浙教版八年级上数学知识点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版八年级上数学知识点
第一章 三角形的初步知识 复习总目
1、掌握三角形的角平分线、中线和高线
2、理解三角形的两边之和大于第三边的性质
3、掌握三角形全等的判定方法 知识点概要
1、 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.
三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶
点, 三角形ABC 用符号表示为△ABC,三角形ABC 的边AB
可用边AB 所对的角
C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示. 注意:(1)三条线段要不在同一直线上,且首尾顺次相接;
(2)三角形是一个封闭的图形;
(3)△ABC 是三角形ABC 的符号标记,单独的△没有意义.
2、 三角形的分类: (1)按角分类: (2)按边分类:
三角形
直角三象形
斜三角形
锐角三角形
钝角三角形
_C
_B _A 三角形
等腰三角形
不等边三角形
底边和腰不相等的等腰三角形 等边三角形
21
D
C B
A
D C
B A
D
C B
A
3、 三角形的主要线段的定义: (1)三角形的中线
三角形中,连结一个顶点和它对边中点的线段. 表示法:是△ABC 的BC 上的中线.
=DC=
1
2
BC. 注意:①三角形的中线是线段;
②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形.
(2)三角形的角平分线
三角形一个内角的平分线与它的对边相交,这个角顶点与交
点之间的线段
表示法:是△ABC 的∠BAC 的平分线.
2.∠1=∠2=
1
2
∠BAC. 注意:①三角形的角平分线是线段;
②三角形三条角平分线全在三角形的内部; ③三角形三条角平分线交于三角形内部一点; ④用量角器画三角形的角平分线.
(3)三角形的高
从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.
表示法:是△ABC 的BC 上的高线.
⊥BC 于D.
3.∠ADB=∠ADC=90°.
注意:①三角形的高是线段;
②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;
③三角形三条高所在直线交于一点.
4、三角形的三边关系
三角形的任意两边之和大于第三边;任意两边之差小于第三边.
注意:(1)三边关系的依据是:两点之间线段是短;
(2)围成三角形的条件是任意两边之和大于第三边.
5、三角形的角与角之间的关系:
(1)三角形三个内角的和等于180?;
(2)三角形的一个外角等于和它不相邻的两个内角的和;
(3)三角形的一个外角大于任何一个和它不相邻的内角.
(4)直角三角形的两个锐角互余.
6、三角形的稳定性:
三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性.注意:(1)三角形具有稳定性;
(2)四边形没有稳定性.
7、全等三角形
(1)全等三角形的概念
能够完全重合的两个三角形叫做全等三角形。。
(2)三角形全等的判定
三角形全等的判定定理:
(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)
(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)
(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
直角三角形全等的判定:
对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)
(3)全等变换
只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。
全等变换包括一下三种:
(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。
(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。
(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。
中考规律盘点及预测
三角形的两边之和大于第三边的性质历年来是经常考到的填空题的类型,三角形角度的计算也是考到的填空题的类型,三角形全等的判定是很重要的知识点,在考试中往往会考到。
第二章特殊三角形
复习总目
1、掌握等腰三角形的性质及判定定理
2、了解直角三角形的基本性质
2、掌握勾股定理的计算方法
知识点概要
1、图形的轴对称性质:对称轴垂直平分连接两个对称点的线段;成轴对称的两
个图形是全等图形
2、等腰三角形的性质
(1)等腰三角形的性质定理及推论:
定理:等腰三角形的两个底角相等(简称:等边对等角)
推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的
顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
3、三角形中的中位线
连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:
位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
4、直角三角形的性质
(1)直角三角形的两个锐角互余
(2)在直角三角形中,30°角所对的直角边等于斜边的一半。
(3)直角三角形斜边上的中线等于斜边的一半
(4)勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即2c
2
2
+
b
a=
(5)摄影定理
在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的
比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项
∠ACB=90°BD
2
AD
=
CD•
⇒AB
2
=
AC•
AD