x的定义域是{x|x≥0},f(x)==|x|的定义域是R,定义域不同,对应关系也不同,不是同一函数;对于C,g(x)=x的定义域是R,f(x)==|x|的定义域是R,对应关系不同,不是同一函数;对于D,g(x)=|x|的定义域是R,f(x)==|x|的定义域是R,定义域相同,对应关系也相同,是同一函数.故选:D.3.已知幂函数f(x)=x a的图象过点(9,3),若f(t)=2,则实数t的值为()A.B.C.±4D.4解:幂函数f(x)=x a的图象过点(9,3),所以9a=3,解得a=,所以f(x)=;当f(t)=2时,即=2,解得t=4.故选:D.4.己知函数y=f(x),x∈R,且f(0)=3,,,,…,,n∈N*,则函数y=f(x)的解析式可以是()A.f(x)=3×2x B.f(x)=3×4x C.f(x)=3×8x D.f(x)=4x解:由题可知,=4n,因为f(0)=3,所以f(2n)=3×4n,令x=2n,则n=,所以f(x)=3×=3×2x,故选:A.5.设函数,则f(f(a))=2,则a=()A.0B.C.D.1解:∵函数,f(f(a))=2,∴当a<1时,f(a)=3a﹣1,当f(a)=3a﹣1<1时,f(f(a))=3(3a﹣1)﹣1=2,解得a=;当f(a)=3a﹣1≥1时,f(f(a))=23a﹣1=2,则3a﹣1=1,解得a=;当a≥1时,f(a)=2a,当f(a)=2a<1时,f(f(a))=3×2a﹣1=2,解得a=0,不合题意;当f(a)=2a≥1时,f(f(a))==2,解a=0,不合题意.综上,a=.故选:C.6.若2x﹣2y<3﹣x﹣3﹣y,则()A.y2>x2B.C.lg(y﹣x)>0D.解:由2x﹣2y<3﹣x﹣3﹣y,得2x﹣3﹣x<2y﹣3﹣y,设f(t)=2t﹣3﹣t,则f(t)在R上是单调增函数;所以x<y.对于A,由x<y,不能得出y2>x2,所以A错误;对于B,由x<y,也不能得出,所以B错误;对于C,由x<y,得出y﹣x>0,不能得出lg(y﹣x)>0,所以C错误;对于D,x<y时,>,即,选项D正确.故选:D.7.设a=log0.20.3,b=log20.3,则()A.a+b<ab<0B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b 解:∵a=log0.20.3=,b=log20.3=,∴=,,∵,,∴ab<a+b<0.故选:B.8.若对任意使得关于x的方程ax2+bx+c=0(ac≠0)有实数解的a,b,c均有(a﹣b)2+(b﹣a)2+(c﹣a)2≥rc2,则实数r的最大值是()A.1B.C.D.2解:∵关于x的方程ax2+bx+c=0有实数解,△=b2﹣4ac≥0,即,令,,故x2﹣4y≥0,即,∵(a﹣b)2+(b﹣a)2+(c﹣a)2≥rc2,∴,而=2x2﹣2x+2+2y2﹣2y﹣2xy=2y2﹣2(x+1)y+2x2﹣2x+2,当,即,当时,函数f(y)=2y2﹣2(x+1)y+2x2﹣2x+2有最小值,,,,∴在其定义域上是增函数,又∵,∴当时,g'(x)<0,当时,g'(x)>0,∴g(x)在上是减函数,在上是增函数,∴,当,即或时,当时,函数f(y)=2y2﹣2(x+1)y+2x2﹣2x+2有最小值,,∵或,∴,综上,的最小值为,故实数实数r的最大值是.故选:B.9.命题“∀x∈[1,3],x2﹣a≤0”是真命题的一个充分不必要条件是()A.a≥8B.a≥9C.a≥10D.a≥11解:命题“∀x∈[1,3],x2﹣a≤0”⇔“∀x∈[1,3],x2≤a”⇔9≤a.a≥10;a≥11是命题“∀x∈[1,3],x2﹣a≤0”为真命题的一个充分不必要条件.故选:CD.10.《几何原本》中的几何代数法是以几何方法研究代数问题,这种方法是后西方数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.现有图形如图所示,C为线段AB上的点,且AC=a,BC=b,O为AB的中点,以AB为直径作半圆.过点C作AB的垂线交半圆于D,连结OD,AD,BD,过点C作OD的垂线,垂足为E.则该图形可以完成的所有的无字证明为()A.(a>0,b>0)B.a2+b2≥2ab(a>0,b>0)C.(a>0,b>0)D.(a≥0,b>0)解:根据图形,利用射影定理得:CD2=DE•OD,由于:OD≥CD,所以:(a>0,b>0).由于CD2=AC•CB=ab,所以所以由于CD≥DE,整理得:(a>0,b>0).故选:AC.11.华为5G通信编码的极化码技术方案基于矩阵的乘法,如:,其中c1=a1b11+a2b21,c2=a1b12+a2b22.已知定义在R上不恒为0的函数f(x),对任意a,b∈R有:且满足f(ab)=y1+y2,则()A.f(0)=0B.f(﹣1)=1C.f(x)是偶函数D.f(x)是奇函数解:根据定义可得:y1=f(a)(﹣1)+f(b)(a﹣1);且y2=f(a)(b+1)+f(b)×1;∴f(ab)=y1+y2=﹣f(a)+f(b)(a﹣1)+f(a)(b+1)+f(b);令a=b=0可得:f(0)=﹣f(0)+f(0)(0﹣1)+f(0)(0+1)+f(0)⇒f(0)=0,A成立;令a=b=1可得:f(1)=﹣f(1)+f(1)(1﹣1)+f(1)(1+1)+f(1)⇒f(1)=0,令a=b=﹣1可得:f(1)=﹣f(﹣1)+f(﹣1)(﹣1﹣1)+f(﹣1)(﹣1+1)+f(﹣1)⇒f(﹣1)=0,B不成立,令a=﹣1可得:f(﹣b)=﹣f(﹣1)+f(b)(﹣1﹣1)+f(﹣1)(b+1)+f(b)⇒f (﹣b)=﹣f(b),C不成立,D成立,故选:AD.12.定义域和值域均为[﹣a,a](常数a>0)的函数y=f(x)和y=g(x)的大致图象如图所示,则下列说法正确的有()A.方程f(f(x))=0可能存在五个解B.方程g(g(x))=0有且仅有一个解C.方程f(f(x))=0有两负数解和一正数解D.方程g(g(x))=0最多只有三个解解:对于A选项,设f(x)=0的三个解分别为x1,x2,x3,且x1<x2<0<x3,设y=f(x)的极大值为m,极小值为n,当x1<n时,f(x)=x1有一个解;当n<x2<m时,f(x)=x2有三个解;当x3>m时,f(x)=x3有一个解,所以方程f(f(x))=0可能存在五个解,即A正确;对于C选项,当x1<n时,f(x)=x1有一个负数解;当x2=n时,f(x)=x2有一个负数解;当x3>m时,f(x)=x3有一个正数解,即C正确;对于B选项,设g(x)=0的解为x4,且0<x4<a,由于g(x)在[﹣a,a]上单调递减,所以g(x)=x4有唯一解,所以方程g(g(x))=0有且仅有一个解,即B正确,D错误.故选:ABC.二、填空题:单空题每题4分,多空题每题6分.13.函数f(x)=的值域是(0,1].解:对于y=1+x2≥1,故f(x)≤1,当x→∞时,y=1+x2→+∞,故f(x)→0,故f(x)的值域是(0,1],故答案为:(0,1].14.函数f(x)=ln(x2﹣2x)的单调递增区间是(2,+∞).解:∵f(x)的定义域为:(2,+∞)∪(﹣∞,0)令z=x2﹣2x,则原函数可以写为y=lnz,∵y=lnz为增函数∴原函数的增区间即是函数z=x2﹣2x的单调增区间即(2,+∞).∴x∈(2,+∞)故答案为:(2,+∞).15.若函数f(x)=(x2﹣1)(x2+ax+b)对于任意x∈R都满足f(x)=f(x﹣4),则f(x)的最小值是﹣16.解:由题意可知,f(1)=f(﹣1)=0,又f(x)=f(x﹣4),所以f(3)=f(5)=0,即,解得a=﹣8,b=15所以f(x)=(x2﹣1)(x2﹣8x+15)=(x2﹣1)(x﹣3)(x﹣5)=(x2﹣4x+3)(x2﹣4x﹣5),令t=x2﹣4x+4,t≥0,则函数f(x)可转化为g(t)=(t﹣1)(t﹣9)=(t﹣5)2﹣16,所以f(x)的最小值是﹣16.16.已知a、b、c为正实数,则代数式的最小值是.解:令b+3c=x,8c+4a=y,3a+2b=z,则a=,b=,c=,所以代数式=.当且仅当x:y:z=1:2:3,即a:b:c=10:21:1时,等号成立.故答案为:.三、解答题:5小题,共74分.17.计算:(1);(2)lg5•(lg8+lg1000)+3lg22+lg+lg0.06.解:(1)==(2)==3(lg5+lg2)•lg2+3lg5﹣2=1.18.设常数a∈R,集合,B={x|x≤a﹣1}.(1)若a=2,求A∩B,A∩(∁R B);(2)若A∪B=R,求a的取值范围.解:(1)∵A={x|x<﹣1或x≥1},a=2时,B={x|x≤1},∴A∩B={x|x<﹣1或x=1},∁R B={x|x>1},A∩(∁R B)={x|x>1};(2)∵A∪B=R∴a﹣1≥1,解得a≥2,∴a的取值范围为[2,+∞).19.某心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其注意力指数p 与听课时间t之间的关系满足如图所示的曲线.当t∈(0,14]时,曲线是二次函数图象的一部分,当t∈[14,40]时,曲线是函数y=log a(t﹣5)+83(a>0,且a≠1)图象的一部分.根据专家研究,当注意力指数p大于等于80时听课效果最佳.(1)试求p=f(t)的函数关系式;(2)一道数学难题,讲解需要22分钟,问老师能否经过合理安排在学生听课效果最佳时讲完?请说明理由.解:(1)当t∈(0,14]时,设p=f(t)=c(t﹣12)2+82(c<0),将点(14,81)代入得c=﹣,∴当t∈(0,14]时,p=f(t)=﹣(t﹣12)2+82;当t∈(14,40]时,将点(14,81)代入y=log a(t﹣5)+83,得a=,所以p=f(t)=;(2)当t∈(0,14]时,﹣(t﹣12)2+82≥80,解得12﹣2≤t≤12+2,所以t∈[12﹣2,14],当t∈(14,40]时,log(t﹣5)+83≥80,解得5<t≤32,所以t∈(14,32],综上t∈[12﹣2,32]时学生听课效果最佳,此时,所以,教师能够合理安排时间讲完题目.20.已知函数(a>0,a≠1).(1)若a>1,不等式f(x2+bx)+f(4﹣x)>0在x∈R上恒成立,求实数b的取值范围;(2)若且在[1,+∞)上的最小值为﹣2,求m的值.解:(1)∀x∈R,f(﹣x)=a﹣x﹣=a﹣x﹣a x=﹣f(x),即f(x)是R上的奇函数.且a>l时,g(x)=a x单调递增,(x>0)也单调递增,由复合函数单调性可知f(x)=h[g(x)]在R上单调递增.原不等式f(x2+bx)+f(4﹣x)>0⇔f(x2+bx)>﹣f(4﹣x)=f(x﹣4)⇔x2+bx>x﹣4,因此x2+(b﹣1)x+4>0对x∈R恒成立,故△=(b﹣1)2﹣16=(b﹣5)(b+3)<0,即﹣3<b<5.(2)∵,且a>0,∴a=2(a=﹣<0舍去).因此,,当x∈[1,+∞)时,,令,其中x∈[1,+∞),并令φ(t)=h(x)=t2﹣2mt+2,其中,二次函数对称轴,①若,则,解得,矛盾,故无解;②若,则,解得m=2(m=﹣2<舍去),满足题意.综上所述,m=2.21.已知函数为奇函数.(1)求实数k的值;(2)判断并证明函数f(x)的单调性;(3)若存在α,β∈(1,+∞),使得函数f(x)在区间[α,β]上的值域为,求实数m的取值范围.解:(1)因为函数为奇函数,所以f(x)+f(﹣x)=0,即对定义域内任意x恒成立,所以k2=1,即k=±1,显然k≠﹣1,又当k=1时,的定义域关于原点对称.所以k=1为满足题意的值.(2)结论:f(x)在(﹣∞,1),(1,+∞)上均为增函数.证明:由(1)知,其定义域为(﹣∞,﹣1)∪(1,+∞),任取x1,x2∈(1,+∞),不妨设x1<x2,则,因为7(x1﹣1)(x2+1)﹣(x1+1)(x2﹣1)=2(x1﹣x2)<0,所以,所以,即f(x1)<f(x2),所以f(x)在(1,+∞)上为增函数.同理,f(x)在(﹣∞,1)上为增函数.(3)由(2)知f(x)在(1,+∞)上为增函数,又因为函数f(x)在[α,β]上的值域为,所以m>0,且,所以,即α,β是方程的两实根,问题等价于方程在(1,+∞)上有两个不等实根,令,对称轴则,即,解得.故m的范围(0,).22.设函数f(x)=ax2+|x﹣a|+b,a,b∈R.(1)若函数f(x)在[0,2]上单调递增,在(2,+∞)单调递减,求实数a的值;(2)若对任意的实数b∈[0,1]及任意的x∈[﹣3,3],不等式|f(x)|≤2恒成立,求实数a的取值范围.解:(1)f(x)=,显然a<0,则,解得,经检验,符合题意,∴a的值为﹣;(2)不等式|f(x)|≤2恒成立,即﹣2≤f(x)≤2,令g(x)=ax2+|x﹣a|,则﹣2﹣b≤g(x)≤2﹣b恒成立,由任意的实数b∈[0,1]恒成立,则﹣2≤g(x)≤1恒成立.则由,解得,﹣2≤g(x)≤1可化为﹣ax2﹣2≤|x﹣a|≤﹣ax2+1恒成立,先考虑|x﹣a|≤﹣ax2+1恒成立,即ax2﹣1≤|x﹣a|≤﹣ax2+1,由x﹣a≤﹣ax2+1恒成立知,(x﹣1)(ax+a+1)≤0恒成立,则a+a+1=0,即.只需证明:,因为,当时,,当时,,证毕.故实数a的取值范围为{﹣}.。

云南省昆明市第一中学2020-2021学年高一上学期期中考试数学试题 Word版含答案

云南省昆明市第一中学2020-2021学年高一上学期期中考试数学试题 Word版含答案

昆一中2020—2021学年度上学期期中考试高一数学一、选择题:(在每小题给出的四个选项中,选出符合题目要求的一项.) 1.已知A ={-1,0,1},B ={x|x 2<1},则A∩B 等于( ) A .{-1,0,1} B .∅ C .{0} D .{0,1} 2.不等式x 2-3x +2≤0的解集是( )A .{x|x >2或<1}B .{x|x≥2或x≤1}C .{x|1≤x≤2}D .D .{x|1<x <2} 3.下列各组集合中,满足E =F 的是( )A .E =,F ={1.414}B .E ={(2,1)},F ={(1,2)}C .E ={x|y =x 2},F ={y|y =x 2}D .E ={2,1},F ={1,2} 4.设x ∈R ,则“x≤2”是“|x -1|≤1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件5.不等式111x ≥-的解集为( ) A .(-∞,1)∪[2,+∞) B .(-∞,0]∪(1,+∞) C .(1,2] D .[2,+∞) 6.向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系如图示,那么水瓶的形状可以是下图中的( )A .B .C .D .7.已知A ={x|x =2k +1,k ∈Z },{|}2xB x =∈Z ,C =Z ,下列关系判断正确的是( )A .C =A ∪B B .C =A∩B C .A =C ∪BD .A =C∩B8.已知一元二次不等式ax 2+bx +c≤0的解集为[1,2],则cx 2+bx +a≤0的解集为( )A .1[,1]2B .[1,2]C .[-2,-1]D .1[1,]2--9.已知集合A ={x|a≤x <3),B =[1,+∞),若A 是B 的子集,则实数a 取值范围为( ) A .[0,3) B .[1,3) C .[0,+∞) D .[1,+∞)10.已知集合A ={x|x≥0},集合B ={x|x >1},则以下真命题的个数是( )①0x ∃∈A ,0x ∉B ;②0x ∃∈B ,0x ∉A ;③x ∀∈A ,x ∈B ;④x ∀∈B ,x ∈A . A .4 B .3 C .2 D .111.已知集合A ={1,a ,b},B ={a 2,a ,ab},若A =B ,则a 2021+b 2020=( ) A .-1 B .0 C .1 D .2 12.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为( )A .0B .12C .1D .2 二、填空题:13.设命题p :1x ∀≥,x 2-4x +3≥0,则命题p 的否定形式为:________. 14.若集合A ={0,1,2},则集合A 的真子集个数为________.15.已知m ∈R ,x 1,x 2是方程x 2-2mx +m =0的两个不等实根,则12121x x x x ++的最小值为________.16.若集合A 具有以下两条性质,则称集合A 为一个“好集合”.(1)0∈A 且1∈A ; (2)若x ,y ∈A ,则x -y ∈A ;且当x≠0时,有1A x∈.给出以下命题:①集合P ={-2,-1,0,1,2}是“好集合”; ②Z 是“好集合”; ③Q 是“好集合”; ④R 是“好集合”;⑤设集合A 是“好集合”,若x ,y ∈A ,则x +y ∈A ; 其中真命题的序号是________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.设集合A ={x|x 2+2x -3<0},集合B ={x||x +a|<1}. (1)若a =3,求A ∪B ;(2)设命题p :x ∈A ,命题q :x ∈B ,若p 是q 成立的必要不充分条件,求实数a 的取值范围.18.已知正数a ,b 满足a +3b =4.(1)求ab 的最大值,且写出取得最大值时a ,b 的值;(2)求13a b+的最小值,且写出取得最小值时a ,b 的值. 19.关于x 的不等式ax 2-(a +2)x +2<0. (1)当a =-1时,求不等式的解集; (2)当a >0时,求不等式的解集.20.某商品在近30天内每件的销售价格p (元)与时间t (天)的函数关系是20,025,,100,2530,.t t t p t t t +<<∈⎧=⎨-+≤≤∈⎩N N该商品的日销售量Q (件)与时间t (天)的函数关系是Q =-t +40(0<t≤30,t ∈N ),求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天. 21.已知二次函数f (x )=ax 2+bx +2a -1的对称轴为x =-1.(1)设x 1,x 2为方程f (x )=0的两个实数根,且1232x x =,求f (x )的表达式; (2)若f (x )≥0对任意,x ∈[-3,0]恒成立,求实数a 的取值范围. 22.设函数()f x =,b >0的定义域为A ,值域为B . (1)若a =-1,b =2,c =8,求A 和B ;(2)若A =B ,求满足条件的实数a 构成的集合.昆明第一中学2020-2021学年度上学期期中考试高一数学参考答案13.01x ∃≥,20430x x -+< 14.7 15. 16.③④⑤ 17.解:(1)解不等式x 2+2x -3<0,得-3<x <1,即A =(-3,1).当a =3时,由|x +3|<1,解得-4<x <-2,即集合 B =(-4,-2),所以A ∪B =(-4,1).(2)因为p 是q 成立的必要不充分条件,所以集合B 是集合A 的真子集. 又集合A =(-3,1),B =(-a -1,-a +1), 所以13,11a a --≥-⎧⎨-+<⎩或13,1 1.a a -->-⎧⎨-+≤⎩解得0≤a≤2,即实数a 的取值范围是0≤a≤2.18.解:(1)由基本不等式可知:43a a =+≥,43ab ≤, 当且仅当a =3b ,即a =2,23b =时,ab 的取得最大值43.(2)13(3)131535()(1033)()444242a b b a b a a b a b a b a b ++=+=++=++≥+= 当且仅当b a a b =,即a =b =1时,13a b+的取得最小值4. 19.解(1)当a =-1时,此不等式为-x 2-x +2<0,可化为x 2+x -2>0, 化简得(x +2)(x -1)>0,解得即{x|x <-2或x >1} (2)不等式ax 2-(a +2)x +2<0,化为(ax -2)(x -1)<0,当a >0时,不等式化为2()(1)0x x a --<,若21a<,即a >2,解不等式得21x a <<;若21a =,即a =2,解不等式得x ∈∅;若21a>,即0<a <2,解不等式得21x a <<;综上所述:当0<a <2时,不等式的解集为2{|1}x x a <<;当a =2时,不等式的解集为∅当a >2时,不等式的解集为2{|1}x x a<<. 20.解:设日销售金额为y (元),则y =p·Q .∴2220800,025,,1404000,2530,.t t t t y t t t t ⎧-++<<∈⎪=⎨-+≤≤∈⎪⎩N N22(10)900,025,,(70)900,2530,.t t t t t t ⎧--+<<∈⎪=⎨--≤≤∈⎪⎩N N 当0<t <25,t ∈N ,t =10时,y max =900(元); 当25≤t≤30,t ∈N ,t =25时,y max =1125(元). 由1125>900,知y max =1125(元),且第25天,日销售额最大.21.解:(1)因为12b x a =-=-,所以b =2a ,由根与系数的关系可得122132a x x a -==, 解得:a =2,则b =4,则f (x )=2x 2+4x +3;(2)因为f (x )=ax 2+2ax +2a -1的对称轴为x =-1,若a >0,y =f (x )开口向上,则f (x )在[-3,0]的最小值在x =-1处取得, 则f (-1)=a -1≥0,解得a≥1;若a <0,y =f (x )开口向下,又因为|-3-(-1)|>|0-(-1)|, 则f (x )在[-3,0]的最小值在x =-3处取得,则f (-3)=5a -1≥0,解得15a ≥(舍);综上所述,a ∈[1,+∞).22.解:(1)()f x 因为(x +2)(4-x )≥0,所以A =[-2,4],因为()f x 又0≤9-(x -1)2≤9,所以B =[0,3];(2)当a =0时,()f x =[,)cA b-=+∞,B =[0,+∞),又A =B ,故c =0满足题意;当a≠0时,设二次函数g (x )=ax 2+bx +c 的判别式为Δ, 当Δ≥0时,设方程g (x )=0的两实数根为x 1,x 2(x 1≤x 2) 假设a >0,当Δ≥0时,则A ={x|x≤x 1或x≥x 2},B =[0,+∞),则A≠B ,矛盾;当Δ<0时,则A =R ,)B =∞,则A≠B ,矛盾; 当a <0时,假设Δ<0,则A =∅,B =∅,虽有A =B ,但不符合函数的定义,舍去;当Δ≥0,则A ={x|x 1≤x≤x 2},B =,要使A =B ,则x 1=0,且2x =即c =0,又g (x 2)=0得2b x a -==2224b b a a-=,解得a =-4; 综上,满足条件的实数a 构成的集合为{-4,0}.。

2020-2021学年江苏省盐城市高一上期中数学试卷及答案解析

2020-2021学年江苏省盐城市高一上期中数学试卷及答案解析

【解答】解:∵a⊗b ∴函数 y=2x+1⊗2﹣x
, <
, ,<
的图象如下图所示:
由图可得:函数 y=2x+1⊗2﹣x 的减区间为(﹣∞, ],最小值为 ,
故选:B.
8.(5 分)若 loga3=m,loga5=n,则 a2m+n 的值是( )
A.15
B.75
C.45
【解答】解:loga3=m,loga5=n, 所以 am=3,an=5, 所以 a2m+n=a2man=9×5=45.
故选:C.
二.多选题(共 4 小题,满分 20 分,每小题 5 分)
9.(5 分)下列各式中,是函数的有( )
A.y=1
B.y=x2
C.y=1﹣x
D.225 D.y
【解答】解:根据题意,依次分析选项, 对于 A,y=1,是常数函数,是函数, 对于 B,y=x2,是二次函数,是函数, 对于 C,y=1﹣x,是一次函数,是函数,
D.(2,3)
【解答】解:因为集合 A={y|y ,0≤x≤4}={y|0≤y≤2};
故(∁RA={y|y>2 或 y<0},
∵B={x|0<x<3},
∴(∁RA)∩B=(2,3)
故选:D.
2.(5 分)命题 p:∃x0∈R,x02﹣x0+2≤0,则¬p 为( )
A.∃x0∈R,

B.∀x∈R,x2﹣x+2≤0
(1)若 a=2,求 M∩(∁RN); (2)若 M∪N=M,求实数 a 的取值范围.
18.(12 分)计算:
(1)0.064
( )0+16 ⺁ 0.25 ;
(2)log3
lg25+2lg2﹣7 뗘 log42.

山东省济南市第一中学2020_2021学年高一数学上学期期中试题含解析

山东省济南市第一中学2020_2021学年高一数学上学期期中试题含解析

山东省济南市第一中学2020-2021学年高一数学上学期期中试题(含解析)本试卷共4页,满分150分.考试用时120分钟.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}1,0,1,2,3M =-,{}|13N x x =-≤<,则M N =( )A. {0,1,2}B. {1,0,1}-C. MD.{1,0,1,2}-【答案】D 【解析】 【分析】根据交集的定义写出M N ⋂即可.【详解】集合{}1,0,1,2,3M =-,{}|13N x x =-≤<, 则{}1,0,1,2M N ⋂=-. 故选:D .2. 已知R a ∈,则“1a >”是“11a<”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件【答案】A 【解析】 【分析】“a>1”⇒“11a <”,“11a<”⇒“a>1或a <0”,由此能求出结果. 【详解】a∈R ,则“a>1”⇒“11a<”,“11a<”⇒“a>1或a <0”, ∴“a>1”是“11a<”的充分非必要条件.故选A .【点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.3. 下列各组函数中,表示同一函数的是( ) A. ()1f x =,0()g x x = B. ()1f x x ,21()1x g x x -=+C. ()f x x =,()g x =D. ()||f x x =,2()g x =【答案】C 【解析】 【分析】根据对应关系和定义域均相同则是同一函数,对选项逐一判断即可.【详解】选项A 中,0()1()g x x f x ===,但()g x 的定义域是{}0x x ≠,()f x 定义域是R ,不是同一函数;选项B 中,21()()11x g x x x f x -=+=-=,但()g x 的定义域是{}1x x ≠-,()f x 定义域是R ,对应关系相同,定义域不同,不是同一函数;选项C 中,()f x x =,定义域R ,()g x x ==,定义域为R ,对应关系相同,定义域相同,是同一函数;选项D 中,()||f x x =,定义域R ,与2()g x =,定义域[0,)+∞,对应关系不相同,定义域不相同,不是同一函数. 故选:C.4. 设053a =.,30.5b =,3log 0.5c =,则a ,b ,c 的大小关系为( )A. a b c >>B. b a c >>C. c b a >>D.a cb >>【解析】 【分析】利用对数函数和指数函数的性质求解.【详解】解:∵00.51333<<,∴0.5131<<,即13a <<, ∵3000.80.8<<,∴300.81<<,即01b <<, ∵3log y x =在(0,)+∞上为增函数,且0.51<, ∴33log 0.5log 10<=,即0c < ∴a b c >>, 故选:A .【点睛】此题考查对数式、指数式比较大小,属于基础题 5. 已知函数 ()()2231m m f x m m x+-=-- 是幂函数,且 ()0x ∈+∞,时,()f x 单调递减,则 m 的值为( ) A. 1 B. -1 C. 2或-1 D. 2【答案】B 【解析】 分析】由题意可得211m m --=,且230m m +-<,解出即可. 【详解】解:∵()()2231m m f x m m x+-=-- 是幂函数,∴211m m --=,即()()210m m -+=, ∴2m =,或1m =-,又当()0x ∈+∞,时,()f x 单调递减, ∴230m m +-<,当2m =时,2330m m +-=>,不合题意,舍去; 当1m =-,2330m m +-=-<,符合题意, ∴1m =-,6. 已知1a >,函数1x y a -=与log ()a y x =-的图象可能是( )A B. C. D.【答案】B 【解析】 【分析】根据函数的定义域,1a >判断两个函数的单调性,即可求解. 【详解】1a >,函数1x y a -=在R 上是增函数, 而函数log ()a y x =-定义域为(,0)-∞, 且在定义域内是减函数,选项B 正确》 故选:B.【点睛】本题考查函数的定义域、单调性,函数的图像,属于基础题.7. 已知函数22,(1)()(21)36,(1)x ax x f x a x a x ⎧-+≤=⎨--+>⎩,若()f x 在(),-∞+∞上是增函数,则实数a的取值范围是( ) A. 1,12⎛⎤ ⎥⎝⎦B. 1,2⎛⎫+∞ ⎪⎝⎭C. [1,)+∞D. []1,2【答案】D 【解析】 【分析】根据分段函数()f x 在(),-∞+∞上是增函数,则由每一段都是增函数且1x =左侧函数值不大于右侧的函数值求解.【详解】因为函数22,(1)()(21)36,(1)x ax x f x a x a x ⎧-+≤=⎨--+>⎩,在(),-∞+∞上是增函数,所以1210122136a a a a a ≥⎧⎪->⎨⎪-+≤--+⎩,解得12a ≤≤, 故选:D【点睛】本题主要考查分段函数的单调性,属于基础题.8. 定义在R 上的偶函数()f x 满足:对任意的()1212,[0,),x x x x ∈+∞≠,有()()21210f x f x x x -<-,且(2)0f =,则不等式 ()0x f x <的解集是( )A. (2,2)-B. (2,0)(2,)-+∞ C. (,2)(0,2)-∞-⋃D.(,2)(2,)-∞-+∞【答案】B 【解析】 【分析】由题意可知()f x 在[0,)+∞上是减函数,再根据对称性和(2)0f =得出()f x 在各个区间的函数值的符号,从而可得出答案.【详解】解:∵()()21210f x f x x x -<-对任意的()1212,[0,),x x x x ∈+∞≠恒成立, ∴()f x 在[0,)+∞上是减函数, 又(2)0f =,∴当2x >时,()0f x <,当02x ≤<时,()0f x >, 又()f x 是偶函数,∴当2x <-时,()0f x <,当20x -<<时,()0f x >, ∴()0xf x <的解为(2,0)(2,)-+∞.故选B .【点睛】本题考查了函数的单调性与奇偶性,考查了学生分析问题、解决问题的能力,属于中档题.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9. 下列不等式成立的是( ) A. 若a <b <0,则a 2>b 2B. 若ab =4,则a +b ≥4C. 若a >b ,则ac 2>bc 2D. 若a >b >0,m >0,则b b m a a m+<+ 【答案】AD 【解析】 【分析】由不等式的性质对各个选项进行推理、验证可得正确答案.【详解】解:对于A ,若0a b <<,根据不等式的性质则22a b >,故A 正确; 对于B ,当2a =-,2b =-时,44a b +=-<,显然B 错误; 对于C ,当0c时,22ac bc =,故C 错误;对于D ,()()()()()b a m a b m b a m b b m a a m a a m a a m +-+-+-==+++, 因为0a b >>,0m >,所以0b a -<,0a m +>,所以()()-<+b a m a a m所以0+-<+b b ma a m ,即b b m a a m+<+成立,故D 正确. 故选AD .【点睛】本题主要考查不等式的性质及应用,考查学生的推理论证能力,属于基础题. 10. 下列叙述正确的是( )A. 已知函数22,[4,0]()2(4),(0,)x x f x f x x ⎧-+∈-=⎨-∈+∞⎩,则f (6)=8 B. 命题“对任意的1x >,有21x >”的否定为“存在1x ≤,有21x ≤” C. 已知正实数a ,b 满足4a b +=,则1113a b +++的最小值为12D. 已知250x ax b -+>的解集为{}|41x x x ><或,则a+b=5【答案】ACD 【解析】 【分析】直接由分段函数表达式代入求解即可判断A ,由全称命题的否定为特称命题可判断B ,由基本不等式结合138a b +++=,巧用“1”即可求最值,根据一元二次不等式解与系数的关系可判断C. 【详解】对于A,22,[4,0]()2(4),(0,)x x f x f x x ⎧-+∈-=⎨-∈+∞⎩,所以(6)2(2)4(2)4(20)8f f f ==-=-=,正确;对于B ,命题“对任意的1x >,有21x >”为全称命题,否定为特称命题,即“存在1x >,有21x ≤”,不正确;对于C ,由4a b +=,可得138a b +++=, 所以11111()(13)13813a b a b a b +=++++++++13111(11)(281382b a a b ++=+++≥+=++, 当且仅当3113b a a b ++=++,即3,1a b ==时,1113a b +++取得最小值12,正确.对于D ,250x ax b -+>的解集为{}|41x x x ><或,所以250x ax b -+=的两个根式1和4,所以1451144a ab b +==⎧⎧⇒⎨⎨⨯==⎩⎩,所以5a b +=,正确.故选:ACD. 11. 关于函数()1x f x x,下列结论正确的是( )A. ()f x 的图象过原点B. ()f x 是奇函数C. ()f x 在区间(1,+∞)上单调递增D. ()f x 是定义域上的增函数【答案】AC 【解析】 【分析】根据函数奇偶性定义、单调性定义以及计算函数值进行判断选择.【详解】()(0)01x f x f x,所以A 正确,101x x ,因此()1x f x x不是奇函数,B 错误,1()111xf x xx ()f x 在区间(1,+∞)和(,1)-∞上单调递增,所以C 正确,D 错误, 故选:AC【点睛】本题考查函数奇偶性与单调性,考查基本分析判断能力,属基础题.12. 德国著名数学家狄利克雷在数学领域成就显著,狄利克雷函数就以其名命名,其解析式为1,()0,x D x x ⎧=⎨⎩是有理数是无理数,关于函数D()x 有以下四个命题,其中真命题是( )A. ,D(D())1x R x ∀∈=B. ,,D()D()D()x y R x y x y ∃∈+=+C. 函数D()x 是偶函数D. 函数D()x 是奇函数【答案】ABC 【解析】【分析】根据自变量x 是有理数和无理数进行讨论,可判定A 、C 、D ,举特例根据x =和x =判断B 即可得到答案.【详解】对于A 中,若自变量x 是有理数,则[]()(1)1D D x D ==, 若自变量x 是无理数,则[]()(0)1D D x D ==,所以A 是真命题;当x=y =x y +=则D()0,D()D()000x y x y +=+=+=,满足D()D()D()x y x y +=+,所以B 正确; 对于C ,当x 为有理数时,则x -为有理数, 则()()1D x D x -==. 当x无理数时,则x -为无理数,则()()0D x D x -==.故当x ∈R 时,()()D x D x -=,∴函数为偶函数,所以C 是真命题;对于D 中,若自变量x 是有理数,则x -也是有理数,可得()()112D x D x +-=+=,所以D()x 不是奇函数,D 不正确. 所以D 是假命题; 故选:ABC.三、填空题:本题共4小题,每小题5分,共20分. 13. 若)12fx x x =-()f x 的解析式为________.【答案】()()2431f x x x x =-+≥ 【解析】 【分析】 换元法令1t x =即可求出函数解析式;或者配凑法求解析式.【详解】解:(换元法)令1t x =,则1t ≥,1x t =-,()21x t =-, ∵)12fx x x =-∴()()()2212143f t t t t t =---=-+,(配凑法)∵)12fx x x =-)2141x x =-))21413x x =-+,11x ≥,∴()()2431f x x x x =-+≥,故答案为:()()2431f x x x x =-+≥.【点睛】方法点睛:本题主要考查函数解析式的求法,常用方法有:(1)换元法或配凑法:已知()()f g x 求()f x ,一般采用换元法或配凑法,令()t x g =,代入求出()f t ,或者将()()f g x 中配凑成关于()g x 的式子,由此可求得()f x ; (2)待定系数法:已知函数类型常用待定系数法; (3)方程组法:已知()f x 、1f x ⎛⎫⎪⎝⎭满足的关系式或()f x 、()f x -满足的关系式常用方程组法,将条件中的x -或1x替换成x 得另一方程,再解方程组即可求得答案. 14. 已知函数22x y a -=+(0a >且1a ≠)恒过定点(),m n ,则m n +=________________. 【答案】5 【解析】 【分析】当20x -=时,函数值域与a 没有关系,由此求得恒过的定点(),m n ,并求得表达式的值. 【详解】当20x -=,即2x =时,函数值域与a 没有关系,此时3y =,故函数过定点()2,3,即2m =,3n =,所以235m n +=+=.【点睛】本小题主要考查指数函数横过定点的问题,当指数函数底数为0的时候,01a =,由此求得恒过的定点,属于基础题.15. 若不等式2(2)2(2)40a x a x -+--<对一切x ∈R 成立,则a 的取值范围是 _ _ . 【答案】(]2,2- 【解析】【详解】当20a -=,2a =时不等式即为40-< ,对一切x ∈R 恒成立 ①当2a ≠时,则须()()220{421620a a a -<-+-<= ,∴22a -<<② 由①②得实数a 的取值范围是(]2,2-, 故答案为(]2,2-.16. 定义区间[1x ,2x ]的长度为2x -1x ,若函数y =|log 2x |的定义域为[a ,b ],值域为[0,3]到,则区间[a ,b ]的长度最大值为______ 【答案】638【解析】 【分析】先由函数值域求出函数定义域的取值范围,然后求出区间[a ,]b 的长度的最大值. 【详解】因为函数2|log |y x =的定义域为[a ,]b ,值域为[0,3],23log 3x ∴-, 解得188x ,故函数的定义域为1[8,8], 此时,函数的定义域的区间长度为163888-=, 故答案为638. 【点睛】本题主要考查新定义的理解及应用,考查对数函数的图象和性质,考查绝对值不等式的解法,意在考查学生对这些知识的理解掌握水平.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 计算:(110421()0.25(22-+⨯;(2)7log 2334log lg25lg47log 8log +-+⋅【答案】(1)7-;(2)2.【解析】【分析】(1)利用分数指数幂运算及根式求解即可(2)利用对数运算求解【详解】(1)原式4181(72=--+⨯=-; (2)原式32332131log 3lg1002(3log 2)(log 3)222622=+-+⋅=+-+=. 【点睛】本题考查指数幂及对数运算,是基础题 18. 已知集合{}{}22|560|60A x x x B x x ax =-+==++=,. 若B A ⊆,求实数a 的取值范围.【答案】{|5a a =-或a -<<.【解析】【分析】由题意,求得{}23A =,,再根据B A ⊆,结合韦达定理分B ≠∅和B =∅两种情况讨论即可求出答案.【详解】解:∵{}2|560A x x x =-+=, ∴{}23A =,, ∵{}2|60B x x ax =++=,B 为方程260x ax ++=的解集, ①若B ≠∅,由B A ⊆ ,∴{}2B =,或{}3B =,或{}23B =,, 当{}2B =时,方程260x ax ++=有两个相等实根,即122x x ==,1246x x =≠,∴ 不合题意,同理{}3B ≠,同理当{}23B =,时, 5a =-,符合题意; ②若B =∅,则2460a ∆=-⨯<,∴a -<<综上所述,实数a 的取值范围为{|5a a =-或a -<.【点睛】易错点睛:本题主要考查根据集合间的包含关系求参数的取值范围,解题时容易忽略子集可能为空集的情况,属于基础题.19. 已知()f x 是定义在R 上的奇函数,当0x >时,2()4f x x x =-,(1)求()f x 的解析式;(2)求不等式()f x x >的解集.【答案】(1)224,0()0,04,0x x x f x x x x x ⎧->⎪==⎨⎪--<⎩;(2)(5,0)(5,)-⋃+∞.【解析】【分析】(1)根据奇函数的性质进行求解即可;(2)根据函数的解析式分类讨论进行求解即可.【详解】(1)∵()f x 是定义在R 上的奇函数,∴(0)0f =.又当0x <时,0x ->,∴22()(4)4()f x x x x x ---=+-=.又()f x 为奇函数,∴()()f x f x -=-,∴2()4(0)f x x x x =--<,∴224,0()0,04,0x x x f x x x x x ⎧->⎪==⎨⎪--<⎩.(2)当0x >时,由()f x x >得24x x x ->,解得5x >;当0x =时,()f x x >无解;当0x <时,由()f x x >得24x x x -->,解得5x 0-<<.综上,不等式()f x x >的解集用区间表示为(5,0)(5,)-⋃+∞.【点睛】本题考查了奇函数的性质,考查了分类讨论思想,考查了数学运算能力.20. 已知lg(3x)+lgy =lg(x +y +1).(1)求xy 的最小值;(2)求x +y 的最小值.【答案】(1)1 (2)2【解析】解:由lg(3x)+lgy =lg(x +y +1)得0{031x y xy x y >>=++(1)∵x>0,y>0,∴3xy=x +y1,∴3xy-即2-当且仅当x =y =1时,等号成立.∴xy 的最小值为1.(2)∵x>0,y>0,∴x+y +1=3xy≤3·(2x y +)2, ∴3(x+y)2-4(x +y)-4≥0,∴[3(x+y)+2][(x +y)-2]≥0,∴x+y≥2,当且仅当x =y =1时取等号,∴x+y 的最小值为2.21. 已知二次函数()225f x x ax =-+,其中1a >. (Ⅰ)若函数()f x 的定义域和值域均为[]1,a ,求实数a 的值;(Ⅱ)若函数()f x 在区间(],2-∞上单调递减,且对任意的1x ,[]21,1x a ∈+,总有()()123f x f x -≤成立,求实数a 的取值范围.【答案】(Ⅰ)2;(Ⅱ)2,1a ⎡∈⎣.【解析】【分析】(Ⅰ)求出()f x 的单调性,求出函数的最值,得到关于a 的方程,解出即可;(Ⅱ)根据()f x 在区间(],2-∞上是减函数,得出a 的一个取值范围;再对任意的1x ,[]21,1x a ∈+,()()()()12max 13f x f x f a f -=-≤,又可求出a 的一个取值范围;最后两者取交集,则问题解决.【详解】(Ⅰ)()225f x x ax =-+,开口向上,对称轴是1x a => ∴()f x []1,a 递减,则()1f a =,即22251a a -+=,故2a =;(Ⅱ)因为()f x 在区间(],2-∞上是减函数,所以2a ≥.因此任意的1x ,[]21,1x a ∈+,总有()()123f x f x -≤,只需()()13f a f -≤即可解得:11a ≤,又2a ≥因此2,1a ⎡∈+⎣.【点睛】本题主要考查了已知二次函数单调区间求参数的范围以及根据二次函数的值域求参数的值,属于中档题.22. 已知()f x 是定义在区间[1,1]-上的奇函数,且(1)1f =,若,[1,1]a b ∈-,0a b +≠时,有()()0f a f b a b+>+. (1)判断函数()f x 在[1,1]-上是增函数,还是减函数,并证明你的结论;(2)若2()55f x m mt ≤--对所有[1,1]x ∈-,[1,1]t ∈-恒成立,求实数m 的取值范围.【答案】(1)是增函数,证明见解析;(2)(,6][6,)-∞-+∞.【解析】【分析】(1)根据函数单调性的定义即可证明f (x )在[﹣1,1]上是的增函数;(2)利用函数奇偶性和单调性之间的关系将不等式max ()f x ≤m 2﹣5mt -5进行转化,结合二次函数性质即可求实数m 的取值范围.【详解】(1)函数()f x 在[-1,1]上是增函数.设1211x x∵()f x 是定义在[-1,1]上的奇函数,∴2121()()()()f x f x f x f x -=+-.又1211x x ,∴21()0x x +->, 由题设2121()()0()f x f x x x +->+-有21()()0f x f x +->,即12()()f x f x <, 所以函数()f x 在[-1,1]上是增函数.(2)由(1)知max ()(1)1f x f ==,∴2()55f x m mt ≤--对任意[1,1]x ∈-恒成立,只需2155m mt ≤--对[1,1]t ∈-]恒成立,即2560m mt --≥对[1,1]t ∈-恒成立,设2()56g t m mt =--,则(1)0(1)0g g -≥⎧⎨≥⎩22560560m m m m ⎧+-≥⇔⎨--≥⎩6,11,6m m m m ≤-≥⎧⇔⎨≤-≥⎩, 解得6m ≤-或6m ≥,-∞-+∞.∴m的取值范围是(,6][6,)【点睛】本题主要考查函数奇偶性和单调性的应用,将不等式转化为函数问题是解决本题的关键.综合性较强,运算量较大.。

2020-2021学年新疆石河子一中高一上学期期中数学试卷(含解析)

2020-2021学年新疆石河子一中高一上学期期中数学试卷(含解析)

2020-2021学年新疆石河子一中高一上学期期中数学试卷一、单选题(本大题共12小题,共60.0分)1.函数y=log31+x的图象()1−xA. 关于原点对称B. 关于直线y=−x对称C. 关于y轴对称D. 关于直线y=x对称2.已知集合A={−1,2},B={x|ax=6},若B⊆A,则由实数a的所有可能的取值组成的集合为().A. {0,3}B. {−6,3}C. {6,0,−3}D. {−6,0,3}3.指数函数y=a的图像经过点(2,16)则a的值是A. B. C. 2 D. 44.下列表示①{0}=⌀;②⌀∈{0};③⌀⊊{0};④0∈⌀中,正确的个数为()A. 1B. 2C. 3D. 45.函数y=x−1在区间[3,+∞)上是减函数,则a的取值范围是()x−aA. [1,3)B. (1,3)C. (1,3]D. [1,3]6.若函数f(x)=a|x+b|(a>0且a≠1,b∈R)是偶函数,则下面的结论正确的是()A. f(b−3)<f(a+2)B. f(b−3)>f(a+2)C. f(b−3)=f(a+2)D. f(b−3)与f(a+2)的大小无法确定7.设,则的大小顺序正确的是()A. B. C. D.8.函数f(x)=|log2(x+1)|的图象大致是().A. AB. BC. CD. D 9. 已知f(x)={2x −1,x <12f(x −1)+1,x ≥12,则f(14)+f(76)=( ) A. −16 B. 16C. 56D. −56 10. 幂函数f(x)=f(x)的图象过点(2,√22),则f(x)为( )A. y =x 12B. y =1x 2C. y =x −12D. y =√2x −1 11. 下列函数中,与函数相同的是( ) A. B. C. D.12. 函数f(x)=3x 2+e x −2(x <0)与g(x)=3x 2+ln(x +t)图象上存在关于y 轴对称的点,则t的取值范围是( )A. (−∞,1e )B. (−∞,e)C. (−e,1e )D. (−1e ,e) 二、单空题(本大题共5小题,共25.0分)13. 某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量(微克)与时间(时)之间近似满足如图所示的图象.据进一步测定,每毫升血液中含药量不少于0.25微克时,治疗疾病有效,则服药一次治疗疾病有效的时间为______ 小时.14. 函数y =(12)x ,(x ≥0)的值域为______. 15. 已知幂函数的图象过点(2,√2),则幂函数的解析式f(x)= ______ .16. 已知f(sinx)=−2x +1,x ∈[−π2,π2],那么f(cos10)= ______ .17. 关于函数f(x)=4x +√x −2有如下四个命题:①f(x)的定义域为[0,+∞);②f(x)的最小值为−1;③f(x)存在单调递减区间;④∃α∈(0,+∞),f(sinα)=0.其中所有真命题的序号是______ .三、多空题(本大题共1小题,共5.0分)18. 0.064− 13−(−78)0+160.75+|−0.01|√0.25= ;lg 52+2lg2−(12)−1= 四、解答题(本大题共6小题,共60.0分)19. (Ⅰ)计算:(a 23⋅b −1)−12⋅a −12⋅b 13√a⋅b 56; (Ⅱ)计算:(0.027)−13−(−17)−2+(279)12−3×(√2−1)0+[(−2)2]12.20. 求下列不等式的解集.(1)2xx+1<1(2)x 2+(2−a)x −2a ≥0.21. 已知集合A ={x|1<x <6},B ={x|2<x <10},C ={x|x <a}.(1)求(∁R A)∩B ;(2)若A ⊆C ,求a 的取值范围.22. 求函数y =√x −2+1x−3+lg(5−x)的定义域.23. 如图,某小区拟在空地上建一个占地面积为2400平方米的矩形休闲广场,按照设计要求,休闲广场中间有两个完全相同的矩形绿化区域,周边及绿化区域之间是道路(图中阴影部分),.道路的宽度均为2米.怎样设计矩形休闲广场的长和宽,才能使绿化区域的总面积最大⋅并求出其最大面积.24. 定义函数g(x)={1,x ≥0−1,x <0,f(x)=x 2−2x(x −a)⋅g(x −a). (1)若f(2)=0,求实数a 的值;(2)解关于实数a 的不等式f(1)≤f(0);(3)函数f(x)在区间[1,2]上单调递增,求实数a 的取值范围.【答案与解析】1.答案:A解析:解:由1+x1−x>0得−1<x<1,则f(−x)+f(x)=log31+x1−x +log31−x1+x=log3(1+x1−x⋅1−x1+x)=log31=0,即f(−x)=−f(x),则函数f(x)是奇函数,故图象关于原点对称,故选:A根据条件判断函数的奇偶性即可.本题主要考查函数图象的对称性,利用函数奇偶性的性质是解决本题的关键.2.答案:D解析:解:∵B⊆A,A={−1,2}的子集有⌀,{−1},{2},{−1,2},当B=⌀时,显然有a=0;当B={−1}时,−a=6⇒a=−6;当B={2}时,2a=6⇒a=3;当B={−1,2},不存在a,符合题意,∴实数a值集合为{−6,0,3},故选:D.由B⊆A,求出集合A的子集,这样就可以求出实数a值集合.本题考查了通过集合的运算结果,得出集合之间的关系,求参数问题.重点考查了一个集合的子集,本题容易忽略空集是任何集合的子集这一结论,属基础题.3.答案:D解析:试题分析:因为指数函数y=a的图像经过点(2,16),所以16=a2,又因为a>0且a1,所以a=4.考点:本题考查指数函数的的定义。

2020-2021学年广东省深圳高级中学高一(上)期中数学试卷(附答案详解)

2020-2021学年广东省深圳高级中学高一(上)期中数学试卷(附答案详解)

2020-2021学年广东省深圳高级中学高一(上)期中数学试卷一、单选题(本大题共8小题,共40.0分)1. 已知集合A ={x ∈R|3x +2>0},B ={x ∈R|(x +1)(x −3)>0},则A ∩B =( )A. (−∞,−1)B. (−1,−23)C. ﹙−23,3﹚D. (3,+∞)2. 如果a <b <0,那么下列各式一定成立的是( )A. |a|<|b|B. a 2<b 2C. a 3<b 3D. 1a <1b3. 德国数学家秋利克在1837年时提出“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数,“这个定义较清楚地说明了函数的内涵,只要有一个法则,使得取值范围中的每一个值,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象、表格还是其它形式.已知函数f(x)由如表给出,则f(f(2020))的值为( )A. 1B. 2C. 3D. 20184. 若命题“∃x 0∈R ,使得x 02+mx 0+2m −3<0”为假命题,则实数m 的取值范围是( )A. [2,6]B. [−6,−2]C. (2,6)D. (−6,−2)5. 设a =0.60.3,b =0.30.6,c =0.30.3,则a ,b ,c 的大小关系为( )A. b <a <cB. a <c <bC. b <c <aD. c <b <a6. 若实数a ,b 满足1a +4b =√ab ,则ab 的最小值为( )A. √2B. 2C. 2√2D. 47. 已知函数f(x)={2x ,x ≥2(x −1)2,x <2,若关于x 的方程f(x)=k 有三个不同的实根,则数k 的取值范围是( )A. (0,1)B. (1,2)C. (0,2)D. (1,3)8. 已知函数f(x)=2+x2+|x|,x ∈R ,则不等式f(x 2−2x)<f(2x −3)的解集为( )A. (1,2)B. (1,3)C. (0,2)D. (1,32]二、多选题(本大题共4小题,共20.0分)9.下列函数中,最小值是2的是()A. y=a2−2a+2a−1(a>1) B. y=√x2+2+1√x2+2C. y=x2+1x2D. y=x2+2x10.下列四个结论中正确的是()A. 命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”B. 命题“至少有一个整数n,n2+1是4的倍数”是真命题C. “a>5且b>−5”是“a+b>0”的充要条件D. 当α<0时,幂函数y=xα在区间(0,+∞)上单调递减11.如图1是某条公共汽车线路收支差额y与乘客量x的图象(收支差额=车票收入−支出费用).由于目前本条线路亏损,公司有关人员将图1变为图2与图3,从而提出了扭亏为盈的两种建议.下面有4种说法中正确的是()A. 图2的建议是:减少支出,提高票价B. 图2的建议是:减少支出,票价不变C. 图3的建议是:减少支出,提高票价D. 图3的建议是:支出不变,提高票价12.对∀x∈R,[x]表示不超过x的最大整数.十八世纪,y=[x]被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是()A. ∃x∈R,x≥[x]+1B. ∀x,y∈R,[x]+[y]≤[x+y]C. 函数y=x−[x](x∈R)的值域为[0,1)D. 若∃t∈R,使得[t3]=1,[t4]=2,[t5]=3…,[t n]=n−2同时成立,则正整数n的最大值是5三、单空题(本大题共4小题,共20.0分)13.已知函数f(x)=a x−2−4(a>0,a≠1)的图象恒过定点A,则A的坐标为.14.若函数f(x)=ax2+2ax+1在[1,2]上有最大值4,则a的值为.15.y=f(x)是定义域R上的单调递增函数,则y=f(3−x2)的单调递减区间为.16.对于函数f(x),若在定义域存在实数x,满足f(−x)=−f(x),则称f(x)为“局部奇函数”.若函数f(x)=4x−m⋅2x−3是定义在R上的“局部奇函数”,则实数m 的取值范围为.四、解答题(本大题共6小题,共70.0分)17.化简求值:(1)0.064−13−(−18)0+1634+0.2512(2)12lg25+lg2+(13)log32−log29×log32.18.设函数y=√−x2+7x−12的定义域为集合A,不等式1x−2≥1的解集为集合B.(1)求集合A∩B;(2)设p:x∈A,q:x>a,且p是q的充分不必要条件,求实数a的取值范围.19.已知函数f(x)=a x(a>0且a≠1)在区间[1,2]上的最大值与最小值的和为6.(1)求函数f(x)解析式;(2)求函数g(x)=f(2x)−8f(x)在[1,m](m>1)上的最小值.20.已知函数f(x)是R上的偶函数,当x≥0时,f(x)=x3.(1)求x<0时f(x)的解析式;(2)解关于x的不等式f(x+1)≥8f(x).21.为了研究某种药物,用小白鼠进行试验,发现药物在血液内的浓度与时间的关系因使用方式的不同而不同.若使用注射方式给药,则在注射后的3小时内,药物在白鼠血液内的浓度y1与时间t满足关系式:y1=4−at(0<a<43,a为常数),若使用口服方式给药,则药物在白鼠血液内的浓度y2与时间t满足关系式:y2={√t,0<t<13−2t,1≤t≤3,现对小白鼠同时进行注射和口服该种药物,且注射药物和口服药物的吸收与代谢互不干扰.(1)若a=1,求3小时内,该小白鼠何时血液中药物的浓度最高,并求出最大值?(2)若使小白鼠在用药后3小时内血液中的药物浓度不低于4,求正数a的取值范围.22. 定义在R 上的函数g(x)和二次函数ℎ(x)满足:g(x)+2g(−x)=e x +2e x −9,ℎ(−2)=ℎ(0)=1,ℎ(−3)=−2. (1)求g(x)和ℎ(x)的解析式;(2)若对于x 1,x 2∈[−1,1],均有ℎ(x 1)+ax 1+5≥g(x 2)+3−e 成立,求a 的取值范围;(3)设f(x)={g(x),x >0ℎ(x),x ≤0,在(2)的条件下,讨论方程f[f(x)]=a +5的解的个数.答案和解析1.【答案】D【解析】【分析】本题考查一元二次不等式的解法,交集及其运算,考查计算能力,属于基础题.先求出集合B和A,然后利用交集运算求解A∩B.【解答】解:因为B={x∈R|(x+1)(x−3)>0}={x|x<−1或x>3},},又集合A={x∈R|3x+2>0}={x|x>−23}∩{x|x<−1或x>3}={x|x>3},所以A∩B={x|x>−23故选:D.2.【答案】C【解析】【分析】本题考查了不等式的基本性质,属基础题.根据条件取特殊值a=−2,b=−1,即可排除ABD;由不等式的基本性质,即可判断C.【解答】解:由a<b<0,取a=−2,b=−1,则可排除ABD;由a<b<0,根据不等式的基本性质可知C成立.故选:C.3.【答案】C【解析】【分析】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.先求出f(2020)=2018,从而f(f(2020))=f(2018),由此能求出结果.【解答】解:由题意知:f(2020)=2018,f(f(2020))=f(2018)=3.故选:C.4.【答案】A【解析】【分析】本题考查存在量词命题的真假,二次不等式恒成立,考查转化思想.先写出原命题的否定,再根据原命题为假,其否定一定为真,利用不等式对应的是二次函数,结合二次函数的图象与性质建立不等关系,即可求出实数m的取值范围.【解答】解:命题“∃x0∈R,使得x02+mx0+2m−3<0”的否定为:“∀x∈R,都有x2+mx+2m−3≥0”,由于命题“∃x0∈R,使得x02+mx0+2m−3<0”为假命题,则其否定为真命题,∴Δ=m2−4(2m−3)≤0,解得2≤m≤6.则实数m的取值范围是[2,6].故选:A.5.【答案】C【解析】【分析】本题主要考查了幂函数和指数函数的性质,是基础题.利用幂函数y=x0.3在(0,+∞)上单调递增,比较出a,c的大小,再利用指数函数y=0.3x 在R上单调递减,比较出b,c的大小,从而得到a,b,c的大小关系.【解答】解:∵幂函数y=x0.3在(0,+∞)上单调递增,且0.6>0.3,∴0.60.3>0.30.3,即a>c,∵指数函数y=0.3x在R上单调递减,且0.6>0.3,∴0.30.6<0.30.3,即b<c,∴b<c<a,故选:C.6.【答案】D【解析】【分析】本题考查了利用基本不等式求最值,属于基础题.由已知得a,b>0,利用√ab=1a +4b≥2√1a⋅4b即可得出ab≥4,验证等号成立的条件.【解答】解:实数a,b满足1a +4b=√ab,则a,b>0.∴√ab=1a +4b≥2√1a⋅4b,可得ab≥4,当且仅当1a =4b,a=1,b=4时取等号.则ab的最小值为4.故选:D.7.【答案】A【解析】【分析】本题考查函数零点与方程根的关系,考查数形结合思想,属于中档题.题目等价于函数y=f(x)的图象与直线y=k有3个交点,作出图象,数形结合即可【解答】解:作出函数f(x)的图象如图:若关于x 的方程f(x)=k 有三个不同的实根,即函数y =f(x)的图象与直线y =k 有三个交点,根据图象可知,k ∈(0,1). 故选:A .8.【答案】A【解析】 【分析】本题考查分段函数的性质以及应用,注意将函数解析式写出分段函数的形式,属于中档题.根据题意,将函数的解析式写出分段函数的形式,据此作出函数的大致图象,据此可得原不等式等价于{x 2−2x <0x 2−2x <2x −3,解可得x 的取值范围,即可得答案.【解答】解:根据题意,函数f(x)=2+x2+|x|={−4x−2−1,x <01,x ≥0,其图象大致为:若f(x 2−2x)<f(2x −3),则有{x 2−2x <0x 2−2x <2x −3,解可得:1<x <2,即不等式的解集为(1,2);故选:A.9.【答案】AC【解析】【分析】本题考查了基本不等式的应用,关键掌握应用基本不等式的基本条件,一正二定三相等,属于基础题.根据应用基本不等式的基本条件,分别判断即可求出.【解答】解:对于A:a−1>0,y=a2−2a+2a−1=(a−1)2+1a−1=(a−1)+1a+1≥2√(a−1)⋅1a−1=2,当且仅当a−1=1a−1,即a=2时取等号,故A正确;对于B:y=√x2+2√x2+2≥2,当且仅当√x2+2=√x2+2,即x2=−1时取等号,显然不成立,故B错误;对于C:y=x2+1x2≥2√x2⋅1x2=2,当且仅当x=±1时取等号,故C正确;对于D:当x<0时,无最小值,故D错误.故选:AC.10.【答案】AD【解析】【分析】本题考查命题的真假的判断,考查充要条件,命题的否定,幂函数的性质等知识的应用,是基本知识的考查.利用命题的否定判断A;令n=2k和n=2k+1,k∈Z分析n2+1是不是4的倍数判断B;根据充要条件判断C;由幂函数的性质判断D即可.【解答】解:命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”,满足命题的否定形式,所以A正确;令n=2k,k∈Z,则n2+1=4k2+1不是4的倍数,令n=2k+1,k∈Z,则n2+1=4k2+4k+2不是4的倍数,所以“至少有一个整数n,n2+1是4的倍数”是假命题,所以B不正确;“a>5且b>−5”推出“a+b>0”成立,反之不成立,如a=5,b=−4,满足a+ b>0,但是不满足a>5且b>−5,所以“a>5且b>−5”是“a+b>0”的充要条件不成立,所以C不正确.当α<0时,幂函数y=xα在区间(0,+∞)上单调递减,满足幂函数的性质,所以D正确;故选:AD.11.【答案】BD【解析】【分析】本题考查了用函数图象说明两个量之间的变化情况,主要根据实际意义进行判断,考查了读图能力和数形结合思想.根据题意知图象反应了收支差额y与乘客量x的变化情况,即直线的斜率说明票价问题;当x=0的点说明公司的支出情况,再结合图象进行说明.【解答】解:根据题意和图(2)知,两直线平行即票价不变,直线向上平移说明当乘客量为0时,收入是0但是支出的变少了,即说明了此建议是减少支出而保持票价不变;由图(3)看出,当乘客量为0时,支出不变,但是直线的倾斜角变大,即相同的乘客量时收入变大,即票价提高了,即说明了此建议是提高票价而保持支出不变,故选:BD.12.【答案】BCD【解析】【分析】本题考查函数新定义,正确理解新定义是解题基础,由新定义把问题转化不等关系是解题关键.由新定义得[x]≤x <[x]+1,可得函数f(x)=x −[x]值域判断C ;根据题意,若n ≥6,则不存在t 同时满足1≤t <√23,√46≤t <√56,n ≤5时,存在t ∈[√35,√23)满足题意,判断D . 【解答】解:∀x ∈R ,x <[x]+1,故A 错误;由“取整函数”定义可得,∀x ,y ∈R ,[x]≤x ,[y]≤y ,由不等式的性质可得[x]+[y]≤x +y ,所以[x]+[y]≤[x +y],B 正确;由定义得[x]≤x <[x]+1,所以0≤x −[x]<1,所以函数f(x)=x −[x]的值域是[0,1),C 正确;若∃t ∈R ,使得[t 3]=1,[t 4]=2,[t 5]=3,…[t n ]=n −2同时成立,则1≤t <√23,√24≤t <√34,√35≤t <√45,√46≤t <√56,…√n −2n ≤t <√n −1n ,因为√46=√23,若n ≥6,则不存在t 同时满足1≤t <√23,√46≤t <√56,只有n ≤5时,存在t ∈[√35,√23)满足题意,故选:BCD .13.【答案】(2,−3)【解析】 【分析】本题主要考查指数函数的性质,利用a 0=1的性质是解决本题的关键.比较基础. 根据指数函数的性质,令指数为0进行求解即可求出定点坐标. 【解答】解:由x −2=0得x =2,此时f(2)=a 0−4=1−4=−3, 即函数f(x)的图象过定点A(2,−3), 故答案为:(2,−3)14.【答案】38【解析】 【分析】口向上和向下两种情况判定函数值在何时取最大值,并根据最大值为4,即可求出对应的实数a的值【解答】解:当a=0时,f(x)=1,不符合题意,舍去.当a≠0时,f(x)的对称轴方程为x=−1,(1)若a<0,则函数图象开口向下,函数在[1,2]递减,当x=1时,函数取得最大值4,即f(1)=a+2a+1=4,解得a=1(舍).(2)若a>0,函数图象开口向上,函数在[1,2]递增,当x=2时,函数取得最大值4,即f(2)=4a+4a+1=4,解得a=3,8,综上可知,a=38.故答案为:3815.【答案】[0,+∞)【解析】【分析】本题考查了复合函数的单调性问题,考查二次函数的性质,属于中档题.根据复合函数单调性“同增异减”的原则,问题转化为求y=3−x2的单调递减区间,求出即可.【解答】解:根据复合函数单调性“同增异减”的原则,因为y=f(x)是定义域R上的单调递增函数,要求y=f(3−x2)的单调递减区间,即求y=3−x2的单调递减区间,而函数y=3−x2在[0,+∞)单调递减,故y=f(3−x2)的单调递减区间是[0,+∞),故答案为:[0,+∞).16.【答案】[−2,+∞)【分析】本题考查函数与方程的关系,关键是理解“局部奇函数”的定义,属于拔高题.根据“局部奇函数“的定义便知,若函数f(x)是定义在R上的“局部奇函数”,只需方程(2x+2−x)2−m(2x+2−x)−8=0有解.可设2x+2−x=t(t≥2),从而得出需方程t2−mt−8=0在t≥2时有解,从而设g(t)=t2−mt−8,由二次函数的性质分析可得答案.【解答】解:根据题意,由“局部奇函数”的定义可知:若函数f(x)=4x−m⋅2x−3是定义在R上的“局部奇函数”,则方程f(−x)=−f(x)有解;即4−x−m⋅2−x−3=−(4x−m⋅2x−3)有解;变形可得4x+4−x−m(2x+2−x)−6=0,即(2x+2−x)2−m(2x+2−x)−8=0有解即可;设2x+2−x=t(t≥2),则方程等价为t2−mt−8=0在t≥2时有解;设g(t)=t2−mt−8=0,必有g(2)=4−2m−8=−2m−4≤0,解可得:m≥−2,即m的取值范围为[−2,+∞);故答案为:[−2,+∞).17.【答案】解:(1)0.064−13−(−18)0+1634+0.2512=0.43×(−13)−1+24×34+0.52×12=2.5−1+8+0.5=10;(2)12lg25+lg2+(13)log32−log29×log32=lg5+lg2+3−log32−2(log23×log32)=1+12−2=−12.【解析】本题考查了指数幂和对数的运算的性质,属于基础题.(1)根据指数幂的运算性质计算即可;(2)根据对数的运算性质计算即可.18.【答案】解:由题意得:−x2+7x−12≥0,解得:3≤x≤4,故A=[3,4],∵1x−2≥1,∴x−3x−2≤0,解得:2<x≤3,故B=(2,3],(1)A∩B={3};(2)设p:x∈A,q:x>a,且p是q的充分不必要条件,即[3,4]⫋(a,+∞),故a<3,故a的取值范围是(−∞,3).【解析】本题考查了一元二次不等式的求解,集合的交集运算,考查了充分必要条件,考查了推理能力与计算能力,属于基础题.(1)分别求出集合A,B,求出A∩B即可;(2)根据集合的包含关系求出a的范围即可.19.【答案】解:(1)函数f(x)=a x(a>0且a≠1)在区间[1,2]上的最大值与最小值之和为6,则a+a2=6,即a2+a−6=0,解得a=2或a=−3(舍),故a=2,∴f(x)=2x;(2)g(x)=f(2x)−8f(x)=22x−8⋅2x,令2x=t,则原函数化为ℎ(t)=t2−8t,t∈[2,2m],其对称轴方程为t=4,当2m≤4,即1<m≤2时,函数最小值为(2m)2−8⋅2m=4m−8⋅2m;当2m>4,即m>2时,函数的最小值为42−8×4=−16.∴g(x)=f(2x)−8f(x)在[1,m](m>1)上的最小值为g(x)min={4m−8⋅2m,1<m≤2−16,m>2.【解析】本题考查指数函数的解析式、单调性与最值,二次函数的性质,是中档题.(1)根据指数函数的性质建立方程a+a2=6,即可求a的值,进一步得到函数解析式;(2)求出函数g(x)=f(2x)−8f(x)的解析式,换元后对m分类,利用二次函数的性质求最值.20.【答案】解:(1)根据题意,设x <0,则−x >0,则f(−x)=(−x)3=−x 3,又由f(x)为偶函数,则f(x)=f(−x)=−x 3, 故x <0时f(x)的解析式为f(x)=−x 3; (2)根据题意,f(x)为偶函数,则f(x)=f(|x|), 所以8f(x)=8f(|x|)=8×|x|3=(2|x|)3=f(2|x|), 又由当x ≥0时,f(x)=x 3,在[0,+∞)上为增函数;则f(x +1)≥8f(x)⇔f(|x +1|)≥f(|2x|)⇒|x +1|≥|2x|, 变形可得:3x 2−2x −1≤0,解可得:−13≤x ≤1,即不等式的解集为[−13,1].【解析】本题考查函数的奇偶性的性质以及应用,涉及绝对值不等式的解法,属于中档题.(1)根据题意,设x <0,则−x >0,由函数的解析式可得f(−x)=(−x)3=−x 3,结合函数的奇偶性分析可得答案;(2)根据题意,由函数的奇偶性以及解析式分析可得原不等式等价于|x +1|≥|2x|,解可得x 的取值范围,即可得答案.21.【答案】解:(1)当a =1时,药物在白鼠血液内的浓度y 与时间t 的关系为:y =y 1+y 2={−t +√t +4,0<t <17−(t +2t),1≤t ≤3; ①当0<t <1时,y =−t +√t +4=−(√t −12)2+174,所以当t =14时,y max =174;②当1≤t ≤3时,∵t +2t ≥2√2,当且仅当t =√2时取等号, 所以y max =7−2√2(当且仅当t =√2时取到),因为174>7−2√2, 故当t =14时,y max =174.(2)由题意y ={−at +√t +4(0<t <1)7−(at +2t )(1≤t ≤3) ① −at +√t +4≥4 ⇒ −at +√t ≥0 ⇒ a ≤√t ,又0<t <1,得出a ≤1;令u =1t ,则a ≤−2u 2+3u,u ∈[13,1],可得(−2u 2+3u )min =79 所以a ≤79, 综上可得0<a ≤79, 故a 的取值范围为(0,79].【解析】本题考查学生的函数思想,考查学生分段函数的基本思路,用好分类讨论思想,注意二次函数最值问题,基本不等式在求解该题中作用.恒成立问题的处理方法.用好分离变量法.(1)建立血液中药物的浓度与时间t 的函数关系是解决本题的关键,要根据得出的函数关系式采取合适的办法解决该浓度的最值问题;二次函数要注意对称轴和区间的关系、还要注意基本不等式的运用;(2)分段求解关于实数a 的范围问题,注意分离变量法的应用.22.【答案】解:(1)∵g(x)+2g(−x)=e x +2e x −9,∴g(−x)+2g(x)=e −x +2e x −9, 由以上两式联立可解得,g(x)=e x −3; ∵ℎ(−2)=ℎ(0)=1,∴二次函数的对称轴为x =−1,故设二次函数ℎ(x)=a(x +1)2+k , 则{a +k =14a +k =−2,解得{a =−1k =2,∴ℎ(x)=−(x +1)2+2=−x 2−2x +1;(2)由(1)知,g(x)=e x −3,其在[−1,1]上为增函数,故g(x)max =g(1)=e −3,∴ℎ(x 1)+ax 1+5≥e −3+3−e =0对任意x 1∈[−1,1]都成立,即x 12+(2−a)x 1−6≤0对任意x ∈[−1,1]都成立,∴{1−(2−a)−6≤01+(2−a)−6≤0,解得−3≤a ≤7, 故实数的a 的取值范围为[−3,7];(3)f(x)={e x −3,x >0−x 2−2x +1,x ≤0,作函数f(x)的图象如下,令t=f(x),a∈[−3,7],则f(t)=a+5∈[2,12],①当a=−3时,f(t)=2,由图象可知,此时方程f(t)=2有两个解,设为t1=−1,t2=ln5∈(1,2),则f(x)=−1有2个解,f(x)=ln5有3个解,故共5个解;②当−3<a<e2−8时,f(t)=a+5∈(2,e2−3),由图象可知,此时方程f(t)=a+5有一个正实数解,设为t3=ln(a+8)∈(ln5,2),则f(x)=t3=ln(a+8)有3个解,故共3个解;③当a=e2−8时,f(t)=a+5=e2−3,由图象可知,此时方程f(t)=a+5有一个解t4=2,则f(x)=t4=2有2个解,故共2个解;④当e2−8<a≤7时,f(t)=a+5∈(e2−3,12],由图象可知,此时方程f(t)=a+5有一个解t5=ln(a+8)∈(2,ln15],则f(x)=t5有1个解,故共1个解.【解析】本题考查函数解析式的求法,考查不等式的恒成立问题及函数零点与方程解的关系,旨在考查数形结合及分类讨论思想,属于中档题.(1)运用构造方程组法可求g(x),运用待定系数法可求ℎ(x);(2)原问题等价于x12+(2−a)x1−6≤0对任意x1∈[−1,1]都成立,进而求得实数a的取值范围;(3)作出函数f(x)的图象,结合图象讨论即可.。

河南省南阳市2020-2021学年高一上学期期中考试数学试题 PDF版含答案

河南省南阳市2020-2021学年高一上学期期中考试数学试题 PDF版含答案

3
x2
3
x2
1
(x2
1
x 2 )(x
x 1
1)
2
5
.....................10 分
18. 解:(1)当 m 1 2m 1,即 m 2 时, B ,满足 B A . ....................2 分
当 m 1 2m 1,即 m 2 时,要使 B A 成立,
#
!$" %$" ($" '$# )$#
$
#$' ($# 5$' #! #/$#
! ! o p q r n s a ! 3 6 0 t u v w x \ y ! l z { . | } ~ . 6 0 7
!,$$*123!#!
&$$*123#!#!
-$$*#!!+#!
.$$*!#+#
VI!"NO!)RS"UVI W X N O0 R S " Y Z 5 U V ! " N O[ Z 5 U V W X
N O \ 0 Q S ] U V ! " W X ^ 0 N O . S " . _ ! B
!,$#'!
&$#(!
($`a!$*# BS6a!.7
-$#%!
.$#!
!,$$* 槡#! !
故 f (x) 在 (500,) 上无最大值.
.....................11 分
综上,当 x 475 时, f (x)max 107812.5.
......................12 分
高一数学答案 第 2 页 共 3 页

2020-2021学年江苏省南京市金陵中学、一中高一(上)期中数学试卷及答案

2020-2021学年江苏省南京市金陵中学、一中高一(上)期中数学试卷及答案

2020-2021学年江苏省南京市金陵中学、一中高一(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分,请把答案直接填写在答题卡相应位置上.1.(5分)已知集合A={1,2,3},B={x|x﹣2≥0,x∈R},则A∩B=()A.{3}B.{2,3}C.{2}D.{1,2,3} 2.(5分)命题“∃x0∈R,x02﹣1≥0”的否定是()A.∃x0∈R,x02﹣1<0B.∃x0∈R,x02﹣1≤0C.∀x∈R,x2﹣1≤0D.∀x∈R,x2﹣1<03.(5分)函数y=+的定义域为()A.[﹣1,]B.(﹣∞,]C.(﹣∞,﹣1]D.(﹣∞,﹣1]∪(﹣1,]4.(5分)函数f(x)=的最小值为()A.3B.2C.2D.15.(5分)函数y=的图象大致为()A.B.C.D.6.(5分)若函数f(x)=在R上是增函数,则实数a的取值范围是()A.[﹣4,﹣]B.[,4]C.[﹣3,4]D.[3,]7.(5分)若关于x的不等式ax2+2x+1<0有实数解,则a的取值范围是()A.(0,1]B.[0,1]C.(﹣∞,1]D.(﹣∞,1)8.(5分)若非空数集G满足“对于∀a,b∈G,都有a+b,a﹣b,ab∈G,且当b≠0时,∈G”,则称G是一个“理想数集”,给出下列四个命题:①0是任何“理想数集”的元素;②若“理想数集”M有非零元素,则N*⊆M③集合P={x|x=2k,k∈Z}是一个“理想数集”;④集合T={x|x=a+b,a,b∈Z}是“理想数集”.其中真命题的个数是()A.1B.2C.3D.4二、多项选择题:(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,选对但不全的得3分,有选错的得0分)9.(5分)以下说法中正确的有()A.“f(x)是定义在R上的偶函数”的含义是“存在x∈R,使得f(﹣x)=f(x)”B.“f(x)是定义在R上的增函数”的含义是“∀x1,x2∈R,当x1<x2时,有f(x1)<f (x2)”C.设M,P是两个非空集合,则M⊆P的含义是“对于∀x∈M,x∈P”D.设f(x)是定义在R上的函数,则“f(0)=0”是“f(x)是奇函数”的必要条件10.(5分)已知a,b,c,d∈R,则下列结论中正确的有()A.若ac2>bc2,则a>bB.若,则a>bC.若a>b>0,ac>bd>0,则c>dD.若,则a<b11.(5分)下列说法中不正确的有()A.设A,B是两个集合,若A∪B=A∩B,则A=BB.函数y=与y=为同一个函数C.函数y=+的最小值为2D.设y=f(x)是定义在R上的函数,则函数y=xf(|x|)是奇函数12.(5分)若函数f(x)同时满足:①对于定义域内的∀x,都有f(x)+f(﹣x)=0;②对于定义域内的∀x1,x2当x1≠x2时,都有<0则称函数f(x)为“颜值函数”.下列函数中,是“颜值函数”的有()A.f(x)=B.f(x)=x2C.f(x)=D.f(x)=﹣2x三、填空题:本大题共4小题,每小题5分,共20分,请把答案直接填写在答题卡相应位置上.13.(5分)设x∈R,则“0<x<5”是“|x﹣1|<1”的条件(填“充分且不必要”“必要且不充分”“充要”“既不充分也不必要”).14.(5分)已知函数f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x2+x+2,则f(1)+g(1)=.15.(5分)在平面直角坐标系xOy中,若直线y=a与函数y=|x﹣a|+2﹣a的图象有且只有一个公共点,则实数a的值为.16.(5分)已知x>0,y>0,x+2y=2,则的最小值为.三、解答题:本大题共6小题,共70分,请把答案填写在答题卡相应位置上17.(10分)计算:(1)lg52+lg8+lg5•lg20+(lg2)2;(2)π0﹣(8)﹣2+×(4)﹣1.18.(12分)设全集U=R,已知集合A={x|x2﹣x﹣6≥0},B={x|<0},C={x|m﹣1≤x≤2m}.(1)求A∩B和(∁U A)∪B;(2)若B∩C=C,求实数m的取值范围.19.(12分)设函数f(x)=x2+bx+c(b,c∈R),已知f(x)<0的解集为区间(﹣1,3).(1)求b,c的值;(2)若函数g(x)=f(x)﹣ax在区间[0,2]上的最小值为﹣4,求实数a的值.20.(12分)根据试验检测,一辆P型运输汽车在高速公路上匀速行驶时,耗油率(L/h)近似与车速(km/h)的平方成正比,且当车速是100km/h时,耗油率为L/h.已知A,B两地间有一条长130km的高速公路,最低限速60km/h,最高限速120km/h.若某环保公司用一辆该型号运输车将垃圾从A地转运至B地,已知过路费为40元,支付给雇用司机的工资平均每小时80元.假设汽油的价格是8元/L,汽车匀速行驶(起步、必要的减速或提速等忽略不计),问:当行车速度为多少时,转运一次的总费用最低?最低为多少元?21.(12分)已知函数f(x)=为奇函数.(1)求实数a的值;(2)求证:f(x)在区间[2,+∞)上是增函数;(3)若对任意的x1,x2∈[2,4],都有f(x1)﹣f(x2)≤m2﹣2m﹣2,求实数m的取值范围.22.(12分)设f(x)是R上的减函数,且对任意实数x,y,都有f(x+y)=f(x)+f(y);函数g(x)=x2+ax+b(a,b∈R).(1)判断函数f(x)的奇偶性,并证明你的结论;(2)若a=﹣1,b=5,且______.(①存在t∈[﹣3,2];②对任意t∈[﹣3,2]),不等式f(g(t)﹣1)+f(3t+m)>0成立,求实数m的取值范围;请从以上两个条件中选择一个填在横线处,并完成求解.(3)当a>0时,若关于x的不等式g(x)≤0与g(g(x))≤3的解集相等且非空,求a的取值范围.2020-2021学年江苏省南京市金陵中学、一中高一(上)期中数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分,请把答案直接填写在答题卡相应位置上.1.(5分)已知集合A={1,2,3},B={x|x﹣2≥0,x∈R},则A∩B=()A.{3}B.{2,3}C.{2}D.{1,2,3}【分析】可以求出集合B,然后进行交集的运算即可.【解答】解:∵A={1,2,3},B={x|x≥2},∴A∩B={2,3}.故选:B.【点评】本题考查了列举法、描述法的定义,交集的定义及运算,考查了计算能力,属于基础题.2.(5分)命题“∃x0∈R,x02﹣1≥0”的否定是()A.∃x0∈R,x02﹣1<0B.∃x0∈R,x02﹣1≤0C.∀x∈R,x2﹣1≤0D.∀x∈R,x2﹣1<0【分析】根据特称命题的否定形式进行判断【解答】解:命题“∃x0∈R,x02﹣1≥0”的否定是∀x∈R,x2﹣1<0,故选:D.【点评】本题考查了命题的否定,属于基础题.3.(5分)函数y=+的定义域为()A.[﹣1,]B.(﹣∞,]C.(﹣∞,﹣1]D.(﹣∞,﹣1]∪(﹣1,]【分析】可看出,要使得原函数有意义,需满足,然后解出x的范围即可.【解答】解:要使原函数有意义,则,解得且x≠﹣1,∴原函数的定义域为:.故选:D.【点评】本题考查了函数定义域的定义及求法,区间的定义,考查了计算能力,属于基础题.4.(5分)函数f(x)=的最小值为()A.3B.2C.2D.1【分析】先研究函数在每一段的单调性,分别求出它们的最值,然后求解函数的最值,就是大中取大,小中取小.【解答】解:对于函数函数f(x)=,当x≤1时,f(x)=x2﹣2x+3.在(﹣∞,1]上递减;所以此时y min=f(1)=2,当x>1时,f(x)=x+≥2=2,当且仅当x=,取等号,综上可知原函数的最小值为:2.故选:C.【点评】本题考查分段函数的性质,一般来讲分段函数的处理原则:分段函数,分段处理.如本题求最值,应先在每一段上求它们的最大(小)值,最后大中取大.小中取小.5.(5分)函数y=的图象大致为()A.B.C.D.【分析】根据函数的奇偶性和函数值的正负即可判断.【解答】解:函数y=的定义域为实数集R,关于原点对称,函数y=f(x)=,则f(﹣x)=﹣=﹣f(x),则函数y=f(x)为奇函数,故排除A,C,当x>0时,y=f(x)>0,故排除D,故选:B.【点评】本题考查了函数图象的识别,属于基础题.6.(5分)若函数f(x)=在R上是增函数,则实数a的取值范围是()A.[﹣4,﹣]B.[,4]C.[﹣3,4]D.[3,]【分析】根据分段函数的单调性的判断方法建立不等式组,即可求解.【解答】解:要满足已知题意,只需,解得,故选:B.【点评】本题考查了分段函数的单调性,考查了学生解不等式的能力,属于基础题.7.(5分)若关于x的不等式ax2+2x+1<0有实数解,则a的取值范围是()A.(0,1]B.[0,1]C.(﹣∞,1]D.(﹣∞,1)【分析】讨论a=0、a<0和a>0时,求出不等式有解时a的取值范围.【解答】解:a=0时,不等式为2x+1<0,有实数解,满足题意;a<0时,一元二次不等式为ax2+2x+1<0,不等式对应的二次函数开口向下,所以有实数解;a>0时,一元二次不等式为ax2+2x+1<0,应满足△=4﹣4a>0,解得a<1;综上知,a的取值范围是(﹣∞,1).故选:D.【点评】本题考查了不等式有解的应用问题,也考查了分类讨论思想,是基础题.8.(5分)若非空数集G满足“对于∀a,b∈G,都有a+b,a﹣b,ab∈G,且当b≠0时,∈G”,则称G是一个“理想数集”,给出下列四个命题:①0是任何“理想数集”的元素;②若“理想数集”M有非零元素,则N*⊆M③集合P={x|x=2k,k∈Z}是一个“理想数集”;④集合T={x|x=a+b,a,b∈Z}是“理想数集”.其中真命题的个数是()A.1B.2C.3D.4【分析】利用已知条件中理想数集的定义判断命题的真假,题目中给出了对两个实数的四种运算,要满足对四种运算的封闭,只有一一验证.【解答】解:对于①,设a=b∈G,显然有a﹣a∈G,即0∈G,故0是任何“理想数集”的元素,故①正确;对于②:当a=b时,显然有,则1+1,2+1,…,N+1∈M,所以N*∈M,故②正确;对于③:易知2∈P,而,故③错误;对于④:a,b∈Z,故1+2∈T,而,故④错误.故选:B.【点评】本题考查学生对于新定义题型的理解和把握能力,理解“理想数集”的定义是解决该题的关键,题目着重考察学生的构造性思维,属于难题.二、多项选择题:(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,选对但不全的得3分,有选错的得0分)9.(5分)以下说法中正确的有()A.“f(x)是定义在R上的偶函数”的含义是“存在x∈R,使得f(﹣x)=f(x)”B.“f(x)是定义在R上的增函数”的含义是“∀x1,x2∈R,当x1<x2时,有f(x1)<f (x2)”C.设M,P是两个非空集合,则M⊆P的含义是“对于∀x∈M,x∈P”D.设f(x)是定义在R上的函数,则“f(0)=0”是“f(x)是奇函数”的必要条件【分析】根据偶函数的定义即可判断A;由增函数的定义即可判断B;由子集的定义即可判断C;由充分必要条件的定义即可判断D.【解答】解:对于A,“f(x)是定义在R上的偶函数”的含义是“对任意的x∈R,都有f(﹣x)=f(x)”,故A错误;对于B,“f(x)是定义在R上的增函数”的含义是“∀x1,x2∈R,当x1<x2时,有f(x1)<f(x2)”,故B正确;对于C,由子集的定义可知C正确;对于D,若f(x)是定义在R上的奇函数,则f(0)=0,若f(x)是定义在R上的函数,且f(0)=0,不能得出f(x)为奇函数,例如f(x)=x2,故“f(0)=0”是“f(x)是奇函数”的必要条件,故D正确.故选:BCD.【点评】本题主要考查函数奇偶性单调性的定义,考查子集的定义,充要条件的定义,属于中档题.10.(5分)已知a,b,c,d∈R,则下列结论中正确的有()A.若ac2>bc2,则a>bB.若,则a>bC.若a>b>0,ac>bd>0,则c>dD.若,则a<b【分析】由不等式的基本性质逐一判断即可.【解答】解:对于A,若ac2>bc2,则a>b,故A正确;对于B,若<0<,则a<0<b,故B错误;对于C,取a=9,b=1,c=2,d=3,满足a>b>0,ac>bd>0,但c<d,故C错误;对于D,若,则﹣=>0,则b>a,故D正确.故选:AD.【点评】本题主要考查不等式的基本性质,属于基础题.11.(5分)下列说法中不正确的有()A.设A,B是两个集合,若A∪B=A∩B,则A=BB.函数y=与y=为同一个函数C.函数y=+的最小值为2D.设y=f(x)是定义在R上的函数,则函数y=xf(|x|)是奇函数【分析】由集合的基本运算即可判断A;判断定义域与解析式是否相同即可判断B;利用换元及对勾函数的性质即可判断选项C;由函数的奇偶性的定义即可判断D.【解答】解:对于A,设A,B是两个集合,若A∪B=A∩B,则A=B,故A正确;对于B,函数y==|x|,函数y==x,两函数定义域相同,解析式不同,故不是同一函数,故B错误;对于C,令t=≥,则y=+t在[,+∞)上单调递增,所以当t=时,取得最小值为,所以函数y=+的最小值为,故C错误;对于D,函数y=g(x)=xf(|x|),g(﹣x)=﹣xf(|﹣x|)=﹣xf(|x|)=﹣g(x),所以函数y=xf(|x|)是奇函数,故D正确.故选:BC.【点评】本题主要考查即可得基本运算,同一函数的判断,函数最值的求法,以及函数奇偶性的判断,属于中档题.12.(5分)若函数f(x)同时满足:①对于定义域内的∀x,都有f(x)+f(﹣x)=0;②对于定义域内的∀x1,x2当x1≠x2时,都有<0则称函数f(x)为“颜值函数”.下列函数中,是“颜值函数”的有()A.f(x)=B.f(x)=x2C.f(x)=D.f(x)=﹣2x【分析】先理解已知两条性质反映的函数性质,①f(x)为奇函数,②f(x)为定义域上的减函数,由此判断各选项是否同时具备两个性质即可.【解答】解:依题意,性质①反映函数f(x)为定义域上的奇函数,性质②反映函数f (x)为定义域上的减函数,对于A,f(x)=为定义域上的奇函数,但不是定义域上的减函数,其单调区间为(﹣∞,0),(0,+∞),故A不是“颜值函数”;对于B,f(x)=x2为定义域上的偶函数,故B不是“颜值函数”;对于C,函数f(x)=的图象如图所示,显然此函数为奇函数,且在定义域上为减函数,故C是“颜值函数”.对于D,f(x)=﹣2x为定义域上的奇函数,且是定义域上的减函数,故D是“颜值函数”.故选:CD.【点评】本题主要考查了抽象表达式反映的函数性质,对新定义函数的理解能力,奇函数的定义,函数单调性的定义,基本初等函数的单调性和奇偶性及其判断方法,复合函数及分段函数的单调性和奇偶性的判断方法,属于中档题.三、填空题:本大题共4小题,每小题5分,共20分,请把答案直接填写在答题卡相应位置上.13.(5分)设x∈R,则“0<x<5”是“|x﹣1|<1”的必要且不充分条件(填“充分且不必要”“必要且不充分”“充要”“既不充分也不必要”).【分析】解出关于x的不等式,结合充分必要条件的定义,从而求出答案.【解答】解:∵|x﹣1|<1,∴0<x<2,∵0<x<5推不出0<x<2,0<x<2⇒0<x<5,∴0<x<5是0<x<2的必要且不充分条件,即0<x<5是|x﹣1|<1的必要且不充分条件故答案为:必要且不充分.【点评】本题考查了充分必要条件,考查解不等式问题,是一道基础题.14.(5分)已知函数f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x2+x+2,则f(1)+g(1)=2.【分析】根据题意,由函数的解析式可得f(﹣1)﹣g(﹣1)=(﹣1)2﹣1+2=2,结合函数的奇偶性可得f(﹣1)﹣g(﹣1)=f(1)+g(1),即可得答案.【解答】解:根据题意,f(x)﹣g(x)=x2+x+2,则f(﹣1)﹣g(﹣1)=(﹣1)2﹣1+2=2,又由函数f(x),g(x)分别是定义在R上的偶函数和奇函数,则f(﹣1)﹣g(﹣1)=f(1)+g(1)=2.故答案为:2.【点评】本题考查函数的奇偶性的性质以及应用,关键是掌握函数奇偶性的定义,属于基础题.15.(5分)在平面直角坐标系xOy中,若直线y=a与函数y=|x﹣a|+2﹣a的图象有且只有一个公共点,则实数a的值为1.【分析】由已知可转化为函数y=2a﹣2与函数y=|x﹣a|的图象只有一个交点,利用函数的图象性质即可求解.【解答】解:由已知可令a=|x﹣a|+2﹣a,可得:2a﹣2=|x﹣a|,可看成函数y=2a﹣2与函数y=|x﹣a|图象只有一个公共点,而函数y=|x﹣a|是以x=a为对称轴,最小值为0的函数,所以要满足题意只需令2a﹣2=0,即a=1,故答案为:1【点评】本题考查了函数的零点与方程根的关系,属于基础题.16.(5分)已知x>0,y>0,x+2y=2,则的最小值为16.【分析】由=+++=++(+)(x+2y),利用基本不等式即可求得最小值.【解答】解:∵x>0,y>0,x+2y=2,∴=+++=++(+)(x+2y)=++4≥4+2=16,当且仅当=时,取得最小值16.故答案为:16.【点评】本题考查了利用基本不等式性质求最值问题,属于基础题.三、解答题:本大题共6小题,共70分,请把答案填写在答题卡相应位置上17.(10分)计算:(1)lg52+lg8+lg5•lg20+(lg2)2;(2)π0﹣(8)﹣2+×(4)﹣1.【分析】(1)利用对数的运算性质求解.(2)利用有理数指数幂的运算性质求解.【解答】解:(1)原式=2lg5+2lg2+lg5•lg20+(lg2)2=2+lg5•(2lg2+lg5)+(lg2)2=2+(lg5)2+2lg5•lg2+(lg2)2=2+(lg5+lg2)2=2+1=3.(2)原式=1﹣+×=1﹣16+2=﹣13.【点评】本题主要考查了对数的运算性质和有理数指数幂的运算性质,是基础题.18.(12分)设全集U=R,已知集合A={x|x2﹣x﹣6≥0},B={x|<0},C={x|m﹣1≤x≤2m}.(1)求A∩B和(∁U A)∪B;(2)若B∩C=C,求实数m的取值范围.【分析】(1)可以求出集合A={x|x≤﹣2或x≥3},B={x|1<x<5},然后进行交集、并集和补集的运算即可;(2)根据B∩C=C可得出C⊆B,然后讨论C是否为空集:C=∅时,m﹣1>2m;C≠∅时,,然后解出m的范围即可.【解答】解:(1)A={x|x≤﹣2或x≥3},B={x|1<x<5},U=R,∴A∩B={x|3≤x<5},∁U A={x|﹣2<x<3},(∁U A)∪B={x|﹣2<x<5};(2)∵B∩C=C,∴C⊆B,①C=∅时,m﹣1>2m,解得m<﹣1;②C≠∅时,,解得;综上得实数m的取值范围为.【点评】本题考查了描述法的定义,交集、并集和补集的定义及运算,全集的定义,子集的定义,考查了计算能力,属于基础题.19.(12分)设函数f(x)=x2+bx+c(b,c∈R),已知f(x)<0的解集为区间(﹣1,3).(1)求b,c的值;(2)若函数g(x)=f(x)﹣ax在区间[0,2]上的最小值为﹣4,求实数a的值.【分析】(1)由f(x)<0的解集为区间(﹣1,3)可知x=﹣1,x=3是x2+bx+c=0的解,然后结合方程的根与系数关系可求;(2)g(x)=f(x)﹣ax=x2﹣(a+2)x﹣3开口向上,对称轴x=,然后结合对称轴与已知区间的位置关系进行分类讨论可求.【解答】解:(1)由f(x)<0的解集为区间(﹣1,3)可知x=﹣1,x=3是x2+bx+c =0的解,故,解得,b=﹣2,c=﹣3,(2)g(x)=f(x)﹣ax=x2﹣(a+2)x﹣3开口向上,对称轴x=,(i)即a≥2时,函数g(x)在[0,2]上单调递减,g(x)min=g(2)=﹣2a ﹣3=﹣4,解得,a=(舍),(ii)即a≤﹣2时,函数g(x)在[0,2]上单调递增,g(x)min=g(0)=﹣3≠﹣4,(舍),(iii)当0即﹣2<a<2时,函数g(x)在[0,2]上先减后增,g(x)min=g ()=﹣3﹣=﹣4,解得,a=4(舍)或a=0,综上,a=0.【点评】本题主要考查了二次函数与二次不等式的相互转化关系的应用及二次函数闭区间上最值的求解,体现了转化思想及分类讨论思想的应用.20.(12分)根据试验检测,一辆P型运输汽车在高速公路上匀速行驶时,耗油率(L/h)近似与车速(km/h)的平方成正比,且当车速是100km/h时,耗油率为L/h.已知A,B两地间有一条长130km的高速公路,最低限速60km/h,最高限速120km/h.若某环保公司用一辆该型号运输车将垃圾从A地转运至B地,已知过路费为40元,支付给雇用司机的工资平均每小时80元.假设汽油的价格是8元/L,汽车匀速行驶(起步、必要的减速或提速等忽略不计),问:当行车速度为多少时,转运一次的总费用最低?最低为多少元?【分析】设车速为xkm/h,用x表示出油耗和行车时间,得出总费用关于x的函数,根据基本不等式求出费用最小值.【解答】解:设车速为xkm/h,耗油率m(x)=kx2,则由题意可得m(100)=10000k =,∴k==.∴从A地到B地消耗汽油的价钱为,司机的工资为=,故从A地到B地的总费用f(x)=≥2=300元.当且仅当,即x=80∈[60,120]时取等号.∴从A地到B地的车速是80km/h时,转运一次的总费用最低为300元.【点评】本题考查函数模型的选择及应用,考查函数解析式求解,函数最值的计算,属于中档题.21.(12分)已知函数f(x)=为奇函数.(1)求实数a的值;(2)求证:f(x)在区间[2,+∞)上是增函数;(3)若对任意的x1,x2∈[2,4],都有f(x1)﹣f(x2)≤m2﹣2m﹣2,求实数m的取值范围.【分析】(1)由f(x)为奇函数,结合奇函数的定义代入可求;(2)结合单调性定义,设2≤x1<x2,然后利用作差法比较f(x1)与f(x2)的大小即可判断;(3)结合(2)中单调性即可求解函数最值.【解答】解:(1)因为f(x)=为奇函数,x≠0,所以f(﹣x)=﹣f(x),所以,整理可得,ax=0,所以a=0,(2)证明:由(1)可得f(x)==x+,设2≤x1<x2,则f(x1)﹣f(x2)=x1﹣x2+,=x1﹣x2+=(x1﹣x2)(1﹣)<0,所以f(x1)<f(x2),所以f(x)在区间[2,+∞)上是增函数;(3)由(2)可得f(x)=x在[2,4]上单调递增,故f(x)max=f(4)=5,f(x)min=f(2)=4,若对任意的x1,x2∈[2,4],都有f(x1)﹣f(x2)≤m2﹣2m﹣2,所以1≤m2﹣2m﹣2,解得m≥3或m≤﹣1.【点评】本题主要考查了函数奇偶性及单调性的应用及判断,还考查了函数单调性在求解最值中的应用.22.(12分)设f(x)是R上的减函数,且对任意实数x,y,都有f(x+y)=f(x)+f(y);函数g(x)=x2+ax+b(a,b∈R).(1)判断函数f(x)的奇偶性,并证明你的结论;(2)若a=﹣1,b=5,且______.(①存在t∈[﹣3,2];②对任意t∈[﹣3,2]),不等式f(g(t)﹣1)+f(3t+m)>0成立,求实数m的取值范围;请从以上两个条件中选择一个填在横线处,并完成求解.(3)当a>0时,若关于x的不等式g(x)≤0与g(g(x))≤3的解集相等且非空,求a的取值范围.【分析】(1)令x=y=0,可得f(0),再令y=﹣x,结合奇偶性的定义,即可得到结论;(2)分别选①②,将原不等式转化为﹣m>t2+2t+4对t∈[﹣3,2]成立或恒成立,结合参数分离和二次函数的最值求法,可得所求范围;(3)考虑g(x)=0与g(g(x))=3的解集相等,求得b=3,再由g(x)≤0的解集,结合判别式的符号和因式分解,可得所求范围.【解答】解:(1)令x=y=0,则f(0)=f(0)+f(0),即f(0)=0,再令y=﹣x,则f(0)=f(x)+f(﹣x),即f(﹣x)=﹣f(x),所以f(x)为R上的奇函数;(2)①存在t∈[﹣3,2].f(g(t)﹣1)+f(3t+m)=f[(g(t)﹣1)+(3t+m)]>0=f(0),由f(x)是R上的减函数可得g(t)﹣1+(3t+m)<0,即t2﹣t+4+3t+m<0,也即t2+2t+4+m<0,可得﹣m>t2+2t+4对t∈[﹣3,2]成立,y=t2+2t+4=(t+1)2+3在t=﹣1时取得最小值4,则﹣m>3,即m<﹣3;选②任意t∈[﹣3,2],f(g(t)﹣1)+f(3t+m)=f[(g(t)﹣1)+(3t+m)]>0=f(0),由f(x)是R上的减函数可得g(t)﹣1+(3t+m)<0,即t2﹣t+4+3t+m<0,也即t2+2t+4+m<0,可得﹣m>t2+2t+4在任意t∈[﹣3,2]恒成立,y=t2+2t+4=(t+1)2+3在t=2时取得最大值12,则﹣m>12,即m<﹣12;(3)当a>0时,若关于x的不等式g(x)≤0与g(g(x))≤3的解集相等且非空,可得g(x)=0与g(g(x))=3的解集相等,可得g(0)=3,即b=3,g(x)=x2+ax+3≤0,可得△=a2﹣12≥0,即a≥2(a≤﹣2舍去),又g(g(x)﹣3=(x2+ax+3)2+a(x2+ax+3)+3﹣3=(x2+ax+3)(x2+ax+3+a),由题意可得x2+ax+3+a≥0恒成立,可得△=a2﹣4(a+3)≤0,解得﹣2≤a≤6,又a>0,可得0<a≤6,综上可得2≤a≤6.【点评】本题考查抽象函数的奇偶性和单调性的判断和运用,以及不等式恒成立和成立问题解法,考查转化思想和运算能力、推理能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021高一数学上期中试题及答案(1)一、选择题1.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A CB ⊆⊆的集合C 的个数为( )A .1B .2C .3D .42.如图,点O 为坐标原点,点(1,1)A ,若函数xy a =及log b y x =的图象与线段OA 分别交于点M ,N ,且M ,N 恰好是线段OA 的两个三等分点,则a ,b 满足.A .1a b <<B .1b a <<C .1b a >>D .1a b >>3.对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式[][]2436450x x -+<成立的x 的取值范围是( ) A .315,22⎛⎫⎪⎝⎭ B .[]28, C .[)2,8 D .[]2,74.函数()f x 在(,)-∞+∞单调递增,且为奇函数,若(1)1f =,则满足1(2)1f x -≤-≤的x 的取值范围是( ). A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]5.函数()1ln f x x x ⎛⎫=-⎪⎝⎭的图象大致是( ) A . B .C .D .6.已知函数y=f (x )定义域是[-2,3],则y=f (2x-1)的定义域是( )A .50,2⎡⎤⎢⎥⎣⎦B .[]1,4-C .1,22⎡⎤-⎢⎥⎣⎦D .[]5,5-7.设奇函数()f x 在[1,1]-上是增函数,且(1)1f -=-,若函数2()21f x t at ≤-+对所有的[1,1]x ∈-都成立,当[1,1]a ∈-时,则t 的取值范围是( ) A .1122t -≤≤ B .22t -≤≤C .12t ≥或12t ≤-或0t = D .2t ≥或2t ≤-或0t =8.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0) B .[0,+∞)C .[–1,+∞)D .[1,+∞)9.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =I ,则实数a 的取值范围是( ) A .(,2]-∞-B .[2,)+∞C .(,2]-∞D .[2,)-+∞10.已知函数()f x =2log (1),(1,3)4,[3,)1x x x x ⎧+∈-⎪⎨∈+∞⎪-⎩,则函数[]()()1g x f f x =-的零点个数为( ) A .1B .3C .4D .611.已知函数()()()ln 1ln 1f x x x =+--,若实数a 满足()()120f a f a +->,则a 的取值范围是( ) A .()1,1-B .()0,1C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭12.函数2xy x =⋅的图象是( )A .B .C .D .二、填空题13.设25a b m ==,且112a b+=,则m =______. 14.已知函数()2()lg 2f x x ax =-+在区间(2,)+∞上单调递增,则实数a 的取值范围是______.15.已知函数()f x 是定义在 R 上的奇函数,且当0x >时,()21xf x =-,则()()1f f -的值为______.16.已知f (x )是定义在[-2,2]上的奇函数,当x ∈(0,2]时,f (x )=2x-1,函数g (x )=x 2-2x +m .如果∀x 1∈[-2,2],∃x 2∈[-2,2],使得g (x 2)=f (x 1),则实数m 的取值范围是______________.17.如果关于x 的方程x 2+(m -1)x -m =0有两个大于12的正根,则实数m 的取值范围为____________. 18.函数的定义域为______________.19.若幂函数()af x x =的图象经过点1(3)9,,则2a -=__________.20.甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程()(1,2,3,4)i f x i =关于时间(0)x x ≥的函数关系式分别为1()21x f x =-,22()f x x =,3()f x x =,42()log (1)f x x =+,有以下结论:①当1x >时,甲走在最前面; ②当1x >时,乙走在最前面;③当01x <<时,丁走在最前面,当1x >时,丁走在最后面; ④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为 (把正确结论的序号都填上,多填或少填均不得分).三、解答题21.已知满足(1)求的取值范围; (2)求函数的值域.22.已知函数()()log 1xa f x a =-(0a >,1a ≠)(1)当12a =时,求函数()f x 的定义域; (2)当1a >时,求关于x 的不等式()()1f x f <的解集;(3)当2a =时,若不等式()()2log 12xf x m -+>对任意实数[]1,3x ∈恒成立,求实数m 的取值范围.23.已知集合A={x|x <-1,或x >2},B={x|2p-1≤x≤p+3}. (1)若p=12,求A∩B; (2)若A∩B=B,求实数p 的取值范围. 24.已知函数()lg(2)lg(2)f x x x =++-. (1)求函数()y f x =的定义域; (2)判断函数()y f x =的奇偶性; (3)若(2)()f m f m -<,求m 的取值范围.25.已知定义域为R 的函数()22xx b f x a-=+是奇函数.()1求a ,b 的值;()2用定义证明()f x 在(),-∞+∞上为减函数;()3若对于任意t R ∈,不等式()()22220f t t f t k -+-<恒成立,求k 的范围.26.已知定义域为R 的函数()1221x a f x =-++是奇函数. (1)求a 的值;(2)判断函数()f x 的单调性并证明;(2)若关于m 的不等式()()222120f m m f m mt -+++-≤在()1,2m ∈有解,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D. 【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.2.A解析:A 【解析】 【分析】由,M N 恰好是线段OA 的两个三等分点,求得,M N 的坐标,分别代入指数函数和对数函数的解析式,求得,a b 的值,即可求解. 【详解】由题意知(1,1)A ,且,M N 恰好是线段OA 的两个三等分点,所以11,33M ⎛⎫ ⎪⎝⎭,22,33N ⎛⎫ ⎪⎝⎭, 把11,33M ⎛⎫ ⎪⎝⎭代入函数xy a =,即1313a =,解得127a =,把22,33N ⎛⎫ ⎪⎝⎭代入函数log b y x =,即22log 33b =,即得32239b ⎛⎫== ⎪⎝⎭,所以1a b <<. 故选A. 【点睛】本题主要考查了指数函数与对数函数的图象与性质的应用,其中解答熟练应用指数函数和对数函数的解析式求得,a b 的值是解答的关键,着重考查了推理与运算能力,属于基础题.3.C【解析】 【分析】 【详解】分析:先解一元二次不等式得315[]22x <<,再根据[]x 定义求结果. 详解:因为[][]2436450x x -+<,所以315[]22x << 因为[][]2436450x x -+<,所以28x ≤<, 选C.点睛:本题考查一元二次不等式解法以及取整定义的理解,考查基本求解能力.4.D解析:D 【解析】 【分析】 【详解】()f x 是奇函数,故()()111f f -=-=- ;又()f x 是增函数,()121f x -≤-≤,即()(1)2(1)f f x f -≤-≤ 则有121x -≤-≤ ,解得13x ≤≤ ,故选D.【点睛】解本题的关键是利用转化化归思想,结合奇函数的性质将问题转化为()(1)2f f x -≤-(1)f ≤,再利用单调性继续转化为121x -≤-≤,从而求得正解.5.B解析:B 【解析】 【分析】通过函数在2x =处函数有意义,在2x =-处函数无意义,可排除A 、D ;通过判断当1x >时,函数的单调性可排除C ,即可得结果.【详解】当2x =时,110x x -=>,函数有意义,可排除A ;当2x =-时,1302x x -=-<,函数无意义,可排除D ;又∵当1x >时,函数1y x x=-单调递增, 结合对数函数的单调性可得函数()1ln f x x x ⎛⎫=- ⎪⎝⎭单调递增,可排除C ; 故选:B.本题主要考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合与分类讨论的思维能力,属于中档题.6.C解析:C 【解析】∵函数y =f (x )定义域是[−2,3], ∴由−2⩽2x −1⩽3, 解得−12⩽x ⩽2, 即函数的定义域为1,22⎡⎤-⎢⎥⎣⎦,本题选择C 选项.7.D解析:D 【解析】试题分析:奇函数()f x 在[]1,1-上是增函数, 且()11f -=-,在[]1,1-最大值是21,121t at ∴≤-+,当0t ≠时, 则220t at -≥成立, 又[]1,1a ∈-,令()[]22,1,1r a ta t a =-+∈-, 当0t >时,()r a 是减函数, 故令()10r ≥解得2t ≥, 当0t <时,()r a 是增函数, 故令()10r -≥,解得2t ≤-,综上知,2t ≥或2t ≤-或0t =,故选D. 考点:1、函数的奇偶性与单调性能;2、不等式恒成立问题.【方法点晴】本题主要考查函数的奇偶性与单调性能、不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合(()y f x =图象在()y g x =上方即可);③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题是利用方法①求得t 的范围.8.C解析:C 【解析】分析:首先根据g (x )存在2个零点,得到方程()0f x x a ++=有两个解,将其转化为()f x x a =--有两个解,即直线y x a =--与曲线()y f x =有两个交点,根据题中所给的函数解析式,画出函数()f x 的图像(将(0)xe x >去掉),再画出直线y x =-,并将其上下移动,从图中可以发现,当1a -≤时,满足y x a =--与曲线()y f x =有两个交点,从而求得结果.详解:画出函数()f x 的图像,xy e =在y 轴右侧的去掉,再画出直线y x =-,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点, 即方程()f x x a =--有两个解, 也就是函数()g x 有两个零点, 此时满足1a -≤,即1a ≥-,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.9.B解析:B 【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞ 本题选择B 选项.10.C解析:C 【解析】 【分析】令[]()()10g x f f x =-=,可得[]()1f f x =,解方程()1f x =,结合函数()f x 的图象,可求出答案. 【详解】令[]()()10g x f f x =-=,则[]()1f f x =,令()1f x =,若2log (1)1x +=,解得1x =或12x =-,符合(1,3)x ∈-;若411x =-,解得5x =,符合[3,)x ∈+∞.作出函数()f x 的图象,如下图,(]1,0x ∈-时,[)()0,f x ∈+∞;()0,3x ∈时,()()0,2f x ∈;[3,)x ∈+∞时,(]()0,2f x ∈.结合图象,若()1f x =,有3个解;若1()2f x =-,无解;若()5f x =,有1个解. 所以函数[]()()1g x f f x =-的零点个数为4个. 故选:C.【点睛】本题考查分段函数的性质,考查了函数的零点,考查了学生的推理能力,属于中档题.11.B解析:B 【解析】 【分析】求出函数()y f x =的定义域,分析函数()y f x =的单调性与奇偶性,将所求不等式变形为()()21f a f a >-,然后利用函数()y f x =的单调性与定义域可得出关于实数a 的不等式组,即可解得实数a 的取值范围. 【详解】对于函数()()()ln 1ln 1f x x x =+--,有1010x x +>⎧⎨->⎩,解得11x -<<,则函数()y f x =的定义域为()1,1-,定义域关于原点对称,()()()()ln 1ln 1f x x x f x -=--+=-,所以,函数()y f x =为奇函数,由于函数()1ln 1y x =+在区间()1,1-上为增函数,函数()2ln 1y x =-在区间()1,1-上为减函数,所以,函数()()()ln 1ln 1f x x x =+--在()1,1-上为增函数, 由()()120f a f a +->得()()()1221f a f a f a >--=-,所以,11112121a a a a -<<⎧⎪-<-<⎨⎪>-⎩,解得01a <<.因此,实数a 的取值范围是()0,1.故选:B. 【点睛】本题考查函数不等式的求解,解答的关键就是分析函数的单调性和奇偶性,考查计算能力,属于中等题.12.A解析:A 【解析】 【分析】先根据奇偶性舍去C,D,再根据函数值确定选A. 【详解】因为2xy x =⋅为奇函数,所以舍去C,D; 因为0x >时0y >,所以舍去B ,选A. 【点睛】有关函数图象识别问题的常见题型及解题思路(1)由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.二、填空题13.【解析】【分析】变换得到代入化简得到得到答案【详解】则故故答案为:【点睛】本题考查了指数对数变换换底公式意在考查学生的计算能力【解析】 【分析】变换得到2log a m =,5log b m =,代入化简得到11log 102m a b+==,得到答案. 【详解】25a b m ==,则2log a m =,5log b m =,故11log 2log 5log 102,m m m m a b+=+==∴=【点睛】本题考查了指数对数变换,换底公式,意在考查学生的计算能力.14.【解析】【分析】根据复合函数单调性同增异减以及二次函数对称轴列不等式组解不等式组求得实数的取值范围【详解】要使在上递增根据复合函数单调性需二次函数对称轴在的左边并且在时二次函数的函数值为非负数即解得解析:(],3-∞【解析】 【分析】根据复合函数单调性同增异减,以及二次函数对称轴列不等式组,解不等式组求得实数a 的取值范围. 【详解】要使()f x 在()2,+∞上递增,根据复合函数单调性,需二次函数22y x ax =-+对称轴在2x =的左边,并且在2x =时,二次函数的函数值为非负数,即2222220a a ⎧≤⎪⎨⎪-+≥⎩,解得3a ≤.即实数a 的取值范围是(],3-∞.【点睛】本小题主要考查复合函数的单调性,考查二次函数的性质,属于中档题.15.【解析】由题意可得: 解析:1-【解析】由题意可得:()()()()()111,111f f ff f -=-=--=-=-16.-5-2【解析】分析:求出函数的值域根据条件确定两个函数的最值之间的关系即可得到结论详解:由题意得:在-22上f(x)的值域A 为g(x)的值域B 的子集易得A =-33B =m -18+m 从而解得-5≤m≤解析:[-5,-2]. 【解析】分析:求出函数()f x 的值域,根据条件,确定两个函数的最值之间的关系即可得到结论. 详解:由题意得:在[-2,2]上f (x )的值域A 为g (x )的值域B 的子集. 易得A =[-3,3],B =[m -1,8+m ],从而解得-5≤m ≤-2.点睛:本题主要考查函数奇偶性的应用,以及函数最值之间的关系,综合性较强.17.(-∞-)【解析】【分析】方程有两个大于的根据此可以列出不等式组求得m 的取值范围即可【详解】解:根据题意m 应当满足条件即:解得:实数m 的取值范围:(-∞-)故答案为:(-∞-)【点睛】本题考查根的判解析:(-∞,-12) 【解析】 【分析】 方程有两个大于12的根,据此可以列出不等式组求得m 的取值范围即可.【详解】解:根据题意,m 应当满足条件2(1)40112211(1)042m m m m m ⎧⎪∆=-+>⎪-⎪->⎨⎪⎪+-->⎪⎩即:2210012m m m m ⎧⎪++>⎪<⎨⎪⎪<-⎩,解得:12m <-, 实数m 的取值范围:(-∞,-12). 故答案为:(-∞,-12). 【点睛】本题考查根的判别式及根与系数的关系,解题的关键是正确的运用判别式及韦达定理,是中档题.18.-11【解析】【分析】根据定义域基本要求可得不等式组解不等式组取交集得到结果【详解】由题意得:1-x2≥02cosx -1>0⇒-1≤x≤1cosx>12co sx>12⇒x ∈-π3+2kππ3+2kπ 解析:【解析】 【分析】根据定义域基本要求可得不等式组,解不等式组取交集得到结果. 【详解】 由题意得:,函数定义域为:【点睛】本题考查具体函数定义域的求解问题,关键是根据定义域的基本要求得到不等式组.19.【解析】由题意有:则: 解析:14【解析】 由题意有:13,29aa =∴=-,则:()22124a--=-=. 20.③④⑤【解析】试题分析:分别取特值验证命题①②;对数型函数的变化是先快后慢当x=1时甲乙丙丁四个物体又重合从而判断命题③正确;指数函数变化是先慢后快当运动的时间足够长最前面的动物一定是按照指数型函数解析:③④⑤ 【解析】试题分析:分别取特值验证命题①②;对数型函数的变化是先快后慢,当x=1时甲、乙、丙、丁四个物体又重合,从而判断命题③正确;指数函数变化是先慢后快,当运动的时间足够长,最前面的动物一定是按照指数型函数运动的物体,即一定是甲物体;结合对数型和指数型函数的图象变化情况,可知命题④正确.解:路程f i (x )(i=1,2,3,4)关于时间x (x≥0)的函数关系是:,,f 3(x )=x ,f 4(x )=log 2(x+1),它们相应的函数模型分别是指数型函数,二次函数,一次函数,和对数型函数模型. 当x=2时,f 1(2)=3,f 2(2)=4,∴命题①不正确; 当x=4时,f 1(5)=31,f 2(5)=25,∴命题②不正确;根据四种函数的变化特点,对数型函数的变化是先快后慢,当x=1时甲、乙、丙、丁四个物体又重合,从而可知当0<x <1时,丁走在最前面,当x >1时,丁走在最后面, 命题③正确;指数函数变化是先慢后快,当运动的时间足够长,最前面的动物一定是按照指数型函数运动的物体,即一定是甲物体,∴命题⑤正确.结合对数型和指数型函数的图象变化情况,可知丙不可能走在最前面,也不可能走在最后面,命题④正确. 故答案为③④⑤.考点:对数函数、指数函数与幂函数的增长差异.三、解答题21.(1) (2)【解析】试题分析(1)先将不等式化成底相同的指数,再根据指数函数单调性解不等式(2)令,则函数转化为关于 的二次函数,再根据对称轴与定义区间位置关系确定最值,得到值域. 试题解析: 解:(1) 因为由于指数函数在上单调递增(2) 由(1)得令,则,其中因为函数开口向上,且对称轴为函数在上单调递增的最大值为,最小值为函数的值域为. 22.(1)(),0-∞;(2)()0,1;(3)21,log 3⎛⎫⎛⎫-∞ ⎪ ⎪⎝⎭⎝⎭.【解析】 【分析】(1)由a x -1>0,得a x >1 下面分类讨论:当a >1时,x >0;当0<a <1时,x <0即可求得f (x )的定义域(2)根据函数的单调性解答即可;(3)令()()()2221log 12log 21x xx g x f x ⎛⎫-=-+= ⎪+⎝⎭,[]1,3x ∈可知()g x 在[1,3]上是单调增函数,只需求出最小值即可. 【详解】本题考查恒成立问题.(1)当12a =时,()121log 12x f x ⎛⎫=- ⎪⎝⎭,故:1102x ->,解得:0x <,故函数()f x 的定义域为(),0-∞;(2)由题意知,()()log 1xa f x a =-(1a >),定义域为()0,x ∈+∞,用定义法易知()f x 为()0,x ∈+∞上的增函数,由()()1f x f <,知:01x x >⎧⎨<⎩,∴()0,1x ∈.(3)设()()()2221log 12log 21x xx g x f x ⎛⎫-=-+= ⎪+⎝⎭,[]1,3x ∈,设21212121x x xt -==-++,[]1,3x ∈, 故[]213,9x+∈,2171,2139x t ⎡⎤=-∈⎢⎥+⎣⎦,故:()min 211log 33g x g ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 又∵()()2log 12xf x m -+>对任意实数[]1,3x ∈恒成立,故:()min 21log 3m g x ⎛⎫<= ⎪⎝⎭. 【点睛】本题主要考查对数函数有关的定义域、单调性、值域的问题,属于中档题. 23.(1)722x x ⎧⎫<≤⎨⎬⎩⎭;(2)34.2p p ><-或 【解析】 【分析】(1)根据集合的交集得到结果即可;(2)当A∩B=B 时,可得B ⊆A ,分B 为空集和不为空集两种情况即可. 【详解】 (1)当时,B={x |0≤x ≤}, ∴A∩B={x |2<x ≤};(2)当A∩B=B 时,可得B ⊆A ; 当时,令2p -1>p +3,解得p >4,满足题意; 当时,应满足解得; 即综上,实数p 的取值范围.【点睛】与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集;(2)看这些元素满足什么限制条件;(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性. 24.(1){|22}x x -<<(2)偶函数(3)01m << 【解析】 【分析】 【详解】(Ⅰ)要使函数有意义,则,得.函数的定义域为. (Ⅱ)由(Ⅰ)可知,函数的定义域为,关于原点对称,对任意,.由函数奇偶性可知,函数为偶函数.(Ⅲ)函数由复合函数单调性判断法则知,当时,函数为减函数又函数为偶函数,不等式等价于,得.25.(1) a=1,b=1 (2)见解析 (3) k<- 【解析】试题分析:(1)()f x 为R 上的奇函数⇒(0)01f b =⇒=,再由,得1a =即可;(2) 任取12x x R ∈,,且12x x <,计算2112122(22)()()0(21)(2+1)x x xx f x f x --=>+即可;(3) 不等式22(2)(2)0f t t f t k -+-<恒成立等价于22(2)(2)f t t f t k -<--⇔22(2)(2)f t t f k t -<-⇔2222t t k t ->-⇔232k t t<-恒成立,求函数2()32h t t t =-的最小值即可.试题解析: (1)∵()f x 为R 上的奇函数,∴(0)0f =,1b =. 又,得1a =.经检验11a b ==,符合题意. (2)任取12x x R ∈,,且12x x <,则1212211212121212(12)(21)(12)(21)()()2121(21)(21)x x x x x x x x x x f x f x --------=-=----21122(22)(21)(2+1)x x x x -=+. ∵12x x <,∴12220x x ->,又∴12(21)(21)0x x++>,∴12()()0f x f x ->,∴()f x 为R 上的减函数(3)∵t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,∴22(2)(2)f t t f t k -<--,∴()f x 为奇函数,∴22(2)(2)f t t f k t -<-,∴()f x 为减函数,∴2222t t k t ->-. 即232k t t <-恒成立,而22111323()333t t t -=--≥-, ∴13k <-考点:1.函数的奇偶性;2.函数的单调性;3.函数与不等式.【名师点睛】本题考查函数的奇偶性、函数的单调性、函数与不等式,属中档题;高考对函数性质的考查主要有以下几个命题角度:1.单调性与奇偶性相结合;2.周期性与奇偶性相结合;3.单调性、奇偶性与周期性相结合.26.(1)1a =(2)见解析(3)1,2⎛⎫-∞ ⎪⎝⎭【解析】试题分析:(1)由()f x 为奇函数可知,()()f x f x -=--,即可得解; (2)由21x y =+递增可知()11221x f x =-++在R 上为减函数,对于任意实数12,x x ,不妨设12x x <,化简()()12f x f x -判断正负即可证得; (3)不等式()()222120f m m f m mt -+++-≤,等价于()()22212f m m f m mt -++≤-+,即22212m m mmt -++≥-+,原问题转化为121t m m ≤-++在()1,2m ∈上有解,求解11y m m=-++的最大值即可. 试题解析解:(1)由()f x 为奇函数可知,()()f x f x -=--,解得1a =.(2)由21xy =+递增可知()11221x f x =-++在R 上为减函数, 证明:对于任意实数12,x x ,不妨设12x x <,()()()()21121212112221212121x x x x x x f x f x --=-=++++∵2xy =递增,且12x x <,∴1222x x <,∴()()120f x f x ->,∴()()12f x f x >,故()f x 在R 上为减函数.(3)关于m 的不等式()()222120f m m f m mt -+++-≤, 等价于()()22212f m m f m mt -++≤-+,即22212m m mmt -++≥-+,因为()1,2m ∈,所以121t m m≤-++, 原问题转化为121t m m≤-++在()1,2m ∈上有解, ∵11y m m=-++在区间()1,2上为减函数, ∴11y m m =-++,()1,2m ∈的值域为1,12⎛⎫- ⎪⎝⎭, ∴21t <,解得12t <, ∴t 的取值范围是1,2⎛⎫-∞ ⎪⎝⎭.点晴:本题属于对函数单调性应用的考察,若函数()f x 在区间上单调递增,则()()1212,,x x D f x f x ∈>且时,有12x x >,事实上,若12x x ≤,则()()12f x f x ≤,这与()()12f x f x >矛盾,类似地,若()f x 在区间上单调递减,则当()()1212,,x x D f x f x ∈>且时有12x x <;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.本题中可以利用对称性数形结合即可.。

相关文档
最新文档