计算机组成原理实验报告基本模型机和复杂模型机的设计
复杂模型机实验报告

一、实验目的1. 了解复杂模型机的组成原理和结构特点;2. 掌握复杂模型机的操作方法和指令系统;3. 学会使用复杂模型机进行基本程序设计;4. 提高计算机组成原理和汇编语言的实际应用能力。
二、实验内容1. 复杂模型机简介复杂模型机是一种用于教学和研究的虚拟计算机系统,具有与真实计算机相似的硬件结构和指令系统。
它通常由运算器、控制器、存储器、输入输出设备等部分组成。
2. 实验步骤(1)熟悉复杂模型机的硬件结构1)了解运算器的组成和功能;2)了解控制器的组成和功能;3)了解存储器的组成和功能;4)了解输入输出设备的组成和功能。
(2)掌握复杂模型机的操作方法和指令系统1)学习复杂模型机的指令格式和寻址方式;2)掌握基本指令的使用方法,如数据传送、算术运算、逻辑运算、控制转移等;3)了解中断和异常处理机制。
(3)使用复杂模型机进行基本程序设计1)编写一个简单的程序,实现数据输入、处理和输出;2)使用复杂模型机的指令系统进行程序调试和优化。
(4)分析实验结果1)分析程序执行过程中的数据变化;2)分析程序执行过程中可能出现的问题及解决方法。
三、实验结果与分析1. 熟悉了复杂模型机的硬件结构,了解了运算器、控制器、存储器、输入输出设备等部分的功能。
2. 掌握了复杂模型机的操作方法和指令系统,能够使用基本指令进行程序设计。
3. 编写了一个简单的程序,实现了数据输入、处理和输出功能。
4. 分析了程序执行过程中的数据变化,发现了程序执行过程中可能出现的问题及解决方法。
四、实验总结1. 通过本次实验,加深了对计算机组成原理和汇编语言的理解,提高了实际应用能力。
2. 学会了使用复杂模型机进行基本程序设计,为今后学习计算机组成原理和汇编语言打下了基础。
3. 在实验过程中,遇到了一些问题,通过查阅资料和与同学讨论,最终解决了问题,提高了自己的解决问题的能力。
4. 建议在今后的实验中,进一步学习复杂模型机的更多指令和功能,提高自己的编程水平。
计算机组成原理实验报告 基本模型机和复杂模型机的设计

基本模型机设计一. 设计目的1. 在掌握部件单元电路实验的基础上,进一步将其组成系统构造一台稍微复杂的模型计算机;2. 为其定义5条机器指令,并编写相应的微程序,具体上机调试掌握整机概念二. 设计内容部件实验过程中,各部件单元的控制信号是人为模拟产生的,而本次实验将能在微程序控制下自动产生各部件单元控制信号,实现特定指令的功能,这里,计算机数据通路的控制将由微程序控制器来完成,CPU从内存中取出一条机器指令到指令执行结束的一个指令周期全部由微指令组成的序列来完成,即一条机器指令对应一个微程序。
三.概要设计为了向RAM中装入程序和数据,检查写入是否正确,并能启动程序执行,还必须设计三个控制台操作微程序.存储器读操作:拨动总清开关CLR后,控制台开关SWB,SWA 为”0 0”时,按START微动开关,可对RAM连续手动读操作.存储器写操作:拨动总清开关CLR后,控制台开关SWB SWA置为”0 1”时,按START 微动开关可对RAM进行连续手动写入.启动程序:拨动总清开关CLR后,控制台开关SWB SWA置为“1 1”时,按START微动开关,既可转入到第01号“取址”微指令,启动程序运行.上述三条控制台指令用两个开关SWB SWA 的状态来设置,其定义如下表3-1读写变化SWB SWA 控制台指令0 0 1 011读内存(KRD)写内存(KWE)启动程序(RP)根据以上要素设计数据通路框图,如图3-1:表3-2 微代码的定义微程序24 23 22 21 20- 19 18 17 16 15 14 13 控制信号S3S2 S1 S0 M CN RD M17 M16 A12 11 10 9 8 7 6 5 4 3 2 1P4BP uA5 uA4 uA3 uA2 uA1 uA0表3-3 A ,B ,P 字段内容A 字段B 字段 P 字段15 14 13 控制信号12 11 10 控制信号 987控制信号 0 0 0 .0 0 0 0 0 0 0 0 1 LDRI 0 0 1 RS_G 0 0 1 P1 0 1 0 LDDR1 0 1 0 0 1 0 0 1 1 LDDR2 0 1 1 0 1 1 1 0 0 LDIR 1 0 0 1 0 0 P4 1 0 1 LOAD 1 0 1 ALU_G 1 0 1 11LDAR110 PC_G110 LDPC当拟定“取指令”微指令时,该微指令的判别测试字段为P1测试。
基本模型机的设计与实现实验报告

基本模型机的设计与实现实验报告本文将围绕“基本模型机的设计与实现实验报告”进行分析和阐述。
基本模型机的设计与实现是计算机系统课程中的重点内容,是学生理解计算机系统的核心;设计和实现基本模型机需要学生掌握计算机组成原理的基本知识,能够编写汇编语言程序和理解存储器层次结构等相关概念。
一、实验目的本次计算机系统实验的目的是掌握CPU的设计与实现,以及理解汇编语言的底层执行过程。
通过本次实验,学生可以深入了解计算机系统的基本组成部分,从而提高对计算机实现原理的认识和理解。
二、实验中设计与实现模型机的步骤1、确定模型机性能要求根据实验要求,我们需要设计出一个能够运行汇编语言程序的模型机。
此时,我们需要确定模型机的性能需求,如运行速度、存储容量和输入输出设备等方面。
2、设计和实现CPU在模型机中,CPU是核心部件,所以首先需要设计和实现CPU。
CPU需要包括寄存器、算术逻辑单元、控制器和取指令等组成部分。
由于我们使用的是逻辑电路实现,所以需要进行逻辑门设计,采用Verilog语言来实现。
3、设计和实现存储器存储器是CPU所需的重要组成部分之一,我们需要为CPU设计实现一套存储器,包括RAM和ROM两部分,其中RAM用于存储数据,ROM用于存储指令。
4、设计和实现输入输出设备在模型机中,输入输出设备也是必不可少的部分。
我们需要设计并实现一套输入输出设备,用于用户输入指令和数据,以及模型机输出结果。
5、编写汇编程序在完成模型机的设计和实现后,我们需要编写汇编程序来测试模型机的功能是否正常。
我们可以编写一些简单的汇编程序来测试模型机的运行速度和结果准确性。
三、实验结果与分析经过实验,我们成功地设计并实现了一套基本模型机,并编写了一些简单的汇编程序进行测试。
模型机具有较高的运行速度和存储容量,并且可以实现输入输出设备的基本功能。
同时,我们也发现了一些问题,如指令与数据存储的冲突等,需要进一步改进。
在完成实验过程中,我们深刻理解了计算机系统的结构和运作原理,提高了对计算机系统的认识和理解能力。
计算机组成原理实验报告

计算机组成原理实验报告Computer Organization Lab R eports一.实验目的综合运用所学计算机原理知识,设计并实现较为完整的计算机。
二.实验环境Dais-CMX16+达爱思教仪三.实验原理1.数据格式模型机规定采用定点补码表示数据,且字长为8位,其格式如下:其中第7位为符号位,数值表示范围是:-1≤X<1。
2.指令格式模型机设计四大类指令共16条,其中包括算术逻辑指令、I/O指令、访问及转移指令和停机指令。
⑴算术逻辑指令设计9条算术逻辑指令并用单字节表示,寻址方式采用寄存器直接寻址,其格式如下:其中,OP-CODE Rs Rd其中R0=CL;R1=CH;R2=DL;R3=DH⑵访问指令及转移指令模型机设计2条访问指令,即存数(STA)、取数(LDA),2条转移指令,即无条件转移(JMP)、结果为零或有进位转移指令(BZC),指令格式为:其中“0 0 M ”为源码段,2OP-CODE为目的码段(LDA、STA指令使用)。
D为十六位地址段(低八在前,高八随后),M为源寻址模式,其定义如下:⑶ I/O指令输入(IN)和输出()指令采用单字节指令,其格式如下:⑷停机指令指令格式如下:HALT3.指令系统本模型机共有16条基本指令,其中算术逻辑指令9条,访问内存指令和程序控制指令4条,输入输出指令2条,其它指令1条。
下表列出了各条指令的格式、汇编符号、指令功能。
表5-1四.实验步骤及结果分析1. 联机运行双击桌面“Dais-CMX 集成开发环境”图标进入联机模式。
在联机状态下,首先应打开mxj4.asm(复杂模型机机器指令及对应微指令代码文件),然后点击工具栏“装载”按钮开始装载,如源程序无语法错误即可完成装载,进入调试状态。
可点击工具栏快捷按钮,详细操作如下:●单节拍:单击菜单“运行→单拍运行微指令”命令或单击工具栏“单拍”按钮,以单节拍方式按T1~T4顺序逐步运行微程序。
●单周期:单击菜单“运行→单步运行微指令”命令或单击工具栏“微单步”按钮,以单周期(T1~T4为一个机器周期)方式逐步运行微程序。
复杂模型机实验实验报告(共9篇)

复杂模型机实验实验报告(共9篇)_复杂模型机实验报告计算机组成原理实验报告实验题目:一台模型计算机的总体设计之复杂模型机设计实验目的:(1)在掌握部件单元电路实验的基础上,进一步将其组成系统,构造一台复杂模型计算机,建立一台基本完整的整机。
(2)为其定义至少五条机器指令,并编写相应的微程序,通过联机调试,观察计算机执行指令:从取指令、指令译码、执行指令等过程中数据通路内数据的流动情况,进一步掌握整机概念。
实验设备TDN-CM+教学实验系统一套、微型计算机一台、排线若干。
实验原理:(1)数据格式及指令系统:①数据格式模型机规定数据采用定点整数补码表示,字长为8位,其格式如下:其中,第7位为符号位,数值表示范围是-27 ≤X≤27-1 ②指令格式模型机设计4大类指令共16条,其中包括算术逻辑指令、I/O 指令、访问及转移指令和停机指令。
A.算术逻辑指令设计九条算术逻辑指令并用单字节表示,寻址方式采用寄存器直接寻址,其格式如下:其中,OP-CODE为操作码,RS为源寄存器,RD为目标寄存器,并规定:九条算术逻辑指令的助记符、功能和具体格式见表5.2-1。
B.访问及转移指令:模型机设计两条访问指令,即存数(STA)、取数(LDA),两条转移指令,即无条件转移(JMP)、结果为零或有进位转移(BZC),指令格式如下:其中,OP-CODE为操作码,RD为目的寄存器地址(LDA、STA 指令使用)。
D为位移量(正负均可),M为寻址模式,其定义如下:本模型机规定变址寄存器RI指定为寄存器R2。
C.I/O指令:输入(IN)和输出(OUT)指令采用单字节指令,其格式如下:其中,addr=01时,选中“INPUT DEVICE”中的开关组作为输入设备,addr=10时,选中“OUTPUT DEVICE”中的数码块作为输出设备。
D.停机指令:停机指令格式如下:HALT指令,用于实现停机操作。
③指令系统:本模型机共有16条基本指令,其中算术逻辑指令七条,移位指令两条,访问内存指令和程序控制指令四条,输入/输出指令两条,其它指令一条。
计算机组成原理课程设计报告(基本模型机设计与实现)

本科生课程实习学生姓名学生学号所在专业所在班级指导教师职称时间成绩目录一、课程设计题目 (2)二、课程设计使用的实验设备 (2)三、课程设计内容与步骤 (2)1、所设计模型机的功能与用途 (3)2、数据通路图 (4)3、微代码定义 (4)4、微程序流程图 (5)5、微指令二进制代码 (6)6、本课程设计机器指令 (7)7、模型机的调试与实现 (7)(1)接线图 (7)(2)写程序 (8)(3)运行程序 (8)四、总结 (9)参考文献 (9).一、课程设计题目基本模型机设计与实现二、课程设计使用的实验设备TDN-CM计算机组成原理教学实验系统一台,排线若干三、课程设计内容与步骤不见实验过程中,各部件单元的控制信号是认为模拟产生的,而本次课程实习将能在为程序控制下自动产生各部件单元控制信号,实现特定指令的功能。
这里,计算机数据通路的控制将由微程序控制器来完成,CPU从内存中取出一条机器指令到指令执行结束的一个指令周期全部由微指令组成的序列来完成,即一条机器指令对应一个微程序。
本课程设计采用六条机器指令:IN(输入)、AND(与运算)、DEC(自增1)、STA(存数)、OUT(输出)、JMP(无条件跳转),其指令格式如下:其中IN、DEC为单字长,其余为双字长指令,********为addr对应的二进制地址码。
1、所设计模型机的功能与用途本次课程设计设计的模型机包括六条指令,输入、与运算、自增、存数、输出、无条件跳转。
利用此模型机可完成两个数的与运算,一个数从键盘输入,另个数从内存中读取,再将运算结果自增1,把最后结果保存到内存中,并且将运算结果输出2、数据通路图3、微代码定义C字段A字段B字段4、微程序流程图控制程序流程图当拟定“取指”微指令时,该微指令的判别测试字段为P(1)测试;控制台操作为P(4)测试,它以控制台开关SWB、SWA作为测试条件,共三路分支。
5、微程序设计完毕后,将每条微指令代码化,将流程图转化为二进制代码表6、本课程设计机器指令7、模型机的调试与实现(1)接线图(2)写程序A、现将机器指令对应的微代码正确写入2816中。
计算机组成原理-实验报告四-基本模型机设计与实现

计算机组成原理实验报告
学院:计算机科学与信息专业:班级:
指令划分为操作码和地址码字段,由二进制数构成,为了执行任何给定的指令,必须对操作码进行测试P(1),通过节拍脉冲T4的控制以便识别所要求的操作。
“指令译码器”根据指令中的操作码译码,强置微控器单元的微地址,使下一条微指令指向相应的微程序首地址。
本系统有两种外部I/O设备,一种是二进制代码开关,它作为输入设备(INPUTDEVICE);另一种是LED块,它作为输出设备(OUTPUT DEVICE)。
本实验设计机器指令程序如下:
地址(二进制)内容(二进制)助记符号说明
0000 0000 0000 IN R0,SW "INPUT DEVICE"-->R0
0001 0001 0000 ADD R0,09H R0+「09H」-->R0
0010 0000 1001
0011 0010 0000 STA 0BH,R0 R0-->「0BH」
0100 0000 1011
0101 0011 0000 OUT BUS ,0AH 「0AH」-->BUS
0110 0000 1010
0111 0100 0000 JMP 00H 00H-->PC
1000 0000 0000
1001 0101 0101 自定
1010 1010 1010 自定
1011 求和结果。
计算机组成原理—模型机设计报告

计算机组成原理--模型机设计报告作者姓名:专业:网络工程学号:指导教师:完成日期:2016年1月6日目录课程设计任务书 (3)1课程设计目的 (3)2课程设计设备 (3)3课程设计内容 (4)3.1课程设计原理 (4)3.2实验步骤 (6)4课程设计结果 (10)5课程设计总结 (14)5.1课程设计的心得、经验教训及注意事项 (14)5.1.1心得体会 (14)5.1.2经验教训 (14)5.1.3注意事项 (14)参考文献 (14)课程设计任务书学生姓名:专业班级: 1320552指导教师:工作单位:题目:基本模型机的设计与实现初始条件1.完成《计算机组成原理》课程教学与实验2.Proteus仿真系统要求完成的主要任务(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1.掌握简单指令系统计算机的微控制器功能与结构特点2.熟悉Proteus仿真系统3.在Proteus仿真系统中确认运行结果4.形成简单指令系统计算机的整机概念1课程设计目的设计并实现基本模型机:(1)理解计算机工作原理(2)设计并验证一个定点计算机模型(3)增加一个浮点运算单元2课程设计设备PC机+Win 2003+proteus仿真器3课程设计内容3.1课程设计原理部件实验过程中,各部件单元的控制信号是以人为模拟产生为主,而本次实验将能在微程序控制下手动产生各部件单元的控制信号,实现特定指令的功能。
如运算器实验中对74LS-181芯片的控制,存储器中对存储器芯片的控制信号,以及几个实验中对输出设备的控制通过LED灯来显示结果。
这里,计算机数据通路的控制将由微程序控制器来完成,CPU从内存中取出一条机器指令到指令执行结束的一个指令周期全部由微指令组成的序列来完成,即一条机器指令对应一个微程序。
本实验采用五条机器指令:IN(输入)、ADD(二进制加法)、STA(存数)、OUT(输出)、JMP(无条件转移)。
基本模型机数据通路框图:基本模型机微程序流程图:3.2实验步骤1、该基本模型机主要有运算器和存储器两大功能器件构成,首先设计运算器并对其进行功能验证。
计算机硬件课程设计报告——复杂模型机设计

计算机硬件课程设计报告复杂模型机设计一、实验目的经过一系列硬件课程的学习及相关实验后,做一个综合的系统性的设计,这在硬件方面是一个提高,进一步培养实践能力。
二、实验原理搭建一台8位模型机,指令系统要求有10条以上,其中包括运算类指令、传送类指令、控制转移类指令、输入输出指令、停机指令等。
三、实验思路1、确定设计目标:确定所设计计算机的功能和用途。
2、确定指令系统:确定数据的表示格式、位数、指令的编码、类型、需要设计哪些指令及使用的寻址方式。
3、确定总体结构与数据通路:总体结构设计包含确定各部件设置以及它们之间的数据通路结构,列出各种信息传送路径以及实现这些传送所需要的微命令。
4、设计指令执行流程:数据通路确定后,就可以设计指令系统中每条指令的执行流程。
根据指令的复杂程度。
每条指令所需要的机器周期数。
对于微程序控制的计算机,根据总线结构,需要考虑哪些微操作可以安排在同一个微指令中。
5、确定微程序地址:根据后续微地址的形成方法,确定每条微程序地址及分支转移地址。
6、根据微指令格式,将微程序流程中的所有微操作进行二进制代码化,写入到控制存储器中的相应单元中。
7、组装、调试:在总装调试前,先按功能模块进行组装和分调,因为只有功能模块工作正常后,才能保证整机的运行正确。
四、实验原理1.指令系统及指令格式:指令系统应包括:算术逻辑运算指令、访存指令、控制转移指令、I/O指令、停机指令。
一般指令格式:指令系统如: ADD RS,RD MOV DATA,RD MOV RS,[ADDR] JZ ADDRIN RD HALT其中RS 、RD为R0、R1、R2中之一,DATA为立即数,ADDR为内存地址。
2.指令微操作流程3.微指令格式299-b s1 s0 m 功能0 0 0 任意保持0 1 0 0 循环右移0 1 0 1 带进位循环右移0 0 1 0 循环左移0 0 1 1 带进位循环左移任意 1 1 任意装数4.微程序入口地址形成寄存器地址译码电路5.模型机的时序6.模型机数据通路7.微程序装载格式机器指令格式: $Pxxxx 微指令格式: $Mxxxxxxxx8.模型机组装电路图五、实验步骤:1、按照给定模型机组装电路图连接电路;2、连通实验箱与PC机,打开CMP软件,测试实验箱是否正常;3、设计微指令,画出其微操作流程图,并翻译成相应的微指令格式;4、设计包含这些微指令的机器指令程序,并翻译成相应机器指令格式;5、把设计好微指令和机器指令保存为TXT文件,然后装载入CMP;6、打开复杂模型机,然后用单步机器指令运行程序并调试;7、检查LED数码管输出结果是否正确,最后撰写实验报告。
计算机组成原理实验(基本模型机实验)

实验六 基本模型机的设计与实现
⑶ 根据微程序流程图设计微指令并转换成 16进制代码文件。 当全部微程序设计完毕后,应将每条微指 令代码化,即按微指令格式将微程序流程 图转化成二进制微代码表,如下表所示, 再转换成16进制代码文件。
实验六 基本模型机的设计与实现
监控程序的16进制文件格式(文件名C8JHE1): 程序: $P00 00 $P01 10 $P02 0A $P03 20 $P04 0B $P05 30 $P06 0B $P07 40 $P08 00 $P0A 01
实验六 基本模型机的设计与实现
⑴有关微控制器部分在前一实验中已详细介绍 ⑵ 主存储器的读、写和运行 为了向主存储器RAM中装入程序或数据,并且检查写入是否正确以及 能运行主存储器中的程序,必须设计三个控制操作微程序。 ·存储器读操作:拨动总清开关后,置控制开关SWC、SWA为“0 0”时, 按要求连线后,连续按“启动运行”开关,可对主存储器RAM连续手动 读操作。 ·存储器写操作:拨动总清开关后,置控制开关SWC、SWA为“0 1”时, 按要求连线后,再按“启动运行”开关,可对主存储器RAM进行连续手 动写入。 ·运行程序:拨动总清开关后,置控制开关SWC、SWA为“1 1”时,按要 求连线后,再按“启动运行”开关,即可转入到第01号“取址”微指令, 启动程序运行。 上述三条控制指令用两个开关SWC、SWA的状态来设置,其定义如下:
实验六 基本模型机的设计与实现
2、实验步骤 ⑴ 根据实验原理设计数据通路框图,如下图。
实验六 基本模型机的设计与实现
⑵ 根据机器指令画出对应的微程序流程图 本实验的微程序流程见下图,当拟定“取指”微指令时, 该微指令的判别测试字段为P(1)测试。由于“取指”微 指令是所有微程序都使用的公用微指令,因此P(1)的测 试结果出现多路分支。本机用指令寄存器的前4位I7~I4作 为测试条件,出现5路分支,占用5个固定微地址单元。 实验机控制操作为P(4)测试,它以控制开关SWC、 SWA作为测试条件,出现了3路分支,占用3个固定微地 址单元。当分支微地址单元固定后,剩下的其它地方就可 以一条微指令占用控存一个微地址单元随意填写。 注意:微程序流程图上的单元地址为16进制。
计算机组成原理课程设计报告(基本模型机设计与实现)

本科生课程实习学生姓名学生学号所在专业所在班级指导教师职称时间成绩目录一、课程设计题目 (2)二、课程设计使用的实验设备 (2)三、课程设计内容与步骤 (2)1、所设计模型机的功能与用途 (3)2、数据通路图 (4)3、微代码定义 (4)4、微程序流程图 (5)5、微指令二进制代码 (6)6、本课程设计机器指令 (7)7、模型机的调试与实现 (7)(1)接线图 (7)(2)写程序 (8)(3)运行程序 (8)四、总结 (9)参考文献 (9).一、课程设计题目基本模型机设计与实现二、课程设计使用的实验设备TDN-CM计算机组成原理教学实验系统一台,排线若干三、课程设计内容与步骤不见实验过程中,各部件单元的控制信号是认为模拟产生的,而本次课程实习将能在为程序控制下自动产生各部件单元控制信号,实现特定指令的功能。
这里,计算机数据通路的控制将由微程序控制器来完成,CPU从内存中取出一条机器指令到指令执行结束的一个指令周期全部由微指令组成的序列来完成,即一条机器指令对应一个微程序。
本课程设计采用六条机器指令:IN(输入)、AND(与运算)、DEC(自增1)、STA(存数)、OUT(输出)、JMP(无条件跳转),其指令格式如下:其中IN、DEC为单字长,其余为双字长指令,********为addr对应的二进制地址码。
1、所设计模型机的功能与用途本次课程设计设计的模型机包括六条指令,输入、与运算、自增、存数、输出、无条件跳转。
利用此模型机可完成两个数的与运算,一个数从键盘输入,另个数从内存中读取,再将运算结果自增1,把最后结果保存到内存中,并且将运算结果输出2、数据通路图3、微代码定义C字段A字段B字段4、微程序流程图控制程序流程图当拟定“取指”微指令时,该微指令的判别测试字段为P(1)测试;控制台操作为P(4)测试,它以控制台开关SWB、SWA作为测试条件,共三路分支。
5、微程序设计完毕后,将每条微指令代码化,将流程图转化为二进制代码表6、本课程设计机器指令7、模型机的调试与实现(1)接线图(2)写程序A、现将机器指令对应的微代码正确写入2816中。
计算机组成原理实验八复杂模型机的设计与实现心得

计算机组成原理实验八复杂模型机的设计与实现心得
在计算机组成原理实验八中,我们需要设计并实现一个复杂的模型机。
这是一个很有挑战性的任务,需要我们充分运用所学的知识和技能,才能成功完成。
在设计过程中,我们首先需要明确模型机的功能需求,并根据需求确定模型机的各个部分以及它们之间的相互关系。
在此基础上,我们可以开始进行具体的设计和实现工作。
在具体实现过程中,我们需要注意代码的可读性和可维护性,尽量避免出现冗长、复杂的代码结构。
同时,我们需要对代码进行严格的测试和调试,确保模型机的各个部分都能正常运行和协同工作。
通过这次实验,我不仅深入了解了计算机组成原理的相关知识,也锻炼了自己的设计和实现能力。
希望今后能够在这方面继续努力,不断提高自己的技能水平。
- 1 -。
计算机组成原理课程设计模型机实验报告 精品

实践报告计算机组成原理--模型机设计报告作者姓名:专业:计算机科学与技术学号:指导教师:完成日期:年月号******学院计算机工程系摘要“计算机组成原理”是计算机科学与技术系的一门核心专业基础课程,在计算机专业中起了很重要的作用。
课程中分部分介绍了计算机的各个部件,我们有必要将它们组合起来以对计算机有一个整体的认识。
这次课程设计通过对一个简单模型机的设计与实现,是我们对计算机的基本组成、部件的设计、部件间的连接有更深的理解。
依次设计计算机的几个部件并进行连接使成为一个完整的模型机。
通过运行和调试,使之正常工作。
关键词:运算器;控制器;存储器;输入输出接口;模型机正文:一、课设目的要求:《计算机组成原理》是一门理论性、实践性均较强的专业基础课,要求学生具有一定的电路分析、指令系统编写能力、软件设计能力。
通过计算机组成原理实践周,要突出《计算机组成原理》理论联系实际的特点,培养实践动手能力。
1.培养学生运用理论知识和技能,构建建立问题逻辑结构,锻炼学生分析解决实际问题的能力。
2.培养学生使用PROTEUS软件分析和设计计算机内部器件的方法和技巧。
3.培养学生调查研究、查阅技术文献、资料、手册以及编写技术文献的能力。
4.通过实践设计,要求学生在指导教师的指导下,独立完成设计课题的全部内容,包括:(1)通过调查研究和上机实习,掌握PROTEUS软件的设计和仿真调试技能。
(2)掌握计算机系统的组成结构及其工作原理。
(3)设计实现一个简单计算机的模型机,并能够使用PROTEUS软件进行电路仿真验证二、课设内容:利用所学的计算机结构和工作原理的知识,要求学生独立完成简单计算机的模型机设计,并用PROTEUS软件进行验证。
在分析设计过程中,要求学生养成良好的习惯,学会分析实际问题,并利用所学的知识建立系统的逻辑结构,学会PROTEUS调试技巧和方法,通过逻辑设计和工程设计培养调试硬件电路的实际动手能力。
要求学生掌握数字逻辑电路中故障的一般规律,以及排除故障的一般原则和方法;锻炼分析问题与解决问题的能力,在出现故障的情况下,独立分析故障现象,并排除故障。
广东海洋大学计算机组成原理课程设计实习报告(最新版)--基本模型机的实现

本科生课程实习基本模型机的设计与实现课程名称计算机组成与结构课程实习学生姓名学生学号所在专业计算机科学与技术所在班级指导教师成绩2019年12月19日目录1 设计任务与要求 (2)1.1 设计目的 (2)1.2 设计内容 (2)1.3 设计要求 (2)2 设计思想 (2)2.1 主要使用芯片 (2)2.2 基本原理 (2)3 设计方案 (3)3.1 指令格式表 (3)3.2 指令流程图与控制信号表 (4)3.3 接线图 (6)3.4 模块功能 (6)4 测试结果及分析 (7)4.1 测试过程 (7)4.2 测试结果 (7)5 源程序 (11)6 总结 (12)参考文献 (12)基本模型机的设计与实现1设计任务与要求1.1 设计目的(1)将微程序控制器同执行部件(整个数据通路)联机,组合一台模型计算机;(2)用微程序控制器控制模型机数据通路(3)通过CPU运行九条指令(排除中断指令)组成的简单程序,掌握机器指令与微指令的关系,牢固建立计算机的整机概念1.2 设计内容设计不少于10条指令的指令系统,其中包含算术逻辑指令,访问内存指令,程序控制指令,输入输出指令,停机指令。
包括直接、间接、变址和相对寻址等多种寻址方式。
设计出微程序,其中数据字长为8位,采用定点补码表示,指令字长为8的整数倍。
微指令字长为38位。
上机调试,并给出测试思路和具体程序段。
1.3 设计要求了解并掌握计算机组成原理设计的一般方法,具备初步的独立分析和设计能力;通过该课程设计的学习,总结计算机组成原理课程的学习内容,层次化设计方法、多路开关,逻辑运算部件,微程序控制的运算器设计、微程序控制的存储器设计、简单计算机的设计。
提高综合运用所学的理论知识和方法独立分析和解决问题的能力。
2 设计思想2.1 主要使用芯片该实验用到了GAL22V10,74LS181,HN58C65,74LS298,ISPLI1016,IDT7132等芯片。
2.2 基本原理微指令的格式如下所示:2.2.1指令的设计思想主要是根据实验指导提供的指令执行周期图,根据微指令的格式分析哪一位信号应该开启,即状态置为1,然后将其按照每8位二进制合成一个W值(十六进制数),就是组成指令的源程序。
基本模型机实验报告

基本模型机实验报告一、实验目的本实验旨在通过构建一个基本模型机,深入了解计算机的工作原理,包括数据的二进制表示、指令执行、内存管理以及简单的输入输出。
二、实验设备1. 微处理器(如 Intel 8080)2. 存储器芯片(如 Intel 2114)3. 输入设备(如开关或键盘)4. 输出设备(如LED灯或显示器)5. 电源三、实验步骤步骤一:构建模型机根据实验设备,将微处理器、存储器、输入设备和输出设备连接起来,形成一个简单的模型机。
确保所有连接正确无误,电源供应稳定。
步骤二:数据表示与存储在模型机中,使用二进制数表示数据。
将数据存储在存储器中,并观察数据在存储器中的表示形式。
例如,使用开关模拟二进制数的0和1,将开关按下表示0,不按下表示1。
步骤三:指令执行编写简单的汇编指令,如加法指令,并在模型机上执行。
观察指令的执行过程,包括取指令、解码指令、执行指令和写回结果等步骤。
步骤四:内存管理模拟内存的读写操作,了解内存地址的概念以及如何通过地址访问存储在内存中的数据。
观察内存地址的增加和减少对数据读写的影响。
步骤五:输入输出操作通过输入设备输入数据,观察模型机如何将输入的数据存储在内存中。
然后通过输出设备输出数据,了解输出数据的表示形式。
四、实验结果与分析通过本次实验,我们了解了计算机的基本工作原理,包括数据的二进制表示、指令执行、内存管理和输入输出操作。
在实验过程中,我们观察到微处理器负责执行指令,存储器用于存储数据和指令,输入设备用于输入数据,输出设备用于输出数据。
此外,我们还了解了内存地址的概念以及如何通过地址访问存储在内存中的数据。
五、结论与建议本次实验使我们深入了解了计算机的基本工作原理,并掌握了构建简单模型机的方法。
为了进一步提高实验效果,建议在未来的实验中增加更多的设备和功能,例如中断处理、多任务处理等,以便更全面地了解计算机的工作原理。
同时,建议在实验过程中注重细节和观察,以便更好地理解实验结果和原理。
复杂模型机的设计与实现实验报告

实验报告时间:2011.5.31
复杂模型机的设计与实现
一、目的要求
(1)综合运用所学计算机原理知识,设计并实现较为完整的计算机。
二、实验仪器与试剂
计算机组成原理实验箱。
三、实验原理
1、实验中所用的复杂模型机数据通路原理如图1所示。
图1 复杂模型机数据通路原理框图
四、实验步骤
1、写程序。
方法一:手动写入
①将机器指令对应的微代码正确写入2816中。
②使用控制台KWE和KRD进行机器指令的装入和检查。
方法二:联机读/写程序(略)
2、运行程序。
单步运行程序、连续运行。
五、实验现象、结果记录及整理
六、分析讨论与思考题解答(自己可以修改填写)
这次实验是对前几次实验所学的知识的一个综合应用。
难度当然也增加了,因为这个实验连线很多并且这个实验还要求编写一个程序运行来实现其功能。
刚开始自己忙了很久还是不明白其原理,不懂得怎样去编这个程序,后来听了老师的讲解后才明白和了解指令功能,终于还是把所有的问题都解决了。
总得来说这实验收获很大,感觉自己学到了知识。
计算机组成原理课设报告及代码之复杂模型机设计

.课程设计报告课程名称:计算机组成原理题目名称:复杂模型机设计专业名称:计算机科学与技术班级:2013240203学生姓名:李俊同组同学:丰翔王兆宇学号: 201324020311指导教师:兰勇完成时间:2016年1月8 日目录一、课程设计概述 (3)1.1 课程设计的教学目的 (3)1.2 课程设计任务和基本要求 (3)1.3 设计原理 (4)二、规定项目的实验验证 (4)2.1 设计原理 (4)2.2 操作步骤 (13)三、指定应用项目的设计与实现 (18)3.1设计任务 (18)3.2任务分析以及解决方案 (18)四、收获和体会 (19)4.1 我的收获与体会 (15)一、课程设计概述1.1 课程设计的教学目的本课程设计的教学目的是在掌握计算机系统组成及内部工作机制、理解计算机各功能部件工作原理的基础上,深入掌握数据信息流和控制信息流的方法,进一步加深对计算机系统各模块间相互关系的认识和整机的概念,培养开发和调试计算机的技能。
在设计实践中提高应用所学专业知识分析问题和解决问题的能力。
1.2 课程设计任务和基本要求本课程设计以TD—CMA计算机组成原理教学实验系统为平台完成。
1. 按给定的数据格式和指令系统,理解微程序控制器的设计原理。
2. 设计给定机器指令系统以及微程序流程图,按微指令格式写出微程序的微指令代码。
3. 连接逻辑电路,完成启动、测试、编程、校验和运行,并观测运行过程和结果。
4. 将微程序控制器模块与运算器模块、存储器模块联机,组成一台模型计算机。
5. 用微程序控制器控制模型机的数据通路。
6. 通过在模型机上运行有机器指令组成的简单程序,掌握机器指令与微指令的关系,建立计算机的整机概念,掌握计算机的控制机制。
7. 按指定应用项目进行汇编指令格式及功能设计,并设计相应的机器指令代码,按照模型机数据通路设计实现机器指令功能的微程序。
在PC机上编辑机器指令和微程序,装载代码到TD—CMA实验系统并运行,实现应用要求。
计算机组成原理实验报告基本模型机和复杂模型机的设计

计算机组成原理实验报告基本模型机和复杂模型机的设计1.引言2.设计目标本次实验的设计目标是实现一个满足基本要求的计算机模型,了解计算机的基本组成结构和工作原理。
然后我们将设计一个更复杂的模型,通过增加功能模块和优化设计,实现更高级的计算能力和更好的性能。
3.实验方法基本模型机的设计主要包括五个核心模块:输入模块、中央处理器(CPU)、存储器、控制器和输出模块。
我们将使用VHDL语言来实现这些模块,并使用FPGA来实现整个基本模型机。
复杂模型机的设计在基本模型机的基础上进行扩展和优化。
我们将对CPU进行升级,加入多核处理器和并行计算能力,增加存储器容量和传输速率,优化控制器的运行效率。
通过这些优化,我们可以提高复杂模型机的计算性能和运行效率。
4.实验结果4.1基本模型机的实验结果基本模型机的实验结果显示,我们成功实现了输入输出功能,能够将用户的输入数据送入存储器,并通过CPU进行计算后将结果输出。
虽然这个模型的计算能力和性能较低,但是它对于初学者来说是一个良好的实践项目。
4.2复杂模型机的实验结果复杂模型机的实验结果显示,我们成功实现了多核处理器和并行计算的功能,并大幅提升了计算性能和运行效率。
存储器的容量和传输速率的提升也带来了更高的数据处理能力。
控制器的优化使得整个模型机的运行更加稳定和高效。
5.实验总结通过设计和实现基本模型机和复杂模型机,我们加深了对计算机组成原理的理解,并掌握了相关的设计和实践技巧。
实验结果表明,我们的设计能够满足计算机的基本要求,并具有一定的性能和计算能力。
通过进一步优化和扩展,我们可以设计出更高级的计算机模型,满足更多应用需求。
[1]《计算机组成原理》李文新,清华大学出版社,2024年。
计算机组成原理课程设计报告(复杂模型机)

计算机组成原理课程设计报告复杂模型机的设计与调试复杂模型机的设计与实现一、课程设计目的本课程设计是《计算机组成原理》课程结束以后开设的大型实践性教学环节。
通过本课程设计,加深对计算机系统各模块的工作原理及相互联系的认识,特别是对微程序控制器的理解,进一步巩固所学的理论知识,并提高运用所学知识分析和解决实际问题的能力;锻炼计算机硬件的设计能力、调试能力;培养严谨的科学实验作风和良好的工程素质,为今后的工作打下基础。
二、实验设备ZY15CompSys12BB计算机组成原理教学实验系统一台,排线若干。
三、设计与调试任务1.按给定的指令格式和指令系统功能要求,用所提供的器件设计一台微程序控制器控制的模型计算机。
2.根据设计图,在通用实验台上进行组装,并调试成功。
四、指令格式模型机设计四大类指令共十六条,其中包括算术逻辑指令、I/O指令、访问存储器及转移指令和停机指令。
(A) 算术逻辑指令设计9条算术逻辑指令并用单字节表示,寻址方式采用寄存器直接寻址,其格式如下:D7 D6 D5 D4 D3 D2D1 D0OP-CODE Rs Rd其中,OP-CODE为操作码,Rs为源寄存器,Rd为目的寄存器,并规定:选中的寄存器(Rs或Rd)R0R1 R2寄存器的编码00 01 10(B) 访存指令及转移指令模型机设计2条访问指令,即存数(STA)、取数(LDA)、2条转移指令,即无条件转移(JMP)、结果为零或有进位转移指令(BZC)。
其格式如下:D7 D6D5 D4 D3 D2D1 D0D7····D0OP-CODE M OP-CODE Rd D其中,OP-CODE为操作码,Rd为目的寄存器,D为位移量(正负均可),M为寻址方式,其定义如下:寻址方式有效地址说明00 E=D 直接寻址01 E=(D)间接寻址10 E=(R I)+D R I变址寻址11 E=(PC)+D 相对寻址本模型机规定变址寄存器R I指定为寄存器R2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本模型机设计一. 设计目的1. 在掌握部件单元电路实验的基础上,进一步将其组成系统构造一台稍微复杂的模型计算机;2. 为其定义5条机器指令,并编写相应的微程序,具体上机调试掌握整机概念二. 设计内容部件实验过程中,各部件单元的控制信号是人为模拟产生的,而本次实验将能在微程序控制下自动产生各部件单元控制信号,实现特定指令的功能,这里,计算机数据通路的控制将由微程序控制器来完成,CPU从内存中取出一条机器指令到指令执行结束的一个指令周期全部由微指令组成的序列来完成,即一条机器指令对应一个微程序。
三.概要设计为了向RAM中装入程序和数据,检查写入是否正确,并能启动程序执行,还必须设计三个控制台操作微程序.存储器读操作:拨动总清开关CLR后,控制台开关SWB,SWA 为”0 0”时,按START微动开关,可对RAM连续手动读操作.存储器写操作:拨动总清开关CLR后,控制台开关SWB SWA置为”0 1”时,按START微动开关可对RAM进行连续手动写入.启动程序:拨动总清开关CLR后,控制台开关SWB SWA置为“1 1”时,按START微动开关,既可转入到第01号“取址”微指令,启动程序运行.上述三条控制台指令用两个开关SWB SWA 的状态来设置,其定义如下表3-1读写变化根据以上要素设计数据通路框图,如图3-1:表3-2 微代码的定义表3-3 A,B,P字段内容A字段 B字段 P字段当拟定“取指令”微指令时,该微指令的判别测试字段为P1测试。
由于“取指”微指令是所有微程序都使用的公用微指令,因此P1测试结果出现多路分支。
本次课程设计用指令寄存器的前4位(I7-I4)作为测试条件,出现5路分支,占用5个固定微地址单元。
控制台操作为P4测试,它以控制台开关SWB,SWA作为测试条件,出现了3路分支,占用3个固定微地址单元。
当分支微地址单元固定后,剩下的其他地方就可以一条微指令占用控存一个微地址单元随意填写。
控制台0020WRITE(01)2030 27表3-4 二进制微代码表上图为本实验的连线图五.测试数据及运行结果正常测试数据(3组)及运行结果;输入:03 结果:04输入:02 结果:03输入:07 结果:08六.调试情况,设计技巧及体会经过这次课程设计,我体会到自己所学的东西太少了,很多都不知道。
虽然这次设计的只是一个小程序,但是这其间我还是学到了不少东西。
在这次课程设计的过程,有些很基本的知识出现记混淆的现象,通过查书及询问同学,最终明白了。
本次课程设计我们要设计一台微程序控制的模型机,以对计算机能有一个整机的概念,完成对计算机组成原理这门课程的综合应用,达到学习本书的作用。
作为一个计算机系学生这是必需掌握的,使我们对数据选择器,移位器,加法器,运算器,存储器和微程序控制器,有了比较透彻的认识。
由于计算机设计的部件较多,结构原理较复杂,对于我们这样的初设计者来说感到无从下手,所以我们在整个过程中采取由浅入深,由简单到复杂的放法,通过这次设计,使我们能清楚的了解计算机的基本组成,基本原理和设计步骤,设计思路和调试步骤,最终能清晰的建立起整机概念,为独立完成计算机设计奠定了基础。
七.参考文献计算机组成原理实验指导书西安邮电学院计算机系邢高峰牛晓晨王劲松计算机组成原理白中英科学出版社八.附录:源代码(电子版)本实验采用5条指令实现加1操作,设计机器指令如下:地址内容助记符说明?0000IN;输入开关数据→R0,采集数据0110ADD[0AH] ;R0+[0AH]→R0020A;地址0320STA[0BH] ;R0→[0BH]040B;地址0530OUT[0BH] ;[0BH]→BUS,输出显示060B;地址0740JMP[08H] ;00H—>pc0800 ;地址090A01 ;自定0B ;求和结果复杂模型机的设计一. 设计目的1. 在掌握部件单元电路实验的基础上,进一步将其组成系统构造一台复杂的模型计算机;2. 在基本指令的基础上,进行扩充指令并编写相应的微程序,具体上机调试掌握整机概念二. 设计内容设计一个必须包含IN、OUT、STA、ADD、JMP指令的复杂指令模型机,指令种类自己决定,至少包括5条。
部件实验过程中,各部件单元的控制信号是人为模拟产生的,而本次实验将能在微程序控制下自动产生各部件单元控制信号,实现特定指令的功能,这里,计算机数据通路的控制将由微程序控制器来完成,CPU 从内存中取出一条机器指令到指令执行结束的一个指令周期全部由微指令组成的序列来完成,即一条机器指令对应一个微程序。
三.概要设计为了向RAM中装入程序和数据,检查写入是否正确,并能启动程序执行,还必须设计三个控制台操作微程序.存储器读操作:拨动总清开关CLR后,控制台开关SWB,SWA 为”0 0”时,按START微动开关,可对RAM连续手动读操作.存储器写操作:拨动总清开关CLR后,控制台开关SWB SWA置为”0 1”时,按START微动开关可对RAM进行连续手动写入.启动程序:拨动总清开关CLR后,控制台开关SWB SWA置为“1 1”时,按START微动开关,既可转入到第01号“取址”微指令,启动程序运行.上述三条控制台指令用两个开关SWB SWA 的状态来设置,其定义如下表3-1读写变化根据以上要素设计数据通路框图,如下图所示:微程序:$M00018108 $M0101ED82 $M0200C050 $M0300A004 $M0400E0A0 $M0500E006 $M0600A007 $M0700E0A0 $M0801ED8A $M0901ED8C $M0A00A03B $M0B018001 $M0C00203C $M0D00A00E $M0E01B60F $M0F95EA25 $M1001ED83 $M1101ED85 $M1201ED8D $M1301EDA6$M173D9A01 $M1901A22A $M1A01B22C $M1B01A232 $M1C01A233 $M1D01A236 $M1E318237 $M1F318239 $M2205DB81 $M230180E4 $M2595AAA0 $M2600A027 $M2701BC28 $M2895EA29 $M2995AA0 $M2A01B42B $M2B959B41 $M2C01A42D $M2D65AB6E $M2E0D9A01 $M2F01AA30 $M300D8171 $M31959B41 $M32019A01 $M3301B435 $M3405DB81 $M35B99B41 $M360D9A01 $M3919883A $M3A019801 $M3B070A08 $M3C068A09四.详细设计1. 实验的连线图2.指令系统本模型机共有16条基本指令,其中算术逻辑指令7条,访存指令和程序控制指令4条,输入输出指令2条,其它指令1条,表列出了各条指输入值:03 和 01输出值:02 00 03 00 03 FF 00六.调试情况,设计技巧及体会1.调试步骤(1)按图连接实验线路(2)写入程序1)手动写入A.按如下步骤讲微代码写入微控器中的存储器2816中:①将编程开关置为PROM(编程)状态。
②将实验板上“STATE UNIT”中的“STEP”置为“STEP”,“STOP”置为“RUN”状态。
③用二进制模拟开关置微地址MA5—MA0。
④在MK24-MK1开关上置微代码,24位开关对应24位显示灯,开关量置为“0”时灯亮,开关量为“1”时灯灭。
⑤启动时序电路(按动启动按钮“START”),即将微代码写入到2816的相应地址对应的单元中。
⑥重复①-⑤步骤,将所有的微代码写入2816中。
B.按如下步骤校验微代码①将编程开关置为READ(校验)状态。
②将实验板上“STATE UNIT”中的“STEP”置为“STEP”,“STOP”置为“RUN”状态。
③用二进制模拟开关置微地址MA5—MA0。
④启动时序电路(按动启动按钮“START”),读出微代码。
观察显示灯MD24-MD1的状态(灯亮为“0”,灭为“1”),检查读出的微代码是否与写入的相同。
如果不同,则将开关置于PROM编程状态,重新执行③)即可。
C.按如下步骤使用KWE微程序进行机器指令程序的装入。
①使编程开关处于“RUN”,STEP为“STEP”状态,STOP为“RUN”状态。
②拨动总清开关CLR(0→1→0),微地址寄存器清零,程序计数器清零,然后使控制台SWB、SWA开关置为“0 1”,并按动一次START,微地址显示灯显示“010001”。
③再按动一次START,微地址灯显示“010100”,此时数据开关的内容置为要写入的机器指令。
再按动两次START键后,即完成该条指令的写入,并且微地址显示灯显示“010001”。
(注:由KWE的流程图可知,该流程每执行一次,将向PC寄存器所指向的存储器单元中写入一个字节的数据,并且将PC加1。
)④如果还需要向存储器中输入数据,则需重复重新执行③。
D.按如下步骤使用KRD微程序进行机器指令程序的检查。
①使编程开关处于“RUN”,STEP为“STEP”状态,STOP为“RUN”状态。
②拨动总清开关CLR(0→1→0),微地址寄存器清零,程序计数器清零,然后使控制台SWB、SWA开关置为“0 0”,并按动一次启动开关START,微地址显示灯显示“010000”。
③再按动一次START,微地址灯显示“010010”,第三次按动STRAT,微地址灯显示为“010111”,再按动STRAT后此时输出单元的数码管显示为PC寄存器所指单元的内容。
(注:由KRD的流程图可知,该流程每执行一次,将显示PC寄存器所指向的存储器单元中一个字节的数据,并且将PC加1。
)④如果还需要检查存储器中其他单元的数据,则需重复重新执行③。
2)联机读/写程序将微代码写入文本文件中,通过联机软件载入实验系统。
(3)运行程序1)本机运行A.单步运行程序①使编程开关处于“RUN”状态,STEP为“STEP”状态,STOP为“RUN”状态。
②拨动总清开关CLR(0→1→0),微地址寄存器清零,程序计数器清零。
③单步运行一条微指令,每按动一次START键,即单步运行一条微指令。
对照微程序流程图,观察微地址显示灯是否与流程一致。
④当运行结束后,可检查存数单元(0BH)中的结果是否和理论计算结果一致。
B.连续运行程序①使编程开关处于“RUN”状态,STEP为“EXEC”状态,STOP为“RUN”状态。
②拨动总清开关CLR(0→1→0),微地址寄存器清零,程序计数器清零。
③按动START键,系统将连续运行程序,直至将STOP拨至“STOP”状态。