广州市中考数学压轴题练习及答案
广州各区数学中考一模压轴题汇总
一、选择填空2、如图6,已知在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=5.下列结论:①△APD≌△AEB;②点B到直线AE的距离为2;③EB⊥ED;④S△APD+S△APB=1+6;⑤S正方形ABCD=4+6.其中正确结论的序号是* .(二)黄浦区图6(三)铁一中学1、定义[]c b a ,,为函数c bx ax y ++=2的特征函数,下面给出特征数为[]m m m 2-11,,+-的函数的一些结论:①当3=m 时,函数图像的顶点坐标是()8-1-,;②当1>m 时,函数图像截x 轴所得的线段长度定点。
其中正确的结论有( ) A .1个 B .2个C .3个D . 4个2、如图,在平面直角坐标系中,矩形OABC的顶点CA、分别在x轴的负半轴、y轴的正半轴上,点B(四)白云区第16题图(六) 番禺区1、抛物线92-=x y 与x 轴交于A 、B 两点,点P 在函数xy 3=的图像上,若△PAB 为直角三角形,则满足条件的点P 的个数为( )【A 】2个; 【B 】3个; 【C 】4个; 【D 】6个.2、直线y=x-2与x 轴、y 轴分别交于点B 、C ,与反比例函数xk y =(k>0)的图象在第一象限交于点A ,连接OA ,若S △AOB :S △BOC=1:2,则k 的值为( )(七)海珠区10、正方形ABCD 中,对角线AC 、BD 相交于点O ,DE 平分∠ADO 交AC 于点E ,把△ADE 沿AD 翻折,得到△ADE ’。
点F 是DE 的中点,连接AF 、BF 、E ’F ’。
若AE=2.下列结论:①AD垂直平分EE ’;②tan ∠ADE=12-;③122-=-∆∆ODE ADE C C ;④223'+=AEFE S 四边形。
其中结论正确的是( )第16题图16、设关于x 的方程04)4(2=--+k x k x 有两个不相等的实数根21,x x ,且2120x x <<<,那么k 的取值范围是(八)花都区10. 如图,在矩形ABCD 中,点F 在AD 上,点E 在BC 上,把这个矩形沿EF 折叠后,使点D 恰好落在BC 边上的G 点处,若矩形面积为60AFG ∠=︒,2GE BG =,则折痕EF 的长为( D ) A .4 B. C .2 D.16.如图,30MON ∠=︒,点1B 在边OM上,1OB =过点1B 作11A B OM ⊥交ON 于点1A ,以11A B 为边在11B OA ∆外侧作等边三角形111C B A ∆,再过点1C 作22A B OM ⊥,分别交OM ,ON 于点2B 、2A ,再以22A B 为边在22B OA ∆的外侧作等边三角形222C B A ∆……按此规律进行下去,则第3个等边三角形333C B A ∆的周长为 ,第n 个等边三角形n n n C B A ∆的周长为 .(用含n 的代数式表示)272 136()2n -(九)华工附中10.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,并且关于x 的一元二次方程20ax bx c m ++-=有两个不相等的实数根,下列结论:①240b ac -<;②0abc >;③0a b c -+<;④2m >-.其中,正确的个数有( ). A .1 B .2C .3D .416.已知二次函数222y x mx =++,当2x >时,y 的值随x 值的增大而增大,则实数m 的取值范围是__________.(十)广雅10.如图,在平面直角坐标系中,正三角形OAB 的顶点B 的坐标为(2,0),点A 在第一象限内,将△OAB 沿直线OA 的方向平移至'''B A O △的位置,此时点'A 的横坐标为3,则点'B 的坐标为( )A.(4,32)B.(3,33)C.(4,33)D.(3,32)16.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC,垂足为点F ,连接DF.分析下列四个结 论:①△AEP ∽△CAB ;②CF=2AF ;③DF=DC ;④43tan =∠CAD .其中正确的结论是_____.(十一)四中10.如图,PA 、PB 切○O 于A 、B 两点,CD 切○O 于点E 交PA ,PB 于C ,D. 若○O 的半径为r ,△PCD 的周长等于3r ,则tan ∠APB 的值是( ) A. B.C.D.16.如图,已知:点A是双曲线在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限,随着点A的运动,点C得位置也不断变化,但点C始终在双曲线>上运动,则k的值是。
2021年广东省中考数学解答题压轴题练习及答案 (20)
2021年广东省中考数学解答题压轴题练习1.如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设P A=x.(1)求证:△PF A∽△ABE;(2)当点P在线段AD上运动时,设P A=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x 满足的条件:x=或0≤x<1.【分析】(1)根据正方形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:①当∠PEF=∠EAB 时,则得到四边形ABEP为矩形,从而求得x的值;②当∠PEF=∠AEB时,再结合(1)中的结论,得到等腰△APE.再根据等腰三角形的三线合一得到F是AE的中点,运用勾股定理和相似三角形的性质进行求解.(3)首先计算圆D与线段相切时,x的值,在画出圆D过E时,半径r的值,确定x的值,半径比这时大时符合题意,根据图形确定x的取值范围.【解答】(1)证明:∵矩形ABCD,∴∠ABE=90°,AD∥BC,∴∠P AF=∠AEB,又∵PF⊥AE,∴∠PF A=90°=∠ABE,∴△PF A∽△ABE.…(4分)(2)解:分二种情况:①若△EFP∽△ABE,如图1,则∠PEF=∠EAB,∴PE∥AB,∴四边形ABEP为矩形,∴P A=EB=3,即x=3.…(6分)②若△PFE∽△ABE,则∠PEF=∠AEB,∵AD∥BC∴∠P AF=∠AEB,∴∠PEF=∠P AF.∴PE=P A.∵PF⊥AE,∴点F为AE的中点,Rt△ABE中,AB=4,BE=3,∴AE=5,∴EF=AE=,∵△PFE∽△ABE,∴,∴,∴PE=,即x=.∴满足条件的x的值为3或.…(9分)(3)如图3,当⊙D与AE相切时,设切点为G,连接DG,∵AP=x,∴PD═DG=6﹣x,∵∠DAG=∠AEB,∠AGD=∠B=90°,∴△AGD∽△EBA,∴,∴=,x=,当⊙D过点E时,如图4,⊙D与线段有两个公共点,连接DE,此时PD=DE=5,∴AP=x=6﹣5=1,∴当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,x满足的条件:x=或0≤x<1;故答案为:x=或0≤x<1.…(12分)。
广州中考数学压轴题(学生版)
1.如图,以O 为原点的直角坐标系中,A 点的坐标为(0,1),直线1交x 轴于点B 。
P 为线段上一动点,作直线⊥,交直线1于点C 。
过P 点作直线平行于x 轴,交y 轴于点M ,交直线1于点N 。
(1)当点C 在第一象限时,求证:△≌△;(2)当点C 在第一象限时,设长为m ,四边形的面积为S ,请求出S 与m 间的函数关系式,并写出自变量m 的取值范围;(3)当点P 在线段上移动时,点C 也随之在直线1上移动,△是否可能成为等腰三角形?如果可能,求出所有能使△成为等腰三角形的点P 的坐标;如果不可能,请说明理由。
说明:●考查字母运算能力 ● 分类讨论思想,取值范围内解的有效性 ●2.关于x 的二次函数y =2+(k 2-4)x +22以y 轴为对称轴,且与y 轴的交点在x 轴上方.(1)求此抛物线的解析式(2)设A 是y 轴右侧抛物线上的一个动点,过点A 作垂直x 轴于点B,再过点A 作x 轴的平行线交抛物线于点D ,过D 点作垂直x 轴于点C, 得到矩形.设矩形的周长为C ,点A 的横坐标为x ,试求C 关于x 的函数关系式;(3)当点A 在y 轴右侧的抛物线上运动时,矩形能否成为正方形.若能,请求出此时正方形的周长;若不能,请说明理由.x 第1题图 第2题图说明:●考查字母运算能力●分类讨论思想,取值范围内解的有效性●方法多样化,易错点为用字母表示边长时,注意边长的非负性3.如图所示, 在平面直角坐标系中, 矩形的边长、分别为12、6, 点A、C 分别在y轴的负半轴和x轴的正半轴上, 抛物线2经过点A、B, 且18a + c = 0.(1)求抛物线的解析式.(2)如果点P由点A开始沿边以1的速度向终点B移动, 同时点Q由点B开始沿边以2的速度向终点C移动.①移动开始后第t秒时, 设△的面积为S, 试写出S与t之间的函数关系式, 并写出t的取值范围.②当S取得最大值时, 在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形如第3题图果存在, 求出R点的坐标, 如果不存在, 请说明理由.说明:●图形必须准确,存在性问题如果不会做,可通过画图判断(答存在得分的机会大得多)4.已知二次函数2++c与x轴交于A(-1,0)、B(1,0)两点.(1)求这个二次函数的关系式;(2)若有一半径为r 的⊙P ,且圆心P 在抛物线上运动,当⊙P 与两坐标轴都相切时,求半径r 的值.(3)半径为1的⊙P 在抛物线上,当点P 的纵坐标在什么范围内取值时,⊙P 与y 轴相离、相交?说明:●考查画图能力和字母运算能力 ●分类讨论思想,取值范围内解的有效性 ● 方法多样化,易错点为用字母表示边长时,注意边长的非负性5.如图示已知点M 的坐标为(4,0),以M 为圆心,以2为半径的圆交x 轴于A 、B ,抛物线c bx x y ++=261过A 、B 两点且与y 轴交于点C .(1)求点C 的坐标并画出抛物线的大致图象(2)过C 点作⊙M 的切线,求直线的解析式.说明:●图形必须准确,画切线后巧妙解法是利用两直线平行,K 相等 ●易错点为漏解(过圆外一点作圆的切线有两条) ● 两直线垂直,K 互为负倒数可以使用6.如图,在ABC ∆中,∠A 90=°,10=BC , ABC ∆的面积为25,点D 为AB 边上的任意一点(D 不与A 、B 重合),过点D 作DE ∥BC ,交AC 于点E .设x DE =以DE 为折线将△ADE 翻折,所得的DE A '∆与梯形DBCE 重叠部分的面积记为y.(1).用x 表示∆的面积;第5题图(2).求出0﹤x≤5时y与x的函数关系式;(3).求出5﹤x﹤10时y与x的函数关系式;(4).当x取何值时,y的值最大?最大值是多少?说明:●考查画图能力和字母运算能力●分类讨论思想,取值范围内解的有效性●方法多样化,在设未知数或用字母表示未知量时,要充分发挥“勾股、相似、锐角三角函数”的作用,挖掘题目中的特殊角(特殊比值)来巧妙运算7.在△中,∠A=90°,=4,3,M是上的动点(不与A、B重合),过点M作∥交于点N. 以为直径作⊙O,并在⊙O内作内接矩形,令. 当x为何值时,⊙O与直线相切?8.如图,直线334y x=+和x轴y轴分别交与点B、A,点C是的中点,过点C向左方作射线⊥y轴,点D是线段上一动点,不和B重合,⊥于点P,⊥于点E,连接。
2021年广东省中考数学解答题压轴题练习及答案 (82)
2021年广东省中考数学解答题压轴题练习1.如图,△ABC在平面直角坐标系中,∠ACB=90°,AC=BC,A的坐标是(0,m)(m <0),点C的坐标是(2,0),点B在x轴上方.(1)如图1所示,若点B在y轴上,则m的值是﹣2;(2)如图2所示,BC与y轴交于点D.①若m=﹣6,求点B的坐标;②若y轴恰好平分∠BAC,求OD的长.【分析】(1)利用等腰三角形的三线合一的性质即可解决问题;(2)①如图2﹣1中,作BH⊥x轴于H.只要证明△BHC≌△COA(AAS)即可解决问题;②如图2﹣2中,在OA截取一点F,使得OF=OC.解直角三角形求出OA的长,再利用相似三角形的性质求出OD的长即可解决问题;【解答】解:(1)如图1中,∵CB=CA,OC⊥AB,∴∠OCB=∠OCA=45°,∴OA=OC=2,∴A(0,﹣2),∴m=﹣2.故答案为﹣2.(2)①如图2﹣1中,作BH⊥x轴于H.∵∠AOC=∠BHC=∠ACB=90°,∴∠BCH+∠ACO=90°,∠ACO+∠OAC=90°,∴∠BCH=∠OAC,∵BC=AC,∴△BHC≌△COA(AAS),∴BH=OC=2,CH=OA=6,∴OH=CH﹣OC=4,∴B(﹣4,2).②如图2﹣2中,在OA截取一点F,使得OF=OC.∵OF=OC=2,∠OCF=90°,∴FC=2,∠OFC=∠OCF=45°,∵AD平分∠CAB,∴∠DAC=∠CAB=22.5°,∵∠OFC=∠F AC+∠FCA,∴∠FCA=22.5°,∴∠F AC=∠FCA=22.5°,∴AF=CF=2,∴OA=2+2,∴A(0,﹣2﹣2),∵∠DCO=∠OAC,∠COD=∠AOC=90°,∴△COD∽△AOC,∴=,∴=,∴OD=2﹣2.。
2024年广州市中考数学压轴题
选择题在直角坐标系中,点A(3,4)关于x轴对称的点的坐标是:A. (-3,4)B. (3,-4)(正确答案)C. (4,3)D. (-4,-3)已知二次函数y = ax2 + bx + c的图像经过点(1,0),(0,3),且对称轴为直线x = 2,则a的值为:A. 1B. -1(正确答案)C. 2D. -2若圆O的半径为5,圆心O到直线l的距离为3,则直线l与圆O的位置关系是:A. 相离B. 相切C. 相交(正确答案)D. 无法确定已知等腰三角形的两边长分别为3和7,则这个等腰三角形的周长为:A. 13B. 17(正确答案)C. 13或17D. 无法确定在平行四边形ABCD中,AB = 5,AD = 8,∠BAD的平分线AE交BC于点E,则BE的长为:A. 3B. 5C. 2或3(正确答案)D. 2或5已知关于x的一元二次方程x2 - (2k + 1)x + 4(k - 1/2) = 0有两个相等的实数根,则k的值为:A. 1B. 2C. 3(正确答案)D. 4已知点P(x,y)在第四象限,且满足x2 + y2 = 25和x - y = 7,则点P的坐标为:A. (3,-4)B. (4,-3)(正确答案)C. (-3,4)D. (-4,3)已知函数y = (m - 2)x(m2 - 2)是关于x的二次函数,则m的值为:A. ±2B. 2C. -2(正确答案)D. 4在矩形ABCD中,AB = 6,BC = 8,点E是BC的中点,点F在边CD上,且CF = 2,连接AE、EF、AF,则∠AEF的面积是:A. 12B. 16C. 20(正确答案)D. 24。
广东中考数学压轴题
广东09压轴题127.(广东省)正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直, (1)证明:Rt △ABM ∽Rt △MCN ;(2)设BM =x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 的面积最大,并求出最大面积;(3)当M 点运动到什么位置时,Rt △ABM ∽Rt △AMN ,并求此时x 的值.128.(广东省广州市)如图,二次函数y =x2+px +q (p <0)的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),△ABC 的面积为45. (1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与△ABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使四边形ACBD 为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.M B CND A129.(广东省深圳市)如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△P AB是否有最大面积?若有,求出此时P点的坐标及△P AB的最大面积;若没有,请说明理由.130.(广东省深圳市)如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连结P A,若P A=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?备用图131.(广东省深圳市)已知:Rt △ABC 的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB 与x 轴重合(其中OA <OB ),直角顶点C 落在y 轴正半轴上(如图1).(1)求线段OA 、OB 的长和经过点A 、B 、C 的抛物线的关系式. (2)如图2,点D 的坐标为(2,0),点P (m ,n )是该抛物线上的一个动点(其中m >0,n >0),连接DP 交BC 于点E .①当△BDE 是等腰三角形时,直接写出....此时点E 的坐标. ②又连接CD 、CP (如图3),△CDP 是否有最大面积?若有,求出△CDP 的最大面积和此时点P 的坐标;若没有,请说明理由.132.(广东省珠海市)已知抛物线y =x2-32mx 与x 轴相交于点A 、B ,抛物线的顶点为C .(1)试用含m 的代数式表示AB 的长度; (2)当△ABC 为等边三角形时,求点C 的坐标; (3)在(2)的条件下,如何平移抛物线,使AC =213AB ?133.(广东省佛山市)如图1,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A 处沿着木柜表面爬到柜角C 1处. (1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB =4,BC =4,CC 1=5时,求蚂蚁爬过的最短路径的长; (3)求点B 1到最短路径的距离. A Bxy O 图1C A B x y O PD E图2 C A BPxy O D E 图3 C 备用图 图1134.(广东省茂名市)已知:如图,直线l :y =31x +b ,经过点M (0,41),一组抛物线的顶点B 1(1,y 1),B 2(2,y 2),B 3(3,y 3),…,B n (n ,y n )(n 为正整数)依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:A 1(x 1,0),A 2(x 2,0),A 3(x 3,0),…,A n +1(x n +1,0)(n 为正整数),设x 1=d (0<d <1). (1)求b 的值;(2)求经过点A 1、B 1、A 2的抛物线的解析式(用含d 的代数式表示)(3)定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为“美丽抛物线”.探究:当d (0<d <1)的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d 的值.135.(广东省湛江市)已知矩形纸片OABC 的长为4,宽为3,以长OA 所在的直线为x 轴,O 为坐标原点建立平面直角坐标系;点P 是OA 边上的动点(与点OA 不重合),现将△POC 沿PC 翻折得到△PEC ,再在AB 边上选取适当的点D ,将△P AD 沿PD 翻折,得到△PFD ,使得直线PE 、PF 重合.(1)若点E 落在BC 边上,如图①,求点P 、C 、D 的坐标,并求过此三点的抛物线的函数关系式;(2)若点E 落在矩形纸片OABC 的内部,如图②,设OP =x ,AD =y ,当x 为何值时,y 取得最大值?(3)在(1)的情况下,过点P 、C 、D 三点的抛物线上是否存在点Q ,使△PDQ 是以PD为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.136.(广东省肇庆市)如图,⊙O 的直径AB =2,AM 和BN 是它的两条切线,DE 切⊙O 于E ,交AM 于D ,交BN 于C .设AD =x ,BC =y . (1)求证:AM ∥BN ;(2)求y 关于x 的关系式;(3)求四边形ABCD 的面积S ,并证明:S≥2.137.(广东省清远市)如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,∠B 和∠C 都为锐角,M 为AB 上一动点(点M 与点A 、B 不重合),过点M 作MN ∥BC ,交AC 于点N ,在△AMN 中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h .(2)将△AMN 沿MN 折叠,使△AMN 落在四边形BCNM 所在平面,设点A 落在平面的点为A 1,△A 1MN 与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?138.(广东省梅州市)如图,矩形ABCD 中,AB =5,AD =3.点E 是CD 上的动点,以AE 为直径的⊙O 与AB 交于点F ,过点F 作FG ⊥BE 于点G . (1)当E 是CD 的中点时:①tan ∠EAB 的值为______________; ②证明:FG 是⊙O 的切线;(2)试探究:BE 能否与⊙O 相切?若能,求出此时DE 的长; 若不能,请说明理由.NB C N M A139.(广东省梅州市)如图,已知直线L过点A(0,1)和B(1,0),P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M.(1)直接写出直线L的解析式;(2)设OP=t,△OPQ的面积为S,求S关于t的函数关系式;并求出当0<t<2时,S的最大值;(3)直线L1过点A且与x轴平行,问在L1上是否存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.1。
2020年广东省广州市中考数学压轴题二次函数题库及答案解析(共100题)
2020年广东省广州市中考数学压轴题题库及答案解析(二次函数综合共100题)1.如图1,在平面直角坐标系中,O是坐标原点,抛物线y=x2+bx+c与x轴交于点A(4,0),点B(﹣1,0),与y轴交于点C,连接AC、BC.(1)求抛物线的表达式;(2)判断△ABC的形状,并说明理由;(3)①如图2,点D从点B出发沿线段BC向点C运动,到达点C停止,连接AD,过点D作DE⊥AB于点E,作DF⊥AC于点F,当=时,求点D的坐标;②如图3,设点P是线段AD的中点,连接PE、PF、EF,在点D由起点到终点的运动过程中,写出点P的运动路程和△PEF周长的最小值.【分析】(1)用交点式抛物线表达式,即可求解;(2)点C(0,﹣3),则AC=5,AC=AB=5,即可求解;(3)①△DCF∽△DBE,则==,设DB=m,则BC=3m=,则m=,BE=,OE=,DE=1,即可求解;②A、E、D、F四点共圆,AD为⊙O的直径,∠BAC是定角,则∠EPF也是定角,当AD⊥BC时,直径AD最短,从而弦EF也最短,即可求解.【解答】解:(1)用交点式抛物线表达式可得:y=(x+1)(x﹣4)=x2﹣x﹣3;(2)点C(0,﹣3),则AC=5,AC=AB=5,△ABC的是等腰三角形;(3)①∵∠DBE=∠DCF,∴△DCF∽△DBE,∴==,设DB=m,则BC=3m=,∴m=,BE=,OE=,DE=1,∴D(﹣,﹣1);②∵DE⊥AB E,DF⊥AC,∴A、E、D、F四点共圆,AD为⊙O的直径,∵∠BAC是定角,∴∠EPF也是定角,当AD⊥BC时,直径AD最短,从而弦EF也最短.此时,AD=AB sin∠OBC=5×==2R,EF=2R sin∠EPD=2R sin∠OAC=×=,△PEF的周长最小值=EF+2R=+,点P的轨迹为△ABC的中位线:BC=.【点评】本题主要考查的是二次函数综合运用,涉及到一次函数、解直角三角形、圆的基本知识等,其中(3)②,确定A、E、D、F四点共圆,是本题的突破点和难点.2.如图,抛物线y=x2+bx+c交x轴于点A(1,0)和点B,交y轴于点C(0,3).(1)求抛物线的解析式;(2)在抛物线上找出点P,使PC=PO,求点P的坐标;(3)将直线AC沿x轴的正方向平移,平移后的直线交y轴于点M,交抛物线于点N.当四边形ACMN为等腰梯形时,求点M、N的坐标.【分析】(1)把点A(1,0)、C(0,3)代入二次函数表达式,即可求解;(2)过P作PH⊥OC,垂足为H,PO=PC,PH⊥OC,则:CH=OH=,即:x2﹣4x+3=,即可求解;(3)四边形ACMN为等腰梯形,且AC∥MN,则GA=GC,在Rt△OGA中,OA2+OG2=AG2,则G(0,),即可求解.【解答】解:(1)把点A(1,0)、C(0,3)代入二次函数表达式得:,解得:,则抛物线的表达式为:y=x2﹣4x+3;(2)如下图,过P作PH⊥OC,垂足为H,∵PO=PC,PH⊥OC,则:CH=OH=,∴x2﹣4x+3=,解得:x=2,故点P(2+)或(2﹣);(3)如下图,连接NA并延长交OC于G∵四边形ACMN为等腰梯形,且AC∥MN,。
广州中考压轴题回顾含答案
201224.(2012?广州)如图,抛物线y=与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4,0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有三个时,求直线l 的解析式.25.(2012?广州)如图,在平行四边形ABCD 中,AB=5,BC=10,F 为AD 的中点,CE △AB 于E ,设△ABC=α(60°≤α<90°).(1)当α=60°时,求CE 的长;(2)当60°<α<90°时,①是否存在正整数k ,使得△EFD=k △AEF ?若存在,求出k 的值;若不存在,请说明理由.②连接CF ,当CE 2﹣CF 2取最大值时,求tan △DCF 的值.201324.(本小题满分14分)(2013年广州市)已知AB 是⊙O 的直径,AB =4,点C 在线段AB 的延长线上运动,点D 在⊙O 上运动(不与点B 重合),连接CD ,且CD=OA.(1)当OC=22时(如图12),求证:CD 是⊙O 的切线;(2)当OC >时,CD 所在直线于⊙O 相交,设另一交点为E ,连接AE .25、(本小题满分14分) (2013年广州市)已知抛物线y 1=2(0,)ax bx c a a c ++≠≠过点A(1,0),顶点为B ,且抛物线不经过第三象限。
(1)使用a 、c 表示b ;(2)判断点B 所在象限,并说明理由;(3)若直线y 2=2x+m 经过点B ,且于该抛物线交于另一点C (,8c b a+),求当x ≥1时y 1的取值范围。
201424.(14分)(2014?广州)已知平面直角坐标系中两定点A (﹣1,0)、B (4,0),抛物线y=ax 2+bx ﹣2(a ≠0)过点A ,B ,顶点为C ,点P (m ,n )(n <0)为抛物线上一点.(1)求抛物线的解析式和顶点C 的坐标;(2)当∠APB 为钝角时,求m 的取值范围;(3)若m >,当∠APB 为直角时,将该抛物线向左或向右平移t (0<t <)个单位,点C 、P 平移后对应的点分别记为C ′、P ′,是否存在t ,使得首位依次连接A 、B 、P ′、C ′所构成的多边形的周长最短?若存在,求t 的值并说明抛物线平移的方向;若不存在,请说明理由.25.(14分)(2014?广州)如图,梯形ABCD 中,AB ∥CD ,∠ABC=90°,AB=3,BC=4,CD=5.点E 为线段CD 上一动点(不与点C 重合),△BCE 关于BE 的轴对称图形为△BFE ,连接CF .设CE=x ,△BCF 的面积为S 1,△CEF 的面积为S 2.(1)当点F 落在梯形ABCD 的中位线上时,求x 的值;(2)试用x 表示,并写出x 的取值范围;(3)当△BFE 的外接圆与AD 相切时,求的值.201524.(本小题满分14分)如图10,四边形OMTN 中,OM =ON ,TM =TN ,我们把这种两组邻边分别相等的四边形叫做筝形.(1) 试探究筝形对角线之间的位置关系,并证明你的结论;(2) 在筝形ABCD 中,已知AB =AD =5,BC =CD ,BC >AB ,BD 、AC 为对角线,BD =8.①是否存在一个圆使得A 、B 、C 、D 四个点都在这个圆上?若存在,求出圆的半径;若不存在,请说明理由; O M N T 图10②过点B 作BF ⊥CD ,垂足为F ,BF 交AC 于点E ,连接DE ,当四边形ABED 为菱形时,求点F 到AB 的距离.25.已知O 为坐标原点,抛物线y 1=ax 2+bx +c(a≠0)与x 轴相交于点A(x 1,0),B(x 2,0),与y 轴交于点C ,且OC 两点间的距离为3,x 1 x 2<0,│x 1│+│ x 2│=4,点A 、C 在直线y 2=-3x +t 上.(1) 求点C 的坐标;(2) 当y 随着x 的增大而增大时,求自变量x 的取值范围;(3) 当抛物线y 1向左平移n(n >0) 个单位,记平移后y 随着x 的增大而增大的部分为P ,直线y 2向下平移n 个单位,当平移后的直线与P 有公共点时,求2n 2-5n 的最小值. 201624.本小题满分14分已知抛物线y =mx 2+(1-2m )x +1-3m 与x 轴相交于不同的两点A ,B ,(1)求m 的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P ,并求出点P 的坐标;(3)当14<m ≤8时,由(2)求出的点P 和点A ,B 构成的△ABP 的面积是否有最值,若有,求出最值及相应的m 值;若没有,请说明理由.25.(本小题满分14分) 如图10,点C 为△ABD 外接圆上的一动点(点C 不在BAD ︵上,且不与点B 、D 重合),∠ACB =∠ABD =45°,(1)求证:BD 是该外接圆的直径;(2)连接CD ,求证:2AC =BC +CD ;(3)若△ABC 关于直线AB 的对称图形为△ABM ,连接DM ,试探究DM 2,AM 2,BM 2三者之间满足的等量关系,并证明你的结论. 201724. (2017广东广州)(本小题满分14分)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,△COD 关于CD 的对称图形为△CED .(1)求证:四边形OCED 是菱形;(2)连接AE ,若AB =6cm ,BC =5cm .①求sin ∠EAD 的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP ,一动点Q 从点O 出发,以1cm /s 的速度沿线段OP 匀速运动到点P ,再以1.5cm /s 的速度沿线段P A 匀速运动到点A B CD图10A ,到达点A 后停止运动.当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q 走完全程所需的时间.25.(2017广东广州)(本小题满分14分)如图14,AB 是⊙O 的直径,»»AC BC ,AB =2,连接AC .(1)求证:∠CAB =45°;(2)若直线l 为⊙O 的切线,C 是切点,在直线L 上取一点D ,使BD =AB ,BD 所在的直线与AC 所在的直线相交于点E ,连接AD .①试探究AE 与AD 之间的数量关系,并证明你的结论; ②EB CD是否为定值?若是,请求出这个定值;若不是,请说明理由. 答案解:(1)令y=0,即=0,解得x 1=﹣4,x 2=2,∴A 、B 点的坐标为A (﹣4,0)、B (2,0).(2)S △ACB =AB?OC=9,在Rt △AOC 中,AC===5,设△ACD 中AC 边上的高为h ,则有AC?h=9,解得h=.如答图1,在坐标平面内作直线平行于AC ,且到AC 的距离=h=,这样的直线有2条,分别是l 1和l 2,则直线与对称轴x=﹣1的两个交点即为所求的点D .设l 1交y 轴于E ,过C 作CF ⊥l 1于F ,则CF=h=,∴CE==.设直线AC 的解析式为y=kx+b ,将A (﹣4,0),B (0,3)坐标代入得到,解得,∴直线AC 解析式为y=x+3.直线l 1可以看做直线AC 向下平移CE 长度单位(个长度单位)而形成的,∴直线l 1的解析式为y=x+3﹣=x ﹣.则D 1的纵坐标为×(﹣1)﹣=,∴D 1(﹣4,).同理,直线AC 向上平移个长度单位得到l 2,可求得D 2(﹣1,)综上所述,D 点坐标为:D 1(﹣4,),D 2(﹣1,).(3)如答图2,以AB 为直径作⊙F ,圆心为F .过E 点作⊙F 的切线,这样的切线有2条.连接FM ,过M 作MN ⊥x 轴于点N .∵A (﹣4,0),B (2,0),∴F (﹣1,0),⊙F 半径FM=FB=3.又FE=5,则在Rt △MEF 中,ME==4,sin ∠MFE=,cos ∠MFE=.在Rt △FMN 中,MN=MN?sin ∠MFE=3×=,FN=MN?cos∠MFE=3×=,则ON=,∴M点坐标为(,)直线l过M(,),E(4,0),设直线l 的解析式为y=kx+b,则,解得所以直线l的解析式为y=x+3.同理,可以求得另一条切线的解析式为y=x﹣3.综上所述,直线l的解析式为y=x+3或y=x﹣3.解答:解:(1)∵α=60°,BC=10,∴sinα=,即sin60°==,解得CE=5;(2)①存在k=3,使得∠EFD=k∠AEF.理由如下:连接CF并延长交BA的延长线于点G,∵F为AD的中点,∴AF=FD,在平行四边形ABCD中,AB∥CD,∴∠G=∠DCF,在△AFG和△CFD中,,∴△AFG≌△CFD(AAS),∴CF=GF,AG=CD,∵CE⊥AB,∴EF=GF三角形斜边上的中线等于斜边的一半),∴∠AEF=∠G,∵AB=5,BC=10,点F是AD的中点,∴AG=5,AF=AD=BC=5∴AG=AF,∴∠AFG=∠G,在△AFG中,∠EFC=∠AEF+∠G=2∠AEF又∵∠CFD=∠AFG(对顶角相等),∴∠CFD=∠AEF,∴∠EFD=∠EFC+∠CFD=2∠AEF+∠AEF=3∠AEF,因此,存在正整数k=3,使得∠EFD=3∠AEF;②设BE=x,∵AG=CD=AB=5,∴EG=AE+AG=5﹣x+5=10﹣x,在Rt△BCE中,CE2=BC2﹣BE2=100﹣x2,在Rt△CEG中,CG2=EG2+CE2=(10﹣x)2+100﹣x2=200﹣20x,∵CF=GF(①中已证),∴CF2=(CG)2=CF2=(200﹣20x)=50﹣5x,∴CE2﹣CF2=100﹣x2﹣50+5x=﹣x2+5x+50=﹣(x﹣)2+50+,∴当x=,即点E是AB的中点时,CE2﹣CF2取最大值,此时,EG=10﹣x=10﹣=,CE===,所以,tan∠DCF=tan∠G===.24.分析:(1)关键是利用勾股定理的逆定理,判定△OCD为直角三角形,如答图①所示;(2)①如答图②所示,关键是判定△EOC是含30度角的直角三角形,从而解直角三角形求出△ACE的周长;②符合题意的梯形有2个,答图③展示了其中一种情形.在求AE?ED值的时候,巧妙地利用了相似三角形,简单得出了结论,避免了复杂的运算.解:(1)证明:连接OD,如答图①所示.由题意可知,CD=OD=OA=AB=2,OC=,∴OD2+CD2=OC2由勾股定理的逆定理可知,△OCD为直角三角形,则OD⊥CD,又∵点D在⊙O上,∴CD是⊙O的切线.(2)解:①如答图②所示,连接OE,OD,则有CD=DE=OD=OE,∴△ODE为等边三角形,∠1=∠2=∠3=60°;∵OD=CD,∴∠4=∠5,∵∠3=∠4+∠5,∴∠4=∠5=30°,∴∠EOC=∠2+∠4=90°,因此△EOC是含30度角的直角三角形,△AOE是等腰直角三角形.在Rt△EOC中,CE=2OA=4,OC=4cos30°=,在等腰直角三角形AOE中,AE=OA=,∴△ACE的周长为:AE+CE+AC=AE+CE+(OA+OC)=+4+(2+)=6++.②存在,这样的梯形有2个.答图③是D点位于AB上方的情形,同理在AB下方还有一个梯形,它们关于直线AB成轴对称.∵OA=OE,∴∠1=∠2,∵CD=OA=OD,∴∠4=∠5,∵四边形AODE为梯形,∴OD∥AE,∴∠4=∠1,∠3=∠2,∴∠3=∠5=∠1,在△ODE与△COE中,∴△ODE∽△COE,则有,∴CE?DE=OE2=22=4.∵∠1=∠5,∴AE=CE,∴AE?DE=CE?DE=4.综上所述,存在四边形AODE为梯形,这样的梯形有2个,此时AE?DE=4.点评:本题是几何综合题,考查了圆、含30度角的直角三角形、等腰直角三角形、等边三角形、梯形等几何图形的性质,涉及切线的判定、解直角三角形、相似三角形的判定与性质等多个知识点,难度较大25、(本小题满分14分)分析:(1)抛物线经过A(1,0),把点代入函数即可得到b=﹣a﹣c;(2)判断点在哪个象限,需要根据题意画图,由条件:图象不经过第三象限就可以推出开口向上,a>0,只需要知道抛物线与x轴有几个交点即可解决,判断与x轴有两个交点,一个可以考虑△,由△就可以判断出与x轴有两个交点,所以在第四象限;或者直接用公式法(或十字相乘法)算出,由两个不同的解,进而得出点B所在象限;(3)当x≥1时,y1的取值范围,只要把图象画出来就清晰了,难点在于要观察出是抛物线与x轴的另一个交点,理由是,由这里可以发现,b+8=0,b=﹣8,a+c=8,还可以发现C在A的右侧;可以确定直线经过B、C两点,看图象可以得到,x≥1时,y1大于等于最小值,此时算出二次函数最小值即可,即求出即可,已经知道b=﹣8,a+c=8,算出a,c即可,即是要再找出一个与a,c有关的式子,即可解方程组求出a,c,直线经过B、C两点,把B、C两点坐标代入直线消去m,整理即可得到c﹣a=4联立a+c=8,解得c,a,即可得出y1的取值范围.解:(1)∵抛物线y1=ax2+bx+c(a≠0,a≠c),经过A(1,0),把点代入函数即可得到:b=﹣a﹣c;(2)B在第四象限.理由如下:∵抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),∴,所以抛物线与x轴有两个交点,又因为抛物线不经过第三象限,所以a>0,且顶点在第四象限;(3)∵,且在抛物线上,∴b+8=0,∴b=﹣8,∵a+c=﹣b,∴a+c=8,把B、C两点代入直线解析式易得:c﹣a=4,即解得:如图所示,C在A的右侧,∴当x≥1时,..24.(1)待定系数法求解析式即可,求得解析式后转换成顶点式即可.(2)因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,所以﹣1<m<0,或3<m<4.(3)左右平移时,使A′D+DB″最短即可,那么作出点C′关于x轴对称点的坐标为C″,得到直线P″C″的解析式,然后把A点的坐标代入即可.解:(1)∵抛物线y=ax2+bx﹣2(a≠0)过点A,B,∴,解得:,∴抛物线的解析式为:y=x2﹣x﹣2;∵y=x2﹣x﹣2=(x﹣)2﹣,∴C(,﹣).(2)如图1,以AB为直径作圆M,则抛物线在圆内的部分,能是∠APB为钝角,∴M(,0),⊙M的半径=.∵P是抛物线与y轴的交点,∴OP=2,∴MP==,∴P在⊙M上,∴P的对称点(3,﹣2),∴当﹣1<m<0或3<m<4时,∠APB为钝角.(3)存在;抛物线向左或向右平移,因为AB、P′C′是定值,所以A、B、P′、C′所构成的多边形的周长最短,只要AC′+BP′最小;第一种情况:抛物线向右平移,AC′+BP′>AC+BP,第二种情况:向左平移,如图2所示,由(2)可知P(3,﹣2),又∵C(,﹣)∴C'(﹣t,﹣),P'(3﹣t,﹣2),∵AB=5,∴P″(﹣2﹣t,﹣2),要使AC′+BP′最短,只要AC′+AP″最短即可,点C′关于x轴的对称点C″(﹣t,),设直线P″C″的解析式为:y=kx+b,,解得∴直线y=x+t+,点A在直线上,∴﹣+t+=0∴t=.故将抛物线向左平移个单位连接A、B、P′、C′所构成的多边形的周长最短.解:(1)当点F落在梯形ABCD中位线上时,如答图1,过点F作出梯形中位线MN,分别交AD、BC于点M、N.由题意,可知ABCD为直角梯形,则MN⊥BC,且BN=CN=BC.由轴对称性质,可知BF=BC,∴BN=BF,∴∠BFN=30°,∴∠FBC=60°,∴△BFC为等边三角形.∴CF=BC=4,∠FCB=60°,∴∠ECF=30°.设BE、CF交于点G,由轴对称性质可知CG=CF=2,CF⊥BE.在Rt△CEG中,x=CE===.∴当点F落在梯形ABCD的中位线上时,x的值为.(2)如答图2,由轴对称性质,可知BE⊥CF.∵∠GEC+∠ECG=90°,∠GEC+∠CBE=90°,∴∠GEC=∠CBE,又∵∠CGE=∠ECB=90°,∴Rt△BCE∽Rt△CGE,∴,∴CE2=EG?BE ①同理可得:BC2=BG?BE ②①÷②得:==.∴====.∴=(0<x≤5).(3)当△BFE的外接圆与AD相切时,依题意画出图形,如答图3所示.设圆心为O,半径为r,则r=BE=.设切点为P,连接OP,则OP⊥AD,OP=r=.过点O作梯形中位线MN,分别交AD、BC于点M、N,则OM为梯形ABED的中位线,∴OM=(AB+DE)=(3+5﹣x)=(8﹣x).过点A作AH⊥CD于点H,则四边形ABCH为矩形,∴AH=BC=4,CH=AB=3,∴DH=CD﹣CH=2.在Rt△ADH中,由勾股定理得:AD===2.∵MN ∥CD ,∴∠ADH=∠OMP ,又∵∠AHD=∠OPM=90°,∴△OMP ∽△ADH ,∴,即,化简得:16﹣2x=,两边平方后,整理得:x 2+64x ﹣176=0,解得:x 1=﹣32+20,x 2=﹣32﹣20(舍去)∴x=﹣32+20,∴==139﹣80.24、(1)OT ⊥MN(2)①存在。
2021年广东省广州市中考数学压轴题总复习(附答案解析)
2021年广东省广州市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。
从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。
预计2021年中考数学压轴题依然主要考查这些知识点。
1.等边三角形ABC内接于⊙O,点D在弧AC上,连接AD、CD、BD.(1)如图1,求证BD平分∠ADC;
(2)如图2,若∠DBC=15°,求证:AD:AC=√2:√3;
(3)如图3,若AC、BD交于点E,连接OE,且OE=2√7,若BD=3CD,求AD的长.
2.(1)初步思考:
如图1,在△PCB中,已知PB=2,BC=4,N为BC上一点且BN=1,试证明:PN=1
2PC
(2)问题提出:
如图2,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求
PD+1
2PC的最小值.
(3)推广运用:
如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一
个动点,求PD−1
2PC的最大值.。
专题04 几何压轴题-备战2022年中考数学满分真题模拟题分类汇编(广州专用)(解析版)
专题04 几何压轴题1.(2021•广州)如图,在菱形ABCD 中,60DAB ∠=︒,2AB =,点E 为边AB 上一个动点,延长BA 到点F ,使AF AE =,且CF 、DE 相交于点G .(1)当点E 运动到AB 中点时,证明:四边形DFEC 是平行四边形;(2)当2CG =时,求AE 的长;(3)当点E 从点A 开始向右运动到点B 时,求点G 运动路径的长度.【答案】(1)见解析;(2)34;(3)273【详解】(1)连接DF ,CE ,如图所示:,E 为AB 中点,12AE AF AB ∴==, EF AB ∴=,四边形ABCD 是菱形,//EF CD ∴,EF AB CD ==,∴四边形DFEC 是平行四边形.(2)作CH BH ⊥,设AE FA m ==,如图所示,,四边形ABCD 是菱形,//CD EF ∴,CDG FEG ∴∆∆∽, ∴CD EF CG FG =, 2FG m ∴=, 在Rt CBH ∆中,60CBH ∠=︒,2BC =, sin 60CH BC ︒=,3CH =, cos60BH BC︒=,1BH =, 在Rt CFH ∆中,22CF m =+,3CH =,3FH m =+,222CF CH FH =+,即(22)2(3)2(3)2m m +=++,整理得:32280m m +-=,解得:143m =,22m =-(舍去), ∴43AE =. (3)G 点轨迹为线段AG ,证明:如图,(此图仅作为证明AG 轨迹用),延长线段AG 交CD 于H ,作HM AB ⊥于M ,作DN AB ⊥于N ,四边形ABCD 是菱形,//BF CD ∴,DHG EGA ∴∆∆∽,HGC AGF ∆∆∽,∴AE AG DH HG =,AF AG HC HG =, ∴AE AF DH CH=, AE AF =,1DH CH ∴==,在Rt ADN ∆中,2AD =,60DAB ∠=︒.sin 60DN AD ∴︒=,3DN =.cos60AN AD ︒=,1AN =, 在Rt AHM ∆中,3HM DN ==,2AM AN NM AN DH =+=+=,3tan 2HAM ∠=, G 点轨迹为线段AG .G ∴点轨迹是线段AG .如图所示,作GH AB ⊥,四边形ABCD 为菱形,60DAB ∠=︒,2AB =,//CD BF ∴,2BD =,CDG FBG ∴∆∆∽,∴CD DG BF BG=,即2BG DG =, 2BG DG BD +==,43BG ∴=, 在Rt GHB ∆中,43BG =,60DBA ∠=︒, sin 60GH BG ︒=,233GH =, cos60BH BG ︒=,23BH =, 在Rt AHG ∆中,24233AH =-=,233GH =, 423282()2()2339AG =+=, 273AG ∴=. G ∴点路径长度为273. 2.(2019•广州)如图,等边ABC ∆中,6AB =,点D 在BC 上,4BD =,点E 为边AC 上一动点(不与点C 重合),CDE ∆关于DE 的轴对称图形为FDE ∆.(1)当点F 在AC 上时,求证://DF AB ;(2)设ACD ∆的面积为1S ,ABF ∆的面积为2S ,记12S S S =-,S 是否存在最大值?若存在,求出S 的最大值;若不存在,请说明理由;(3)当B ,F ,E 三点共线时.求AE 的长.【答案】(1)见解析;(2)见解析;(3)713- 【详解】(1)ABC ∆是等边三角形 60A B C ∴∠=∠=∠=︒ 由折叠可知:DF DC =,且点F 在AC 上60DFC C ∴∠=∠=︒DFC A ∴∠=∠//DF AB ∴;(2)存在,过点D 作DM AB ⊥交AB 于点M ,6AB BC ==,4BD =,2CD ∴=2DF ∴=,∴点F 在以D 为圆心,DF 为半径的圆上,且在ABC ∆内部,∴当点F 在DM 上时,ABF S ∆最小,4BD =,DM AB ⊥,60ABC ∠=︒23MD ∴=ABF S ∆∴的最小值16(232)6362=⨯⨯-=- ()12336363362S ∴=⨯⨯--=-+最大值 (3)如图,过点D 作DG EF ⊥于点G ,过点E 作EH CD ⊥于点H ,CDE ∆关于DE 的轴对称图形为FDE ∆2DF DC ∴==,60EFD C ∠=∠=︒GD EF ⊥,60EFD ∠=︒1FG ∴=,33DG FG == 222BD BG DG =+, 2163(1)BF ∴=++,131BF ∴=-13BG ∴=EH BC ⊥,60C ∠=︒2EC CH ∴=,332EH HC EC == GBD EBH ∠=∠,90BGD BHE ∠=∠=︒BGD BHE ∴∆∆∽∴DG EH BG BH= ∴3321362EC EC =- 131EC ∴=-713AE AC EC ∴=-=-3.(2021•广州模拟)如图,在四边形ABCD 中,60B ∠=︒,30D ∠=︒,AB BC =.(1)求A C ∠+∠的度数;(2)连接BD ,探究AD ,BD ,CD 三者之间的数量关系,并说明理由;(3)若1AB =,点E 在四边形ABCD 内部运动,且满足222AE BE CE =+,求点E 运动路径的长度.π【答案】(1)︒270;(2)见解析;(3)3【详解】(1)如图1中,在四边形ABCD中,360D∠=︒,30∠=︒,BA B C D∠+∠+∠+∠=︒,60∴∠+∠=︒-︒-︒=︒.3606030270A C(2)如图2中,结论:222=+.DB DA DC理由:连接BD.以BD为边向下作等边三角形BDQ∆.∠=∠=︒,60ABC DBQ∴∠=∠,ABD CBQ=,=,DB BQAB BCABD CBQ SAS∴∆≅∆,()∴=,A BCQ∠=∠,AD CQ∠+∠=∠+∠=︒,A BCD BCQ BCD270∴∠=︒,DCQ90222∴=+,DQ DC CQ=,DQ DB=,CQ DA222∴=+.DB DA DC(3)如图3中,连接AC,将ACE∆,连接RE.∆绕点A顺时针旋转60︒得到ABR则AER ∆是等边三角形,222EA EB EC =+,EA RE =,EC RB =,222RE RB EB ∴=+,90EBR ∴∠=︒,150RAE RBE ∴∠+∠=︒,210ARB AEB AEC AEB ∴∠+∠=∠+∠=︒,150BEC ∴∠=︒,∴点E 的运动轨迹在O 为圆心的圆上,在O 上取一点K ,连接KB ,KC ,OB ,OC , 180K BEC ∠+∠=︒,30K ∴∠=︒,60BOC ∠=︒,OB OC =,OBC ∴∆是等边三角形,1OB OC BC ∴===,∴点E 的运动路径6011803ππ==. 4.(2021•天河区一模)如图,ABC ∆中,120BAC ∠︒,AB AC =,点A 关于直线BC 的对称点为点D ,连接BD ,CD .(1)求证:四边形ABDC 是菱形;(2)延长CA 到E ,使得AB BE =.求证:22BC AC CE AC -⋅=;(3)在(2)小题条件下,可知E ,B ,D ,C 四点在同一个圆上,设其半径为a (定值),若BC kAB =,问k 取何值时,BE CE ⋅的值最大?【答案】见解析;【详解】(1)证明:如图1,连接AD ,交BC 于O ,A ,D 关于直线BC 对称,AD BC ∴⊥,OA OD =,AB AC =,OB OC ∴=,∴四边形ABDC 是菱形;(2)证明:解法一:如图2,延长AE 到F ,使EF BE =,连接BF ,AB BE =,AB BD CD AC BE EF ∴=====,BE CE EF CE CF ∴+=+=,AB AC =,ABC ACB ∴∠=∠,同理得EBF F ∠=∠,BAE BEA ∠=∠,BAE ABC ACB ∠=∠+∠,BEA EBF F ∠=∠+∠,ABC ACB EBF F ∴∠=∠=∠=∠,ABC BFC ∴∆∆∽, ∴BC AC CF BC =, 2()()BC AC CF AC CE EF AC CE AC ∴=⋅=⋅+=⋅+,即22BC AC CE AC -⋅=;解法二:如图3,过点B 作BP CE ⊥于P ,AB BE =,AP EP ∴=,且AB AC BE ==,Rt BPC ∆中,222BC BP CP =+,在Rt BPA ∆中,222BA BP AP =+,2222222222()()BC AC BC AB BP CP BP AP CP AP ∴-=-=+-+=-,22()()()CP AP CP AP CP AP CP EP AC CE AC -=+-=+⋅=⋅,22BC AC CE AC ∴-=⋅,即22BC AC CE AC -⋅=;(3)解:如图4,连接AD 交BC 于M ,作CD 的垂直平分线交DA 的延长线于G ,连接CG ,由题意得:CG DG a ==,设DM x =,则GM a x =-,120BAC ∠︒,∴当120BAC ∠=︒时,如图5,ABD ∆和ADC ∆是等边三角形,AB AD AC ∴==,∴当点A 为圆心,即点A 与G 重合,此时1cos602x CD a =⋅︒=, 02a x ∴<, 四边形ABCD 是菱形,BC AD ∴⊥,2BC CM =,由勾股定理得:2222()2CM a a x x ax =--=-+,22222CD x x ax ax =-+=,222448BC CM x ax ∴==-+,222BE CD ax ==,由22BC AC CE AC -⋅=,得2222222239482464()44BE CE BC AC BC BE x ax ax x ax x a a ⋅=-=-=-+-=-+=--+, 02a x<, ∴当12x a =时,BE CE ⋅有最大值,此时223BC a =,222AB BE a ==, 故223BC AB =,所以3BC AB =,故3k =时,BE CE ⋅的值最大.5.(2021•越秀区一模)如图,在四边形ABCD 中,90A ADC ∠=∠=︒,10AB AD ==,15CD =,点E ,F 分别为线段AB ,CD 上的动点,连接EF ,过点D 作DG ⊥直线EF ,垂足为G .点E 从点B 向点A 以每秒2个单位的速度运动,同时点F 从点D 向点C 以每秒3个单位的速度运动,当点E 运动到点A 时,E ,F 同时停止运动,设点E 的运动时间为t 秒.(1)求BC 的长;(2)当GE GD =时,求AE 的长;(3)当t 为何值时,CG 取最小值?请说明理由.【答案】(1)55;(2)52;(3)见解析【详解】(1)如图1,过点B 作BH CD ⊥于点H ,则四边形ADHB 是矩形,10AB =,15CD =,5CH ∴=,又10BH AD ==, 222210555BC BH CH ∴=+=+=; (2)过点G 作MN AB ⊥,如图2,//AB CD ,MN CD ∴⊥,DG EF ⊥,EG DG =,()EMG GND AAS ∴∆≅∆,MG DN ∴=,设DN a =,GN b =,则MG a =,ME b =,点E 从点B 向点A 以每秒2个单位的速度运动,同时点F 从点D 向点C 以每秒3个单位的速度运动,2BE t ∴=,102AE t =-,3DF t =,153CF t =-,AM DN =,AD MN =,10a b ∴+=,102a b t -=-,解得10a t =-,b t =,DG EF ⊥,GN DF ⊥,DGN GFN ∴∆∆∽,∴GN NF DN GN=, 2GN DN NF ∴=⋅,2210GN t NF DN t ∴==-, 又DF DN NF =+, 231010t t t t ∴=-+-, 解得55t =±,又03t ,55t ∴=-,10225AE t ∴=-=.(3)如图3,连接BD ,交EF 于点K ,//BE DF ,BEK DFK ∴∆∆∽,∴2233BK BE t DK DF t ===, 又10AB AD ==, 2102BD AB ∴==,3625DK BD ∴==, 取DK 的中点,连接OG ,DG EF ⊥,DGK ∴∆为直角三角形,1322OG DK ∴==, ∴点G 在以O 为圆心,32r =的圆弧上运动,连接OC ,OG ,由图可知CG OC OG -,当点G 在线段OC 上时取等号,AD AB =,90A ∠=︒,45ADB ∴∠=︒,45ODC ∴∠=︒,过点O 作OH DC ⊥于点H , 又32OD =,15CD =, 3OH DH ∴==, 12CH ∴=, 22317OC OH CH ∴=+=,则CG 的最小值为3(172)-,当O ,G ,C 三点共线时,过点O 作直线OR DG ⊥交CD 于点S , OD OG =,R ∴为DG 的中点,又DG GF ⊥,//OS GF ∴,∴点S 是DF 的中点,OC SC OG SF=, 32DS SF t ∴==,3152SC t =-, ∴31531723322t t -=, 23443t -∴=, 即当23443t -=时,CG 取得最小值为31732-. 6.(2021•天河区二模)如图,矩形ABCD 中,4AB =,8AD =,点E 是边AB 上的一点,点F 是边BC 延长线上的一点,且2AE CF =.连接AC ,交EF 于点O ,过E 作EP AC ⊥,垂足为P .(1)求证:DAE DCF ∆∆∽;(2)求证:OP 长为定值;(3)记AC 与DE 的交点为Q ,当14PQ OP =时,直接写出此时AP 的长.【答案】(1)见解析;(2)见解析;(3)6525- 【详解】(1)证明:在矩形ABCD 中,4AB CD ==,90DAE DCB ∠=∠=︒, 90DCF ∴∠=︒, DAE DCF ∴∠=∠,2AE CF =,8AD BC ==,∴2AE AD CF CD==, DAE DCF ∴∆∆∽;(2)证明:如图1,过点E 作//EG BC ,交AC 于点G ,90AEG B ∴∠=∠=︒,AGE ACB ∠=∠,EOG FOC ∆∆∽,在Rt ABC ∆中,4AB =,8BC =,224845AC ∴=+=,EP AC ⊥,90AEP BAC ∴∠+∠=︒,90CAD BAC ∠+∠=︒,AEP CAD ∴∠=∠,1tan tan tan tan 2CAD ACB AGE AEP ∴∠=∠=∠=∠=,即12CD AE AP PE AD EG EP PG ====, 2EG AE ∴=,2AE CF =,4EG CF ∴=,设(0)AP m m =>,(0)OC n n =>,则2PE m =,4PG m =,EOG FOC ∆∆∽,∴4EG OG CF OC==, 44OG OC n ∴==,4445AC AP PG OG OC m m n n ∴=+++=+++=,455m n ∴+=,165445OP PG OG m n ∴=+=+=, 所以OP 是一个定值;(3)如图2,11165454455PQ OP ==⨯=,由(2)知:(0)AP m m =>,5AE m =,//AE CD ,AEQ CDQ ∴∆∆∽,∴AE AQ CD CQ=, ∴4555445455m m m +=--,解得:6525m =±, 054m <<,4505m ∴<<, 6525AP ∴=-. 7.(2021•白云区一模)不在射线DA 上的点P 是边长为2的正方形ABCD 外一点(P 在AB 左侧),且满足45APB ∠=︒,以AP ,AD 为邻边作APQD .(1)如图,若点P 在射线CB 上,请用尺规补全图形;(2)若点P 不在射线CB 上,求PAQ ∠的度数;(3)设AQ 与PD 交点为O ,当APO ∆的面积最大时,求tan ADO ∠的值.【答案】(1)见解析;(2)︒45;(3)123+ 【详解】(1)如图1,以B 为圆心,AB 长为半径作弧,交射线CB 于点P ,连接BD ,//AD PB ,AD AB PB ==,∴四边形ADBP 是平行四边形,∴点Q 与点B 重合.(2)如图2,连接QA ,QC ,QB ,BD ,四边形APQD 是平行四边形,AP DQ ∴=,//PQ AD ,//AP QD ,180PAD ADQ ∴∠+∠=︒,90PAB ADQ ∴∠=︒-∠,90PAB ADQ QDC ∴∠=︒-∠=∠,又AP QD =,AB CD =,()PAB QDC SAS ∴∆≅∆,45APB DQC ∴∠=∠=︒,四边形ABCD 是正方形,45ABD DBC ∴∠=∠=︒,45CQD CBD ∴∠=∠=︒,∴点B ,点C ,点D ,点Q 四点共圆,90BCD BQD ∴∠=∠=︒,90BQD BAD ∴∠=∠=︒,∴点B ,点D ,点A ,点Q 四点共圆,45AQD ABD ∴∠=∠=︒,//AP QD ,45PAQ AQD ∴∠=∠=︒;(3)四边形APQD 是平行四边形, 14APO APQD S S ∆∴=, ∴当APQD 的面积最大时,APO ∆的面积取最大值,APQD S AD =⨯点P 到AD 的距离,∴当点P 到AD 的距离最大时,APQD 的面积最大,如图3,以AB 为斜边作等腰直角三角形ABE ,以E 为圆心,AE 为半径作ABP ∆的外接圆,延长CB 交E 于H ,过点E 作FE BH ⊥,交E 于P ,交DA 的延长线于F ,此时点P 到AD 的距离最大,EA EB =,90AEB ∠=︒,2AB =,45EAB ∴∠=︒,2AE =,45EAF ∴∠=︒,EF AF ⊥,45EAF FEA ∴∠=∠=︒,1AF EF ∴==,12PF ∴=+,()212APQD S AD PF ∴=⋅=⨯+最大,12142APQD APO S S ∆+∴==最大, 12tan 3FP ADO DF +∴∠==. 8.(2021•番禺区一模)如图,ABC ∆中,120A ∠=︒,AB AC =,过点A 作AO AC ⊥交BC 于点O .(1)求证:13BO BC =; (2)设AB k =.①以OB 为半径的O 交BC 边于另一点P ,点D 为CA 边上一点,且2CD DA =.连接DP ,求CPD S ∆.②点Q 是线段AB 上一动点(不与A 、B 合),连接OQ 在点Q 运动过程中,求2AQ OQ +的最小值.【答案】(1)见解析;(2)①2318CPD S k ∆=,②k 【详解】(1)证明:120A ∠=︒,AB AC =,30B C ∴∠=∠=︒,AO AC ⊥,90OAC ∴∠=︒,30BAO ∠=︒,BO AO ∴=,12AO CO =, 12BO CO ∴=, 13BO BC ∴=; (2)①如图:AB k =,AC k ∴=,Rt AOC ∆中,tanOA C AC =, 33OA k OB ∴==, 30C ∠=︒,2323OC OA k ∴==, 33CP OC OP OC OA k ∴=-=-=, 2CD DA =,3k DA ∴=,23DC k =, Rt AOD ∆中,33tan 333kAD AOD OA k ∠===, 30AOD ∴∠=︒,18060AOC OAC C ∠=︒-∠-∠=︒,30AOD DOP ∴∠=∠=︒,又OA OP =,OD OD =,()AOD POD SAS ∴∆≅∆,90DPO OAD ∴∠=∠=︒,DA DP =,3k DP ∴=, 213218CPD S CP DP k ∆∴=⋅=; ②以A 为顶点,AB 为一边,在ABC ∆外部作30BAN ∠=︒,过Q 作QN AN ⊥于N ,过O 作OM AN ⊥于M ,连接OQ ,如图:在Rt AQN ∆中,30BAN ∠=︒,12NQ AQ ∴=, 122()2AQ OQ AQ OQ +=+, 2AQ OQ ∴+最小,即是12AQ OQ +最小,故NQ OQ +最小,此时ON AN ⊥,Q 与Q '重合,N 与M 重合,OM 长度即是12AQ OQ +的最小值, 而由①知:33OA k =,60OAM OAB BAM ∠=∠+∠=︒, Rt AOM ∆中,sin OM OAM OA ∠=, sin 6033OMk ∴︒=,2k OM ∴=, ∴12AQ OQ +的最小值为2k , 2AQ OQ ∴+的最小值是k .9.(2021•花都区一模)如图,在Rt ABC ∆中,90C ∠=︒,8AC cm =,16BC cm =.(1)尺规作图:作AB 的垂直平分线DE 交AB 于点D ,交BC 于点E (保留作图痕迹,不要求写作法);(2)连接AE ,动点M ,N 分别从点A ,C 同时出发,均以每秒1cm 的速度分别沿AE 、CB 向终点E ,B 运动,是否存在某一时刻t 秒(010)t <<,使MNC ∆的面积S 有最大值?若存在,求S 的最大值;若不存在,请说明理由.【答案】见解析【详解】(1)如图,直线DE 即为所求作.(2)过点M 作MH EC ⊥于H . DE 垂直平分线段AB ,EA EB ∴=,设EA EB x ==cm ,则(16)EC x cm =-,在Rt ACE ∆中,222AE AC EC =+,2228(16)x x ∴=+-,解得10x =,//MH AC , ∴EM MH EA AC =, ∴10108t MH -=, 4(10)5MH t ∴=-, 2214225(10)2()1025552MNC S t t t t t ∆∴=⨯⨯-=-+=--+, 502-<, 52t ∴=时,MNC ∆的面积最大,最大值为10. 10.(2021•越秀区校级二模)已知ABC ∆,90ACB ∠=︒,4AC BC ==,D 是AB 的中点,P 是平面上的一点,且1DP =,连接CP(1)如图,当点P 在线段BD 上时,求CP 的长;(2)当BPC ∆是等腰三角形时,求CP 的长;(3)将点B 绕点P 顺时针旋转90︒得到点B ',连接AB ',求AB '的最大值.【答案】(1)3;(2)①13,②42+ 【详解】(1)如图1中,连接CD .在Rt ABC ∆中,90ACB ∠=︒,4AC BC ==,2242AB AC BC ∴=+=,AD DB =,1222CD AB ∴==,CD AB ⊥, 在Rt CDP ∆中,223PC PD CD =+=.(2)如图2中,1DP =,∴点P 在以点D 为圆心的D 上.①当PB PC =时,CD DB =,P ∴、D 都在线段BC 的垂直平分线上,设直线DP 交BC 于E .90PEC ∴∠=︒,2BE CE ==,90CDB ∠=︒, 122DE BC CE ∴===, 在Rt PCE ∆中,22PC EC PE =+,当P 在线段PD 上时,1PE DE DP =-=,22125PC =+=,当P 在线段ED 的延长线上时,3PE ED DP =+=,223213PC =+=.②当PC BC =时,221PC CD PD BC +=+<,PC BC ∴≠,此种情形不存在;③当PB BC =时,同理这种情形不存在;如图3中(3)如图4中,连接BB '.由旋转可知:PB PB =',90BPB ∠'=︒,45PBB ∴∠'=︒,2BB PB ∴'=,∴2BB PB'=, AC BC =,90ACB ∠=︒,45ABC ∴∠=︒,ABC PBB ∴∠=∠',ABB CBP ∴∠'=∠, 4224BA BC ==, ∴BA BB BC PB '=, ∴BA BC BB PB =', ABB CBP ∴∆'∆∽,∴2AB BA CP BC'==, 221PC CD DP +=+,∴点P 落在CD 的延长线与D 的交点处,PC 的值最大,2(221)42AB ∴'+=+.AB ∴'的最大值为42+.11.(2021•黄埔区二模)如图1,正方形ABCD 的对角线相交于点O ,延长OD 到点G ,延长OC 到点E ,使2OG OD =,2OE OC =,以OG ,OE 为邻边作正方形OEFG ,连接AG ,DE .(1)探究AG 与DE 的位置关系与数量关系,并证明;(2)固定正方形ABCD ,以点O 为旋转中心,将图1中的方形OEFG 逆时针转(0180)n n ︒<<得到正方形111OE F G ,如图2.①在旋转过程中,当190OAG ∠=︒时,求n 的值;②在旋转过程中,设点1E 到直线1AG 的距离为d ,着正方形ABCD 的边长为1,请直接写出d 的最大值与最小值,不必说明理由.【答案】(1)见解析;(2)①30n =;②见解析【详解】(1)AG DE ⊥,.AG DE =证明:如图1,延长ED 交AG 于点H ,点O 是正方形ABCD 两对角线的交点,OA OC OD ∴==,OA OD ⊥,90AOG DOE ∴∠=∠=︒,2OG OD =,2OE OC =,OG OE ∴=,在AOG ∆和DOE ∆中,OA OD AOG DOE OG OE =⎧⎪∠=∠⎨⎪=⎩,()AOG DOE SAS ∴∆≅∆,AG DE ∴=,AGO DEO ∠=∠,90AGO GAO ∠+∠=︒,90GAO DEO ∴∠+∠=︒,90AHE ∴∠=︒,AG DE ∴⊥,故AG DE ⊥,AG DE =;(2)①在旋转过程中,190OAG ∠=︒有两种情况:(Ⅰ)n 由0增大到90过程中,当190OAG ∠=︒时,11122OA OD OG OG ===, ∴在1Rt OAG ∆中,11sin 2OA AG O OG ∠==', 130AG O ∴∠=︒,OA OD ⊥,1OA AG ⊥,1//OD AG ∴,1130DOG AG O ∴∠=∠=︒,即30n =;(Ⅱ)n 由90增大到180过程中,当190OAG ∠=︒时,同理可求130BOG ∠=︒,118030150DOG ∴∠=︒-︒=︒,150n ∴=;综上所述,当190OAG ∠=︒时,30n =或150.②如图3,d 的最大值为116262222E H DE DH +=+=+=,如图4,d 的最小值为116262222E H DE DH -=-=-=. 理由如下:如图3、图4所示,连接11E G ,设直线1E D 交直线1AG 于H ,作正方形ABCD 的外接圆O ,仿照(1)的证明,可证得DE AG ⊥,即在旋转过程中,1190E HG ∠=︒保持不变,所以1d E H =. 在旋转过程中,1E H 的位置有以下两种情况:第一种情况,当1E H 在1OE G ∠内时,11145E G H OG A ∠=︒+∠,如图3所示,第二种情况:当1E H 在11OE G ∠外时,11145E G H OG A ∠=︒-∠,如图3所示, 1222OG OD BD AB ====,112E G ∴=.在Rt △11E HG 中,11111sin 2E H d E G H E G ∠==, 112sin d E G H ∴=∠, 所以,当11E G H ∠最大时,最大;当最小时,最小; 设点到的距离为,则, 由上式可知,当取最大值时,取最大值.在旋转过程中,当与相切,即时,取最大值.此时,取最大值,从而取最大值或最小值.由①可知,当时,,在(1)中,已证得,且,四边形为正方形,, , 的最大值为, 的最小值为 d 11E G H ∠d O 1AG m 1sin 2m OG A OG ∠=m 1OG A ∠1E D O 190OAG ∠=︒m 1OG A ∠11E G H ∠190OAG ∠=︒130OG A ∠=︒11AOG DOE ∆≅∆90AHD ∠=︒∴AODH 22DH AO ∴==221126(2)()22DE AG ∴==-=d ∴116262E H DE DH +=+=d 116262E H DE DH -=-=12.(2021•从化区一模)如图,四边形是矩形,点是对角线上一动点(不与点和点重合),连接,过点作交射线于点,连接,已知,,设的长为.(1)线段的最小值为 . (2)如图,当动点运动到的中点时,与的交点为,的中点为,求线段的长度;(3)当点在运动的过程中:①试探究是否会发生变化?若不改变,请求出大小;若改变,请说明理由;②当为何值时,是等腰三角形?ABCD P AC C A PB P PF PB ⊥DA F BF 33AD =3CD =CP x PB P AC AP BF G FP H GH P FBP ∠FBP ∠x AFP ∆【答案】(1);(2(3)见解析 【详解】(1)四边形是矩形,,,,,,,当时,最小,此时为斜边上的高,,即, ,; (2)如图:运动到的中点,,,中,, , 是等边三角形,,又,,,,是的垂直平分线,3323GH ∴=ABCD 33AD =3CD =3AB CD ∴==33BC AD ==90ABC D ∠=∠=︒226AC AB BC ∴=+=BP AC ⊥BP BP Rt ABC ∆AC 1122ABC S AB BC AC BP ∆∴=⋅=⋅3336BP ⨯=⨯332BP ∴=P AC 6AC =3AP AB ∴==Rt ABC ∆tan 3BC BAC AB∠==60BAC ∴∠=︒ABP ∴∆3AB BP ∴==90BAF BPF ∠=∠=︒BF BF =()BAF BPF HL ∴∆≅∆AF PF ∴=BF ∴AP是中点,是中点,, 是等边三角形,是中点,, 在中,, 得, , ; (3)①不会发生变化,,理由如下:过作于,交于,如图:,四边形是矩形,,,中,, ,中,, ,, ,, ,, 而,,G ∴AP H PF 12GH AF ∴=ABP ∆G AP 1302PBF PBA ∴∠=∠=︒Rt PBF ∆tan PF PBF BP ∠=tan303PF ∴︒=3PF 3AF ∴=32GH ∴=FBP ∠30FBP ∠=︒P MN AD ⊥M BC N MN AD ⊥ABCD MN BC ∴⊥3MN AB ==Rt ABC ∆3tan AB ACB BC ∠==30ACB ∴∠=︒Rt CPN ∆CP x =1sin302PN CP x ∴=⋅︒=3cos30CN CP x =⋅︒3332BN BC CN x ∴=-=-132PM MN PN x =-=-90BPF ∠=︒90FPM BPN PBN ∴∠=︒-∠=∠90PMF BNP ∠=∠=︒PMF BNP ∴∆∆∽, 在中,, , ;②当在右侧时,过作于,交于,如图:由①知:,,,,, , , , 中, 而,是等腰三角形,分三种情况:(一,则,解得(舍去), (二,则,解得(大于6,舍去)或(此时,舍去),(三,则,解得或与重合,舍去), 当在左侧时,如图: ∴13323332x PF PM BP BN x -===-Rt BPF ∆tan PF FBP BP∠=3tan 3FBP ∴∠=30FBP ∴∠=︒F A P MN AD ⊥M BC N PMF BNP ∆∆∽33PF BP =12PN x =333BN =132PM x =-∴3FM PN =36FM x ∴=23333AF AM FM BN FM x ∴=-=-=-Rt PFM ∆22222311()(3)39623PF FM PM x x x x =+=+-=-+6AP AC CP x =-=-AFP ∆)AP AF =263333x x -==33x =-)AP PF =216393x x x -=-+9x =92x =0AF =)AF PF =2213333933x x x -=-+3x =6(x P =A F A此时, 同理可得,综上所述,是等腰三角形,或.13.(2020•武汉模拟)在中,,线段绕点顺时针旋转得到线段,连接.(1)如图1,若,求证:平分;(2)如图2,若,①求的值; ②连接,当的面积为.【答案】(1)见解析;(2)①773,② 【详解】(1)证明:连接, 由题意知,,,是等边三角形,,又,,,,平分;(2)解:①连接,作等边三角形的外接圆,23333AF FM AM x =-=-33x =AFP ∆3x =33x =ABC ∆120ABC ∠=︒AC C 60︒CD BD AB BC =BD ABC ∠2AB BC =BD AC AD 3ABC S ∆=ABCD 93AD 60ACD ∠=︒CA CD =ACD ∴∆CD AD ∴=AB CB =BD BD =()ABD CBD SSS ∴∆≅∆CBD ABD ∴∠=∠BD ∴ABC ∠AD ACD O,,,点在上,,,,在上截取,使,则为等边三角形,,,又,,,,设,则,,过点作于,在中,,, , , 在中, , ,;②如图3,分别过点,作的垂线,垂足分别为,, 设,,,则由①知,,,在与中,,60ADC ∠=︒120ABC ∠=︒180ADC ABC ∴∠+∠=︒∴B O AD CD =∴AD CD =60CBD CAD ∴∠=∠=︒BD BM BM BC =BCM ∆60CMB ∴∠=︒120CMD CBA ∴∠=︒=∠CB CM =BAC BDC ∠=∠()CBA CMD AAS ∴∆≅∆MD AB ∴=1BC BM ==2AB MD ==3BD ∴=C CN BD ⊥N Rt BCN ∆60CBN ∠=︒30BCN ∴∠=︒1122BN BC ∴==33CN =52ND BD BN ∴=-=Rt CND ∆222235()()722CD CN DN =+=+=7AC ∴=∴377BD AC ==B D AC H Q 1CB =2AB =CH x =7AC =7AH x =-Rt BCH ∆Rt BAH ∆2222BC CH AB AH -=-即,解得,,,在中,,,为与的公共底,,,,,故答案为:.22212(7)x x-=--277x=2227211()77BH∴=-=Rt ADQ∆33217DQ AD==∴2127721BHDQ==AC ABC∆ACD∆∴27ABCACDS BHS DQ∆∆==32ABCS∆=734ACDS∆∴=37393244ABCDS∴=+=四边形93414.(2021•越秀区校级二模)如图1,已知正方形的边长为,点在边上,,连接,点、分别为、边上的点,且.(1)求点到的距离;(2)如图2,连接,当、、三点共线时,求的面积;(3)如图3,过点作于点,过点作于点,求的最小值.【答案】(1)1;(2)518;(3)见解析 【详解】(1)如图1中,过点作于.ABCD 42E BC 2BE =BD F G BD CD FG EF ⊥E BD AF A F G FDG ∆E EM BD ⊥M G GN BD ⊥N MN E EH BF ⊥H四边形是正方形,,,. 点到的距离为1.(2)如图2中,过点作的垂线分别交,于点,.,,共线,,,.设,且,,,, ,,即,ABCD 45DBC ∴∠=︒EH BD ⊥2sin 45212EHBE ∴=⋅︒=⨯=∴E BD F AD AD BC M N A F G 90EFG ∠=︒90AFE ∴∠=︒45ADF ∠=︒∴MF MD a ==AD MN =AM FN ∴=NFE AFM AFM MAF ∠+∠=∠+∠NFE MAF ∴∠=∠()AMF FNE AAS ∴∆≅∆MF EN ∴=32a a =-, ,, , .(3)如图3中,设,. 四边形是正方形,,,,,,,,, ,,,, ,,, 322a ∴=//FM DG ∴FM AM DG AD =∴32522242DG =1225DG ∴=112232182525DFG S ∆∴=⨯⨯=2CG y =MF x =ABCD 45CBD CDB ∴∠=∠=︒42CB CD ==28BD BC ∴==22DG y =EM BD ⊥GN BD ⊥90EMF EFG GNF ∴∠=∠=∠=︒4DN NG y ∴==-2BE =1BM EM ∴==7(4)3FN x y x y ∴=---=-+9090MFE GFN GFN FGN ∠+∠=︒∠+∠=︒MFE FGN ∴∠=∠EMF FNG ∴∆∆∽∴EM MF FN GN=, 整理得,△,,解得或,的最小值为,的最小值,观察图象可知,当的值最小时,的值最小,的最小值. 15.(2021•越秀区模拟)如图,四边形为矩形,,,点为边上一动点,过点作交直线于点,连接,.(1)若四边形为菱形,求的长;(2)若的面积为,求的面积; (3)当长为多少时,四边形周长有最小值?并求该最小值.【答案】(1)23;(2)42;(3)见解析 【详解】(1)四边形为菱形,,设, 四边形是矩形,, ,, , ; (2)四边形为矩形,∴134x x y y=-+-2(3)40x y x y -++-=02(3)4(4)0y y ∴+--425y -542y --y ∴25CG ∴852=-CG MN MN 81(942)422=---=ABCD 2AD =2CD =E AD E EF AC ⊥BC F CE AF AECF AE ABF ∆24CDE ∆AE AECF AECF AE EC ∴=AE EC x ==ABCD 90D ∴∠=︒222EC DE CD ∴=+222(2)(2)x x ∴=-+32x ∴=32AE ∴=ABCD,,, , ,即:, , , 在中,, ,, 是的垂直平分线,,由(1)可知:, , , ; (3)如图,过点作交的延长线于点,四边形为矩形,,,四边形是平行四边形,,,,,,在中,, , ,2AB CD ∴==2BC AD ==90B D ∠=∠=︒ABF ∆2∴122AB BF ⨯⨯1222BF =12BF ∴=13222CF BC BF ∴=-=-=Rt ABF ∆222213(2)()22AF AB BF =++AF CF ∴=EF AC ⊥EF ∴AC AE CE ∴=32AE CE ==AF CE ∴=Rt CDE Rt ABF(HL)∴∆≅∆24CDE ABF S S ∆∆∴==C //CM EF AD M ABCD //AD BC ∴90ADC ABC BAC ∠=∠=∠=︒∴CFEM EM CF ∴=CM EF =EF AC ⊥CM AC ∴⊥90ACM ∴∠=︒Rt ACD ∆22222(2)6AC AD CD ++tan CD CM CAD AD AC ∠==∴263CM ∴=, , ,即,,延长至,使,过点作于点,连接,过点作交于点, 在中,,四边形是矩形,,,,,四边形是平行四边形,,, 四边形周长,当、、三点共线时,最小,即四边形周长最小, 此时,,,△,, ,此时,,四边形周长最小值为,故当时,四边形周长最小值为6. 3EF CM ∴==cos ADACCAD AC AM ∠==22(6)32AC AM AD ∴===3AE EM +=3AE CF ∴+=CD C '2DC CD '==C E 'F FG AD ⊥G BG E //EH BG BC H Rt EFG ∆2222(3)(2)1EG EF FG =-=-=ABFG AF BG ∴=FBG FAG ∠=∠//BG EH //EG BH ∴BGEH EH BG AF ∴==CHE FBG ∠=∠AECF 3AE AF CF CE AE EM BG CE AM EH C E C E EH =+++=+++=++'=+'+∴C 'E H C E EH '+AECF C ED CHE FBG FAG ∠'=∠=∠=∠90C DE FGA ∠'=∠=︒C D FG '=∴()C DE FGA AAS '≅∆111()(21)222DE AG AD EG ∴==-=-=13222AE AD DE ∴=-=-=222213()(2)22CE DE CD =+=+=∴AECF 33262+⨯=32AE =AECF16.(2021•花都区三模)为等腰三角形,,点为所在平面内一点.(1)若,①如图1,当点在边上,,求证:; ②如图2,当点在外,,,,连接,求的长;(2)如图3,当点在外,且,以为腰作等腰三角形,,,直线交于点,求证:点是中点.【答案】(1)①见解析;②132;(2)见解析 【详解】证明:(1)①,, ,,, ,, ;②如图2,以,为边作等边,等边,以,为边作等边,等边,连接,过点作,交的延长线于, ABC ∆AB AC =D ABC ∆120BAC ∠=︒D BC BD AD =2DC BD =DABC ∆120ADB ∠=︒2AD =4BD =CD CD D ABC ∆90ADB ∠=︒AD ADE ∆DAE BAC ∠=∠AD AE =DE BC F F BC 120BAC ∠=︒AB AC =30ABC ACB ∴∠=∠=︒BD AD =30ABD BAD ∴∠=∠=︒90DAC ∴∠=︒2CD AD ∴=2CD BD ∴=AB AC ABH ∆ACH ∆AD BD ADE ∆BDG ∆GH E EN DG ⊥GD N和都是等边三角形,,,,,,,,,点,点,点三点共线,,和都是等边三角形,,,,,,,,,,,, , , .(2)连接,如图3所示:,,,, ,, 、、、四点共圆,,,BDG ∆ABH ∆4BD BG DG ∴===AB BH =60DBG ABH BGD ∠=∠=︒=∠ABD GBH ∴∠=∠()ADB HGB SAS ∴∆≅∆2AD GH ∴==120ADB BGH ∠=∠=︒180DGB BGH ∴∠+∠=︒∴G H D 426DH ∴=+=ADE ∆ACH ∆AC AH ∴=2AE AD DE ∠===60DAE CAH EDA ∠=∠=∠=︒DAC EAH ∴∠=∠()DAC EAH SAS ∴∆≅∆DC EH ∴=60BDG EDN ∠=∠=︒EN DG ⊥30DEN ∴∠=︒112ND DE ∴==33NE DN =7HN DH DN ∴=+=22349213EH EN NH ∴=+=+=213CD EH ∴==AF DAE BAC ∠=∠AD AE =AB AC =∴AD AE AB AC=ADE ABC ∴∆∆∽ADE ABC ∴∠=∠A ∴D B F 1801809090BFA ADB ∴∠=︒-∠=︒-︒=︒AF BC ∴⊥,,点是中点.17.(2021•越秀区校级四模)在一次数学探究活动中,李老师设计了一份活动单:已知线段,使用作图工具作,尝试操作后思考:(Ⅰ)这样的点唯一吗?(Ⅱ)点的位置有什么特征?你有什么感悟?“追梦”学习小组通过操作、观察、讨论后汇报:点的位置不唯一,它在以为弦的圆弧上(点、除外),,小华同学画出了符合要求的一条圆弧(如图.(1)小华同学提出了下列问题,请你帮助解决.①该弧所在圆的半径长为;②面积的最大值为;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为,请你利用图1证明.(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形的边长,,点在直线的左侧,且.①求线段长的最小值;②若,求线段的长.【答案】(1)①2,②;(2)见解析;(3;②【详解】(1)解:①设为圆心,连接,,,,又,是等边三角形,,即半径为2,故答案为:2;AB AC=BF CF∴=∴F BC2BC=30BAC∠=︒AAA BCB C⋯1)ABC∆A'30BAC∠'>︒ABCD 2AB=3BC=P CD4tan3DPC∠=PB23PCD PADS S∆∆=PD32+975-3272244PD DF PF∴=+=+=O BO CO30BCA∠=︒60BOC∴∠=︒OB OC=OBC∴∆2OB OC BC∴===②以为底边,,当点到的距离最大时,的面积最大,如图,过点作的垂线,垂足为,延长,交圆于,以为底,则当与重合时,的面积最大,,,,,的最大面积为, 故答案为:;(2)证明:如图,延长,交圆于点,连接,点在圆上,,,,,即;(3)解:①如图,当点在上,且时, ,,, ,为定值, 连接,设点为中点,以点为圆心,为半径画圆, ABC ∆BC 2BC =∴A BC ABC ∆O BC E EO D BC A D ABC ∆1BE CE ∴==2DO BO ==223OE BO BE ∴=-=32DE ∴=+ABC ∴∆12(32)322⨯⨯+32+BA 'D CD D BDC BAC ∴∠=∠BAC BDC ACD ∠'=∠+∠'BAC BDC ∴∠'>∠BAC BAC ∴∠'>∠30BAC ∠'>︒P BC 32PC =90PCD ∠=︒2AB CD ==3AD BC ==4tan 3CD DPC PC ∴∠==PD Q PD Q 12PD当点在优弧上时,,连接,与圆交于, 此时即为的最小值,过点作,垂足为,点是中点,点为中点,即,,, , , 圆的半径为, ,即;②,,, , 中边上的高中边上的高,即点到的距离和点到的距离相等,点在的平分线上, 如图,过点作,垂足为,平分,, 为等腰直角三角形,又,,∴P CPD 4tan 3DPC ∠=BQ Q P 'BP 'BP Q QE BE ⊥E Q PD ∴E PC 112QE CD ==1324PE CE PC ===39344BE BC CE ∴=-=-=22974BQ BE QE ∴=+=2252PD CD PC =+=∴Q 155224⨯=975975444BP BQ P Q -∴'=-'=-=BP 975-3AD =2CD =23PCD PAD S S ∆∆=∴23CD AD =PAD ∴∆AD PCD =∆CD P AD P CD ∴P ADC ∠C CF PD ⊥F PD ADC ∠45ADP CDP ∴∠=∠=︒CDF ∴∆2CD =2CF DF ∴==, , . 18.(2020•广州一模)如图①,在四边形中,于点,,点为中点,为线段上的点,且(1)求证:平分;(2)若,连接,当四边形为平行四边形时,求线段的长;(3)若点为的中点,连接、(如图②,求证:.【答案】(1)见解析;(2)510;(3)见解析 【详解】(1)证明:如图①,,, 是的中点,,在中,,在中,, ,,是等腰直角三角形,,,,即平分; (2)解:设, 四边形是平行四边形, ,4tan 3CF DPC PF ∠==324PF ∴=3272244PD DF PF ∴=+=+=ABCD AC BD ⊥E AB AC BD ==M BC N AM MB MN =BN ABE ∠1BD =DN DNBC BC F AB FN FM )MFN BDC ∠=∠AB AC =ABC ACB ∴∠=∠M BC AM BC ∴⊥Rt ABM ∆90MAB ABC ∠+∠=︒Rt CBE ∆90EBC ACB ∠+∠=︒MAB EBC ∴∠=∠MB MN =MBN ∴∆45MNB MBN ∴∠=∠=︒45EBC NBE MAB ABN MNB ∠+∠=∠+∠=∠=︒NBE ABN ∴∠=∠BN ABE ∠BM CM MN a ===DNBC 2DN BC a ∴==在和中,,,,在中,由,可得:,解得:(负值舍去), ; (3)解:是的中点,在中,,,,,,即, ,.19.(2020•荔湾区一模)如图,在矩形中,,,点是边上的一动点,连接. (1)若将沿折叠,点落在矩形的对角线上点处,试求的长;(2)点运动到某一时刻,过点作直线交于点,将与分别沿与折叠,点与点分别落在点,处,若,,三点恰好在同一直线上,且,试求此时的长;(3)当点运动到边的中点处时,过点作直线交于点,将与分别沿与折叠,点与点重合于点处,请直接写出到的距离.ABN ∆DBN ∆AB DB NBE ABN BN BN =⎧⎪∠=∠⎨⎪=⎩()ABN DBN SAS ∴∆≅∆2AN DN a ∴==Rt ABM ∆222AM MB AB +=22(2)1a a a ++=1010a =±1025BC a ∴==F AB ∴Rt MAB ∆MF AF BF ==MAB FMN ∴∠=∠MAB CBD ∠=∠FMN CBD ∴∠=∠12MF MN AB BC ==MF MN BD BC=MFN BDC ∴∆∆∽MFN BDC ∴∠=∠ABCD 4AB =3BC =P AB DP DAP ∆DP A A 'AP P P PE BC E DAP ∆PBE ∆DP PE A B A 'B 'P A 'B '2A B ''=AP P AB P PG BC G DAP ∆PBG ∆DP PG A B F F BC【答案】(1)或;;(2)1或3;;(3)【详解】(1)四边形是矩形,,,,分两种情况:①当点落在对角线上时,如图1所示:设,在中,,,由折叠的性质得:,,,,,,在中,,即:,解得:, ; ②当点落在对角线上时,如图2所示: 由翻折性质可知:,,,, ,,, , 综上所述:的长为或; (2)①如图3所示:设,则,由折叠的性质得:,,,,解得:,;32941613ABCD 4AB CD ∴==3AD BC ==90ABC BCD CDA BAD ∠=∠=∠=∠=︒A BD AP x =Rt ADB ∆90BAD ∠=︒2222435BD AB AD ∴=+=+=AP PA x ='=3AD DA ='=90DA P BAD ∠'=∠=︒532BA BD DA ∴'=-'=-=90BA P ∠'=︒4BP AB AP x =-=-Rt BPA ∆'222BP PA BA ='+'222(4)2x x -=+32x =32AP ∴=A AC PD AC ⊥90PAC APD ∴∠+∠=︒90BAC BCA ∠+∠=︒APD BCA ∴∠=∠90DAP ABC ∠=∠=︒DAP ABC ∴∆∆∽∴AD AB AP BC=33944AD BC AP AB ⋅⨯∴===AP 3294AP x =4PB x =-PA PA x ='=4PB PB x ='=-2A B ''=42x x ∴--=1x =1PA ∴=②如图4所示:设,则,由折叠的性质得:,,,,,;综上所述,的长为1或3;(3)作于,如图5所示:则的长就是到的距离,由翻折的性质得:,,、、共线,设,则,,在中,,即:,解得, , ,, , , , 到的距离为.APx=4PB x =-PA PA x ='=4PB PB x ='=-2A B ''=(4)2x x ∴--=3x ∴=3PA ∴=PA FH CD ⊥H CH F BC 3AD DF ==BG FG =G F D BG FG x ==3DG DF FG x =+=+3CG BC BG x =-=-Rt GCD ∆222DG CD CG =+222(3)4(3)x x +=+-43x =413333DG ∴=+=//FH CG ∴DH DF CD DG=∴31343DH =3613DH ∴=361641313CH ∴=-=F ∴BC 161320.(2020•越秀区一模)如图所示,四边形为平行四边形,,,,且,点为直线上一动点,将线段绕点逆时针旋转得到线段,连接.(1)求平行四边形的面积;(2)当点、、三点共线时,设与相交于点,求线段的长;(3)求线段的长度的最小值.ABCD 13AD =25AB =DAB α∠=5cos 13α=E CD EA E αEF CF ABCD C B F EF AB G BG CF【答案】(1)300;(2);(3 【详解】解(1)如图1,作于点,将线段绕点逆时针旋转得到线段, ,,在中, ,且, ,, ; (2)如图2,延长至,作,,,过点作于点,由(1)知,,, 11722BG ∴=6613DK AB ⊥K EA E αEF AEF α∴∠=AE EF =Rt DAK ∆5cos cos 13AK DAK AD α∠===13AD =5AK ∴=222213512DK AD AK ∴=-=-=2512300ABCD S AB DK ∴=⨯=⨯=平行四边形CD H AHD α∠=AHD ADH α∠=∠=13AH AD ∴==A AM DH ⊥M 12AM =225DM AD AM ∴=-=10DH ∴=。
2023年广州中考数学压轴题回忆版
2023年广州中考数学压轴题回忆版一、题目回忆1. 下列各组数据中,哪一组数据的方差最大?A. 1,2,3,4,5B. 6,7,9,10,11C. 21,23,25,27,29D. 33,35,37,39,412. 已知直角三角形ABC中,∠B=90°,AB=3,BC=4,则AC=?A. 5B. 6C. 7D. 83. 一张半径为5cm的圆被一块长为12cm、宽为16cm的矩形纸片的一个长边所切割,则切割后圆的面积为多少?A. 10πB. 12πC. 15πD. 16π4. 已知集合A={3,4,5,6},集合B={4,5,6,7},则A∩B=?A. {4,5,6}B. {4,5,6,7}C. {3,4,5,6,7}D. 空集5. 下列函数中,哪一个是奇函数?A. y=x^3+2x^2B. y=3x^2+4xC. y=x^4+x^2D. y=3x^3+5x二、解题思路1. 题目一是考察对方差计算的理解和运用。
方差是指一组数据与其平均数之差的平方和的平均数,用于衡量数据的分散程度。
在选择答案时,需要计算每组数据的方差并做对比,选择分散程度最大的一组。
2. 题目二是利用勾股定理求解直角三角形的边长。
根据勾股定理,直角三角形的两个直角边的平方和等于斜边的平方。
结合AB和BC的已知条件,可以求得AC的长度。
3. 题目三是利用几何图形的面积计算。
首先确定圆的面积,然后根据题目所给的矩形纸片的长度和宽度,计算出被矩形纸片遮盖的圆形面积,最后利用减法得出切割后的圆的面积。
4. 题目四是利用集合的交集概念进行计算。
需要将两个集合进行交集运算,得到同时属于A和B的元素的集合。
5. 题目五是判断函数的奇偶性。
奇函数是指当自变量x变为-x时,函数值与原来的函数值互为相反数的函数。
需要对每个函数进行奇函数的特性判断,得出最终答案。
三、解题方法1. 方差的计算方法是先求出一组数据的平均数,然后将每个数据与平均数的差的平方相加,再求平均数,即可得到方差。
2021年广东省中考数学解答题压轴题练习及答案 (99)
2021年广东省中考数学解答题压轴题练习1.对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点A,B,使得∠APB=60°,则称P为⊙C的好点.等边△DEF的三个顶点刚好在坐标轴上,其中D 点坐标为(0,4).(1)求等边△DEF内切圆C的半径;(2)当⊙O的半径为2时,若直线DE上的点P(m,n)是⊙O的好点,求m的取值范围;(3)若线段EF上的所有点都是某个圆的好点,求这个圆的半径r的取值范围.【分析】(1)设⊙C与DE相切于点Q,如图1,易得∠DEO=30°,从而可以证到CE=2OC,只需利用三角函数求出OE的长,就可求出等边△DEF内切圆C的半径.(2)设P A、PB与⊙C分别相切于点A、B,连接BC,如图2,设⊙C的半径为r,⊙C的好点P到圆心C的距离为d,由新定义可推出0≤d≤2r.当⊙O的半径为2时,只需考虑临界位置(OP=2r=4)所对应m的值,就可得出m的取值范围.(3)若线段EF上的所有点都是某个圆的好点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF的中点,如图4,只需考虑临界位置(KF=KE=2r)所对应的r的值,就可得到圆的半径r的取值范围.【解答】解:(1)设⊙C与DE相切于点Q,设⊙C的半径为r,如图1,则有CQ⊥DE,OC=CQ=r.∵⊙C是等边△DEF的内切圆,∴∠DEO=∠FEO=∠DEF=30°.∴CE=2CQ=2r.∵D点坐标为(0,4),∴OD=4.∵∠DOE=90°,∴tan∠DEO===.∴OE=4.∴OE=OC+CE=3r=4.∴r=.∴等边△DEF内切圆C的半径为.(2)设P A、PB与⊙C分别相切于点A、B,连接BC,如图2,则有P A=PB,∠APC=BPC=∠APB,∠PBC=90°.由题可知:若P刚好是⊙C的好点,则∠APB=60°,∴∠BPC=30°.∴PC=2BC.设⊙C的半径为r,⊙C的好点P到圆心C的距离为d,则有0≤d≤2r.由上述证明可知:若直线DE上的点P(m,n)是⊙O的好点,则0≤OP≤4.过点O作OH⊥DE于H,如图3所示,在Rt△DOE中,∵DO=4,∠DEO=30°,∴DE=8.∴OH===2.∴直线DE上必存在点P1、P2(P1在P2左边),使得OP1=OP2=4.∵OP1=OD=4,∴点D与点P1重合,此时m=0.过点P2作P2M⊥x轴于点M,∵OD=OP2,∠ODP2=60°,∴△DOP2是正三角形.∴∠DOP2=60°.∴∠P2OM=30°.∴OM=OP2•cos30°=4×=2.此时m=2.∵点P为⊙O的好点,∴P点必在线段P1P2上,∴0≤m≤2.(3)若线段EF上所有点都是某个圆的好点,则最小圆的圆心应在线段EF的中点,如图4.此时有KF=KE=EF=DE=4,KE=2r.则有r=2.所以若线段EF上的所有点都是某个圆的好点,则这个圆的半径r的取值范围是r≥2.。
2024届广东省广州荔湾区六校联考中考数学押题试卷含解析
2024届广东省广州荔湾区六校联考中考数学押题试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知a m=2,a n=3,则a3m+2n的值是()A.24 B.36 C.72 D.62.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是()A.B.C.D.3.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是()A.(﹣2,4),(1,3)B.(﹣2,4),(2,3)C.(﹣3,4),(1,4)D.(﹣3,4),(1,3)4.2017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学计数法表示正确的是()A.1.35×106B.1.35×105C.13.5×104D.135×1035.分式72x有意义,则x的取值范围是()A.x≠2B.x=0 C.x≠﹣2 D.x=﹣7 6.如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱7.下列各数中,最小的数是()A.﹣4 B.3 C.0 D.﹣28.下列实数0,23,3,π,其中,无理数共有()A.1个B.2个C.3个D.4个9.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD 交于点H,连接DH,下列结论正确的是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤线段DH的最小值是25﹣2A.①②⑤B.①③④⑤C.①②④⑤D.①②③④10.关于x的方程3x+2a=x﹣5的解是负数,则a的取值范围是()A.a<52B.a>52C.a<﹣52D.a>﹣5211.不等式3x<2(x+2)的解是()A.x>2 B.x<2 C.x>4 D.x<412.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么求x时所列方程正确的是()A.480480420x x-=-B.480480204x x-=+C.480480420x x-=+D.480480204x x-=-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知a<0,那么2a2a|可化简为_____.14.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab=_____.15.计算:2(2+12)=_____. 16.不等式组32132x x x ->⎧⎪⎨≤⎪⎩的解是____. 17.有一个正六面体,六个面上分别写有1~6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是____.18.写出一个一次函数,使它的图象经过第一、三、四象限:______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)用你发现的规律解答下列问题.111122=-⨯ 1112323=-⨯ 1113434=-⨯ ┅┅计算111111223344556++++=⨯⨯⨯⨯⨯ .探究1111......122334(1)n n ++++=⨯⨯⨯+ .(用含有n 的式子表示)若1111......133557(21)(21)n n ++++⨯⨯⨯-+的值为1735,求n 的值. 20.(6分)如图,在Rt △ABC 中,∠C=90°,BE 平分∠ABC 交AC 于点E ,作ED ⊥EB 交AB 于点D ,⊙O 是△BED的外接圆.求证:AC 是⊙O 的切线;已知⊙O 的半径为2.5,BE=4,求BC ,AD 的长.21.(6分)关于x 的一元二次方程x 2﹣(2m ﹣3)x+m 2+1=1.(1)若m 是方程的一个实数根,求m 的值;(2)若m 为负数,判断方程根的情况.22.(8分)(1)计算:|﹣2|﹣(π﹣2015)0+(12)﹣2﹣2sin60°12;(2)先化简,再求值:221a a a --÷(2+21a a+),其中a=2 . 23.(8分)计算:2tan45°-(-13)º-13?-() 24.(10分)在平面直角坐标系中,关于x 的一次函数的图象经过点(47)M ,,且平行于直线2y x =. (1)求该一次函数表达式;(2)若点Q (x ,y )是该一次函数图象上的点,且点Q 在直线32y x =+的下方,求x 的取值范围.25.(10分)已知关于x 的方程()22210x k x k --+=有两个实数根12,x x .求k 的取值范围;若12121x x x x +=-,求k 的值;26.(12分)如图,AD 、BC 相交于点O ,AD =BC ,∠C =∠D =90°.求证:△ACB ≌△BDA ;若∠ABC =36°,求∠CAO 度数.27.(12分)已知:如图1在Rt △ABC 中,∠C=90°,AC=8cm ,BC=6cm ,点P 由点B 出发沿BA 方向向点A 匀速运动,速度为2cm/s ;同时点Q 由点A 出发沿AC 方向点C 匀速运动,速度为lcm/s ;连接PQ ,设运动的时间为t 秒(0<t <5),解答下列问题:(1)当为t 何值时,PQ ∥BC ;(2)设△AQP 的面积为y (c m 2),求y 关于t 的函数关系式,并求出y 的最大值;(3)如图2,连接PC ,并把△PQC 沿QC 翻折,得到四边形PQPC ,是否存在某时刻t ,使四边形PQP'C 为菱形?若存在,求出此时t 的值;若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】试题解析:∵a m=2,a n=3,∴a3m+2n=a3m•a2n=(a m)3•(a n)2=23×32=8×9=1.故选C.2、C【解题分析】根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.【题目详解】解:由题意可得,y=308x=240x,当x=40时,y=6,故选C.【题目点拨】本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键.3、A【解题分析】作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,由AAS证明△AOE≌△OCD,得出AE=OD,OE=CD,由点A的坐标是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.【题目详解】解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,则∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.∵四边形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵AEO ODCOAE CODOA CO∠∠∠∠=⎧⎪=⎨⎪=⎩,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.∵点A的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).故选A.【题目点拨】本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.4、B【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】解:135000=1.35×105故选B.【题目点拨】此题考查科学记数法表示较大的数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、A【解题分析】直接利用分式有意义则分母不为零进而得出答案.【题目详解】解:分式72x有意义,则x﹣1≠0,解得:x≠1.故选:A.【题目点拨】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.6、A【解题分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【题目详解】解:观察图形可知,这个几何体是三棱柱.故选A.【题目点拨】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..7、A【解题分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可【题目详解】根据有理数比较大小的方法,可得﹣4<﹣2<0<3∴各数中,最小的数是﹣4故选:A【题目点拨】本题考查了有理数大小比较的方法,解题的关键要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小8、B【解题分析】根据无理数的概念可判断出无理数的个数.【题目详解】,π.故选B.【题目点拨】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.9、B【解题分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【题目详解】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF.∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCF,∴∠ABE=∠DAG.∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同理可证:△AGB≌△CGB.∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确.∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正确.取AB的中点O,连接OD、OH.∵正方形的边长为4,∴AO=OH=12×4=1,由勾股定理得,224225+=由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小5.无法证明DH平分∠EHG,故②错误,故①③④⑤正确.故选B.【题目点拨】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解直角三角形,解题的关键是掌握它们的性质进行解题.10、D【解题分析】先解方程求出x,再根据解是负数得到关于a的不等式,解不等式即可得.【题目详解】解方程3x+2a=x﹣5得x=522a --,因为方程的解为负数,所以522a--<0,解得:a>﹣5 2 .【题目点拨】本题考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式时,要注意的是:若在不等式左右两边同时乘以或除以同一个负数时,不等号方向要改变.11、D【解题分析】不等式先展开再移项即可解答.【题目详解】解:不等式3x<2(x+2),展开得:3x<2x+4,移项得:3x-2x<4,解之得:x<4.故答案选D.【题目点拨】本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤. 12、C【解题分析】本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.【题目详解】解:原计划用时为:480x,实际用时为:48020x+.所列方程为:480480420x x-=+,故选C.【题目点拨】本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、﹣3a【解题分析】根据二次根式的性质和绝对值的定义解答.【题目详解】∵a<0,∴2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.【题目点拨】本题主要考查了根据二次根式的意义化简.二次根式当a≥0a ;当a≤0a .解题关键是要判断绝对值符号和根号下代数式的正负再去掉符号.14、1【解题分析】【分析】直接利用关于原点对称点的性质得出a ,b 的值,进而得出答案.【题目详解】∵点A 的坐标为(a ,3),点B 的坐标是(4,b ),点A 与点B 关于原点O 对称,∴a=﹣4,b=﹣3,则ab=1,故答案为1.【题目点拨】本题考查了关于原点对称的点的坐标,熟知关于原点对称的两点的横、纵坐标互为相反数是解题的关键.15、1.【解题分析】去括号后得到答案.【题目详解】=2+1=1,故答案为1. 【题目点拨】本题主要考查了去括号的概念,解本题的要点在于二次根式的运算.16、16x <≤【解题分析】分别求出各不等式的解集,再求出其公共解集即可.【题目详解】32132x x x >①②-⎧⎪⎨≤⎪⎩ 解不等式①,得x >1,解不等式②,得x≤1,所以不等式组的解集是1<x≤1,故答案是:1<x≤1.【题目点拨】考查了一元一次不等式解集的求法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).17、【解题分析】∵投掷这个正六面体一次,向上的一面有6种情况,向上一面的数字是2的倍数或3的倍数的有2、3、4、6共4种情况,∴其概率是=.【题目点拨】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18、y=x﹣1(答案不唯一)【解题分析】一次函数图象经过第一、三、四象限,则可知y=kx+b中k>0,b<0,由此可得如:y=x﹣1(答案不唯一).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、解:(1)56;(2)nn1+;(3)n=17.【解题分析】(1)、根据给出的式子将各式进行拆开,然后得出答案;(2)、根据给出的式子得出规律,然后根据规律进行计算;(3)、根据题意将式子进行展开,然后列出关于n的一元一次方程,从而得出n的值.【题目详解】(1)原式=1−12+12−13+13−14+14−15+15−16=1−16=56.故答案为56;(2)原式=1−12+12−13+13−14+…+1n−1n1+=1−1n1+=nn1+故答案为nn1 +;(3)113⨯+135⨯+157⨯+…+1n n(2-1)(2+1)=12(1−13+13−15+15−17+…+12n1-−12n1+)=12(1−12n1+)=n 2n1+=17 35解得:n=17. 考点:规律题.20、(1)证明见解析;(2)BC=165,AD=457.【解题分析】分析:(1)连接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,据此得∠OEB=∠CBE,从而得出OE∥BC,进一步即可得证;(2)证△BDE∽△BEC得BD BEBE BC=,据此可求得BC的长度,再证△AOE∽△ABC得AO OEAB BC=,据此可得AD的长.详解:(1)如图,连接OE,∵OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠CBE,∴∠OEB=∠CBE,∴OE∥BC,又∵∠C=90°,∴∠AEO=90°,即OE⊥AC,∴AC为⊙O的切线;(2)∵ED⊥BE,∴∠BED=∠C=90°,又∵∠DBE=∠EBC,∴△BDE∽△BEC,∴BD BEBE BC=,即54=4BC,∴BC=165;∵∠AEO=∠C=90°,∠A=∠A,∴△AOE∽△ABC,∴AO OEAB BC=,即2.5 2.51655ADAD+=+,解得:AD=457.点睛:本题主要考查切线的判定与性质,解题的关键是掌握切线的判定与性质及相似三角形的判定与性质.21、(1)13m=-; (2)方程有两个不相等的实根.【解题分析】分析:(1)由方程根的定义,代入可得到关于m的方程,则可求得m的值;(2)计算方程根的判别式,判断判别式的符号即可.详解:(1)∵m是方程的一个实数根,∴m2-(2m-3)m+m2+1=1,∴m=−13;(2)△=b2-4ac=-12m+5,∵m<1,∴-12m>1.∴△=-12m+5>1.∴此方程有两个不相等的实数根.点睛:考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.22、(1)(2【解题分析】试题分析:(1)先分别进行绝对值化简,0指数幂、负指数幂的计算,特殊三角函数值、二次根式的化简,然后再按运算顺序进行计算即可;(2)括号内先通分进行加法运算,然后再进行分式除法运算,最后代入数值进行计算即可.试题解析:(1)原式=2﹣1+4﹣﹣1+4(2)原式=()()()()()()()22 111121·111a a a aa a aa a a a a a+-+-++÷=--+=11a+,当时,原式.23、【解题分析】先求三角函数,再根据实数混合运算法计算.【题目详解】解:原式=2×1-1-1【题目点拨】此题重点考察学生对三角函数值的应用,掌握特殊角的三角函数值是解题的关键.24、(1)2-1y x =;(2)3x >-.【解题分析】(1)由题意可设该一次函数的解析式为:2y x b =+,将点M (4,7)代入所设解析式求出b 的值即可得到一次函数的解析式;(2)根据直线上的点Q (x ,y )在直线32y x =+的下方可得2x -1<3x +2,解不等式即得结果.【题目详解】解:(1)∵一次函数平行于直线2y x =,∴可设该一次函数的解析式为:2y x b =+,∵直线2y x b =+过点M (4,7),∴8+b =7,解得b =-1,∴一次函数的解析式为:y =2x -1;(2)∵点Q (x ,y )是该一次函数图象上的点,∴y =2x -1,又∵点Q 在直线32y x =+的下方,如图,∴2x -1<3x +2,解得x >-3.【题目点拨】本题考查了待定系数法求一次函数的解析式以及一次函数与不等式的关系,属于常考题型,熟练掌握待定系数法与一次函数与不等式的关系是解题的关键.25、(1)12k≤;(2)k=-3【解题分析】(1)依题意得△≥0,即[-2(k-1)]2-4k2≥0;(2)依题意x1+x2=2(k-1),x1·x2=k2以下分两种情况讨论:①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1;②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1);【题目详解】解:(1)依题意得△≥0,即[-2(k-1)]2-4k2≥0解得12 k≤(2)依题意x1+x2=2(k-1),x1·x2=k2以下分两种情况讨论:①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1 解得k1=k2=1∵12 k≤∴k1=k2=1不合题意,舍去②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1) 解得k1=1,k2=-3∵12k ≤ ∴k =-3 综合①、②可知k =-3【题目点拨】一元二次方程根与系数关系,根判别式.26、(1)证明见解析(2)18°【解题分析】(1)根据HL 证明Rt △ABC ≌Rt △BAD 即可;(2)利用全等三角形的性质及直角三角形两锐角互余的性质求解即可. 【题目详解】(1)证明:∵∠D =∠C =90°,∴△ABC 和△BAD 都是Rt △,在Rt △ABC 和Rt △BAD 中,AD BC AB BA =⎧⎨=⎩, ∴Rt △ABC ≌Rt △BAD (HL );(2)∵Rt △ABC ≌Rt △BAD ,∴∠ABC =∠BAD =36°,∵∠C =90°,∴∠BAC =54°,∴∠CAO =∠CAB ﹣∠BAD =18°.【题目点拨】本题考查了全等三角形的判定与性质,判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”.27、(1)当t=4013时,PQ ∥BC ;(2)﹣35(t ﹣52)2+154,当t=52时,y 有最大值为154;(3)存在,当t=4021时,四边形PQP′C 为菱形【解题分析】(1)只要证明△APQ ∽△ABC ,可得=,构建方程即可解决问题;(2)过点P 作PD ⊥AC 于D ,则有△APD ∽△ABC ,理由相似三角形的性质构建二次函数即可解决问题; (3)存在.由△APO ∽△ABC ,可得=,即=,推出OA=(5﹣t ),根据OC=CQ ,构建方程即可解决问题;【题目详解】(1)在Rt△ABC中,AB===10,BP=2t,AQ=t,则AP=10﹣2t,∵PQ∥BC,∴△APQ∽△ABC,∴=,即=,解得t=,∴当t=4013时,PQ∥BC.(2)过点P作PD⊥AC于D,则有△APD∽△ABC,∴=,即=,∴PD=6﹣t,∴y=t(6﹣t)=﹣35(t﹣52)2+154,∴当t=52时,y有最大值为154.(3)存在.理由:连接PP′,交AC于点O.∵四边形PQP′C为菱形,∴OC=CQ,∵△APO∽△ABC,∴=,即=,∴OA=(5﹣t),∴8﹣(5﹣t)=(8﹣t),解得t=,∴当t=4021时,四边形PQP′C为菱形.【题目点拨】本题考查四边形综合题、相似三角形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题.。
最新广东省各市中考数学压轴题目及答案
(2)设0≤x≤4(即M从D到A运动的时间段)。试问x为何值时,△PQW为直角三角形?
当x在何范围时,△PQW不为直角三角形?
(3)问当x为何值时,线段MN最短?求此时MN的值。
4.(2010广东清远)如图9,直线y=x-3于x轴、y轴分别交于B、C;两点,抛物线y=x2+bx+c同时经过B、C两点,点A是抛物线与x轴的另一个交点。
15.(2010广东佛山)新知识一般有两类:第一类是不依赖于其他知识的新知识,如“数”、“字母表示数”这样的初始性的知识;第二类是在某些就只是的基础上进行联系、拓广等方式产生的知识,大多数知识是这样的知识。
(1)多项式乘以多项式的法则,是第几类知识?
(2)在多项式乘以多项式之前,你已拥有的有关知识是哪些?(写出三条即可)
从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),
当动点N运动到点A时,M、N两点同时停止运动。连接FM、FN,当F、N、M不在同一直线时,
可得△FMN,过△FMN三边的中点作△PQW。设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒。试解答下列问题:
(2)若纸片DEF不动,问△ABC绕点F逆时针旋转最小_____度时,四边形ACDE成为以ED为底的梯形(如图(2)),求此梯形的高。
2.(2010广东中山)阅读下列材料:
1×2 = ×(1×2×3-0×1×2),2×3 = ×(2×3×4-1×2×3),3×4 = ×(3×4×5-2×3×4),
由以上三个等式相加,可得1×2+2×3+3×4 = ×3×4×5 = 20。
9.(肇庆市2010)如图,AB是⊙O的直径,AC切⊙O于点A,且AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F,BP的延长线交A△FCA;(3)CP=AE.
2021年广州市中考数学压轴题总复习题及答案解析
2021年广东省广州市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。
从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。
预计2021年中考数学压轴题依然主要考查这些知识点。
1.等边三角形ABC内接于⊙O,点D在弧AC上,连接AD、CD、BD.(1)如图1,求证BD平分∠ADC;
(2)如图2,若∠DBC=15°,求证:AD:AC=√2:√3;
(3)如图3,若AC、BD交于点E,连接OE,且OE=2√7,若BD=3CD,求AD的长.
2.(1)初步思考:
如图1,在△PCB中,已知PB=2,BC=4,N为BC上一点且BN=1,试证明:PN=1
2PC
(2)问题提出:
如图2,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求
PD+1
2PC的最小值.
(3)推广运用:
如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一
个动点,求PD−1
2PC的最大值.
3.在平面直角坐标系xOy中,过点N(6,﹣1)的两条直线l1,l2,与x轴正半轴分别交于M、B两点,与y轴分别交于点D、A两点,已知D点坐标为(0,1),A在y轴负半轴,以AN为直径画⊙P,与y轴的另一个交点为F.
(1)求M点坐标;
(2)如图1,若⊙P经过点M.
①判断⊙P与x轴的位置关系,并说明理由;②求弦AF的长;
(3)如图2,若⊙P与直线l1的另一个交点E在线段DM上,求√10NE+AF的值.。
2021年广东省中考数学解答题压轴题练习及答案 (12)
2021年广东省中考数学解答题压轴题练习
1.如图,已知AB是⊙O的直径,弦CD⊥AB于点E.点P是劣弧上任一点(不与点A,D重合),CP交AB于点M,AP与CD的延长相交于点F.
(1)设∠CPF=α,∠BDC=β,求证:α=β+90°;
(2)若OE=BE,设tan∠AFC=x,.①求∠APC的度数;
②求y关于x的函数表达式及自变量x的取值范围.
【分析】(1)CD⊥AB,则∠APC+∠CDB=90°,即:180°﹣α+β=90°,即可求解;(2)①证明△BOD为等边三角形,则∠CDB=30°,即可求解;
②在△CBM中,CH+HB=BC得:,得:,即可求解.
【解答】解:(1)∵CD⊥AB,∠APC+∠CDB=90°,
即:180°﹣α+β=90°,
∴α=β+90°;
(2)如图1,连接OD,
①OE=BE,OB⊥CD,设圆的半径为r,
∴∠BOD=∠OBD=∠ODB=60°,
即:△BOD为等边三角形,
∴BC=r,
∴∠CDB=30°,
1/ 2
∴∠APC=90°﹣30°=60°;
②连接BC,过点M作MH⊥BC于点H,
则∠MCB=∠F AB,∴∠CMH=∠F,
在△CBM中,设BC=r,∠CBA=60°,
∴MH=BM sin∠CBA=MB,
BH=MB,CH=MH tan∠CMH=MH•x,
CH+HB=BC,即,
,而AM+BM=2r,即:,
∴1x=1+y,
即:y=x,(0<x).
2/ 2。
广州市中考数学压轴题练习及答案
广州市中考数学压轴题练习23.(本小题满分12分)如图,在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC交于点E,连接DE并延长,与BC的延长线交于点F,BD=BF.(1)求证:AC是⊙O的切线;(2)若BC=12,AD=8,求»DE的长.24.(本小题满分14分)已知四边形OABC的一边OA在x轴上,O为原点,B点坐标为(4,2).(1)如图①,若四边形OABC的顶点C(1,4),A(5,0),直线CD平分该四边形的面积且交x轴于点D,试求出△OAC的面积和D点坐标;(2)如图②,四边形OABC是平行四边形,顶点C在第一象限,直线平分该四边求m的值.25.(本小题满分14分)在平面直角坐标系中,A点坐标为(0,4),C点坐标为(10,0).1-=kxy第23题F(1)如图25-①,若直线AB ∥OC ,AB 上有一动点P ,当PO =PC 时,请直接写出P 点坐标; (2)如图25-②,若直线AB 与OC 不平行,在过点A 的直线4y x =-+上是否存在点P ,使∠OPC =90°,若有这样的点P ,求出它的坐标,若没有,请简要说明理由;(3)若点P 在直线4y kx =+上移动时,只存在一个点P 使∠OPC =90°,试求出此时4y kx =+中的k 值.23. (本小题满分12分)如图所示,直线与反比例函数交于点A 、B ,与轴交于点C 。
(1)若A (-3,)、B (1,)。
直接写出不等式的解。
(2)求sin ∠OCB 的值。
(3)若CB — CA =5,求直线AB 的解析式。
24.(本小题满分14分)已知抛物线C 1的顶点为P (1,0),且过点(0,).将抛物线C 1向下平移h 个单位(h >0)得到抛物线C 2.一条平行于x 轴的直线与两条抛物线交于A 、B 、C 、D 四点(如图),且点A 、C 关于y 轴对称,直线AB 与x 轴的距离是m 2(m >0). (1)求抛物线C 1的解析式的一般形式; (2)当m =2时,求h 的值;b x y +-=2xky =x m n xkb x >+-2(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF—tan∠ECP=.22.如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP﹣AP|最大.23.如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG 与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.23.(本题满分12分)(1)证法1:连接OE- ---------1分证法2:连接OE----------1分∵BD =BF ∵BD =BF∴∠BDF =∠F ∴∠BDF =∠F ∵OD =OE ∵OD =OE∴∠ODE =∠0ED ∴∠ODE =∠0ED∴∠OED =∠F ----------3分 ∴∠OED =∠F ----------3分∴OE ∥BF ∵∠BCA =90° ∴∠OEA =∠BCA =90° ∴∠F +∠FEC =90°∴AC 是⊙O 的切线 ----------5分 ∵∠FEC =∠AED , ∠OED =∠F ∴∠OED +∠AED =90°∴AC 是⊙O 的切线 --------5分此题证明思路很多,学生可能会绕弯,按照踩分点相应给分。
初中数学中考压轴题及答案详解(广东篇)
专题训练122. 如图,抛物线923212--=x x y 与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC 、AC 。
(1)求AB 和OC 的长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A 、B 不重合)。
过点E 作直线l 平行BC ,交AC 于点D 。
设AE 的长为m ,△ADE 的面积为s ,求s 关于m 的函数关系式,并写出自变量m 的取值范围; (3)在(2)的条件下,连接CE ,求△CDE 面积的最大值;此时,求出以点E 为圆心,与BC 相切的圆的面积(结果保留π)。
参考答案: 解:(1)令y=0,即0923212=--x x , 整理得 01832=--x x , 解得:31-=x ,62=x , ∴ A (—3,0),B (6,0) 令x = 0,得y = —9, ∴ 点C (0,—9)∴ 9)3(6=--=AB ,99=-=OC , (2)281992121=⨯⨯=⋅=∆OC AB S ABC, ∵ l ∥BC ,∴ △ADE ∽△ACB , ∴22ABAE S S ABC=∆,即229281m S = ∴ 221m S =,其中90<<m 。
(3)88129212192122+⎪⎭⎫ ⎝⎛--=-⨯⨯=-=∆∆∆m m m S S S ADEACE CDE , ∵ 021<-∴ 当29=m 时,S △CDE 取得最大值,且最大值是881。
这时点E (23,0),yA OB xElCD题22图∴29236=-=-=OE OB BE ,133962222=+=+=OC OB BC , 作EF ⊥BC ,垂足为F ,∵∠EBF=∠CBO ,∠EFB=∠COB , ∴△EFB ∽△COB ,∴CB BEOC EF =,即133299=EF ∴132627=EF , ∴ ⊙E 的面积为:πππ5272913262722=⎪⎭⎫⎝⎛⨯=⋅=EF S 。
2020年广东省中考数学压轴题专题训练(含解析)
2020年(广东)中考数学压轴题专题训练1.如图,AB为⊙O的直径,P为BA延长线上一点,点C在⊙O上,连接PC,D为半径OA上一点,PD=PC,连接CD并延长交⊙O于点E,且E是的中点.(1)求证:PC是⊙O的切线;(2)求证:CD•DE=2OD•PD;(3)若AB=8,CD•DE=15,求P A的长.2.已知:矩形ABCD内接于⊙O,连接BD,点E在⊙O上,连接BE交AD于点F,∠BDC+45°=∠BFD,连接ED.(1)如图1,求证:∠EBD=∠EDB;(2)如图2,点G是AB上一点,过点G作AB的垂线分别交BE和BD于点H和点K,若HK=BG+AF,求证:AB=KG;(3)如图3,在(2)的条件下,⊙O上有一点N,连接CN分别交BD和AD于点M和点P,连接OP,∠APO=∠CPO,若MD=8,MC=3,求线段GB的长.3.如图,AB是⊙O的直径,CD⊥AB,交⊙O于C、D两点,交AB点E、F是弧BD上一点,过点F作一条直线,交CD的延长线于点G,交AB的延长线于点M.连结AF,交CD于点H,GF=GH.(1)求证:MG是⊙O的切线;(2)若弧AF=弧CF,求证:HC=AC;(3)在(2)的条件下,若tan G=,AE=6,求GM的值.4.如图,已知AC是半径为2的⊙O的一条弦,且AC=2,点B是⊙O上不与A、C重合的一个动点,(1)请计算△ABC的面积的最大值;(2)当点B在优弧上,∠BAC>∠ACB时,∠ABC的平分线交AC于D,且OD⊥BD,请计算AD的长;(3)在(2)条件下,请探究线段AB、BC、BD之间的数量关系.5.如图,△ABC为⊙O的内接三角形,BC为⊙O的直径,在线段OC上取点D(不与端点重合),作DG⊥BC,分别交AC、圆周于E、F,连接AG,已知AG=EG.(1)求证:AG为⊙O的切线;(2)已知AG=2,填空:①当四边形ABOF是菱形时,∠AEG=°;②若OC=2DC,△AGE为等腰直角三角形,则AB=.6.如图,△ABC内接于⊙O,AB=AC,AD是⊙O的弦,AD=BC,AD与BC相交于点E.(1)求证:CB平分∠ACD;(2)过点B作BG⊥AC于G,交AD于点F.①猜想AC、AG、CD之间的数量关系,并且说明理由;②若S△ABG=S△ACD,⊙O的半径为15,求DF的长.7.如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,交y轴于点A,以AC为直角边作等腰Rt△ACD,连接BD分别交y轴和AC于E、F两点,连接AB.(1)求证:AB=AD;(2)若BF=4,DF=6,求线段CD的长;(3)当⊙P的大小发生变化而其他条件不变时,的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.8.如图,在△ABC中,∠ACB=90°,点D在BC边上(不包括端点B,C),过A,C,D 三点的⊙O交AB于另一点E,连结AD,DE,CE,且CE⊥AD于点G,过点C作CF∥DE交AD于点F,连结EF.(1)求证:四边形DCFE是菱形;(2)当tan∠AEF=,AC=4时,求⊙O的直径长.9.如图,抛物线y=x2+mx+n与x轴交于A,B两点,与y轴交于点C,若A(﹣1,0),且OC=3OA.(1)求抛物线的解析式;(2)若点M为抛物线上第四象限内一动点,顺次连接AC,CM,MB,是否存在点M,使四边形MBAC的面积为9,若存在,求出点M的坐标,若不存在,请说明理由.(3)将直线BC沿x轴翻折交y轴于N点,过B点的直线l交y轴、抛物线分别于D、E,且D在N的上方,将A点绕O顺时针旋转90°得M,若∠NBD=∠MBO,试求E的的坐标.10.已知:如图,直线y=﹣x﹣3交坐标轴于A、C两点,抛物线y=x2+bx+c过A、C两点,(1)求抛物线的解析式;(2)若点P为抛物线位于第三象限上一动点,连接P A,PC,试问△P AC的面积是否存在最大值,若存在,请求出△APC面积的最大值,以及此时点P的坐标;若不存在,请说明理由;(3)点M为抛物线上一点,点N为抛物线对称轴上一点,若△NMC是以∠NMC为直角的等腰直角三角形,请直接写出点M的坐标.11.如图,二次函数y=a(x2+2mx﹣3m2)(其中a,m是常数a<0,m>0)的图象与x轴分别交于A、B(点A位于点B的右侧),与y轴交于点C(0,3),点D在二次函数的图象上,CD∥AB,连结AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)求a与m的关系式;(2)求证:为定值;(3)设该二次函数的图象的顶点为F.探索:在x轴的正半轴上是否存在点G,连结GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.12.如图,抛物线y=ax2+4ax+与x轴交于点A、B(A在B的左侧),过点A的直线y=kx+3k交抛物线于另一点C.(1)求抛物线的解析式;(2)连接BC,过点B作BD⊥BC,交直线AC于点D,若BC=5BD,求k的值;(3)将直线y=kx+3k向上平移4个单位,平移后的直线交抛物线于E、F两点,求△AEF的面积的最小值.13.如图1,二次函数y=﹣x2+x+3的图象交x轴于A、B两点(点A在点B的左侧),交y轴于C点,连结AC,过点C作CD⊥AC交AB于点D.(1)求点D的坐标;(2)如图2,已知点E是该二次函数图象的顶点,在线段AO上取一点F,过点F作FH ⊥CD,交该二次函数的图象于点H(点H在点E的右侧),当五边形FCEHB的面积最大时,求点H的横坐标;(3)如图3,在直线BC上取一点M(不与点B重合),在直线CD的右上方是否存在这样的点N,使得以C、M、N为顶点的三角形与△BCD全等?若存在,请求出点N的坐标;若不存在,请说明理由.14.如图,已知二次函数y=ax2﹣8ax+6(a>0)的图象与x轴分别交于A、B两点,与y 轴交于点C,点D在抛物线的对称轴上,且四边形ABDC为平行四边形.(1)求此抛物线的对称轴,并确定此二次函数的表达式;(2)点E为x轴下方抛物线上一点,若△ODE的面积为12,求点E的坐标;(3)在(2)的条件下,设抛物线的顶点为M,点P是抛物线的对称轴上一动点,连接PE、EM,过点P作PE的垂线交抛物线于点Q,当∠PQE=∠EMP时,求点Q到抛物线的对称轴的距离.15.如图,已知抛物线y=a(x+2)(x﹣4)(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+与抛物线的另一交点为D,且点D的横坐标为﹣5.(1)求抛物线的函数表达式;(2)该二次函数图象上有一点P(x,y)使得S△BCD=S△ABP,求点P的坐标;(3)设F为线段BD上一点(不含端点),连接AF,求2AF+DF的最小值.16.二次函数y=x2﹣x﹣与x轴分别交于A、B两点,与y轴交于点C,点D 为抛物线的顶点,连接BD.(1)如图1,点P为抛物线上的一点,且在线段BD的下方(包括线段的端点),连接P A,PC,AC.求△P AC的最大面积;(2)如图2,直线l1过点B、D.过点A作直线l2∥l1交y轴于点E,连接点A、E,得到△OAE,将△OAE绕着原点O顺时针旋转α°(0<α<180)得到△OA1E1,旋转过程中直线OE1与直线l1交于点M,直线A1E1与直线l1交于点N.当△E1MN为等腰三角形时,直接写出点E1的坐标并写出相应的α值.17.如图,在平面直角坐标系中,四边形ABCD是平行四边形,点A、B在x轴上,点C、D在第二象限,点M是BC中点.已知AB=6,AD=8,∠DAB=60°,点B的坐标为(﹣6,0).(1)求点D和点M的坐标;(2)如图①,将▱ABCD沿着x轴向右平移a个单位长度,点D的对应点D′和点M的对应点M′恰好在反比例函数y=(x>0)的图象上,请求出a的值以及这个反比例函数的表达式;(3)如图②,在(2)的条件下,过点M,M′作直线l,点P是直线l上的动点,点Q 是平面内任意一点,若以B′,C′,P、Q为顶点的四边形是矩形,请直接写出所有满足条件的点Q的坐标.18.如图,过原点的直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B 两点,点A在第二象限,且点A的横坐标为﹣1,点D在x轴负半轴上,连接AD交反比例函数图象于另一点E,AC为∠BAD的平分线,过点B作AC的垂线,垂足为C,连接CE,若AD=2DE,△AEC的面积为.(1)根据图象回答:当x取何值时,y1<y2;(2)求△AOD的面积;(3)若点P的坐标为(m,k),在y轴的轴上是否存在一点M,使得△OMP是直角三角形,若存在,请直接写出点M的坐标;若不存在,请说明理由.19.阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①:在△ABC中,∠ACB=90°,AC=BC,分别过A、B向经过点C直线作垂线,垂足分别为D、E,我们很容易发现结论:△ADC≌△CEB.(1)探究问题:如果AC≠BC,其他条件不变,如图②,可得到结论;△ADC∽△CEB.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线y=x与直线CD交于点M(2,1),且两直线夹角为α,且tanα=,请你求出直线CD的解析式.(3)拓展应用:如图④,在矩形ABCD中,AB=3,BC=5,点E为BC边上一个动点,连接BE,将线段AE绕点E顺时针旋转90°,点A落在点P处,当点P在矩形ABCD 外部时,连接PC,PD.若△DPC为直角三角形时,请你探究并直接写出BE的长.20.笛卡尔是法国数学家、科学家和哲学家,他的哲学与数学思想对历史的影响是深远的.1637年,笛卡尔发表了《几何学》,创立了直角坐标系.其中笛卡尔的思想核心是:把几何学的问题归结成代数形式的问题,用代数的方法进行计算、证明,从而达到最终解决几何问题的目的.某学习小组利用平面直角坐标系在研究直线上点的坐标规律时,发现直线y=kx+b(k≠0)上的任意三点A(x1,y1),B(x2,y2),C(x3,y3)(x1≠x1≠x3),满足===k,经学习小组查阅资料得知,以上发现是成立的,即直线y=kx+b(k≠0)上任意两点的坐标M(x1,y1)N(x2,y2)(x1≠x2),都有的值为k,其中k叫直线y=kx+b的斜率.如,P(1,3),Q(2,4)为直线y=x+2上两点,则k PQ==1,即直线y=x+2的斜率为1.(1)请你直接写出过E(2,3)、F(4,﹣2)两点的直线的斜率k EF=.(2)学习小组继续深入研究直线的“斜率”问题,得到如下正确结论:不与坐标轴平行的任意两条直线互相垂直时,这两条直线的斜率之积是定值.如图1,直线GH⊥GI于点G,G(1,3),H(﹣2,1),I(﹣1,6).请求出直线GH 与直线GI的斜率之积.(3)如图2,已知正方形OKRS的顶点S的坐标为(6,8),点K,R在第二象限,OR 为正方形的对角线.过顶点R作RT⊥OR于点R.求直线RT的解析式.参考答案一.解答题(共20小题)1.(1)证明:连接OC,OE,∵OC=OE,∴∠E=∠OCE,∵E是的中点,∴=,∴∠AOE=∠BOE=90°,∴∠E+∠ODE=90°,∵PC=PD,∴∠PCD=∠PDC,∵∠PDC=∠ODE,∴∠PCD=∠ODE,∴∠PCD+∠OCD=∠ODE+∠E=90°,∴OC⊥PC,∴PC是⊙O的切线;(2)证明:连接AC,BE,BC,∵∠ACD=∠DBE,∠CAD=∠DEB,∴△ACD∽△EBD,∴=,∴CD•DE=AD•BD=(AO﹣OD)(AO+OD)=AO2﹣OD2;∵AB为⊙O的直径,∴∠ACB=90°,∵∠PCO=90°,∴∠ACP+∠ACO=∠ACO+∠BCO=90°,∴∠ACP=∠BCO,∵∠BCO=∠CBO,∴∠ACP=∠PBC,∵∠P=∠P,∴△ACP∽△CBP,∴,∴PC2=PB•P A=(PD+DB)(PD﹣AD)=(PD+OD+OA)(PD+OD﹣OA)=(PD+OD)2﹣OA2=PD2+2PD•OD+OD2﹣OA2,∵PC=PD,∴PD2=PD2+2PD•OD+OD2﹣OA2,∴OA2﹣OD2=2OD•PD,∴CD•DE=2OD•PD;(3)解:∵AB=8,∴OA=4,由(2)知,CD•DE=AO2﹣OD2;∵CD•DE=15,∴15=42﹣OD2,∴OD=1(负值舍去),∴AD=3,由(2)知,CD•DE=2OD•PD,∴PD==,∴P A=PD﹣AD=.2.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∠BAD=90°,∴∠BDC=∠DBA,BD是⊙O的直径,∴∠BED=90°,∵∠BFD=∠ABF+∠BAD,∠BFD=∠BDC+45°,∴∠ABF+90°=∠DBA+45°,∴∠DBA﹣∠ABF=45°,∴∠EBD=45°,∴△BED是等腰直角三角形,∴∠EBD=∠EDB;(2)证明:过点K作KS⊥BE,垂足为R,交AB于S,如图2所示:∵KG⊥AB,∴∠BGH=∠KRH=∠SRB=∠KGS=90°,∴∠SBR=∠HKR,∵∠BED=90°,∴∠RBK=∠RKB=45°,∴BR=KR,在△SRB和△HRK中,,∴△SRB≌△HRK(ASA),∴SB=HK,∵SB=BG+SG,HK=BG+AF,∴BG+SG=BG+AF,∴SG=AF,在△ABF和△GKS中,,∴△ABF≌△GKS(AAS),∴AB=KG;(3)解:过点O分别作AD与CN的垂线,垂足分别为Q和T,连接OC,如图3所示:∵∠APO=∠CPO,∴OQ=OT,在Rt△OQD和Rt△OTC中,,∴Rt△OQD≌Rt△OTC(HL),∴DQ=CT,∴AD=CN,∵四边形ABCD是矩形,∴AD=CN=BC,连接ON,在△NOC和△BOC中,,∴△NOC≌△BOC(SSS),∴∠BCO=∠NCO,设∠OBC=∠OCB=∠NCO=α,∴∠MOC=2α,过点M作MW⊥OC于W,在OC上取一点L,使WL=OW,连接ML,∴MO=ML,∴∠MOL=∠MLO=2α,∴∠LCM=∠LMC=α,∴ML=CL,设OM=ML=LC=a,则OD=a+8=OC,∴OL=8,OW=WL=4,∴CW=4+a,由勾股定理得:OM2﹣OW2=MW2=MC2﹣CW2,即a2﹣42=(3)2﹣(4+a)2,整理得:a2+4a﹣45=0,解得:a1=﹣9(不合题意舍去),a2=5,∴OM=5,∴MW=3,WC=9,∴OB=OC=OD=13,BD=26,∵∠GKB=∠CBD=∠ADB=∠BCO=∠MCW,tan∠MCW===,∴tan∠GKB=tan∠CBD=tan∠ADB=tan∠BCO=tan∠MCW=,设AB=b,则AD=3b,由勾股定理得:b2+(3b)2=262,解得b=,∴CD=GK=AB=,在Rt△GKB中,tan∠GKB==,∴GB=GK=×=.3.(1)证明:连接OF.∴AB⊥CD,∴∠AEH=90°,∴∠EAH+∠AHE=90°,∵GF=GH,∴∠GFH=∠GHF=∠AHE,∵OA=OF,∴∠OAF=∠OF A,∴∠OF A+∠GFH=90°,∴OF⊥GM,∴MG是⊙O的切线.(2)证明:∵=,∴OF垂直平分线段AC∵OF⊥MG,∴AC∥GM,∴∠CAH=∠GFH,∵∠CHA=∠GHF,∠HGF=∠GFH,∴∠CAH=∠CHA,∴CA=CH.(3)解:∵AC∥GM,∴∠G=∠ACH,∴tan∠CAH=tan∠G==,∵AE=6,∴EC=8,AC===10,设GF=GH=x,则CG=CH+GH=AC+GH=10+x,∵CD=2EC=16,∴GD=10+x﹣16=x﹣6,∵GF2=GD•GC,∴x2=(x﹣6)(x+10),解得x=15,∴EG=CG﹣CE=25﹣8=17,∵tan∠G==,∴EM=,∴GM===.4.解:(1)如图1中,当点B在优弧AC的中点时,△ABC的面积的最大,连接AB,BC,OB,延长BO交AC于H.∵=,∴BH⊥AC,∴AH=HC=,∴OH==1,∴BH=OB+OH=2+1=3,∴△ABC的最大面积=×AC×BH=×2×3=3.(2)如图2中,延长BD交⊙O于E,连结OE交AC于F,连结OC.由BD平分∠ABC可得,E为弧AC中点,∴OE⊥AC,∴AF=CF=∴OF===1=EF,∴DF垂直平分OE,又∵OD⊥BD,∴△ODE是等腰直角三角形,∴DF=OE=1,∴AD=.(3)如图3,连结AE、CE,由已知得AE=CE,∠AEC=120〫,将△EAB绕点E顺时针旋转120〫得△ECF,∵∠BAE=∠ECF,∠BAE+∠BCE=180〫,∴∠ECF+∠BCE=180〫,∴BF=BC+CF,∵AB=CF,∴BF=AB+BC,∵BE=FE,∠BEF=∠AEC=120〫,∴BF=BE,∵OD⊥BD,∴BE=2BD,∴BF=2BD,∴BA+BC=2BD.5.(1)证明:连接OA.∵OA=OC,∴∠OAC=∠OCA,∵GA=GE,∴∠GAE=∠GEA,∵DG⊥BC,∴∠EDC=90°,∴∠OCA+∠DEC=90°,∵∠CED=∠GEA=∠GAE,∴∠OAC+∠GAE=90°,∴∠OAG=90°,∴OA⊥AG,∴AG是⊙O的切线.(2)①如图2中,连接OA,AF,OF.∵四边形ABOF是菱形,∴AB=BO=OF=AF=OA,∴△ABO是等边三角形,∴∠B=60°,∵BC是直径,∴∠BAC=90°∴∠ACB=90°﹣60°=30°,∵ED⊥BC,∴∠DEC=90°﹣∠ACB=60°,∴∠AEG=∠DEC=60°.故答案为60.②如图3中,当AB=4时,△AGE是等腰直角三角形.理由:连接OA.∵△AGE是等腰直角三角形,∴∠AEG=∠DEC=∠DCE=45°,∴△EDC,△ABC都是等腰直角三角形,∵OB=OC,∴AO⊥OC,∴∠AOD=∠ODG=∠G=90°,∴四边形AODG是矩形,∴AG=OD=2,∴OC=2OD=4,∴BC=2OC=8,∴AB=AC=4,故答案为4.6.(1)证明:如图1中,∵AD=BC,∴=,∴=,∵AB=AC,∴=,∴=,∴∠ACB=∠BCD,∴CB平分∠ACD.(2)①结论:AC﹣2AG=CD.理由:如图2中,连接BD,在GC上取一点H,使得GH=GA.∵BG⊥AH,GA=GH,∴BA=BH,∴∠BAH=∠BHA,∵∠BAH+∠BDC=180°,∠BHG+∠BHC=180°,∴∠BDC=∠BHC,∵∠BCH=∠BCD,CB=CB,∴△BCH≌△BCD(AAS),∴CD=CH,∴AC﹣2AG=AC﹣AH=CH=CD.②如图3中,过点G作GN⊥AB于G,过点D作DM⊥AC交AC的延长线于M,连接AO,延长AO交BC于J,连接OC.∵=,∴∠BAD=∠ADC,∴AB∥CD,∴S△ACD=S△BCD,∵△BCH≌△BCD,∴S△BCH=S△BCD,∵AG=GH,∴S△ABG=S△BGH,∵S△ABG=S△ACD,∴S△ABG=S△BGH=S△BCH,∴AG=GH=CH,设AG=GH=HC=a,则AB=AC=3a,BG===2a,∵BG⊥AC,∴•BG•AG=•AB•GN,∴GN==a,在Rt△BGC中,BC===2a,∵AB=AC,∴=,∴AJ⊥BC,∴BJ=JC=a,∴AJ===a,在Rt△OJC中,∵OC2=OJ2+JC2,∴152=(a﹣15)2+(a)2,∴a=,∵S△ABG=S△ACD,AB=AC,GN⊥AB,DM∠AC,∴DM=GN=a=,∵BC=AD=2a=20,∴AM===,∵FG∥DM,∴=,∴=,∴AF=6,∴DF=AD=AF=20﹣6=14. 7.(1)证明:∵OA⊥BC,且OA过圆心点P,∴OB=OC,在△AOB和△AOC中,,∴△AOB≌△AOC(SAS),∴AB=AC,∵以AC为直角边作等腰Rt△ACD,∴AD=AC,∴AB=AD;(2)如图1,过点A作AM⊥BD于M,由(1)知,AB=AD,∴DM=BD,∵BF=4,DF=6,∴BD=10,∴DM=5,∵∠AMD=90°=∠DAF,∠ADM=∠FDA,∴△ADM∽△FDA,∴,∴,∴AD=,在等腰直角三角形ADC中,CD=AD=2;(3)的值是不发生变化,理由:如图2,过点D作DH⊥y轴于H,作DQ⊥x轴于Q,∴∠AHD=90°=∠COA,∴∠ADH+∠DAH=90°,∵∠CAD=90°,∴∠CAO+∠DAH=90°,∴∠ADH=∠CAO,∵AD=AC,∴△ADH≌△ACO(AAS),∴DH=AO,AH=OC,∵∠OHD=∠QOH=∠OQD=90°,∴四边形OQDH是矩形,DH=OQ,DQ=OH,又∵HO=AH+AO=OC+DH=OB+DH=OB+OQ=BQ,∴DQ=BQ,∴△DBQ为等腰直角三角形,∴∠DBQ=45°,∴∠DEH=∠BEO=45°,∴sin∠DEH=,∴=,∴,∴.8.解:(1)证明:∵CE⊥AD,∴EG=CG,∵CF∥DE,∴∠DEG=∠FCG,∵∠FGC=∠DGE,∴△DEG≌△FCG(ASA),∴ED=FC,∴四边形DCFE为平行四边形,又∵CE⊥DF,∴四边形DCFE是菱形;(2)∵AG⊥EC,EG=CG,∴AE=AC=4,∵四边形AEDC内接于⊙O,∴∠BED=∠BCA=90°,∵四边形DCFE是菱形,∴EF∥DC,DE=DC,∴∠AEF=∠ABC,∴tan∠ABC=tan∠AEF=,在Rt△BED中,设DE=3a,则BE=4a,∴DC=3a,BD==5a,∵BC2+AC2=AB2,∴(5a+3a)2+42=(4a+4)2,解得a=或a=0(舍去),∴DE=DC=2,∴AD===2.即⊙O的直径长为2.9.解:(1)∵A(﹣1,0),∴OA=1,OC=3OA=3,∴C(0,﹣3),将A(﹣1,0)、C(0,﹣3)代入y=x2+mx+n中,得,解得,∴y=x2﹣2x﹣3;(2)存在,理由:令y=0,则x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴B(3,0),∴直线BC的解析式为y=x﹣3,设M(m,m2﹣2m﹣3),过点M作MN∥y轴交BC于N,如图1,∴N(m,m﹣3),∴MN=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∴S四边形MBAC=S△ABC+S△BCM=AB×OC+MN×OB=×4×3×(﹣m2+3m)×3=9,解得:m=1或2,故点M的坐标为(1,﹣4)或(2,﹣3);(3)∵OB=OC=ON,∴△BON为等腰直角三角形,∵∠OBM+∠NBM=45°,∴∠NBD+∠NBM=∠DBM=45°,∴MB=MF,过点M作MF⊥BM交BE于F,过点F作FH⊥y轴于点H,如图2,∴∠HFM+∠BMO=90°,∵∠BMO+∠OMB=90°,∴∠OMB=∠HFM,∵∠BOM=∠MHF=90°,∴△BOM≌△MHF(AAS),∴FH=OM=1,MH=OB=3,故点F(1,4),由点B、F的坐标得,直线BF的解析式为y=﹣2x+6,联立,解得,∴E(﹣3,12).10.解:(1)y=﹣x﹣3交坐标轴于A、C两点,则点A、C的坐标分别为:(﹣3,0)、(0,﹣3);将点A、C的坐标代入抛物线表达式得:,解得,故抛物线的表达式为:y=x2+2x﹣3;(2)存在,理由:如图1,过点P作y轴的平行线交AC于点H,设点P(x,x2+2x﹣3),则点H(x,﹣x﹣3),△APC面积S=S△PHA+S△PHC=×PH×OA=(﹣x﹣3﹣x2﹣2x+3)×3=﹣x2﹣x,∵﹣<0,故S有最大值,当x=﹣时,S的最大值为,此时点P(﹣,﹣);(3)如图2,设点N(﹣1,s),点M(m,n),n=m2+2m﹣3,过点M作y轴的平行线交过点C与x轴的平行线于点H,交过点N与x轴的平行线于点G,∵∠GMN+∠GNM=90°,∠GMN+∠HMC=90°,∴∠HMC=∠GNM,∵∠MGN=∠CHM=90°,MN=MC,∴△MGN≌△CHM(AAS),∴GN=MH,即GN=|﹣1﹣m|=MH=|n+3|,①当﹣1﹣m=n+3时,即m+n+4=0,即m2+3m+1=0,解得:m=,故点P(,);②当﹣1﹣m=﹣(n+3)时,即m=n+2,同理可得:点P(,);故点P的坐标为:(,)或(,)或(,)或(,).11.解:(1)将点C的坐标代入抛物线表达式得:﹣3am2=3,解得:am2=﹣1;(2)对于二次函数y=a(x2+2mx﹣3m2),令y=0,则x=m或﹣3m,∴函数的对称轴为:x=﹣m,∵CD∥AB,∴点D、C的纵坐标相同,故点D(﹣2m,3),故点A、B的坐标分别为:(m,0)、(﹣3m,0),设点E(x,y),y=a(x2+2mx﹣3m2),分别过点D、E作x轴的垂线,垂足分别为M、N,∵AB平分∠DAE,∴∠DAM=∠EAN,∴RtADM△∽Rt△ANE,∴,即,解得:y=,故点E(x,),将点E的坐标代入抛物线表达式并解得:x==﹣4m,则y==﹣5,故点E(﹣4m,﹣5),故===为定值;(3)存在,理由:函数的对称轴为x=﹣m,当x=﹣m时,y=a(x2+2mx﹣3m2)=4,即点F(﹣m,4),由点F、C的坐标得,直线FC的表达式为:y=﹣x+3,令y=0,则x=3m,即点G(3m,0),GF2=(3m+m)2+42=16m2+16,同理AD2=9m2+9,AE2=25m2+25,故AE2=AD2+GF2,GF、AD、AE的长度为三边长的三角形是直角三角形,点G的横坐标为3m.12.解:(1)∵直线y=kx+3k过点A,∴y=0时,0=kx+3k,解得x=﹣3,∴A(﹣3,0),把点A的坐标代入y=ax2+4ax+,得9a﹣12a+=0,解得a=,∴抛物线解析式为y=x2+x+;(2)如图1,过点D作DF⊥x轴于F,过点C作CG⊥x轴于G,∴∠DFB=∠CGO=90°=∠DBC,∴∠DBF+∠BDF=90°,又∵∠DBF+∠CBG=90°,∴∠BDF=∠CBG,∴△BDF∽△CBG,∴,∵CB=5BD,∴CG=5BF,BG=5DF,联立方程组,解得:,(舍去),∴点C(4k﹣1,4k2+2k),∴CG=4k2+2k,OG=4k﹣1,设BF=m,则CG=5m,DF=2k﹣km,BG=5(2k﹣km),∴,解得k=﹣(舍去)或k=0(舍去)或k=1,∴k的值为1;(3)∵将直线y=kx+3k向上平移4个单位,∴平移后解析式为y=kx+3k+4,∴kx+3k+4=x2+x+,∴x E+x F=4k﹣4,x E•x F=﹣12k﹣13,∴|x F﹣x E|==,∵△AEF的面积=×4×,∴当k=﹣时,△AEF的面积的最小值为16.13.解:(1)令x=0,则y=3,∴C(0,3),∴OC=3.令y=0,则﹣x2+x+3=0,解得:x1=﹣4,x2=6,∴A(﹣4,0),B(6,0),∴OA=4,OB=6.∵CD⊥AC,∴∠ACD=90°,∵CO⊥AD,∴OC2=OA•OD,∴OD=,∴D(,0).∴E(1,).如图2,连接OE、BE,作HG⊥x轴于点G,交BE于点P.由B、E两点坐标可求得直线BE的解析式为:y=﹣x+.设H(m,﹣m2+m+3),则P(m,﹣m+).∴HG=﹣m2+m+3,HP=y H﹣y P=﹣m2+m﹣.∴S△BHE=(x B﹣x E)•HP=(﹣m2+m﹣)=﹣m2+m﹣.∵FH⊥CD,AC⊥CD,∴AC∥FH,∴∠HFG=∠CAO,∵∠AOC=∠FGH=90°,∴△ACO∼△FHG,∴==,∴FG=HG=﹣m2+m+4,∴AF=AG﹣FG=m+4+m2﹣m﹣4=m2+m,∴S△AFC=AF•OC=(m2+m)=m2+m,∵S四边形ACEB=S△ACO+S△OCE+S△OEB=×4×3+×3×1+6×=,∴S五边形FCEHB=S四边形ACEB+S△BHE﹣S△AFC=+(﹣m2+m﹣)﹣(m2+m)∴当m=时,S五边形FCEHB取得最大值.此时,H的横坐标为.(3)∵B(6,0),C(0,3),D(,0),∴CD=BD=,BC=3,∴∠DCB=∠DBC.①如图3﹣1,△CMN≌△DCB,MN交y轴于K,则CM=CN=DC=DB=,MN=BC=3,∠CMN=∠CNM=∠DBC=∠DCB,∴MN∥AB,∴MN⊥y轴,∴∠CKN=∠COB=90°,MK=NK=MN=,∴△CKN∼△COB,∴==,∴CK=,∴OK=OC+CK=,∴N(,).②如图3﹣2,△MCN≌△DBC,则CN=CB=3,∠MCN=∠DBC,∴CN∥AB,∴N(3,3).③如图3﹣3,△CMN≌△DBC,则∠CMN=∠DCB,CM=CN=DC=DB=,MN=BC=3,∴MN∥CD,作MR⊥y轴于R,则===,∴CR=,RM=,∴OR=3﹣,作MQ∥y轴,NQ⊥MQ于点Q,则∠NMQ=∠DCO,∠NQM=∠DOC=90°,∴△COD∼△MQN,∴==,∴MQ=MN=,NQ=MN=,∴NQ﹣RM=,OR+MQ=,∴N(﹣,).综上所述,满足要标的N点坐标有:(,)、(3,3)、(﹣,).14.解:(1)对称轴为直线x=﹣=4,则CD=4,∵四边形ABDC为平行四边形,∴DC∥AB,DC=AB,∴DC=AB=4,∴A(2,0),B(6,0),把点A(2,0)代入得y=ax2﹣8ax+12得4a﹣16a+6=0,解得a=,∴二次函数解析式为y=x2﹣4x+6;(2)如图1,设E(m,m2﹣4m+6),其中2<m<6,作EN⊥y轴于N,如图2,∵S梯形CDEN﹣S△OCD﹣S△OEN=S△ODE,∴(4+m)(6﹣m2+4m﹣6)﹣×4×6﹣m(﹣m2+4m﹣6)=12,化简得:m2﹣11m+24=0,解得m1=3,m2=8(舍),∴点E的坐标为(3,﹣);(3)Ⅰ、当点Q在对称轴右侧时,如图2,过点E作EF⊥PM于F,MQ交x轴于G,∵∠PQE=∠PME,∴点E,M,Q,P四点共圆,∵PE⊥PQ,∴∠EPQ=90°,∴∠EMQ=90°,∴∠EMF+∠HMG=90°,∵∠HMG+∠HGM=90°,∴∠EMF=∠HGM,在Rt△EFM中,EF=1,FM=,tan∠EMF==2,∴tan∠HGM=2,∴,∴HG=HM=1,∴点G(5,0),∵M(4,﹣2),∴直线MG的解析式为y=2x﹣10①,∵二次函数解析式为y=x2﹣4x+6②,联立①②解得,(舍)或,∴Q(8,6),∴点Q到对称轴的距离为8﹣4=4;Ⅱ、当点Q在对称轴左侧时,如图3,过点E作EF⊥PM于F,过点Q作QD⊥PM于D,∴∠DQP+∠QPD=90°,∵∠EPQ=90°,∴∠DPQ+∠FPE=90°,∴∠DQP=∠FPE,∵∠PDQ=∠EFP,∴△PDQ∽△EFP,∴,由Ⅰ知,tan∠PQE==2,∵EF=1,∴=,∴DP=,PF=2QD,设Q(n,n2﹣4n+6),∴DQ=4﹣n,DH=n2﹣4n+6,∴PF=DH+FH﹣DP=n2﹣4n+6+﹣=n2﹣4n+7,∴n2﹣4n+7=2(4﹣n),∴n=2+(舍)或n=2﹣,∴DQ=4﹣n=2+,即点Q到对称轴的距离为4或2+.15.解:(1)抛物线y=a(x+2)(x﹣4),令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B(4,0).∵直线y=﹣x+,当x=﹣5时,y=3,∴D(﹣5,3),∵点D(﹣5,3)在抛物线y=a(x+2)(x﹣4)上,∴a(﹣5+2)(﹣5﹣4)=3,∴a=.∴抛物线的函数表达式为:y=x2﹣x﹣.(2)如图1中,设直线BD交y轴于J,则J(0,).连接CD,BC.∵S△BDC=××9=10,∴S△P AB=10,∴×6×|y P|=10y P=±,当y=时,=x2﹣x﹣,解得x=1±,∴P(,)或(,),当﹣=x2﹣x﹣,方程无解,∴满足条件的点P的坐标为(,)或(,).(3)如图2中,过点D作DM平行于x轴,∵D(﹣5,3),B(4,0),∴tan∠DBA==,∴∠DBA=30°∴∠BDM=∠DBA=30°,过F作FJ⊥DM于J,则有sin30°=,∴HF=,∴2AF+DF=2(AF+)=2(AF+HF),当A、F、H三点共线时,即AH⊥DM时,2AF+DF=2(AF+HF)取最小值为=.16.解:(1)∵y=x2﹣x﹣=(x2﹣2x﹣3)=(x﹣1)2﹣2,∴顶点D的坐标为(1,﹣2),令y=0,则(x2﹣2x﹣3)=0,∴x=﹣1或x=3,∴A(﹣1,0),B(3,0),令x=0,则y=﹣,∴C(0,﹣),∴AC是定值,要△ACP的面积最大,则点P到AC的距离最大,即当点P在点B位置时,点P到AC的距离最大,∴S△ACP最大=S△ABC=AB•OC=(3+1)•=3;(2)由(1)知,B(3,0),D(1,﹣2),∴直线l1的解析式为y=x﹣3,∵l1∥l2,且l1过点A,∴直线l2的解析式为y=x+,∴E(0,),∴OE=,在Rt△AOE中,OA=1,∴tan∠AEO==,∴∠AEO=30°,∵l1∥l2,∴∠DBO=60°,由旋转知,OE1=OE=,∠A1E1O=∠AEO=30°,∴∠ME1N=30°如图,∵△E1MN为等腰三角形,∴①当E1N1=M1N1时,∴∠E1M1N1=∠A1E1O=30°,∴α=∠BOM=60°﹣30°=60°,过点E1作E1F⊥x轴于F,∴E1F=OE1=,∴OF=E1F=,∴E1(,),②当E2M2=E2N2时,∠E2N2M2=∠E2M2N2=(180°﹣30°)=75°,∴∠BOM2=75°﹣60°=15°,∴α=105°,过点E2作E2H⊥x轴,在OH上取一点Q,使OQ=E2Q,∴∠E2QH=30°,设E2H=a,则E2Q=2a,HQ=a,∴OQ=E2Q=2a,OH=(2+)a,在Rt△OHE2中,根据勾股定理得,[(2+)a]2+a2=3,∴a=(舍去负值),∴E2(,﹣).③当E3M3=M3N3时,∠E3N3M3=∠M3E3N3=30,∴∠E3M3N3=120°,∴∠BOM3=60°,∴α=150°,∵∠OBM3=60°,∠E3N3M3=30°,∴∠N3GB=90°,∴OG=,E3G=,∴E3(,﹣).17.解:(1)∵AB=6,点B的坐标为(﹣6,0),∴点A(﹣12,0),如图1,过点D作DE⊥x轴于点D,则ED=AD sin∠DAB=8×=4,同理AE=4,故点D(﹣8,4),则点C(﹣2,4),由中点公式得,点M(﹣4,2);(2)图象向右平移了a个单位,则点D′(a﹣8,4)、点M′(a﹣4,2),∵点D′M′都在函数上,∴(a﹣8)×4=(a﹣4)×2,解得:a=12,则k=(12﹣8)×4=16,故反比例函数的表达式为=;(3)由(2)知,点M′的坐标为(8,2),点B′、C′的坐标分别为(6,0)、(10,4),设点P(m,2),点Q(s,t);①当B′C′是矩形的边时,如图2,求解的矩形为矩形B′C′PQ和矩形B′C′Q′P′,过点C′作C′H⊥l交于点H,C′H=4﹣2=2,直线B′C′的倾斜角为60°,则∠M′PC′=30°,PH=C′H÷tan∠M′PC′=故点P的坐标为(16,2),由题意得:点P、Q′关于点C′对称,由中点公式得,点Q的坐标为(12,﹣4);同理点Q、Q′关于点M′对称,由中点公式得,点Q′(4,6);故点Q的坐标为:(12,﹣4)或(4,6);②当B′C′是矩形的对角线时,∵B′C′的中点即为PQ的中点,且PQ=B′C′,∴,解得:,,故点Q的坐标为(4,2)或(12,2);综上,点Q的坐标为:(12,﹣4)或(4,6)或(4,2)或(12,2).18.解:(1)∵直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B两点,且点A的横坐标为﹣1,∴点A,点B关于原点对称,∴点B的横坐标为1,∴当x取﹣1<x<0或x>1时,y1<y2;(2)连接OC,OE,由图象知,点A,点B关于原点对称,∴OA=OB,∵AC⊥CB,∴∠ACB=90°,∴OC=AB=AO,∴∠OAC=∠OCA,∵AC为∠BAD的平分线,∴∠OAC=∠DAC,∴∠OCA=∠DAC,∴AD∥OC,∴S△AEO=S△ACE=,∴AE=DE,∴S△AOD=2S△AOE=3;(3)作EF⊥x轴于F,作AH⊥x轴于H,则EF∥AH,∵AD=2DE,∴DE=EA,∵EF∥AH,∴==1,∴DF=FH,∴EF是△DHA的中位线,∴EF=AH,∵S△OEF=S△OAH=﹣,∴OF•EF=OH•HA,∴OH=OF,∴OH=HF,∴DF=FH=HO=DO,∴S△OAH=S△ADO=3=1,∴﹣=1,∴k=﹣2,∴y=﹣,∵点A在y=﹣的图象上,∴把x=﹣1代入得,y=2,∴A(﹣1,2),∵点A在直线y=mx上,∴m=﹣2,∴P(﹣2,﹣2),在y轴上找到一点M,使得△OMP是直角三角形,当∠OMP=90°时,PM⊥y轴,则OM=2,∴点M的坐标为(0.﹣2);当∠OPM=90°时,过P作PG⊥y轴于G,则△OPM是等腰直角三角形,∴OM=2PG=4,∴点M的坐标为(0.﹣4);综上所述,点M的坐标为(0.﹣2)或(0,﹣4).19.解:(1)理由:∵∠ACB=90°,∴∠ACD=∠BCE=90°,又∵∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠BCE=∠DAC,且∠ADC=∠BEC=90°,∴△ADC∽△CEB;(2)如图,过点O作ON⊥OM交直线CD于点N,分别过M、N作ME⊥x轴NF⊥x轴,由(1)可得:△NFO∽△OEM,∴,∵点M(2,1),∴OE=2,ME=1,∵tanα==,∴,∴NF=3,OF=,∴点N(﹣,3),∵设直线CD表达式:y=kx+b,∴∴∴直线CD的解析式为:y=﹣x+;(3)当∠CDP=90°时,如图,过点P作PH⊥BC,交BC延长线于点H,∵∠ADC+∠CDP=180°,∴点A,点D,点P三点共线,∵∠BAP=∠B=∠H=90°,∴四边形ABHP是矩形,∴AB=PH=3,∵将线段AE绕点E顺时针旋转90°,∴AE=EP,∠AEP=90°,∴∠AEB=∠PEH=90°,且∠BAE+∠AEB=90°,∴∠BAE=∠PEH,且∠B=∠H=90°,AE=EP,∴△ABE≌△EHP(AAS),∴BE=PH=3,当∠CPD=90°时,如图,过点P作PH⊥BC,交BC延长线于点H,延长HP交AD的延长线于N,则四边形CDNH是矩形,∴CD=NH=3,DN=CH,设BE=x,则EC=5﹣x,∵将线段AE绕点E顺时针旋转90°,∴AE=EP,∠AEP=90°,∴∠AEB=∠PEH=90°,且∠BAE+∠AEB=90°,∴∠BAE=∠PEH,且∠B=∠EHP=90°,AE=EP,∴△ABE≌△EHP(AAS),∴PH=BE=x,AB=EH=3,∴PN=3﹣x,CH=3﹣(5﹣x)=x﹣2=DN,∵∠DPC=90°,∴∠DPN+∠CPH=90°,且∠CPH+∠PCH=90°,∴∠PCH=∠DPN,且∠N=∠CHP=90°,∴△CPH∽△PDH,∴,∴∴x=∵点P在矩形ABCD外部,∴x=,∴BE=,综上所述:当BE的长为3或时,△DPC为直角三角形.20.解:(1)∵E(2,3)、F(4,﹣2),∴k EF==﹣,故答案为﹣.(2)∵G(1,3),H(﹣2,1),I(﹣1,6),∴k GH==,k GI==﹣,∴k GH•k GI=﹣1.(3)如图2中,过点K作KM⊥x轴于M,过点S作SN⊥x轴于N,连接KS交OR于J.∴S(6,8),∴ON=6,SN=8,∵四边形OKRS是正方形,∴OK=OS,∠KPS=∠KMO=∠SNO=90°,KJ=JS,JR=JO,∴∠KOM+∠SON=90°,∠SON+∠OSN=90°,∴∠KOM=∠OSN,∴△OMK≌△SNO(AAS),∴KM=ON=6,OM=SN=8,∴K(﹣8,6),∵KJ=JS,∴J(﹣1,7),∵JR=OJ,∴R(﹣2,14),∵k OR==﹣7,∵RT⊥OR,∴k RT=﹣=,设直线RT的解析式为y=x+b.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广州市中考数学压轴题练习23.(本小题满分12分)如图,在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC交于点E,连接DE并延长,与BC的延长线交于点F,BD=BF.(1)求证:AC是⊙O的切线;(2)若BC=12,AD=8,求»DE的长.24.(本小题满分14分)第23题F已知四边形OABC 的一边OA 在x 轴上,O 为原点,B 点坐标为(4,2).(1)如图①,若四边形OABC 的顶点C (1,4),A (5,0),直线CD 平分该四边形的面积且交x 轴于点D ,试求出△OAC 的面积和D 点坐标;(2)如图②,四边形OABC 是平行四边形,顶点C 在第一象限,直线平分该四边形的面积,若关于x 的函数25.(本小题满分14分)在平面直角坐标系中,A 点坐标为(0,4),C 点坐标为(10,0).1-=kx y k m x k m mx y +++-=2)3(2第24题图①(1)如图25-①,若直线AB ∥OC ,AB 上有一动点P ,当PO =PC 时,请直接写出P 点坐标; (2)如图25-②,若直线AB 与OC 不平行,在过点A 的直线4y x =-+上是否存在点P ,使 ∠OPC =90°,若有这样的点P ,求出它的坐标,若没有,请简要说明理由;(3)若点P 在直线4y kx =+上移动时,只存在一个点P 使∠OPC =90°,试求出此时4y kx =+中的k 值.23. (本小题满分12分)如图所示,直线与反比例函数交于点A 、B ,与轴交于点C 。
b x y +-=2xky =x(1)若A (-3,)、B (1,)。
直接写出不等式的解。
(2)求sin ∠OCB 的值。
(3)若CB — CA =5,求直线AB 的解析式。
m n xkb x >+-224.(本小题满分14分)已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位(h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C 关于y轴对称,直线AB与x轴的距离是m2(m>0).(1)求抛物线C1的解析式的一般形式;(2)当m=2时,求h的值;(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF—tan∠ECP=.22.如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP﹣AP|最大.23.如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.23.(本题满分12分)(1)证法1:连接OE - ---------1分 证法2:连接OE ----------1分 ∵BD =BF ∵BD =BF∴∠BDF =∠F ∴∠BDF =∠F ∵OD =OE ∵OD =OE∴∠ODE =∠0ED ∴∠ODE =∠0ED∴∠OED =∠F ----------3分 ∴∠OED =∠F ----------3分 ∴OE ∥BF ∵∠BCA =90° ∴∠OEA =∠BCA =90° ∴∠F +∠FEC =90°∴AC 是⊙O 的切线 ----------5分 ∵∠FEC =∠AED , ∠OED =∠F ∴∠OED +∠AED =90°∴AC 是⊙O 的切线 --------5分此题证明思路很多,学生可能会绕弯,按照踩分点相应给分。
(2)设⊙O 的半径为r ,∵OE ∥BF ∴△AOE ∽△ABC ----------6分 ∴BC OEAB AO =∵AB =12,AD =8 ∴12288rr r =++解得:r =8 r =-6(舍去) -------9分 ∴AD =OD =8 ∵△AOE 是Rt △ ∴DE =OD =8 ∴DE =OD =OE ∴∠DOE =60° ∴60881803l ππ⨯⨯== ---------12分24.解:(1)114541022OAC S OC =⨯⨯=⨯⨯=△--------------------2分解法1:如图1,分别过C 、B 作CE ⊥OA ,BF ⊥OA ,垂足分别为E ,F ,设点D (a ,0)则有---3分11422OCE S =⨯⨯=△1(54)212ABF S =⨯-⨯=△1(24)(41)92EFBC S =⨯+⨯-=四边形∴21912OABC S =++=四边形----------6分∵12OCD OABC S S =△四边形, ∴142a ⨯⨯11262=⨯= ∴a =3,即点D 坐标为(3,0)----------8分 解法2:延长CB 交x 轴于点E ,如图2, 先求出直线BC 的解析式为21433y x =-+, 令y =0,得7x =,得D (7,0)得OE =7,AE =2, 1174221222OCE BAE OABC S S S =-=⨯⨯-⨯⨯=△△四边形,----------6分 设E (a ,0),由1462OCD S a =⨯⨯=△,求得D (3,0). ----------8分 解法3:如图3,连接AC ,过B 作BE ∥AC 交x 轴于E ,则有OCE OABC S S =△四边形,直线AD 平分四边形面积,则D 为OE 中点.易求直线AC 解析式为y =-x +5, 则可设直线BD 解析式为y =-x +b ,把B (4,2)代入求得b =6,所以点E (6,0),求得D(3,0).(2)∵设P 为平行四边形OABC 的对称中心,则过P 点的直线平分四边形的面积. ∵P 为OB 的中点,而B (4,2)∴P 点坐标为(2,1) 把P (2,1)代入y =kx -1得∴2k -1=1, ∴k =1----------------9分又∵的图象与坐标轴只有两个交点,故k m x k m mx y +++-=2)3(2图1图3yxEOD CBAExyOBCD AF yxE ODCBA图2① 当m =0时,y =-x +1,其图象与坐标轴有两个交点(0,1),(1,0)------10分 ②当m ≠0时,函数的图象为抛物线,且与y 轴总有一个交点(0,2m +1)若抛物线过原点时,2m +1=0,即m =,此时△=(3m +1)2-4m (2m +1)=>0∴抛物线与x 轴有两个交点且过原点,符合题意.---------------------12分若抛物线不过原点,且与x 轴只有一个交点,也合题意, 此时△′=(3m +1)2-4m (2m +1)=0,解之得:m 1=m 2=-1综上所述,m 的值为m =0或或-1.-----------------14分25.解:(1)54(,)------------2分 (2) 设P (x ,-x +4),如图,连接OP ,PC ,过P 作PQ ⊥OC ,垂足为Q ,则 解法1:222(4)OP x x =+-+,222(4)(10)PC x x =-++-,222OP PC OC +=---------------4分∴22(4)x x +-++222(4)(10)=10x x -++-解得:12=1=8x x , ∴点P 的坐标为(1,3)或(8,-4)------------7分 解法2:在Rt △OPC 中,PQ ⊥OC , ∴ △OPQ ∽△PCQ ∴QCPQPQ OQ =---------------4分 ∴xx x x -+-=+-1044 ,解得:12=1=8x x , ∴点P 的坐标为(1,3)或(8,-4)------------7分 k m x k m mx y +++-=2)3(221-4121-y=kx-1yxCOBAQy xO CABP(3) 当直线AB 经过点O 时,∠OPC 不存在。
当直线AB 经过点C 时,过点O 作AB 的垂线有且只有一条,即满足∠OPC =90°成立的点P 是唯一的,将点C (10,0)代入4y kx =+中,解得2-5k = -----------------9分 当直线AB 不经过点C 时,由于点P 唯一,所以k >0. 如图,给出两种解法:解法1:设P (x ,kx +4),显然0<x <10,连接OP ,PC ,过P 作PQ ⊥OC ,垂足为Q ,若∠OPC =90°,由△OPQ ∽△PCQ ,则有2PQ OQ CQ =g, ∴2(4)(10)kx x x +=---------------11分整理得:22(1)(810)160k x k x ++-+=, ∵只存在一个点P ∴该方程有唯一解,即22=(810)-4(1)160k k -+⨯=△解得:940k =------------------------14分解法2:直线4y kx =+过定点(0,4),若∠OPC =90°,则点P 可以看作是以OC 为直径的圆与直线4y kx =+的交点(圆心为M ),如图,若只存在一个点P ,则直线与圆相切。
连接PM ,过P 作PQ ⊥OC ,垂足为Q 设P (x ,kx +4),Rt △PQM 中,222QM PQ PM +=即222)5()4(5x kx -++=整理得:016)108()1(22=+-++x k x k(以下同解法1)(2)∵tan ∠OCB =2 ∴sin ∠OCB =(3)过A 作AD ⊥x 轴,过B 作BE ⊥x 轴 则AC =AD =BC = ∴AC —BC =)= 又 所以 ∴ ∴ ∴ 24、(1)解:设抛物线C 1的顶点式形式y =a (x ﹣1)2,(a ≠0), ∵抛物线过点(0,),∴a (0﹣1)2=,解得a =,∴抛物线C 1的解析式为y =(x ﹣1)2,一般形式为y =x 2﹣x +; (2)解:当m =2时,m 2=4,∵BC ∥x 轴,∴点B 、C 的纵坐标为4,∴(x ﹣1)2=4, 解得x 1=5,x 2=﹣3,∴点B (﹣3,4),C (5,4), ∵点A 、C 关于y 轴对称,∴点A 的坐标为(﹣5,4), 设抛物线C 2的解析式为y =(x ﹣1)2﹣h , 则(﹣5﹣1)2﹣h =4,解得h =5;(3)证明:∵直线AB 与x 轴的距离是m 2, ∴点B 、C 的纵坐标为m 2,∴(x ﹣1)2=m 2,解得x 1=1+2m ,x 2=1﹣2m ,∴点C 的坐标为(1+2m ,m 2), 又∵抛物线C 1的对称轴为直线x =1,∴CE =1+2m ﹣1=2m , ∵点A 、C 关于y 轴对称,∴点A 的坐标为(﹣1﹣2m ,m 2), ∴AE =ED =1﹣(﹣1﹣2m )=2+2m ,设抛物线C 2的解析式为y =(x ﹣1)2﹣h ,则(﹣1﹣2m ﹣1)2﹣h =m 2, 解得h =2m +1,∴EF =h +m 2=m 2+2m +1,5225A y 25B y BE 2525-=B A y y +(2555)(5-=++-b x x B A xk b x =+-2022=-+-k bx x 2bx x B A =+52-=b 522--=x y∴tan∠EDF﹣tan∠ECP=﹣=﹣=﹣=,∴tan ∠EDF ﹣tan ∠ECP=.22.(2014年广东深圳)如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B (0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP﹣AP|最大.考点:圆的综合题.分析:(1)利用A,B点坐标得出AO,BO的长,进而得出AB的长,即可得出圆的半径;(2)根据A,B 两点求出直线AB表达式为:y=﹣x+3,根据B,D 两点求出BD 表达式为y=x+3,进而得出BD⊙AB,求出BD为⊙M的切线;(3)根据D,O两点求出直线DO表达式为y=x 又在直线DO 上的点P的横坐标为2,所以p(2,),此时|DP﹣AP|=DO=.解答:(1)解:⊙由题意可得出:OA2+OB2=AB2,AO=4,BO=3,⊙AB=5,⊙圆的半径为;(2)证明:由题意可得出:M(2,)2m又⊙C为劣弧AO的中点,由垂径定理且MC=,故C(2,﹣1)过D 作DH⊙x 轴于H,设MC 与x 轴交于K,则⊙ACK⊙⊙ADH,又⊙DC=4AC,故DH=5KC=5,HA=5KA=10,⊙D(﹣6,﹣5)设直线AB表达式为:y=ax+b,,解得:故直线AB表达式为:y=﹣x+3,同理可得:根据B,D两点求出BD的表达式为y=x+3,⊙K AB×K BD=﹣1,⊙BD⊙AB,BD为⊙M的切线;(3)解:取点A关于直线MC的对称点O,连接DO并延长交直线MC于P,此P点为所求,且线段DO的长为|DP﹣AP|的最大值;设直线DO表达式为y=kx,⊙﹣5=﹣6k,解得:k=,⊙直线DO表达式为y=x又⊙在直线DO上的点P的横坐标为2,y=,⊙P(2,),此时|DP﹣AP|=DO==.点评:此题主要考查了勾股定理以及待定系数法求一次函数解析式以及两直线垂直系数的关系等知识,得出直线DO,AB,BD的解析式是解题关键.23.(2014年广东深圳)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当⊙BEF与⊙BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S⊙EFG与S⊙ACD是否存在8倍的关系?若有请直接写出F点的坐标.考点:二次函数综合题.分析:(1)求出点A的坐标,利用顶点式求出抛物线的解析式;(2)①首先确定点E为Rt⊙BEF的直角顶点,相似关系为:⊙BAO⊙⊙BFE;如答图2﹣1,作辅助线,利用相似关系得到关系式:BH=4FH,利用此关系式求出点E的坐标;②首先求出⊙ACD的面积:S⊙ACD=8;若S⊙EFG与S⊙ACD存在8倍的关系,则S⊙EFG=64或S⊙EFG=1;如答图2﹣2所示,求出S⊙EFG的表达式,进而求出点F的坐标.解答:解:(1)直线AB的解析式为y=2x+4,令x=0,得y=4;令y=0,得x=﹣2.⊙A(﹣2,0)、B(0,4).⊙抛物线的顶点为点A(﹣2,0),⊙设抛物线的解析式为:y=a(x+2)2,点C(0,﹣4)在抛物线上,代入上式得:﹣4=4a,解得a=﹣1,⊙抛物线的解析式为y=﹣(x+2)2.(2)平移过程中,设点E的坐标为(m,2m+4),则平移后抛物线的解析式为:y=﹣(x﹣m)2+2m+4,⊙F(0,﹣m2+2m+4).①⊙点E为顶点,⊙⊙BEF≥90°,⊙若⊙BEF与⊙BAO相似,只能是点E作为直角顶点,⊙⊙BAO⊙⊙BFE,⊙,即,可得:BE=2EF.如答图2﹣1,过点E作EH⊙y轴于点H,则点H坐标为:H(0,2m+4).⊙B(0,4),H(0,2m+4),F(0,﹣m2+2m+4),⊙BH=|2m|,FH=|﹣m2|.在Rt⊙BEF中,由射影定理得:BE2=BH•BF,EF2=FH•BF,又⊙BE=2EF,⊙BH=4FH,即:4|﹣m2|=|2m|.若﹣4m2=2m,解得m=﹣或m=0(与点B重合,舍去);若﹣4m2=﹣2m,解得m=或m=0(与点B重合,舍去),此时点E位于第一象限,⊙BEF为钝角,故此情形不成立.⊙m=﹣,⊙E(﹣,3).②假设存在.联立抛物线:y=﹣(x+2)2与直线AB:y=2x+4,可求得:D(﹣4,﹣4),⊙S⊙ACD=×4×4=8.⊙S⊙EFG与S⊙ACD存在8倍的关系,⊙S⊙EFG=64或S⊙EFG=1.联立平移抛物线:y=﹣(x﹣m)2+2m+4与直线AB:y=2x+4,可求得:G(m﹣2,2m).⊙点E与点M横坐标相差2,即:|x G|﹣|x E|=2.如答图2﹣2,S⊙EFG=S⊙BFG﹣S⊙BEF=BF•|xG|﹣BF|xE|=BF•(|x G|﹣|x E|)=BF.⊙B(0,4),F(0,﹣m2+2m+4),⊙BF=|﹣m2+2m|.⊙|﹣m2+2m|=64或|﹣m2+2m|=1,⊙﹣m2+2m可取值为:64、﹣64、1、﹣1.当取值为64时,一元二次方程﹣m2+2m=64无解,故﹣m2+2m≠64.⊙﹣m2+2m可取值为:﹣64、1、﹣1.⊙F(0,﹣m2+2m+4),⊙F坐标为:(0,﹣60)、(0,3)、(0,5).综上所述,S⊙EFG与S⊙ACD存在8倍的关系,点F坐标为(0,﹣60)、(0,3)、(0,5).点评:本题是二次函数压轴题,涉及运动型与存在型问题,难度较大.第(2)①问中,解题关键是确定点E为直角顶点,且BE=2EF;第(2)②问中,注意将代数式表示图形面积的方法、注意求坐标过程中方程思想与整体思想的应用.。