物理实验报告 测量不良导体的导热系数
物理实验报告测量不良导体的导热系数.docx
物理实验报告测量不良导体的导热系数.docx 摘要:本实验是测量不良导体的导热系数实验,主要目的是研究不同材料的导热性质,并通过实验方法测量导热系数。
实验过程中,先选取了两种不同的材料(石棉、灰铸铁)进行实验,然后分别利用导热仪和热传导仪测算材料的导热系数,并计算结果。
结果表明,两种材料的导热系数差别较大,石棉的导热系数远小于灰铸铁的导热系数。
本实验得到的结果对于进一步了解材料的物性能有重要意义。
关键词:导热系数,导热仪,热传导仪,试样,材料引言:导热系数是指在单位时间内,单位面积的材料温度梯度下,单位厚度内热量传递的能力。
导热系数是一个材料对热传导的基本反应,它是材料的一个基本物理参数,不同材料的导热系数大小差别较大,因此对于不同材料的导热系数进行测量具有重要意义。
实验项目:1.测量石棉的导热系数;实验原理:一、导热仪法导热仪法是利用导热仪来测量不同材料的导热系数。
导热仪是一种用于测量导热系数的仪器,利用它可以轻松地测量导热系数,而且测量结果比较精确。
导热仪分为静态导热仪和动态导热仪两种。
静态导热仪是指采用一定时间后的热平衡来测量材料的导热系数,它的原理是利用热传导平衡定理。
热传导平衡定理是指当物体的温度分布达到稳定状态时,所有点的温度分布相同,在每个点上的热流密度相等,因此可以根据热流密度和热传导系数的定义求得导热系数。
动态导热仪是指在一定时间内,通过测量目标材料表面和内部温度的变化来测量材料的导热系数。
动态导热仪具有快速、精确、稳定的特点,可以在室温下测量导热性能。
利用热传导仪测量材料的导热系数时,首先需要将试样放置在热源上,并使热源产生热量。
然后,利用热流计和温度计测量试样内外的温度差,从而计算出材料的导热系数。
实验步骤:1.选定两种不同材料(石棉、灰铸铁)作为试验样品;2.利用切割机将两种材料切割成长方形样品;5.利用计算机软件计算出试样的导热系数。
实验结果:(1)导热仪法:0.004 (W/mK)2.灰铸铁的导热系数:分析:通过实验结果可以看出,石棉的导热系数要小得多,而灰铸铁的导热系数则要大得多。
不良导体导热系数测定
不良导体导热系数的测定一、实验目的1、 了解热传导现象的物理过程2、 学习用稳态平板法测量材料的导热系数3、 掌握—种用热电转换方式进行温度测量的方法二、实验仪器导热系数测定仪、游标卡尺等三、实验原理1、如果热量是沿着Z 方向传导,那么在Z 轴上任一位置Z 0 处取一个垂直截面积dS ,以dz dT 表示在Z 处的温度梯度,以dtdQ 表示在该处的传热速率(单位时间内通过截面积d S 的热量),那么传导定律可表示成:dS dz dT dt dQ Z 0)(λ-= (1) 式中的负号表示热量从高温区向低温区传导(即热传导的方向与温度梯度的方向相反)。
式中比例系数λ即为导热系数。
可见热导率的物理意义:在温度梯度为一个单位的情况下,单位时内垂直通过单位面积截面的热量。
可见,只要测量出样品的温度梯度和传热速率,及垂直于传热方向上样品的面积,即可求出该样品的导热系数。
2、YBF 一3导热系数测试仪实验原理 实验装置如右图,把样品加工成平板状,并把它夹在两块良导体——铜板之间,使两块铜板分别保持在恒定温度T 1和T 2,就可能在垂直于样品 表面的方向上形成温度的梯度分布。
样品厚度可做成h ≤D (样品直径)。
这样,由于样品侧面积比平板面积小得多,由侧面散去的热量可以忽略不计,认为热量是沿垂直于样品平面的方向上传导,即只在此方向上有温度梯度。
由于铜是热的良导体,在达到平衡时,可以认为同一铜板各处的温度相同,样品内同一平行平面上各处的温度也相同。
这样只要测出样品的厚度h 和两块铜板的温度T 1、T 2 ,就可以确定样品内的温度梯度。
为了维持一个恒定的温度梯度分布,必须不断地给高温侧铜板加热,热量通过样品传到低温侧铜块,低温侧铜板则要将热量不断地向周围环境散出。
当加热速率、传热速率与散热速率相等时,系统就达到一个动态平衡状态,称之为稳态。
此时低温侧铜板的散热速率就是样品内的传热速率。
这样,只要测量低温侧铜板在稳态温度T 2 下散热的速率,也就间接测量出了样品内的传热速率。
不良导体热导率的测定实验报告
不良导体热导率的测定实验报告一、实验目的1、了解热传导现象的基本规律。
2、学习用稳态法测量不良导体的热导率。
3、掌握热电偶测温的原理和方法。
二、实验原理当物体内存在温度梯度时,热量会从高温处向低温处传递,这种现象称为热传导。
对于一个厚度为$d$、横截面积为$S$ 的平板状不良导体,在稳定传热状态下,通过该导体的热流量$Q$ 与导体两侧的温度差$\Delta T$ 成正比,与导体的厚度$d$ 成反比,与导体的热导率$\lambda$ 成正比,即:$Q =\frac{\lambda S \Delta T}{d}$如果在一段时间$\Delta t$ 内通过导体的热量为$Q$,则热导率$\lambda$ 可表示为:$\lambda =\frac{Qd}{S\Delta T \Delta t}$在本实验中,采用稳态法测量热导率。
将待测的不良导体样品制成平板状,放置在加热盘和散热盘之间。
加热盘通过电热丝加热,使热量通过样品传递到散热盘。
当加热盘和散热盘的温度稳定后,样品内的传热达到稳定状态,此时通过样品的热流量等于散热盘在单位时间内散失的热量。
散热盘在稳定温度下的散热速率可以通过测量散热盘的冷却曲线来确定。
当散热盘的温度高于环境温度时,它会向周围环境散热,其散热速率与散热盘的温度和环境温度之差成正比。
三、实验仪器1、热导率测定仪:包括加热盘、散热盘、热电偶、数字电压表等。
2、秒表3、游标卡尺4、电子天平四、实验步骤1、用游标卡尺测量样品的厚度$d$ 和直径$D$,计算出样品的横截面积$S =\frac{\pi D^2}{4}$,用电子天平称出样品的质量$m$ 。
2、将样品放在加热盘和散热盘之间,安装好热电偶,确保热电偶的测量端与样品良好接触。
3、接通电源,调节加热功率,使加热盘和散热盘的温度逐渐升高。
观察数字电压表的读数,当加热盘和散热盘的温度稳定后(温度变化在一定时间内小于$01^{\circ}C$),记录此时加热盘和散热盘的温度$T_1$ 和$T_2$ 。
不良导体导热系数的测定
不 良 导 体 导 热 系 数 的 测 定班级: ___姓名:____日期:______【实验目的】:1、了解热传导现象的物理过程2、学习用稳态平板法测量不良导体的导热系数3、用作图法求冷却速率。
【实验原理】 1、导热系数当物体内部存在温度梯度时,热量从高温向低温传导,这种实验称之为热传导。
dx dt dT dtdQ ⋅-=λ其中λ就是导热系数。
2、不良导体导热系数的测量样品为一平板,当上下表面温度稳定在T 1、T 2,以h B 表示样品高度,S B 表样品底面积:BBS h T T dtdQ ⋅-=21λ由于温差稳定,那么可以用A 在T 2附近的dT/dt (冷却速率)求出dQ/dt 。
根据散热速率与散热面积成正比,则dtdQ h R h R dtdQ h R R h R R dtdQ PA A A A PA A A A A A ⋅++=⋅++=2)(2)2(ππ又根据热容的定义dt dT mc dt dQ P⋅=有dtdT h R T T R h R mch A A B A A B ⋅+-+=))((2)2(212πλm 、hB 、RB 、HA 、T1、T2、都可以由实验测量出准确值,c 为已知的常熟,c=0.0883cal/g ﹒C,因此,只要求出dtdT ,就可以求出导热系数,从而通过测量以上表达式中的量得到导热系数。
【实验内容】一,观察和认识传热现象,过程及其规律1、用游标卡尺测量A 、B 两板的直径、厚度(每个物理量测量3次);2、正确组装仪器后,打开加热装置,将电压调至250V 左右进行加热至一定温度(对应T 1电压值大约在3.20-3.40mV );3、将电压调至125V 左右,寻找稳定的温度(电压),使得板上下面的温度(电压)10分钟内的变化不超过0.03mV ,记录稳定的两个电压值;4、直接加热A 板,使得其温度相对于T 2上升10度左右;5、每隔30s 记录一个温度(电压)值,取相对T 2最近的上下各6个数据正式记录下来;二,用逐差法求出铜盘A 的冷却速率,并由公式求出导热系数λ。
不良导体导热系数的测量实验报告
不良导体导热系数的测量实验报告
实验目的:
1.了解不良导体的特性;
2.测量不良导体的导热系数。
实验原理:
不良导体是指导热性能较差的物质,如木材、塑料等。
导热系数是描述不良导体导热性能的一个物理量,它反映了单位面积、单位厚度、单位温度梯度下热量通过材料传导的能力。
导热系数越小,说明该材料导热性能越差。
实验仪器:
1.不良导体样品;
2.热绝缘材料;
3.热源;
4.温度计;
5.测量仪器。
实验步骤:
1.将热绝缘材料平铺在工作台上,摆放不良导体样品;
2.将热源放置在样品的一侧,使其与材料保持良好的接触;
3.在样品的另一侧放置温度计,用以测量温度变化;
4.开始记录温度的变化,记录一定时间内温度的变化曲线;
5.使用测量仪器测量材料的厚度和面积。
实验数据和结果:
根据记录到的温度数据,可以得到温度随时间的变化曲线。
根据这些数据,可以计算出材料的导热系数。
实验讨论:
在讨论中,可以对不良导体的导热性能进行评估,并分析不同因素对导热系数的影响。
实验总结:
通过本次实验,我们了解了不良导体的特性和导热系数的测量方法。
同时,我们也明白了导热系数与材料导热性能之间的关系。
这对于我们选择材料、设计热工设备等方面都具有重要意义。
不良导体导热系数的测定
《基础物理》实验报告学院: 国际软件学院 专业: 软件工程 2010 年 12 月 20 日一、实验目的1)学习平板法测量不良导体导热系数的方法2)掌握在科学实验室平台上利用计算机和热电偶测量温度的方法 3)学习根据动态平衡的原理测定热流速率的方法 二、实验原理 1.稳态平板法。
根据热传导理论,当物体内部存在温度梯度时,热量从高温向低温传导:dx dt dTdt dQ ⋅-=λ其中λ就是导热系数。
2、不良导体导热系数的测量样品为一平板,当上下表面温度稳定在T1、T2,以hB 表示样品高度,SB 表样品底面积:B BS h T T dt dQ⋅-=21λ由于温差稳定,那么可以用A 在T2附近的dT/dt (冷却速率)求出dQ/dt 。
根据散热速率与散热面积成正比,则dt dQ h R h R dt dQ h R R h R R dt dQ PA A A A P A A A A A A ⋅++=⋅++=2)(2)2(ππ又根据dt dTmc dtdQ P ⋅= 有dtdTh R T T R h R mch A A B A A B ⋅+-+=))((2)2(212πλ从而通过测量以上表达式中的量得到导热系数。
三、实验设备及工具导热系数测定仪、杜瓦瓶、电热偶、游标卡尺、直流电压放大器 四、实验内容及原始数据 (一)实验内容1、用游标卡尺测量A 、B 两板的直径、厚度(每个物理量测量3次);2、正确组装仪器后,打开加热装置,将电压调至200V 左右进行加热20分钟左右(对应T1电压值大约在3.20-3.40mV );3、将电压调至150V 左右,寻找稳定的温度(电压),使得板上下面的温度(电压)10分钟内的变化不超过0.03mV ,记录稳定的两个电压值;4、直接加热A 板,使得其温度相对于T2上升10度左右;5、每隔30s 记录一个温度(电压)值,取相对T2最近的上下各6个数据正式记录下来;6、整理仪器;数据处理。
物理实验报告 测量不良导体的导热系数
物理实验报告测量不良导体的导热系数摘要:本实验通过测量来确定不良导体的导热系数。
实验使用的样品是一只塑料杯,将水倒入塑料杯中,并在杯子的底部固定一块加热器,通过测量上部和下部温度的差异来计算导热系数。
实验结果表明,该杯的导热系数为0.14 W/(m·K),属于低导热材料。
引言:导热是一种物质从高温区域向低温区域传递热量的能力。
导体的导热系数是衡量导热能力的量。
不良导体在电学上电阻较大,而在导热方面具有低导热系数。
利用导热系数可以确定材料是否适合用于绝缘或隔热材料。
实验步骤:1.将约500毫升的水倒入小塑料杯中,然后固定一块加热器在杯底。
2.将导热计的探头插入杯底离加热器最近的位置,并在杯顶外侧的相同位置插入第二个探头。
3.等待一段时间,直到温度稳定后,读取两个探头的温度并记录下来。
4.重复以上步骤,在杯的不同位置多次测量温度。
5.根据测量结果和相应的方程计算出不良导体的导热系数。
实验结果:本实验测量了不良导体(即小塑料杯)的导热系数。
在测量过程中,使用了加热器和导热计两个重要的工具。
通过将温度探头置于加热器底部和杯顶部两个不同位置,得出了该杯的不同位置的温度分布。
通过分析温度差异,测量出不良导体的导热系数。
本实验得出的测量结果如下,小塑料杯的导热系数为0.14 W/(m·K)。
讨论:根据实验结果,可以看出不良导体在导热方面表现略差。
但是,在一些实际应用中,低导热的物质也具有一定的优势,例如用作绝缘材料、隔热材料等。
在这些应用场合中,导热系数较低的物质是非常重要的。
实验中还需要注意一些问题。
例如,在测量进行中,需要等待一定的时间使温度稳定,并且要确保温度探头与测试杯的接触良好。
此外,在实验前还需要对仪器进行了解,以保证实验过程的准确性和安全性。
不良导体导热系数的测量实验报告
不良导体导热系数的测量(88):常安 学号:实验目的:1. 了解热传导现象的物理过程。
2. 学习用稳态平板法测量不良导体的热传导系数并用作图法求冷却速率实验原理:1. 导热系数当物体存在温度梯度时,热量从高温流向低温,谓之热传导或传热,传热速率正比于温度梯度以及垂直于温度梯度的面积,比例系数为热导系数或导热率:dS dxdTdt dQ λ-= (1) 2. 不良导体导热系数的测量厚度为h 、截面面积为S 的平板形样品(橡胶板)夹在加热圆盘和黄铜盘之间。
热量由加热盘传入。
加热盘和黄铜盘上各有一小孔,热电偶可插入孔测量温度,两面高低温度恒定为T 1 和T 2时,传热速率为S hT T dt dQ21--=λ (2) 由于传热速率很难测量,但当T 1 和T 2稳定时,传入橡胶板的热量应等于它向周围的散热量。
这时移去橡胶板,使加热盘与铜盘直接接触,将铜盘加热到高于T 2约10度,然后再移去加热盘,让黄铜盘全表面自由放热。
每隔30秒记录铜盘的温度,一直到其温度低于T 2,据此求出铜盘在T 2附近的冷却速率dtdT。
铜盘在稳态传热时,通过其下表面和侧面对外放热;而移去加热盘和橡胶板后是通过上下表面以及侧面放热。
物体的散热速率应与它们的散热面积成正比,()()dtQ d h R R h R R dt dQ '++=222ππ (3) 式中dtQ d '为盘自由散热速率。
而对于温度均匀的物体,有 dtdTmcdi Q d =' (4) 这样,就有()()dtdTmc h R R h R R dt dQ 222++=ππ (5) 结合(2)式,可以求出导热系数()()dtdT h R T T R h R h c m A A B A A B +-+=)(22212πλ铜铜 实验仪器:散热铜盘,橡胶盘,铜质厚底圆筒,支架,红外灯,数字电压表,双刀双掷开关,热电偶,杜瓦瓶实验容1. 用卡尺测量A 、B 盘的厚度及直径(各测三次,计算平均值及误差)2. 按图连接好仪器3. 接通调压器电源,将电压调到200V 左右,从零开始缓慢升压至T 1=3.2~3.4mV4. 将电压调到125V 左右加热,来回切换观察T 1 和T 2值,没分钟记一次T 1、 T 2的值,若十分钟基本不变(变化小于0.03)则认为达到稳态,记录下T 1、 T 2值5. 移走样品盘,直接加热A 盘,使之比T 2高10℃,(约0.4 mV );调节变压器至零,再断电,移走加热灯和传热筒,使A 盘自然冷却,每隔30s 记录其温度,选择最接近T 2的前后各6个数据,填入自拟表格数据处理:1.铜盘和橡胶盘室温:t=21.7℃铜盘质量:m 铜=900.00g 铜盘比热容:C 铜=0.3709).(K kg kJ 1 2 3 平均值 标准差h A (mm) 8.06 7.84 7.92 7.94 0.1113 d B (mm) 128.52 128.76 128.72 128.67 0.07211 h B (mm) 7.787.827.727.770.02309铜盘的直径:d A =129.79mm 0.07023mm =Ad σ ΔB =Δ仪=0.02mmmm U B d d AA 07164.02122=∆+=σ P=0.95 铜盘的厚度:h A =7.94mm 0.1113mm =A h σ ΔB =Δ仪=0.02mmmm U B h h AA 1121.02122=∆+=σ P=0.95橡胶盘的直径:d B =128.67mm 0.07211mm =B d σ ΔB =Δ仪=0.02mmmm U B d d BB 07348.02122=∆+=σ P=0.95 本实验使用游标卡尺测量铜盘和橡胶盘的直径,因为直径的位置很不好把握,所以在实际操作中会出现一定的误差。
不良导体导热系数实验报告
不良导体导热系数实验报告
非良导体导热系数实验报告
随着石油燃料价格的日益高涨,引起了对可再生能源的日益关注,针对这种情况,关于非良导体导热系数的实验带来了新的研究机会。
非良导体导热系数实验的实施首先需要准备一定的物质基础具备,主要由以下
几个部分组成:一个电热源,有一定功率和温度均匀度的温度计,一个带有温度计探头的导热系统,以及需要测量的非良导体材料。
在实验过程中,先将非良导体材料置于导热系统,并让电热源将其加热,然后采用电测量法记录非良导体材料层所受的热流。
采用这种方法,就可以求出该非良导体材料的导热系数。
本项实验的实施结果显示,该非良导体材料的导热系数偏低,且与常规导体料
的性能相比显示出较低的效率。
这说明,在这种类型的材料中电加热释放的热量有限,无法有效的利用。
从而,当引入可再生能源时,这种电加热方式的效果会降低。
综上所述,本次实验表明,非良导体导热系数远低于常规导体料,因此在引入
可再生能源时,其电加热方式的效果也会收到影响。
未来研究人员可能会将更多精力投入到提高非良导体导热系数方面,从而促进更大程度上的可复用能源应用。
用稳态法测量不良导体的导热系数实验报告
用稳态法测量不良导体的导热系数实验报告引言导热是热学的一个重要概念,许多工程问题中都需要用到导热系数。
在实际应用中,往往遇到不良导体的导热系数难以测量的问题。
为了解决这一问题,本实验采用稳态法测量不良导体的导热系数。
实验目的1.了解不良导体的基本概念和导热系数的含义。
3.初步掌握不良导体的导热系数测量技能。
实验原理导热系数是指单位时间内单位面积的热量通过单位长度的传导热阻力。
不良导体通常指导热系数较小的物质,如泡沫塑料等。
对于不良导体,传热时存在两种传热方式:较慢的传导和较快的对流,因此稳态法测量不良导体的导热系数时,需要将不良导体置于一个绝热容器内进行实验。
稳态法测量不良导体的导热系数的主要思想是通过测量绝热容器内的温度分布,计算出不良导体两侧的热流量差,从而求解不良导体的导热系数。
实验仪器和材料1.绝热容器:气密容器,内表面喷漆,型号为JYL-0.05V。
2.电热丝:铠装电阻丝,长度为40cm。
3.万用表:数字万用表,量程为200mV。
4.直流电源:稳压直流电源,输出电流为0-10A,输出电压为0-30V。
5.不良导体:泡沫塑料。
6.测温仪:热电偶温度计,型号为TSM-3型。
实验步骤1.将泡沫塑料削成80cm×2cm×1cm的长条形,两侧铅直铺设电热丝。
2.将热电偶温度计插入泡沫塑料中央,测量其内部温度。
3.将泡沫塑料放置在绝热容器内,关闭绝热容器的出气口。
4.通过直流电源通电,控制电热丝两侧电流和电压的大小。
5.记录各个时间点的热电偶温度、电热丝电流和电压值,并计算出泡沫塑料两侧的热流量差。
6.根据测量数据,绘制泡沫塑料两侧温度分布曲线,并通过计算得到泡沫塑料的导热系数。
实验结果实测电热丝电流为1.8A,电压为3.6V。
在稳态时,泡沫塑料两侧温度分别为22.5℃和12.5℃,热电偶测量的两侧温度差为10℃。
利用公式K=Q/(SΔT)计算出泡沫塑料的导热系数为0.038W/(mK)。
稳态法测量不良导体的导热系数实验报告
稳态法测量不良导体的导热系数实验报告实验报告实验名称:稳态法测量不良导体的导热系数实验目的:本实验旨在通过稳态法测量不良导体的导热系数,进一步了解材料的导热性能,并提高实验操作能力。
实验原理:热传导是物质内能的传递,是由高温区向低温区传递热量的过程。
在导体中,热量的传导主要通过自由电子传导和晶格振动传导两种机制实现。
本实验通过稳态法测量不良导体的导热系数。
在稳态下,热量的输入和输出相等,即:Qin = Qout根据傅立叶热传导定律,稳态下热传导的热流密度Q与导热系数λ、导热面积A、温度差ΔT之间的关系为:Q = λAΔT / d其中,Q为单位时间内通过导体的热量,λ为导热系数,A为导热面积,ΔT为温度差,d为导体的厚度。
实验器材:1. 不良导体样品2. 直立式热传导仪3. 温度计实验步骤:1. 将热传导仪取出,并调整热电偶测温头至样品位置,并与温度计校准。
2. 将样品固定于热传导仪上,并调整加热电压至一定值,保持恒温。
3. 记录热电偶和温度计示数,计算温度差ΔT。
4. 根据所用材料的厚度测量所得,计算导热系数λ。
实验结果及数据处理:进样品的加热电压为V = 5V,测得的热电偶示数为T1 = 40℃,T2 = 30℃,沿导体厚度方向测得的样品厚度为d = 2cm。
由此可计算出温度差ΔT = T1 - T2 = 40℃ - 30℃ = 10℃。
代入傅立叶热传导定律公式Q = λAΔT / d,可得热流密度Q。
将实验中测得的其他参数代入公式,可计算得到不良导体的导热系数λ。
实验结论:通过稳态法测量不良导体的导热系数,可以得到材料的导热性能。
该实验结果为XX(具体结果),表明该不良导体具有较低的导热系数,其热传导能力较差。
实验过程中需注意:1. 实验开始前要确保热传导仪和温度计都已校准,并测得的数据准确可靠。
2. 在稳态状态下测量温度差,并注意尽量减小其他误差的影响。
3. 实验结束后及时关闭加热电源,并注意对实验器材的清理和归位。
材料物理性能 实验三不良导体导热系数测定
不良导体导热系数测定导热系数是反映材料导热性能的重要参数之一,导热系数大,导热性能较好的材料称为良导体;导热系数小、导热性能差的材料称为材料的不良导体。
一般来说,金属的导热系数比非金属要大;固体的导热系数比液体的要大;气体的导热系数最小。
本实验介绍一种比较简答的利用稳态法测定不良导体导热系数的方法。
稳态法是通过热源在样品内部形成一稳定的温度分布后,测定不良导体导热系数的方法。
一、实验目的1、掌握稳态法测定不良导体导热系数的方法2、了解物体散热速率和传热速率的关系 二、实验仪器1、TJQDC-1型导热系数测定仪2、游标卡尺3、天平4、镊子 三、实验原理 1、热传导定律当物体内部各处的温度不均匀时,就会有热量从温度较高处传递到温度较低处,这种现象叫热传导现象。
早在1882年著名物理学家傅立叶(Fourier)就提出了热传导的定律:若在垂直于热传播方向x 上作一截面S ∆,以d dxθ⎛⎫⎪⎝⎭表示0x 处的温度梯度,那么在时间t ∆内通过截面积S ∆ 所传递的热量Q ∆为:Q d S t dxθλ∆⎛⎫=-∆ ⎪∆⎝⎭(1) 式(1)中Qt∆∆为传热速率,负号代表热量传递方向是从高温区传至低温处,与温度梯度方向相反。
比例系数λ称为导热系数,其值等于相距单位长度的两平面的温度相差为一个单位时,在单位时间内通过单位面积所传递的热量,单位是瓦·米-1开-1(W ·m -1K -1).2、稳态法测传热速率测定样品导热系数的实验装置如图1所示。
图中待测样品 (圆盘) 半径 1R =60mm ,样品上表面与加热盘(位于上方的黄铜盘)的下表面接触,温度为1θ,加热盘由内部电热丝供热,热量由加热盘通过样品上表面传入样品,再从样品下表面与散热盘 (位于样品下面的黄铜盘) 的上表面相接, 温度为2θ,即样品中的热量通过下表面向散热盘散发。
样品上下表面温度可以认为是均匀分布,在1h 不很大情况下可忽略样品侧面散热的影响,则式(1)改写为:121QS t h θθλ-∆=∆ (2) 式(2)中S 为样品横截面积。
不良导体的导热系数的测定实验报告
梧州学院学生实验报告
成绩:指导教师:
专业:班别:实验时间:
实验人:学号:同组实验人:
图1
实验中应该在两个传感器上涂些导热硅脂或者硅油,以使传感器和加热盘、散热盘充分接触;另外,加热橡皮样品的时候,为达到稳定的传热,调节底部的三个微调螺丝,使样品与加热盘、散热盘紧密接触,注意不要中间有空气隙;也不要将螺
减小样品侧面与底面的放热比,
样品内部的温度梯度,从而减小实验误差,所以实验过程中,风扇一定要打开。
Welcome !!! 欢迎您的下载,资料仅供参考!。
稳态法测量不良导体的导热系数实验报告
稳态法测量不良导体的导热系数实验报告实验报告:稳态法测量不良导体的导热系数实验实验目的:本实验旨在通过稳态法测量不良导体的导热系数,了解不良导体的导热性能,并进一步分析材料的热传导特性。
实验仪器:1. 实验台2. 电热器3. 铜棒样品4. 温度计5. 计时器6. 多用电表7. 导热油实验原理:稳态法测量导热系数是通过测量材料的温度梯度和热流量来计算导热系数的。
在实验过程中,首先将导热油倒入实验台中,使其充满整个实验空间。
然后,在台面上放置热源和试样,热源通过导热油将热量传递给试样,试样将热量传递给周围环境。
通过测量试样两端的温度差和热流量,可以计算出导热系数。
实验步骤:1. 准备工作: 将实验台内充填导热油,并使其达到温度平衡。
2. 将导热棒和试样一起放置在实验台上,使其与实验台接触良好。
3. 将电流通入电热器中,通过导热油将热量传递给试样,使热量在试样内传递。
4. 同时使用温度计测量试样两端的温度差,并通过多用电表测量电热器的电流和电压,计算出热流量。
5. 记录不同时间间隔的试样温度和热流量数据,并绘制温度与热流量的关系曲线。
6. 根据数据计算出导热系数。
实验结果:根据实验得到的温度-热流量关系曲线,可以通过线性拟合得到试样的斜率,即热流量值。
通过计算不同时间间隔内的温度差,可以得到导热系数的数值。
实验结论:根据实验结果,可计算出不良导体的导热系数。
导热系数是衡量材料导热性能的重要参数,通过实验可以了解不良导体的导热性能,并为材料的热传导特性分析提供参考。
实验注意事项:1. 实验过程中要注意安全,避免触电或烫伤等意外情况。
2. 导热油的量要足够充填实验台,且温度均匀平衡。
3. 实验前要对实验仪器进行检查,确保正常工作。
4. 实验操作要严格按照实验步骤进行,尽量减小误差产生。
5. 实验完成后要对实验环境进行清理和整理,保持实验台的整洁。
不良导体导热系数实验报告
不良导体导热系数实验报告不良导体导热系数实验报告导热系数是衡量物质传导热量能力的重要参数。
在日常生活中,我们经常接触到导热系数高的材料,如金属,而很少关注导热系数低的材料,如不良导体。
不良导体的导热系数较低,导热性能较差,因此在一些特殊场合中具有重要的应用价值。
本实验旨在通过测量不良导体的导热系数,探究其导热性能的特点。
实验材料和仪器包括不良导体样品、热电偶、热电偶转换器、温度计、电源、电阻、导线等。
实验过程分为两个部分,首先是测量不良导体的导热系数,然后是分析实验结果和讨论。
实验步骤如下:首先,将不良导体样品切割成适当的尺寸,并仔细清洁表面,确保样品表面光滑无杂质。
然后,将热电偶插入样品中,一个接触样品的一侧,另一个端口与热电偶转换器相连。
接下来,将样品放置在一个恒定温度的环境中,同时记录样品表面和环境温度。
通过测量一段时间内的温度变化,计算不良导体的导热系数。
在实验结果分析和讨论部分,我们可以从以下几个方面来探讨不良导体的导热性能。
首先,不良导体的导热系数较低,这意味着它们在传导热量方面的效率较低。
这是由于不良导体的内部结构和原子排列方式导致的。
其次,不良导体的导热性能与温度有关。
一般来说,随着温度的升高,不良导体的导热系数也会增加,这是由于分子振动的增加导致热量更容易传导。
此外,不同材料的导热性能也存在差异,例如,聚苯乙烯的导热系数比木材要高,这是由于聚苯乙烯的分子结构不同于木材的纤维结构。
实验中还可以探究不良导体的导热性能与其热导率之间的关系。
热导率是导热系数与密度的乘积,它衡量了单位体积内传导热量的能力。
通过比较不同材料的热导率,我们可以进一步了解不良导体的导热性能。
此外,不良导体的导热性能对于一些特殊应用具有重要意义。
例如,在建筑材料中,不良导体的导热系数低可以有效减少热量的传导,提高建筑物的保温性能。
在电子器件中,不良导体可以用作绝缘材料,防止热量传导引起的电子元件故障。
综上所述,不良导体的导热系数实验可以帮助我们了解不良导体的导热性能特点。
不良导体导热系数的测定实验报告-不良导体实验报告
非金属固体材料导热系数的测量2004/04用热线法测量不良导体导热系数是一种广泛使用的方法,国家对此制定了标准——“非金属固体材料导热系数的测定——热线法”(GB/T 10297-1998)。
基本原理如图1所示,在匀质均温的物体内部放置一电阻丝,即热线,对其以恒定功率加热时,热线及其附近试样的温度将随时间变化。
根据时间与温度的变化关系,可以确定该试样的导热系数。
[1][原理简述]由热传导理论[2]可知,恒定功率的热线对匀质物体进行热传导时,可以用一维柱坐标系的热传导方程对物体的温度场进行描述:r r rt ∂∂+∂∂=∂∂θθθα1122 (1) 边界条件为:00=r θ(t =0,r ≥0),0=∞r θ(t >0,r =),const.π0=∂∂-==r r q θλ(t >0,r =0)[3] (2) 根据热传导方程和边界条件得到解为:t t e q t tr r t d π4042⎰-=αλθ (3)其中各物理量含义为,t :热线的加热时间,单位为s ;r :距热线的距离,单位为m ;q :热线单位长度的加热功率,单位为W/m ;t r θ:加热时间t ,距离热线距离r 处的温升,单位为K ;α:试样的热扩散率,单位为m 2/s ;λ:试样的导热系数,单位为W/(m ·K ),对于非金属固体材料,该系数一般小于2 W/(m ·K )。
假设t r α42→0,即r →0或αt →∞,利用Euler 公式,忽略展开后二次项以后的各项。
如果在不同时间t 1、t 2,测的同一点r 处的温升为1t r θ、2t r θ,则:12ln π412t t q t t r r λθθ=- (4) 根据(4)可以得到试样的导热系数()()12121212ln πL 4ln π4t t t t r r r r t t IU t t q θθθθλ-=-= [4] (5)(5)式中,I 、U 分别热线的通电电流(单位为A )和电压(单位为V ),L 为有效加热长度(单位为m )。
不良导体热导率的测定实验报告
实验名称:不良导体导热系数的测定目的:1.学习一种测量不良导体热导率的方法。
2.学习导热系数实验仪。
为了准确测量加热板和散热器的温度,两个传感器应涂导热硅脂或硅油,以使传感器与加热板和散热板完全接触;另外,在加热橡胶样品时,为了达到稳定的传热效果,调节底部的三个微调螺丝,使样品与加热板和散热板紧密接触,注意不要有气隙。
在中间;并且不要将螺丝拧得太紧而影响样品的厚度。
2.导热系数实验仪的铜板下方的风扇用于强制对流传热,以减小样品侧面和底部之间的放热率,增加样品内部的温度梯度,从而减少实验误差。
因此,在实验期间必须打开风扇。
[实验原理]导热系数是表征材料导热系数的物理量。
材料结构的变化和杂质的不同对材料的热导率有明显的影响,因此材料的热导率经常需要通过实验来测量。
测量导热系数的实验方法一般分为两种:稳态法和动态法。
在稳态方法中,首先使用热源加热样品。
样品内部的温差使热量从高温传递到低温。
样品中每个点的温度都会随着加热速度和传热速度的变化而变化。
通过适当控制实验条件和参数,可以平衡加热和传热的过程。
可以在室内形成稳定的温度分布,据此可以计算出导热系数。
在动态方法中,样品中的最终温度分布会随时间变化,例如周期性变化。
变化的周期和幅度还受实验条件和加热速度的影响,并且与热导率有关。
在本实验中,通过稳态法测量了不良导体(橡胶样品)的热导率,并学习了通过物体的散热率计算出导热率的实验方法。
1898年首先通过平板方法(一种稳态方法)测量不良导体的热导率。
在实验中,将样品制成平板,其上端面与稳定的均匀加热体完全接触,而下端面与均匀的散热器接触。
由于板样品的侧面面积比板平面的侧面面积小得多,因此可以认为热量仅沿上下方向垂直传递,而从侧面散发的热量可以忽略不计。
也就是说,样品中样品平面的垂直方向上仅存在温度梯度,并且在同一平面中的各处温度都相同。
物理实验报告 测量不良导体的导热系数
测量不良导体的导热系数林一仙 一 实验目的1、 用稳态平板法测量不良导体的导热系数2、 用物体的散热速率求传热速率3、 掌握热电偶测量温度的方法 二 实验仪器导热系数仪、杜瓦瓶,热电偶、FPZ-1型多量程直流数字电压表、游标卡尺、停表 三 实验原理 (一) 稳态平板法ht Q 21θθλ-A =∆∆ tQ∆∆为热流量,λ为该物质的导热系数,也称热导率,h-样品厚度, A-样品面积。
所谓稳态指的是高温物体传热的速率等于低温物体散热的速率时,系统便处于一个稳定的热平衡状态。
(二) 实验装置及方法d ht Q 2142πθθλ-=∆∆A- 加热铜盘,P-散热铜盘;d-样品盘的直径,h-样品盘的厚度;θ1-加热铜盘的温度,θ2-散热铜盘的温度。
(三) 冷却法测量散热铜盘的散热速率∵ dt d t Q c m P P θ=∆∆散 ;dtd θ 是曲线在θ2点的斜率,如下图∴ ()dt d h d c m P P θθθπλ2124-= 四 实验内容及步骤1、测量样品盘的厚度h 和直径d ,并记录散热铜盘的质量。
2、调节支架上的三个螺丝使它往下降一部份,将散热铜盘放在它的上面,再往上放样品盘,然后将加热器放在样品盘上面,使三个盘紧密接触,然后把加热器固定,再用三个螺丝往上拧,使整个系统固定不动。
3、将热电偶的插头分别插入两对孔中,并打开毫伏计(要调零)判断热端冷端,将热端分别插入加热铜盘和散热铜盘,冷端插入杜瓦瓶中。
4、用220v 电压加热15分钟,再用110v 加热同时打开风扇,大约半小时后每隔壁5分钟观察θ1、θ2的值各一次,直到观察到连续两组的数值不变即可认为系统达到稳态,记录这组数据。
5、重新用220v 电压加热同时关掉风扇,观察θ2的变化,当达到 θ2+0.2mv 时停止加热并移开加热器同时打开风扇。
观察θ2的变化当温度回落到θ2+0.2mv 时开始每隔壁30秒读一次数据直到θ2-0.2mv ,关掉风扇即完成此次操作。
稳态法测量不良导体的导热系数实验报告(一)
稳态法测量不良导体的导热系数实验报告(一)稳态法测量不良导体的导热系数实验报告简介本报告介绍了使用稳态法测量不良导体的导热系数实验的方法和结果。
该实验采用了稳态法测量导热系数的方法,通过测量导体两端的温度差和导热长度,计算导热系数。
实验目的•测量不同材料的导热系数,了解不良导体的导热性能;•分析不良导体的导热差异,为后续材料选择和优化提供参考。
实验步骤1.准备实验所需材料和设备;2.温度测量:使用温度计测量导体的两端温度,并记录;3.确定导热长度:根据实验设计,测量导体的长度,并记录;4.安装导体:将导体安装在恒温水槽中,确保整个导体完全浸没在水中;5.稳定温度:打开恒温水槽,调节水温,使其稳定于所需温度;6.等待稳定态:在恒温水槽中放置一段时间,待温度稳定后进行下一步;7.测量数据记录:记录稳定温度下导体两端的温度差和导热长度;8.计算导热系数:根据测量数据,使用导热系数计算公式计算导体的导热系数;9.分析结果:对实验结果进行分析和比较,得出结论。
实验结果•实验所得数据:测量到的导体两端的温度差为ΔT,导热长度为L;•导热系数计算结果:根据导热系数计算公式,得出不同导体的导热系数;•数据分析:对比各种导体的导热系数,分析不良导体的导热性能。
结论通过稳态法测量不良导体的导热系数实验,我们得到了不同导体的导热系数数据,并进行了比较和分析。
根据实验结果,可以得出以下结论: 1. 不同材料的导热系数存在较大差异,不良导体的导热性能较差; 2. 在进行材料选择和优化时,需要考虑材料的导热性能;3. 导热系数可作为评价材料导热性能的重要指标之一。
参考文献[1] 张三, 李四, 稳态法测量导热系数实验方法研究, 物理实验杂志, 20XX.[2] 中国测绘科学研究院,导热系数测量技术方法,测绘标准化与质量保证,20XX。
实验条件和设备•实验条件:室温为25°C,相对湿度为50%;•实验设备:–温度计:使用数字温度计,具有高精度和稳定性;–恒温水槽:具有恒温控制功能,能够稳定控制水温;–导体样品:选择不同材料的导体样品,确保样品的尺寸一致;–数据记录器:记录实验数据,确保数据准确性;–恒温计时器:用于稳定时间的控制,确保温度稳定于所需状态。
用稳态法测量不良导体的导热系数实验报告
用稳态法测量不良导体的导热系数实验报告用稳态法测量不良导体的导热系数实验报告稳态法测量不良导体导热系数稳态法测量不良导体导热系数摘要:导热系数是反映材料导热性能的物理量,在加热器、散热器、导热管道、冰箱制造、建筑保温隔热设计等领域都涉及该设计参数。
材料的导热系数与材料的容量、空隙率、湿度、温度等因素有关,小于0.25W/m?K的材料为绝热材料。
导热系数的测量方法有稳态法和动态法两类,本实验采用稳态法。
关键词:稳态法导热系数热流量比热容冷却速率Steady method for measuring the poor conductor coefficient of thermal conductivityAbstract: the coefficient of thermal conductivity is reflect material thermalconductivity physical quantities, in the heater, radiator, thermal pipe,refrigerator manufacture, construction insulation design, and other fields involve the design parameters. The thermal conductivity of materials and the capacity ofthe materials, pore ratio and other factors, such as temperature, humidity, lessthan 0.25 W/m k. materials for insulation. Coefficient of thermal conductivitymeasurement method is steady method and dynamic method two kinds, this experimentused steady state law.Keywords: Steady state law Coefficient of thermal conductivity Heat flow Specificheat let Cooling rate【实验目的】1. 学习用稳态法测量不良导体的导热系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测量不良导体的导热系数
林一仙 一 实验目的
1、 用稳态平板法测量不良导体的导热系数
2、 用物体的散热速率求传热速率
3、 掌握热电偶测量温度的方法 二 实验仪器
导热系数仪、杜瓦瓶,热电偶、FPZ-1型多量程直流数字电压表、游标卡尺、停表 三 实验原理 (一) 稳态平板法
h
t Q 21θ
θλ-A =∆∆ t
Q
∆∆为热流量,λ为该物质的导热系数,也称热导率,h-样品厚度, A-样品面积。
所谓稳态指的是高温物体传热的速率等于低温物体散热的速率时,系统便处于一个稳定的热平衡状态。
(二) 实验装置及方法
d h
t Q 2
142πθθλ-=∆∆
A- 加热铜盘,P-散热铜盘;d-样品盘的直径,h-样品盘的厚度;
θ1-加热铜盘的温度,θ2-散热铜盘的温度。
(三) 冷却法测量散热铜盘的散热速率
∵ dt d t Q c m P P θ=∆∆散 ;dt
d θ 是曲线在θ2点的斜率,如下图
∴ ()dt d h d c m P P θ
θθπλ212
4-= 四 实验内容及步骤
1、测量样品盘的厚度h 和直径d ,并记录散热铜盘的质量。
2、调节支架上的三个螺丝使它往下降一部份,将散热铜盘放在它的上面,再往上放样品盘,然后将加热器放在样品盘上面,使三个盘紧密接触,然后把加热器固定,再用三个螺丝往上拧,使整个系统固定不动。
3、将热电偶的插头分别插入两对孔中,并打开毫伏计(要调零)判断热端冷端,将热端分别插入加热铜盘和散热铜盘,冷端插入杜瓦瓶中。
4、用220v 电压加热15分钟,再用110v 加热同时打开风扇,大约半小时后每隔壁5分钟观察θ1、θ2的值各一次,直到观察到连续两组的数值不变即可认为系统达到稳态,记录这组数据。
5、重新用220v 电压加热同时关掉风扇,观察θ2的变化,当达到 θ2+0.2mv 时停止加热并移开加热器同时打开风扇。
观察θ2的变化当温度回落到θ2+0.2mv 时开始每隔壁30秒读一次数据直到θ2-0.2mv ,
关掉风扇即完成此次操作。
用作图法处理数据。
五注意事项
1、数字电压表调零要用调零旋钮和调零开关
2、量程选择20mv
3、散热铜盘上的洞要与杜瓦瓶同侧
六数据记录及处理
m p=914.7g C P =383J/kg* k
表1 样品尺寸测量数据
θ1=2.26mv,θ2=1.22mv
表2 散热曲线的观测
(
)
cm i i d d d S 006.051
2
=∑=-=
()
cm i i h h h S 015.051
2=∑==- 经检验d 、h 没有坏值
在直线上取两点A(360,1.05),B(39,1.30)求:
s mv t t dt d /108.7360
3905
.130.14-A B A B ⨯=--=--=θθθ ()()()
()k m w dt d d c hm p
p ⋅=⨯⨯-⨯⨯⨯=-=
-/15.0108.722.126.212932.03839147.000764.0444
2212
πθθθπλ ()m s u m d d 5
52
222107103263--⨯=⨯⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛∆+= ()m s u m h h 442
22
2
1021032.05.13--⨯=⨯⎪⎪⎭
⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛∆+=
()
()()
mv u u u u 041.03
05.02212
1
2
122
=⨯=
⨯=+=-θθθθθ
()()
mv u u u u d d d d
041.0305.0221
2
1
2
2
=⎪⎪⎭
⎫
⎝⎛⨯=⨯=+=
θθθθ
()()
s u u u u
dt dt dt dt
6.233221
2
1
2
2=⎪⎭
⎫
⎝⎛⨯=⨯=+=
()2
22
2122212⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪
⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=-dt u d u u d u h u dt d d h E θθθθθθλ 2
222
4
2
5
3216.225.0041.004.1041.012932
.010*******.0107⎪⎭⎫
⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝
⎛+⎪⎪⎭⎫ ⎝⎛⨯⨯+⎪⎪⎭⎫ ⎝⎛⨯=--
55555106.6106.2689105.155101104.8-----⨯+⨯+⨯+⨯+⨯=
%
1710172
=⨯=-
()k m w E u ⋅=⨯=⨯=/03.014.0%17λλλ ()⎪⎩⎪⎨⎧=⋅±=±=%
17/03.014.0E u k m w λ
λ
λλ。