医学影像技术名词解释课件.doc
医学影像技术学名词解释

医学影像技术学名词解释医学影像技术是现代医学中不可或缺的一个重要领域,它通过使用各种影像设备,如X光、CT扫描、磁共振成像(MRI)和超声波等,来获取人体内部的图像信息。
它提供了一种非侵入性和非破坏性的方法,可以帮助医生准确地诊断疾病,制定治疗方案,以及监测疾病的进展。
在本篇文章中,我们将解释一些常见的医学影像技术学名词,帮助读者更好地理解和应用这些技术。
1. X光:X光技术是最早被广泛应用的医学影像技术之一。
它通过使用X射线穿过人体,然后被接收器接收并转化为图像。
X光可以用于检查骨骼结构、肺部和胸部疾病的诊断。
然而,X光无法提供关于软组织结构的详细信息。
2. CT扫描:计算机断层扫描(CT)是一种使用X射线和计算机技术生成具有高分辨率的三维图像的影像技术。
通过在不同角度上扫描身体部位,CT扫描可以提供关于器官、骨骼和血管等结构的详细信息。
它在肿瘤的诊断和手术规划中得到了广泛应用。
3. 磁共振成像(MRI):磁共振成像是一种通过使用强磁场和无损耗的无辐射影像技术,可以产生人体内部详细的解剖结构图像。
MRI可以提供关于器官、血管和软组织的丰富信息,对于诊断脑部和神经系统疾病、肿瘤和骨骼疾病具有很高的准确性。
4. 超声波:超声波是一种使用高频声波产生人体内部图像的影像技术。
超声波被广泛应用于妇产科、心脏病学和肝脏疾病等诊断领域。
它可以提供实时图像,并且不会产生辐射。
超声波在手术指导和组织活检中也起着重要的作用。
5. 核医学:核医学是一种使用放射性同位素制备药物,并通过摄取这些药物来检测人体内的生物过程和疾病的影像技术。
它通常用于癌症诊断和治疗过程中。
核医学包括单光子发射计算机断层扫描(SPECT)和正电子发射计算机断层扫描(PET)等技术。
6. 心电图:心电图是用于记录和显示心脏电活动的图像技术。
它通过将多个电极连接到患者的胸部、四肢和颈部,测量和记录心脏电信号的变化。
心电图可以帮助医生诊断心脏病和心律失常等疾病。
医学影像学名词解释

骨、关节系统
1.骨质疏松:osteoporosis是指一定单位体积内正常钙化的骨组织减少,但1克骨内的钙盐含量正常.X线表现为骨质密度减低,在长骨松质内骨小梁变细,减少间隙增宽,密质骨表现分层,变薄现象在脊椎椎体内结构呈纵形条纹,周围骨皮质变薄,严重时,椎体内结构消失
2.骨质破坏:destruction of bone是局部骨质为病理组织所代替,而造成的骨组织消失,X线表现为骨质局限性密度减低.骨小梁稀疏或形成骨质缺损,其中全无骨质结构.早期在哈氏管周围,X线表现破坏呈筛孔状,骨皮质表层的破坏,则呈虫蚀状
3.骨质软化:osteomalacia是指一定单位体积内骨组织有机成分正常,而矿物质含量减少,其X线表现为骨质密度减低,骨小梁,骨皮质边缘模糊,骨骼可见到各种变形,及假骨折线等征象
8.TIPSS(Transjugular Intrahepatic Portosystemic Shunt):经颈静脉肝内体静脉分流术,用于门脉高压食管静脉曲张大出血的治疗与预防
泌尿系统
1.肾自截:肾结核,病变波及全肾形成肾大部或全肾钙化,肾功能消失,称为肾自截
2.挛缩膀胱:膀胱结核时,整个膀胱变形和纤维化收缩,使膀胱容积缩小,边缘不规,称挛缩膀胱
6.骨质坏死:是骨组织局部代谢的停止,坏死的骨质称为死骨,死骨的X线表现为骨质局限性密度增高
7.骨膜增生:又称骨膜反应,是因骨膜受刺激,骨膜内层,成骨细胞活动增加所引起的骨质增生.X线表现为与骨皮质平行的细线状致密影,同骨皮质间可见1~2mm宽的透亮间隙.以后可随增生骨小梁排列形式不同而表现各异
5.项圈征:良性胃溃疡切线位观钡剂造影表现,龛口部有5~10mm透亮带,宛如头颈部戴有一项圈.为显著肿胀,胃粘膜向龛影口部翻卷所致
医学影像技术名词解释

医学影像技术名词解释医学影像技术是一种通过使用射线、声波、磁场等物理力学原理对人体进行无创、准确、直观的影像检查、诊断和治疗的技术。
下面将介绍几个医学影像技术的名词解释。
1. X线造影:X线造影是一种利用X射线通过人体组织的不同部位产生影像的技术。
在这种技术中,医生将辐射X射线通过人体,然后使用检测器捕捉X射线通过人体后所产生的影像。
通过X线造影,医生可以检测到骨骼和某些软组织的异常情况。
2. CT扫描:CT(Computed Tomography)扫描是一种利用X射线和计算机技术生成横断面图像的成像技术。
在CT扫描中,患者需要躺在扫描床上,通过一种圆环状的机器进行扫描。
扫描时机器会以位于患者体内的X射线探测器为中心,绕患者旋转,同时发射X射线,并收集经不同角度探测器通过的射线,然后通过计算机处理得到图像。
CT扫描可以检测脑部、胸部、腹部和盆腔等器官的异常情况。
3. 磁共振成像(MRI):磁共振成像(Magnetic Resonance Imaging)利用磁场和无线电波的相互作用原理生成人体内部的影像。
在MRI检查中,患者需要躺在装有磁体的机器中,磁体会产生强大的磁场,然后通过体内的无线电波信号获取图像。
MRI可以提供高分辨率的图像,对柔软组织如脑、脊柱、关节等进行观察。
4. 超声波检查:超声波检查是一种利用超声波的传播和反射原理对人体内部进行检查和诊断的技术。
在超声波检查中,医生在人体上通过轻轻地移动探头,探测器会发射超声波经皮肤进入体内,然后根据超声波在不同组织中的传播和反射信息获取图像。
超声波检查可以检测和评估内脏器官、血管、肌肉骨骼等的情况。
5. 核医学影像:核医学影像是一种利用放射性核素注入人体,再通过探测器捕获核素发出的放射性粒子产生图像的技术。
核医学影像包括正电子发射断层扫描(PET)和单光子发射计算机断层扫描(SPECT)。
核医学影像可以检测和评估心脏、肺部、肾脏、骨髓等内部器官的功能和病变。
医学影像学三基...doc

常用医学影像学名称术语1.医学影像学:指通过各种成像技术使人体内部结构和器官成像,借以了解人体解剖与生理功能状况及病理变化,以达到诊断目的的技术,属于活体器官的视诊范畴,是特殊的诊断方法。
2.体素:CT图像处理时将选定层面分为若干个体积相同的立方体,称之为体素。
3.像素:CT数字矩阵中的每个体素数字经数字/模拟转换器转为由黑到白不等灰度的小方块,构成CT图像,称之为像素。
4.窗位:把要显示的组织的CT值放在窗宽范围的中心位置,这就是窗位。
5.窗宽:借助计算机,把需要显示的组织的CT值范围取出,按从黑到白不同灰度在显示屏上显示,这样CT值较小的差别也可以在图像中看出,这个范围就是窗宽。
6.PACS:图像存档和传输系统,是保存和传输图像的设备与软件系统。
7.造影检查:人为引入人体管腔内或组织间隙的低密度或高密度的各种造影剂,目的是形成对比,以更好地显示组织结构及病变。
8.脑萎缩:各种原因所致脑组织减少而继发的脑室和蛛网膜下隙扩大。
9.脑积水:脑脊液产生和吸收失衡或脑脊液循环通路障碍所致脑室系统异常扩大。
10.出血性脑梗死:脑梗死后缺血区血管再通,梗死内血液溢出。
11.腔隙性脑梗死:脑穿支小动脉闭塞引起的深部脑组织较小面积的缺血性坏死。
12.硬膜外出血:颅内出血积聚于颅骨与硬膜之间。
13.硬膜下出血:颅内出血积聚于硬膜与蛛网膜之间。
14.肺血减少:肺动脉血流量异常减少。
15.骨质软化:单位体积内骨组织有机成分正常而钙化不足,因而骨内钙盐含量减少,骨质变软。
16.骨质增生硬化:单位体积内骨量增多,组织学上可见骨质增厚、骨小梁增粗增多,这是成骨增多或破骨减少或两者同时存在所致。
17.骨质疏松:单位体积内骨量减少,即骨的有机成分和钙盐都减少,但单位重量的骨质含钙量正常,即化学成分不变。
18.骨质破坏:局部骨组织为病理组织所代替而造成的骨组织消失。
19.骨质坏死:骨组织局部代谢停止,坏死的骨质称死骨。
20.关节脱位:组成关节的骨骼有脱离或错位。
医学影像学名词解释

医学影像学名解1、自然对比:人体组织自然存在的密度差别称自然对比2、人工对比:对于缺乏自然对比的组织或器官,可以用人为的方法引入一定量的在密度上高于或低于它的物质,使产生对比,称为人工对比3、造影检查:将造影剂引入器官内或其周围,以产生明显对比显示其形态与功能的方法4、CT:CT不是X线摄影,而是用X线对人体进行扫描,取得信息,经电子计算机处理而获得的重建图像5、DSA:利用电子计算机处理数字化的影像信息,以消除骨骼胳和软组织的减技术骨、关节系统1、骨质疏松:osteoporosis是指一定单位体积内正常钙化的骨组织减少,但1克骨内的钙盐含量正常。
X线表现为骨质密度减低,在长骨松质内骨小梁变细,减少间隙增宽,密质骨表现分层,变薄现象在脊椎椎体内结构呈纵形条纹,周围骨皮质变薄,严重时,椎体内结构消失2、骨质破坏:destructionofbone是局部骨质为病理组织所代替,而造成的骨组织消失,X线表现为骨质局限性密度减低。
骨小梁稀疏或形成骨质缺损,其中全无骨质结构。
早期在哈氏管周围,X线表现破坏呈筛孔状,骨皮质表层的破坏,则呈虫蚀状3、骨质软化:osteomalacia是指一定单位体积内骨组织有机成分正常,而矿物质含量减少,其X线表现为骨质密度减低,骨小梁,骨皮质边缘模糊,骨骼可见到各种变形,及假骨折线等征象4、关节破坏:destructionofjoint是关节软骨及其下方崐的骨性关节面骨质为病理组织所侵犯,代替所致,其X线表现是当破坏只累及关节软骨时,仅见关节间隙变窄,累及关节面骨质时,则出现相应的骨破坏和缺损5、关节强直:可分为骨性与纤维性两种,骨性强直是关节破坏后,关节骨端由骨组织连接,X线表现为关节间隙正常。
明显狭窄或消失,并有骨小梁通过关节连接两侧骨端。
纤维性强直X线表现可见狭窄的关节间隙,并且无骨小梁贯穿,但临床功能丧失6、骨质坏死:是骨组织局部代谢的停止,坏死的骨质称为死骨,死骨的X线表现为骨质局限性密度增高7、骨膜增生:又称骨膜反应,是因骨膜受刺激,骨膜内层,成骨细胞活动增加所引起的骨质增生。
医学影像学名词解释

医学影像学名词解释医学影像学名词解释1. 医学影像学医学影像学是一门研究人体内部结构和功能的科学,通过各种影像学技术如X光、CT扫描、核磁共振等,将人体内部的信息转化为图像,以辅助医生进行诊断和治疗。
2. X光X光是一种电磁辐射,具有很强的穿透性,可以通过人体组织产生阴影图像。
在医学影像学中,X光主要用于检查骨骼和某些软组织的异常情况,如骨折和肺部感染等。
3. CT扫描CT扫描是一种通过X射线和计算机技术横断面图像的影像学技术。
它可以提供更详细和准确的图像,并可用于检查各种器官和组织的异常情况,如肿瘤、血管疾病和脑部损伤等。
4. 核磁共振核磁共振(MRI)是一种利用核磁共振原理高分辨率图像的医学影像学技术。
它通过检测原子核的共振信号来获得图像信息,可以用于检查各种器官和组织的异常情况,如脑部疾病、关节损伤和肌肉疾病等。
5. 超声波超声波是一种高频声波,可以通过人体组织产生回声图像。
超声波在医学影像学中被广泛应用于产科、心脏和器官的检查,可以检测胎儿发育情况、心脏功能和腹部肿块等。
6. 核素扫描核素扫描是一种利用放射性同位素标记物质来观察人体器官和组织功能的影像学技术。
在核素扫描中,患者会被给予服用或注射含有放射性同位素的药物,然后使用专用的探测器来检测放射性信号,以获得图像信息。
7. 磁共振造影磁共振造影(MRA)是一种利用核磁共振技术观察血管结构和功能的医学影像学技术。
它通常使用对血液有强磁性的药物作为造影剂,以增强血管的对比度,从而更清楚地显示血管的情况。
8. 数字化断层摄影数字化断层摄影(DSA)是一种将X射线图像数字化并通过计算机处理血管图像的医学影像学技术。
DSA可以用于观察血管的狭窄、扩张和阻塞等情况,以辅助血管介入手术的规划和执行。
9. PET扫描正电子发射断层扫描(PET)是一种利用放射性同位素标记的生物化合物来观察人体组织代谢活动的医学影像学技术。
PET扫描常用于检测肿瘤的活动程度、神经系统的功能异常和心脏血流等。
2024版《医学影像技术PPT课件》[1]
![2024版《医学影像技术PPT课件》[1]](https://img.taocdn.com/s3/m/a8979bb00342a8956bec0975f46527d3250ca655.png)
无创性检查
实时监测与评估
医学影像技术能够实时监测病情变化 和治疗效果,为医生制定治疗方案提 供依据。
大部分医学影像技术都是无创或微创 的,能够减少患者的痛苦和不适。
2024/1/26
5
医学影像技术分类及应用领域
X射线成像
磁共振成像(MRI)
2024/1/26
6
2024/1/26
02
CATALOGUE
X线检查技术
7
X线成像原理及特点
2024/1/26
X线成像原理
利用X射线的穿透性、荧光效应和 感光效应,使人体内部结构在荧光 屏或胶片上形成影像。
X线成像特点
具有较高的空间分辨率和对比度分 辨率,能够清晰显示骨骼、钙化灶 等硬组织结构。
定义
医学影像技术是利用各种物理学原理, 通过特定的成像设备获取人体内部组 织、器官的结构和功能信息,以图像 形式表达出来的技术。
发展历程
从早期的X射线成像到现代的CT、MRI、 超声、核医学等多种成像技术,医学影 像技术经历了不断的发展和创新。
2024/1/26
4
医学影像技术重要性
提高疾病诊断准确性
2024/1/26
27
核医学诊断优缺点分析
要点一
高灵敏度
能够检测到极低浓度的放射性核素,从而实现对疾病的早期 诊断。
要点二
无创伤性
无需开刀或穿刺等创伤性操作,减轻了患者的痛苦和不适。
2024/1/26
28
核医学诊断优缺点分析
2024/1/26
• 可定量分析:通过对放射性核素的定量测量,可以 对疾病进行准确的诊断和评估。 29
医学影像技术名词解释

名词解释第一篇总论1、穿透作用:就是指X线穿过物质时不被吸收得本领,X线得穿透力与管电压相关,与物质得密度与厚度相关。
穿透性就是X线成像得基础。
2、荧光作用:X线能激发荧光物质产生荧光,它就是进行透视检查得基础。
3、感光作用:由于电离作用,X线照射到胶片,使胶片上得卤化银发生光化学反应,出现银颗粒沉淀,称X线得感光作用。
感光效应就是X线摄影得基础、4。
电离作用:物质受到X线照射,原子核外电子脱离原子轨道,这种作用称为电离作用。
5。
造影检查:用人工得方法将高密度或低密度物质引入体内,使其改变组织器官与邻近组织得密度差,以显示成像区域内组织器官得形态与功能得检查方法。
6、对比剂:引入人体产生影像得化学物质。
7.阴性对比剂:原子序数低、吸收X线少,就是一种密度低、比重小得物质。
影像显示低密度或黑色、包括空气、氧气、二氧化碳等。
8.阳性对比剂:原子序数高、吸收X线多,就是一种密度高、比重大得物质,影像显示高密度或白色、包括钡制剂与碘制剂9。
直接引入法:通过人体自然管道、病理瘘管或体表穿刺等途径,将对比剂直接引入造影部位得检查方法、包括口服法、灌注法、穿刺注入法。
10。
间接引入法:通过口服或静脉注射将对比剂引入体内,利用某些器官得生理排泄功能将对比剂有选择性地排泄到需要检查得部位而达第二篇普通X线成像技术1、实际焦点:X线管阳极靶面实际接受电子撞击得面积称之为实际焦点、2。
有效焦点:实际焦点在X线摄影方向上得投影、3.标称焦点:实际焦点垂直于X线长轴方向得投影。
X线管规格特性表中标注得焦点为标称焦点、其焦点得大小值称为有效焦点得标称值、4、听眶线:外耳孔上缘与眼眶下缘得连线、5。
听眦线:外耳孔中点与眼外眦得连线。
6.听鼻线:外耳孔中点与鼻前棘得连线。
7、瞳间线:两侧瞳孔间得连线。
8。
听眉线:外耳孔中点与眶上缘得连线、9、眶下线:两眼眶下缘得连线。
10、中心线:X线束居中心得那一条线。
11.斜射线:X线中心线以外得线、12.焦—片距:X线管焦点到胶片(探测器)得距离。
医学影像学原理名词解释.doc

医学影像学原理名词解释第一章:射线照相:X射线通过人体不同组织和器官的衰减,产生人体的医学信息,并传输到屏幕;X射线通过人体不同组织和器官的衰减,产生人体的医学信息,并传输到屏幕;穿过准直器的X射线束穿过人体的被测层;人体薄层中的组织和器官衰减后发射的带有人体信息的X射线束到达探测器,探测器将包含受试者水平信息的X 射线转换成相应的电信号;通过放大电信号,模数转换器变成数字信号,并将其发送到计算机系统进行处理。
计算机按照设计的方法对图像进行重构和处理,得到人体被检测层面上组织和器官的衰减系数()分布,并以灰度级显示人体层面上组织和器官的图像。
3.磁共振成像:当通过在静态磁场(B0)中向人体施加具有特定频率的射频脉冲电磁波来激发人体组织中的氢质子(1H)时,发生磁共振现象。
当射频脉冲停止时,1H在弛豫过程中发射射频信号(磁共振信号),该信号由接收线圈接收,通过使用梯度磁场在空间上定位,并最终通过图像重建成像。
4.计算机射线照相术:一种能够通过激光记录和读出x光图像信息的成像板(IP)作为载体,通过x光曝光和信息读取形成数字平面图像。
5.数字射线照相术: 它是指在具有图像处理功能的计算机控制下,利用一维或二维X射线探测器将X射线图像信息直接转换成数字信号的技术。
6.成像板: 它是一个接收器(代替传统的x光胶片),用于CR系统中采集(记录)图像信息,可以重复使用,但没有显示图像的功能。
7.平板探测器(FPD):在数字X射线照相术中,它被用来代替屏幕——在人体薄层中的组织和器官的衰减到达检测器之后,用人体信息发射的X射线束,检测器将包含对象平面信息的X射线转换成相应的电信号;通过放大电信号,模数转换器变成数字信号,并将其发送到计算机系统进行处理。
计算机按照设计的方法对图像进行重构和处理,得到人体被检测层面上组织和器官的衰减系数()分布,并以灰度级显示人体层面上组织和器官的图像。
3.磁共振成像:当通过在静态磁场(B0)中向人体施加具有特定频率的射频脉冲电磁波来激发人体组织中的氢质子(1H)时,发生磁共振现象。
(完整word版)医学影像学名词解释)

1、医学影像学:以影像方式显示人体内部构造的形态与功能信息及实行介入性治疗的科2、介入放射学:以影像诊疗学为基础,在影像设施的指引下,利用穿刺针、导管、导丝及其余介入器械,对疾病进行治疗或获得组织学、细胞学、细菌学及生理、生化资料进行诊疗的学科。
3、造影检查:将对照剂引入器官内或其四周空隙,产生人工对照,借以成像。
4、核磁共振成像:利用人体中的氢原子核(质子)在磁场中遇到射频脉冲的激励而发生核磁共振现象,产生磁共振信号,经过信号收集和计算机办理而获取重修断层图像的成像技术。
5、骨龄:在骨的发育过程中,骨的原始骨化中心和继发骨化中心的出现时间,骨骺与干骺端愈合的时间及其形态的变化都有必定的规律性,这类规律以时间来表示,即骨龄。
6、骨质松散:必定单位体积内正常钙化的骨组织减少,骨组织的有机成分和钙盐都减少,但骨的有机成分和钙盐含量比率仍正常。
骨皮质变薄,哈氏管扩大和骨小梁减少。
7、骨质融化:指单位体积内类骨质钙化不足。
骨的有机成分,钙盐含量降低,骨质变软。
组织学变化主假如未钙化的骨样组织增加,骨骼失掉硬度变软、变形,尤以负重部位为著。
8、骨质损坏:局部骨质为病理组织所代替而造成骨组织的消逝。
9、骨膜三角:假如惹起骨膜增生的疾病进展,已形成的骨膜重生骨可被损坏,损坏区双侧残留的骨膜重生骨呈三角形,叫骨膜三角或Codman 三角。
骨质坏死:骨组织局部代谢的停止,坏死的骨质叫死骨。
青枝骨折:小孩骨骼柔韧性较大,外力不易使骨质完整断裂而形成不完整性骨折,仅表现为局部骨皮质和骨小梁的歪曲,看不到骨折线或只惹起骨皮质发生皱折、凹陷或隆起,即青枝骨折。
10、堵塞性肺不张:支气管堵塞后,肺部分或完整无气不可以膨胀而致使的体积减小。
11、肺实变:终末支气管以远的含气腔隙内的空气被病理性液体、组织或细胞所取代。
12、空洞:肺组织发生坏死、液化后,坏死物质经支气管排出而形成的病变情况。
13、空腔:肺内生理性腔隙的病理性扩大。
医学影像学名词解释

医学影像学名词解释医学影像学名词解释:1\X射线:一种电磁辐射,用于医学影像学中,通过对人体的X射线透视或摄影来获取影像信息,用于诊断和治疗。
2\CT(计算机断层扫描):一种医学影像学技术,通过利用多个X射线投射角度的扫描,结合计算机处理重建图像,以获得更详细的横断面图像。
3\MRI(磁共振成像):一种医学影像学技术,利用磁场和无线电波产生图像,以显示人体内部结构。
MRI适用于对软组织和脑部疾病的诊断。
4\PET(正电子发射计算机断层扫描):一种核医学影像学技术,通过注射含有放射性核素的药物,测量活动细胞的代谢水平,以获取图像。
PET主要用于检测癌症和脑功能异常。
5\磁共振造影(MRI):通过在MRI扫描中给患者注射对比剂,以增强磁共振图像的对比度,帮助诊断。
6\X射线造影:通过在X射线检查中给患者注射对比剂,以增强X射线图像的对比度,帮助诊断。
7\超声波(超声):一种使用高频声波来图像的医学影像学技术。
超声波适用于观察胎儿发育、引导手术操作以及检测血液流动等。
8\核磁共振(NMR):一种使用核磁共振技术来获取图像的医学影像学技术。
核磁共振适用于检测脑部疾病、肌肉骨骼损伤等。
9\放射学:研究使用放射线等辐射来诊断疾病的科学和技术。
10\放射科医生:使用医学影像学技术对患者进行诊断的专业医生。
11\放射剂量:患者接受放射线检查所受到的辐射量。
放射剂量应控制在安全范围内,以减少对人体的损害。
12\DICOM(数字成像和通信医疗):医学图像和相关信息的标准格式,用于图像的传输和存储。
13\PACS(影像存储和传输系统):一种医学影像学系统,用于存储、传输和查看医学影像。
附件:附件1:X射线图像示例\jpg附件2:MRI扫描结果\xlsx附件3:PET扫描报告\pdf法律名词及注释:1\侵权:在未经许可的情况下,侵犯他人的合法权益,包括知识产权侵权、人身权益侵权等。
2\保密协议:双方约定的保密事项和保密义务的确认。
医学影像技术学名词解释

X线片的密度:胶片中的感光乳剂在光作用下致黑的程度称为照片密度。
密度分辨率(CT):低对比度的情况下,图像对两种组织间最小密度差别的分辨能力。
空间分辨率:高对比度的情况下,密度分辨率大于10%时图像对组织结构空间大小的鉴别能力。
康普顿效应:入射光子与原子外层轨道电子相互作用,光子将部分能量传递给电子,电子获得能量后摆脱原子核的束缚,从原子中射出,而入射光子损失一部分能量后改变了频率和方向后散射了出去,这种过程称为康普顿效应。
X线强度:单位时间内,垂直于X线传播方向的单位面积上通过的光子数目和能量总和。
IP板:是CR关键元件,是信息记录,实现模数转换的载体,代替传统的屏-片系统。
滤线栅的栅比:铅条高度和铅条之间间隔的比值,值越大,吸收散射线越好。
静脉肾盂造影(IVP):静脉注射造影剂,经过肾脏排泄至尿路使其显影,病人痛苦小,适合结石,结核,肿瘤,先天性畸形等。
mask像(DSA):不含对比剂的,在打入对比剂之前的摄片。
重复时间(TR):从第一个RF激励脉冲出现到下一个周期同样激励脉冲出现经历的时间。
回波时间(TE):从第一个RF激励脉冲开始到采集回拨信号之间的时间。
反转时间(TI):指施加180度反转脉冲使磁化矢量反转到负Z轴方向到施加90度激励脉冲中间的时间段。
减影:通过计算机把血管影像上的骨与软组织影像消除而凸出血管的技术。
注射流率:单位时间内经导管注入对比剂的量。
T1加权像: SE序列中,通过采用短TR短TE的办法得到的重在反映组织T1特征的图像。
T2加权像: SE序列中,通过采用长TR长TE的办法得到的重在反映组织T2特征的图像。
质子密度加权像: SE序列中,通过采用长TR短TE的办法得到的重在反应组织质子密度特征的图像。
纵向弛豫:高能态自旋将能量传到周围环境中的过程。
横向弛豫:自旋质子自身产生的磁场相互干扰导致的彼此相位一致性丧失。
静态显像:显像剂在脏器组织和病灶达到分布平衡时的显像。
动态显像:显像剂引入人体后,以一定的速度连续或间断地多幅成像,用以显示显像剂随血流流经或灌注的脏器,并被组织不断摄取与排泄在器官内反复充盈和射出的过程所造成的脏器内放射性在数量或位置上随时间发生的变化的显像。
医学影像学名词解释课件.doc

第一章总论11、通过腰椎穿刺将对比剂注入椎管内,透视下观察对比剂在椎管内的充盈1、人工对比2、CT值和流通情况,以诊断椎管内占位性病变和蛛网膜粘连等。
3、DWI 12、是一种慢性脊髓退行性疾病,可为先天性,或者继发于外伤、感染和肿4、MRA瘤。
临床表现5、动态增强扫描为分离性感觉异常和下神经元性运动障碍。
6、流空效应13、即脊髓造影CT,多与脊髓造影配合使用,一般在脊髓造影后1~2 小时内7、窗宽进行CT扫描。
8、脑灌注成像9、部分容积效应第三章五官及颈部10、放射性核素显像1、下咽癌2、腺样体增生1、对于缺乏自然对比的组织或器官,可用人为的方法引入一定量的,在密度3、粘膜下囊肿上高于或低于它的物质,使产生对比的方法,称为人工对比即造影检查。
4、粘液囊肿2、系CT扫描中X 线衰减系数的单位,用于表示CT图像中物质组织线性衰减5、Grave’s眼病系数(吸收系数) 的相对值。
用亨氏单位(Hounsfield Unit) 表示,简写为6、骨疡型中耳乳突炎H U。
7、Mondini 畸形3、即磁共振弥散加权成像(diffusion weighted imaging ,DWI)。
是利用8、桥本甲状腺炎磁共振成像观察活体组织中水分子的微观扩散运动的一种成像方法。
水9、鼓室球瘤分子扩散快慢可用表观扩散系数(ADC)和DWI两种方式表示。
10、获得性胆脂瘤4、即磁共振血管成像,是对血管和血流信号特征显示的一种技术。
MRA不但对血管解剖腔简单描绘,而且可以反映血流方式和速度的血管功能方面1、亦称喉咽癌,指原发于喉外的喉咽部恶性肿瘤。
的信息,故又称磁共振血流成像。
2、超过正常值即肥大,可因上呼吸道感染、营养不良及遗传因素等所致。
病5、是指注射对比剂后对某些感兴趣的层面作连续快速多次的扫描,它可以了理上腺样体淋巴组织增生,血管增多,上皮鳞状化生。
临床表现为鼻塞、解病变的强化程度随时间的变化情况,对病变的定性诊断有一定的帮助。
医学影像技术学名词解释

医学影像技术学名词解释医学影像技术是医学中常用的一种诊断手段,利用不同的成像方法如X射线、超声、磁共振成像(MRI)、计算机断层扫描(CT)等,对人体内部进行非侵入性的观察和分析,从而帮助医生确定诊断和制定治疗方案。
以下是一些常用的医学影像技术学名词解释:1. X射线:X射线是医学影像技术中最早应用的一种方法。
它利用X射线的穿透性质,通过人体组织的不同密度和厚度来产生影像。
在X射线影像中,骨骼和金属物质会出现白色,而柔软组织则呈现灰色。
2. 超声:超声是一种使用声波来生成影像的成像技术。
通过向人体内部发送高频声波,然后根据声波在组织中的传播速度和反射程度来生成图像。
超声在产科、心血管、肝脏和肾脏等方面有广泛应用。
3. 磁共振成像(MRI):MRI利用强磁场和无线电波来生成高质量的图像。
通过测量人体内水分子的反应,MRI可以提供对软组织的非常详细的图像。
MRI对骨骼影像的效果也较好。
4.计算机断层扫描(CT):CT利用X射线和计算机技术来生成横截面图像。
它可以提供高分辨率的图像,使医生能够更清楚地看到人体内部结构。
5. 核医学:核医学技术利用放射性同位素来跟踪和诊断人体内部的生理过程。
通过注射放射性同位素进入人体,然后使用特殊的摄像机来记录放射性同位素的分布,从而生成核医学影像。
6. 影像分析:影像分析是对医学影像进行定量和定性分析的过程。
这包括测量、计算、对比等操作,以帮助医生对图像进行解读和诊断。
7. 三维重建:三维重建是通过将二维医学影像数据转化为三维模型来显示人体内部结构的方法。
这使医生能够更好地理解和评估复杂的解剖结构。
医学影像技术的不断发展为医生提供了更准确、更方便的诊断手段。
它们在临床实践中得到广泛应用,为疾病的早期发现和治疗提供了重要的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
名词解释第一篇总论1. 穿透作用:是指X线穿过物质时不被吸收的本领,X 线的穿透力与管电压相关,与物质的密度和厚度相关。
穿透性是X 线成像的基础。
2. 荧光作用:X 线能激发荧光物质产生荧光,它是进行透视检查的基础。
3. 感光作用:由于电离作用,X线照射到胶片,使胶片上的卤化银发生光化学反应,出现银颗粒沉淀,称X线的感光作用。
感光效应是X 线摄影的基础。
4. 电离作用:物质受到X线照射,原子核外电子脱离原子轨道,这种作用称为电离作用。
5. 造影检查:用人工的方法将高密度或低密度物质引入体内,使其改变组织器官与邻近组织的密度差,以显示成像区域内组织器官的形态和功能的检查方法。
6. 对比剂:引入人体产生影像的化学物质。
7. 阴性对比剂:原子序数低、吸收X线少,是一种密度低、比重小的物质。
影像显示低密度或黑色。
包括空气、氧气、二氧化碳等。
8. 阳性对比剂:原子序数高、吸收X线多,是一种密度高、比重大的物质,影像显示高密度或白色。
包括钡制剂和碘制剂9. 直接引入法:通过人体自然管道、病理瘘管或体表穿刺等途径,将对比剂直接引入造影部位的检查方法。
包括口服法、灌注法、穿刺注入法。
10. 间接引入法:通过口服或静脉注射将对比剂引入体内,利用某些器官的生理排泄功能将对比剂有选择性地排泄到需要检查的部位而达到造影检查的目的。
如静脉肾盂造影、膀胱造影。
技术发展应用评价CR优点:X 线曝光剂量动态范围大,IP 可重复使用,与计算机x 线摄影原有X 设备匹配,多种处理技术及后处理功能,数字化存储,数据库管理不足:时间分辨率差,空间分辨率相对比较低,曝光剂量偏高,IP 板成本高易老化。
DR特点:曝光剂量低、图像质量高,成像速度快、工作数字X线摄影流程短,图像动态范围大,图像后处理功能强,PACS传输。
CT优势:CT图像的分辨率高,对病灶的定位、定性准确,计算机X线断层扫描摄影术提供直观可靠的影像学资料。
进展:心脏成像,CT灌注,三维CT重建,低剂量扫描,CT内镜技术,CT连续成像。
DSA应用:静脉DSA(下肢深静脉、门、腔静脉的介入治疗数字减影血管造影及诊断)动脉DSA(全身血管造影、血管介入)动脉DSA较静脉DSA的优势:对比剂量小、浓度低;血管显影清晰;运动性伪影少;辐射剂量低;成像质量高。
应用限度:DSA视野小、DSA对患者的移动敏感、DSA失去了参考标志MR特点:多参数成像(T1、T2、质子密度加权),多方位磁共振成像成像,组织特异性成像,功能成像、无电离辐射。
局限性:成像速度慢,对钙化灶和骨皮质病灶不够敏感,图像易受多种伪影影响,有禁忌症。
第二篇普通X线成像技术1. 实际焦点:X 线管阳极靶面实际接受电子撞击的面积称之为实际焦点。
2. 有效焦点:实际焦点在X线摄影方向上的投影。
3. 标称焦点:实际焦点垂直于X 线长轴方向的投影。
X 线管规格特性表中标注的焦点为标称焦点。
其焦点的大小值称为有效焦点的标称值。
4. 听眶线:外耳孔上缘与眼眶下缘的连线。
5. 听眦线:外耳孔中点与眼外眦的连线。
6. 听鼻线:外耳孔中点与鼻前棘的连线。
7. 瞳间线:两侧瞳孔间的连线。
8. 听眉线:外耳孔中点与眶上缘的连线。
9. 眶下线:两眼眶下缘的连线。
10. 中心线:X线束居中心的那一条线。
11. 斜射线:X线中心线以外的线。
12. 焦-片距:X线管焦点到胶片(探测器)的距离。
13. 焦-物距:X线管焦点到被照体的距离。
14. 物-片距:被照体到胶片(探测器)距离。
第三篇数字X线成像技术1. 模拟:是以某种范畴的表达方式如实的反应另一种范畴。
2. 数字图像:成像采用结构逼进法,影像最大值与最小值之间的系列亮度值是离散的,每个像点都具有确定的数值,这种影像就是数字图像。
3. 矩阵:是一个数学概念,它表示横行和纵列的数字方阵。
矩阵越大,图像越清晰,分辨力越强。
4. 像素:是在矩阵中被分割的小单元。
5. 图像的数字化:是将模拟图像分解为一个矩阵的各个像素,测量每个像素的衰减值,并把得到的衰减值转变为数字,再把每个像点的坐标位置和衰减值输入计算机。
6. 采集矩阵:是数字曝光摄影时所选择的矩阵,是每幅画面观察野所包含的像素数目。
7. 重建时间:指阵列处理器用原始数据重建成显示数据矩阵所需要的时间。
8. 噪声: 是指不同频率和不同程度的声音无规律地组合在一起。
数字X线成像中的定义:影像上观察到的亮度水平的随机波动。
9.信噪比(SNR):信噪比是信号与噪声的比。
信噪比是评价电子设备灵敏度的一项技术指标。
即有用信号强度与噪声强度之比。
10. 窗宽(WW): 窗宽表示所显示信号强度值的范围。
窗宽越大,图像层次越丰富;窗宽越小图像层次就越少,对比度越大。
11. 窗位(WL): 是指图像显示过程中代表图像灰阶的中心位置。
12.IP 板:是CR成像系统的关键原件,是实现模拟影像转换为数字信息载体。
由表面保护层、PSL荧光层、基板层、背面保护层组成。
13. 光激励发光(PSL):潜影经过激光扫描进行读取,IP 被激励后以紫外线形式释放出储存的能量,这种现象叫光激励发光(PSL)。
14. 谐调处理:也叫层次处理,处理影像的对比,调整符合诊断的层次,调节整体密度。
如:胸部摄影:肺、纵隔。
15. 空间频率处理:通过频率响应的调节,改变影像的锐利度。
边缘增强技术、改变显示矩阵。
16.动态范围控制:在协调处理和空间频率处理前自动进行,是一种在单幅影像显示时提供宽诊断范围的影像增强的新型影像处理算法。
★胸部、四肢17.DR:即直接数字X线摄影,X线穿过人体后由FPD探测的模拟信号直接数字化而形成数字影像的检查技术。
18.DR的双能减影术:又称两次曝光法,即以X线管输出不同能量(KVP)对被摄物体在很短的时间间隔内两次曝光,获得两幅图像或数据,进行图像减影或数据分离整合,分别生成软组织密度像、骨密度像和普通DR胸部像3幅图像。
第四篇CT成像技术1.密度分辨力:指在低对比度情况下,图像对两种组织之间最小密度的分辨能力,常以百分数表示。
如0.2%,5mm,0.45Gy。
2.时间分辨力:对于静止器官的成像,时间分辨力是指影像设备单位时间内采集图像的帧数,它与每帧图像的采集时间、重建时间、螺距以及连续成像能力有关。
对于运动器官的成像,时间分辨力还指扫描野内用于图像重建所需要扫描数据的最短采集时间。
3.空间分辨力:指在高对比度的情况下,密度分辨力大于10%时,图像对组织结构空间大小的鉴别能力。
以LP/cm表示。
4.CT值:CT值是重建图像中像素对X线吸收系数的换算值,单位为亨氏单位(HU)。
5.部分容积效应:又称体积平均值效应。
在同一扫描层面内,含有两种或两种以上不同密度的组织时,所测得的CT值是它们的平均值,因而不能真实地反映其中任何一种组织的CT值。
6.周围间隙现象:同一平面上相邻结构边缘分辨不清。
7.伪影:CT图像中与被扫描组织结构无关的异常影像称为伪影,产生原因较多。
8.普通扫描(平扫):指血管内不注射对比剂的CT扫描。
可采用横断面扫描和冠状面扫描,可以是逐层扫描或螺旋扫描。
9.增强扫描:是指经静脉注射碘对比剂后的CT扫描,可以采用逐层扫描或螺旋扫描。
10.实时增强监测技术:亦称自动跟踪法,指增强扫描时利用专用软件对靶血管的CT值进行实时监测,根据靶血管(靶器官)兴趣区(ROI)CT值的变动,自动(或手动)触发预定的扫描程序。
11. 造影扫描:是指对某一器官或结构直接或间接注入对比剂后进行CT 扫描的方法。
所用对比剂多数为阳性对比剂,也可使用中性及阴性对比剂。
造影扫描分为血管性造影扫描和非血管性造影扫描两大类。
12. 血管性CT造影扫描:是指经介入选择性显示某器官或组织的动脉或静脉血管的CT扫描技术。
13. 非血管性CT造影扫描:是指经穿刺或自然通道等引入对比剂,对器官组织进行非血管性造影,然后进行CT扫描的检查方法。
14.CT 灌注成像(CTP):是指静脉注射对比剂后,对选定的层面或器官进行持续动态扫描,以获得该层面或器官每一体素的时间密度曲线(TDC),然后利用不同的数学模型计算出组织血流灌注的各项参数,并通过色阶赋值形成彩色灌注图像,借助特殊软件以此来评价组织器官的灌注状态。
15.CT 血管成像技术(CTA):指经静脉快速注入对比剂,在靶血管内对比剂达到峰值时进行螺旋扫描采集容积数据,利用CT工作站进行后处理,重组出靶血管的3D图像。
16.CT 导向穿刺活检:是以CT图像作为导向工具进行介入诊断和治疗。
17. 低剂量螺旋 C T:指在满足诊断的前提下,降低X线曝光参数,允许适度噪声,尽量降低被检者辐射剂量的螺旋CT扫描技术。
18. 能谱CT成像:利用X线的能量谱进行的CT成像。
第五篇DSA成像技术1.DSA:数字减影血管造影,即血管造影的影像通过数字化处理,把不需要的组织影像删除,只保留血管影像;其特点是图像清晰,分辨率高,为血管病变诊断及介入治疗提供真实的立体图像。
是目前诊断血管疾病最可靠的影像技术,是诊断血管疾病的“金标准”。
2. 蒙片:与普通平片图像完全相同,而密度相反的图像,也即正像,同透视像,通常为不含造影剂的图像,可以为造影序列中任一帧图像,可以是动态蒙片。
mask片即蒙片。
3. 能量减影:也称双能减影,边缘减影。
即进行兴趣区血管造影时,同时用两个不同的管电压,如70kV和130kV取得两帧图,作为减影对进行减影,由于两帧图像是利用两种不同的能量摄制的,所以称为能量减影。
临床较少应用。
4.时间减影:时间减影是DSA的常用方式。
在注入的对比剂进入兴趣区之前,将一帧或多帧图像作mask像储存起来,并与时间顺序出现的含有造影剂的充盈像一一地进行相减。
这样,两帧间相同的影像部分被消除了,而造影剂通过血管引起高密度的部分被突出地显示出来。
因造影像和mask像两者获得的时间先后不同,故称时间减影。
5.混合减影:基于时间与能量两种物理变量,先作能量减影再作时间减影。
6.再蒙片:重新确定mask像,针对不自主运动7.补偿滤过:在X线管与患者之间放入附加衰减材料,提供均匀的X 线衰减。
8.移动伪影:因移动使减影对配准不良在影像上形成的伪影。
9.饱和伪影:当视野内某些部位对射线衰减极小时,使局部视频信号饱和,形成均匀亮度的无信号区,妨碍与之重叠的有用结构的观察。
第六篇MR成像技术1.MRI:磁共振成像,是利用处在静磁场中人体内的原子核磁化后,在外加射频磁场作用下发生共振而产生影像的一种成像技术。
2.梯度系统:是指与梯度磁场有关的梯度线圈及电路单元。
它利用梯度线圈产生相对主磁场来说较微弱的随空间位置线性变化的磁场,并叠加在主磁场上。
其功能是对M R信号进行空间编码,以确定成像层面的位置和厚度。
3.自旋(spin):微观粒子(电子、质子和中子)绕其特定轴旋转的特性。