交流伺服电机的工作原理.ppt
伺服电动机PPT课件
采用电枢控制时,其机械特性方程为:
n=
Uc Ce
Ra CeCt 2
T
励磁绕组接与恒压直流电 源Uf上,流过恒定励磁电 流If,产生恒定磁通Φ,将 控制电压Uc加在电枢绕组 上来控制电枢电流Ic,进 而控制电磁转矩T杯型转子
2.工作原理
工作时,在励磁绕组上加单相交流
电Uf,在控制绕组上加控制信号电压 Uc,二者同频率,由于电流If和Ic在相 位上相差90°,它们产生的磁通Φf和 Φc在相位上也相差90°,于是在空间 产生一个两相旋转磁场。此时交流伺
服电动机的转子向某一个方向旋转。
当控制信号电压为零时,如果转子是
“伺服”的含义 Servomechanism “伺服”—词源于希腊语“奴隶”的意思。
伺服电机(servo motor )又称执行电动机,在自动控 制系统中,它的转矩和转速受信号电压控制。当信号电压 的大小和相位发生变化时,电动机的转速和转动方向将非 常灵敏和准确地跟着变化。当信号消失时,转子能及时地 停转。
(2)转子的惯性小,即能实现迅速起动、停转。 (3)控制功率小,过载能力强,可靠性好。 (4)无“自转”现象,伺服电动机在控制电压消失后,应 立即停转;
伺服电动机典型生产厂家 德国西门子,产品外形有:
伺服电机
伺服电机驱动器
日本松下及安川,产品外形有:
松下交流伺服电机及驱动器
安川伺服电机驱动器
驱动器
复习
1.熟悉交流伺服电动机的结构、原理和特点。 2. 熟悉直流伺服电动机的结构、原理和特点。 3.掌握伺服电动机的维护方法。 4.了解伺服驱动器。
交流伺服电机的工作原理
交流伺服电机的工作原理
伺服电机是一种可以精确控制位置、速度和加速度的电动执行器。
它由电机本体、编码器、控制器和控制算法等组成。
伺服电机的工作原理是通过传感器(编码器)实时检测电机转轴的位置,并将该位置信息反馈给控制器。
控制器根据设定的目标位置、速度或加速度与反馈信号之间的差异,计算出控制信号来驱动电机。
这种闭环控制可以使得电机能够准确地按照指令运动,实现精确定位和控制。
具体来说,当控制器接收到位置指令时,它会将当前位置与目标位置之间的差异转化为速度指令,并将速度指令送至电机驱动器。
电机驱动器根据接收到的指令,通过控制电流的大小和方向来驱动电机旋转。
编码器会实时检测电机转轴的位置,并将位置信息反馈给控制器。
控制器根据编码器的反馈信息与设定的目标位置之间的差异,计算出控制信号,来调整驱动电机的输出电流,从而使得位置误差趋近于零。
这种闭环控制过程将持续进行,直到电机达到目标位置。
总结来说,伺服电机通过不断的位置反馈和控制信号调整,以实现精确的位置和运动控制。
它在很多应用中被广泛使用,如机器人、自动化生产线、航空航天等领域。
伺服电机内部结构及其工作原理
伺服电机内部结构及其工作原理伺服电机内部结构伺服电机工作原理1一、交流伺服电机交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似.如图1所示其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,连接控制信号电压Uc。
所以交流伺服电动机又称两个伺服电动机。
图1 交流伺服电机原理图交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。
目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,如图2所示为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。
图2 空心杯形转子交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。
当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。
交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点:1、起动转矩大由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。
它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。
因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。
图3伺服电动机的转矩特性2、运行范围较广如图3所示,较差率S在0到1的范围内伺服电动机都能稳定运转。
伺服电机及其控制原理-PPT
开环伺服控制回路
位置控制 控制器 (NC装置)
步进 驱动器
步进马达
指令脉冲
脉冲马达
1脉冲 = 1步进角
例 步进角 0.36°的情况 1脉冲 → 0.36°的动作
1000脉冲 → 360°(1圈)
开环伺服控制回路
位置控制 控制器 (NC装置)
步进 驱动器
步进马达
位置 = 脉冲数 速度 = 脉冲频率
42
问题8:伺服电机过热(电机烧毁)。
原因:1、负载惯性(负荷)太大,增大电机和控制器 的容量;2、设备(机械)松动、脱落,重新确认设备 (机械)各部件;3、与驱动器接线错误,确认电机和 控制器名牌,根据说明书检查是否接线错误。4、电机 轴承故障。5、电机故障(接地、缺相等)
43
3.1 伺服控制器概述
伺服驱动器(servo drives) 又称为“伺服控制器”、“伺服放大器”,是 用来控制伺服电机的一种控制器,其作用类似 于变频器作用于普通交流马达,属于伺服系统 的一部分,主要应用于高精度的定位系统。
44
伺服控制器的作用
1、按照定位指令装置输出的脉冲串,对工件进行定位控制。 2、伺服电机锁定功能:当偏差计数器的输出为零时,如果有外力
34
需要我们注意的是: 伺服电机实际使用当中,必须了解电
机的型号规格,确认好电机编码器的分 辨率,才能选择合适的伺服控制器。
35
松下伺服电机常见故障分析
问题1:对伺服电机进行机械安装时,应该 注意什么问题?
由于每台伺服电机都带有编码器,它是一个十分容易碎 的精密光学器件,过大的冲击力会使其破坏。因而在安 装的过程中要避免对编码器使用过大的冲击力。
开环伺服系统结构简图
数控装置发出脉冲指令,经过脉冲分配和功 率放大后,驱动步进电机和传动件的累积误 差。因此,开环伺服系统的精度低,一般可 达到0.01mm左右,且速度也有一定的限制。
03交流永磁同步伺服电动机(1).ppt
第三节 交流永磁同步伺服电动机
●基本要求: 1)认知永磁同步伺服电动机结构和工作原 理 2)了解永磁同步电动机的控制策略 3)认知永磁同步电动机的特点和主要参数
●重点和难点: 永磁同步伺服电动机结构和工作原理
交流伺服系统
反馈控制
-伺服控制的特征
➢ 实现误差的自动校正
➢ 实现高性能的重要手段
四、永磁同步电动机的特点
和直流电机相比,它没有直流电机的换向器和电刷 等缺点。 和异步电动机阻损耗减小,且转 子参数可测、控制性能好;成本高、起动困难等 缺点。 和普通同步电动机相比,它结构简单,体积小、重 量轻,效率高。
五、交流永磁同步伺服电动机的 主要参数
表 交流永磁同步伺服电动机的主要技术参数
永磁同步电动机由定子和转子两大部分组成
查看5611交流伺服电机图片库
永磁同步电动机的结构 1-旋转变压器;2-永磁体;3-电枢铁芯;4-电枢三相绕组;
5-电机转轴
二、永磁同步伺服电动机工作原理
插入5631无刷直流电机 的工作原理动画
永磁同步电动机的工作原理
三、永磁同步电动机的控制策略
1.恒压频比控制 2.矢量控制 3.直接转矩控制
速度反馈
减速器
运动
负载
工作台
直线光栅尺
速度环
电机电源
伺服 放大器
丝杠
0 to ±10VDC
位置环
控制器
对位置 速度 力矩进行精确的控制
伺服控制系统的优点(1)
❖ 提高机械的响应、速度和灵活性 ❖ 提高生产过程的柔性,减小系统建立时间 ❖ 提高设备的生产率 ❖ 提高加工制造精度,减少废品
伺服控制系统的优点(2)
❖ 零速时的满额扭矩输出 ❖ 超低速的平稳运行 ❖ 简化原有的机械系统,提高性能
交流伺服电机的机械特性及控制方式PPT
轴形成电磁转矩。根据左手定则,转矩方向与磁铁转动的 方向是一致的,也是顺时针方向。因此,鼠笼转子便在电 磁转矩作用下顺着磁铁旋转的方向转动起来。
励磁绕组 控制绕组
电气原理图
ic I m sin t
if I m sin t 90
if Ic
南京埃斯顿 太仓东元
国内重要伺服系统生产企业
5、卧龙电气集团股份有限公司 公司,前身是成立于1995年的浙江 卧龙集团电机工业有限公司。1998 年变更设立为浙江卧龙电机股份有 限公司。
6、北京和利时电机技术有限公 司,位于江苏省苏州市太仓市浏河 镇闸南工业区。
卧龙电气
北京和利时
国外重要伺服系统生产企业 产品进入我国市场的国外重要伺服系统生产企业有:
(1)调速范围宽广。伺服电动机的转速随着控制电 压改变,能在宽广的范围内连续调节。 (2)转子的惯性小,即能实现迅速启动、停转。 (3)控制功率小,过载能力强,可靠性好。
1.4 伺服电机在自控制系统中的典型应用
其它场合的应用
国内重要伺服系统生产企业
1、广州数控设备有限公司公司,创 建于1991年,位于广州市罗冲围螺涌北 路一街7号。
C B
A
伺服电动机的机械特性
设电机的负载阻转矩为TL,控制电压 0.25UC时,电机在特性点A运行,转速为na,这 时电机产生的转矩与负载阻转矩相平衡。当 控制电压升高到0.5UC时,电机产生的转矩就 随之增加C,由于电机的转子及其负载存在着 惯性,转速不能瞬时改变,因此电机就要瞬 时地在特性点C运行,这时电机产生的转矩大 于负载阻转矩,电机就加速,一直增加到nb, 电机就在B点运行。
德国西门子伺服电机 安川伺服电机驱动器
交流伺服电机的工作原理
交流伺服电机的工作原理
交流伺服电机是一种由定子和转子两部分组成的旋转变压器,其工作原理是:在工频或直流电压的作用下,转子绕组中产生一个旋转磁场,转子在这个磁场中旋转时就会受到电磁力,带动转子做切割磁力线运动。
从技术上来说,交流伺服电机可以看作是一个大型的感应电机,所以它同样可以产生一个与感应电机相同的磁场。
在控制系统中,交流伺服电机利用电脑对交流伺服电动机的控制指令来达到对交流伺服电动机的控制目的。
控制器接收到从直流电源(或交流电源)发出的脉冲信号,产生脉冲驱动电流,通过对电动机旋转方向、速度和力矩的检测控制伺服电动机旋转方向和力矩,使其达到预定的要求。
它是一种能将电信号转换成转矩和转速以实现机械运动的装置。
一般包括控制器、编码器(或称编码器)、控制电路三部分。
伺服电机通常由定子和转子两部分组成,其中转子部分主要包括旋转变压器、驱动电路和控制电路三大部分。
—— 1 —1 —。
《伺服电机教程》课件
数字信号控制方式是 通过脉冲来控制电机 的旋转角度和速度。
模拟信号控制方式是 通过电压或电流来控 制电机的旋转角度和 速度。
伺服电机的调速原理
伺服电机的调速原理是通过改变输入到电机的电 压或电流来改变电机的旋转速度。
当输入的电压或电流增加时,电机的旋转速度会 增加。
当输入的电压或电流减小时,电机的旋转速度会 减小。
伺服电机的响应特性
01
伺服电机的响应特性是指电机对控制信号的响应速 度和精度。
02
伺服电机的响应速度很快,可以在毫秒级别内完成 位置和速度的控制。
03
伺服电机的精度很高,可以精确地控制电机的旋转 角度和速度。
03 伺服电机的选型 与使用
伺服电机的选型原则
根据负载性质选择
根据负载的重量、摩擦系数、加速度等参数,选择合 适的伺服电机。
02 伺服电机的工作 原理
伺服电机的组成结构
伺服电机主要由定子、转 子、编码器等部分组成。
转子是伺服电机中旋转的 部分,它连接着负载。
定子是伺服电机的主要部 分,它产生磁场,使转子 能够旋转。
编码器是用来检测转子位 置的装置,它与电机轴同 轴安装。
伺服电机的控制方式
伺服电机可以通过模 拟信号或数字信号进 行控制。
《伺服电机教程》ppt课件
目录
• 伺服电机简介 • 伺服电机的工作原理 • 伺服电机的选型与使用 • 伺服电机的发展趋势与未来展望
01 伺服电机简介
伺服电机的定义与工作原理
总结词
理解伺服电机的基本定义和工作原理是掌握其应用的基础。
详细描述
伺服电机是一种能够实现精确控制的电机,它能够将输入的 电信号转换成机械旋转运动或线性位移。伺服电机由定子和 转子组成,通过控制输入电压或电流,可以精确地控制电机 的旋转角度或直线位移。
伺服电机工作原理图PPT
伺服电机工作原理图PPT
伺服电机是一种具有高精度、高速度和高扭矩的电机,常用于需要精确控制位置、速度和转矩的应用。
伺服电机通过内部的反馈系统不断检测输出轴位置,并根据这些信息调整控制信号,以使输出轴达到期望位置。
下面将介绍伺服电机的工作原理图PPT。
1. 电机结构
伺服电机的主要结构包括电机本体、编码器、控制器和电源部分。
电机本体通过电源输入产生转矩输出,编码器用于检测电机输出轴位置,控制器根据编码器反馈信号和控制输入信号生成驱动电流,从而控制电机旋转。
2. 工作原理
伺服电机的工作原理是通过控制器不断调整电机驱动电流,使得电机输出轴位置和速度与期望值保持一致。
控制器根据编码器反馈信息与设定值的误差,采用比例-积分-微分(PID)控制算法计算控制信号,调整电机输出。
这种反馈控制方式能够实现高精度的位置控制。
3. 工作原理图PPT
伺服电机工作原理图PPT通常包括电机结构示意图、PID控制原理图、控制信号流程图等内容。
通过PPT展示,可以清楚地展示伺服电机的工作原理和控制过程,便于理解和学习。
4. 应用领域
伺服电机广泛应用于数控机床、机器人、飞行器、医疗设备等领域,以满足对位置精度和速度控制精度要求较高的应用。
通过PPT展示伺服电机工作原理,可以帮助工程师和学生更好地理解伺服电机的工作原理和应用。
结语
伺服电机是一种高性能的电机,其工作原理基于精确的位置控制和反馈调节。
通过PPT展示伺服电机的工作原理图,可以帮助人们更好地理解伺服电机的工作原理和应用。
希望本文对您有所帮助。
以上是关于伺服电机工作原理图PPT的介绨,谢谢阅读!。
伺服电机教学PPT教学PPT学习教案
2)传感器:为了对转子磁极定向,首先必须有转子位置检测器,以此为依据实现矢量控制;为了检测电机的实际运行速度,通常需加装速度传感器,它和位置传感器一起安装在电机的非负载端。实际上,检测电机的转子旋转速度、磁极位置和系统的闭环的位置这三种信号可由一个编码器或一个旋转变压器来完成。
第8页/共42页
伺服电动机—3.交流异步伺服电动机
◇特点:异步伺服电动机与普通异步电动机的重要区别之一是——转子电阻大。其目的是:1)为了增大异步伺服电动机的调速范围并满足机械特性更接近于线性的要求。2)防止出现“自转”现象。
第9页/共42页
伺服电动机—3.交流异步伺服电动机
防止出现“自转”现象0 00
第13页/共42页
伺服电动机—3.交流异步伺服电动机
4)双相控制:励磁绕组与控制绕组间的相位差固定为90度电角度,而励磁绕组电压的幅值随控制电压的改变而同样改变。也就是说,不论控制电压的大小如何,伺服电机始终在圆形旋转磁场下工作,获得的输出功率和效率最大。
第14页/共42页
伺服电动机—3.交流异步伺服电动机
第11页/共42页
伺服电动机—3.交流异步伺服电动机
2)相位控制:保持控制电压的幅值不变,通过调节控制电压的相位,即改变控制电压相对励磁电压的相位角,实现对电机的控制。
第12页/共42页
伺服电动机—3.交流异步伺服电动机
3)幅值-相位控制(或称电容控制):将励磁绕组串联电容C后,接到励磁电源上,调节控制电压的幅值来改变电动机的转速时,由于转子绕组的耦合作用,励磁回路中的电流If也发生变化,使Uf及Uca也随之改变。也就是说,控制电压Uc和Uf的大小及它们之间的相位角也都跟着改变。是一种较常用的控制方式。
交流伺服电机工作原理
交流伺服电机工作原理
伺服电机是一种控制电机旋转的装置,通过反馈信号和控制系统实现准确的位置和速度控制。
它的工作原理如下:
1. 控制信号输入:控制信号通常由外部控制器或电路产生,并由控制系统发送给伺服电机。
2. 反馈信号传感器:伺服电机通常配备有反馈传感器,用于测量电机的实际位置、速度和加速度。
常见的反馈传感器包括编码器和霍尔传感器。
3. 控制器:控制器分析外部控制信号和反馈传感器的数据,并产生相应的控制信号,以驱动电机实现所需的运动。
4. 电机驱动:控制信号由控制器发送给电机驱动器,电机驱动器负责将控制信号转换为电压和电流,并向电机提供适当的电力。
5. 电机转动:电机驱动器通过提供适当的电力,驱动电机旋转。
电机的转动通过控制信号和反馈信号的循环来实现,以实现所需的位置和速度控制。
6. 反馈信号比较:反馈传感器持续地测量电机的实际位置和速度,并将这些数据与控制器产生的控制信号进行比较。
7. 控制信号调整:根据反馈传感器的数据,控制器可以对控制信号进行调整,以使电机的实际运动接近期望的运动状态。
8. 循环控制:以上步骤循环进行,直到电机实现所需的位置和速度控制。
通过以上工作原理,伺服电机可以实现高精度和可靠的位置和速度控制,广泛应用于自动化和精密控制领域。
伺服系统总结(电机和驱动)ppt课件
;...
8
(1) 液压伺服控制系统 液压伺服控制系统是以电机提供动力基础,使用液压泵将机械能转化为压力,推 动液压油。通过控制各种阀门改变液压油的流向,从而推动液压缸做出不同行程、 不同方向的动作,完成各种设备不同的动作需要。液压伺服控制系统按照偏差信 号获得和传递方式的不同分为机-液、电-液、气-液等,其中应用较多的是机-液和 电-液控制系统。按照被控物理量的不同,液压伺服控制系统可以分为位置控制、 速度控制、力控制、加速度控制、压力控制和其他物理量控制等。液压控制系统 还可以分为节流控制(阀控)式和容积控制(泵控)式。在机械设备中,主要有机-液伺 服系统和电-液伺服系统。
伺服系统介绍
;...
1
目录
伺服系统概述
系统结构原理以及分类
伺服电机
伺服驱动
编码器以及制动方式介绍
伺服与步进区别
伺服选型
;...
2
一、 伺服系统概述
伺服系统(servomechanism)又称随动系统, 是用来精确地跟随或复现某个过程的反馈控制 系统。伺服系统使物体的位置、方位、状态等 输出被控量能够跟随输入目标(或给定值)的任 意变化的自动控制系统。它的主要任务是按控 制命令的要求、对功率进行放大、变换与调控 等处理,使驱动装置输出的力矩、速度和位置 控制非常灵活方便。
;...
10
(4) 电液伺服控制系统 它是一种由电信号处理装置和液压动力机构组成的反馈控制系统。最常见的 有电液位置伺服系统、电液速度控制系统和电液力(或力矩)控制系统。 以上是我们常用到的四种伺服系统,他们的工作原理和性能以及可以应用的 范围都有所区别,各有自己的特点和优缺点。因此在选择或者购买的时候, 就需要根据系统的需要以及需要控制的参数和实现的性能,通过计算后在选 择合适的产品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.1 伺服电动机
伺服电动机又称执行电动机。其功能是将输 入的电压控制信号转换为轴上输出的角位移和角 速度,驱动控制对象。 伺服电动机可控性好,反应迅速。是自动控 制系统和计算机外围设备中常用的执行元件。 伺服电动机可分为两类: 交流伺服电动机 直流伺服电动机
ቤተ መጻሕፍቲ ባይዱ 9.1.1 交流伺服电动机
交流伺服电动机就是一台两相交流异步电机。 它的定子上装有空间互差90的两个绕组:励磁绕组 和控制绕组,其结构如图所示。
No Image
控制绕组
交流伺服电动机的工作原理与单相异步电动机 有相似之处。 励磁绕组固定接在电源上,当控制电压为零时, 电机无起动转矩,转子不转。 若有控制电压加在控制绕组上,且励磁电流 360 和控制绕组电流 Z m 不同相时,因此便产生两相旋转 磁场。在旋转磁场的作用下,转子便转动起来。
应用: 直流伺服电机的特性较交流伺服电机硬。通常 应用于功率稍大的系统中,如随动系统中的位置控 制等。 直流伺服电机输出功率一般为1-600W。
9.2 测速发电机
测速发电机是一种转速测量传感器。在许 多自动控制系统中,它被用来测量旋转装置的 转速,向控制电路提供与转速大小成正比的信 号电压。
测速发电机分为交流和直流两种类型。
励磁 绕组
No Image
•
•
– 输出 绕组
•
转子 +
励磁绕组
–
工作时,测速发电机的励磁绕组接交流电 源U1,由 U1 4.44 f1N11 可知:
9.2.1 交流测速发电机
交流测速发电机又分为同步式和异步式两 种,这里只分析异步式交流测速发电机的工作 原理。
9.2.1 交流测速发电机
异步式交流测速发电机的结构与杯形转子 交流伺服电机相似,它的定子上有两个绕组, 一个是励磁绕组,一个是输出绕组。
No Image
输出绕组
定子
+
1 •
No Image
加在控制绕组上的控制电压大小变化时,其 产生的旋转磁场的椭圆度不同,从而产生的电磁 转矩也不同,从而改变电动机的转速。 交流伺服电动机的机械特性如图所示。 n
不同控制电压下的机械特性曲线 T n=f(T), U1=常数
o
在励磁电压不变的情况下,随着控制电压的 下降,特性曲线下移。在同一负载转矩作用时, 电动机转速随控制电压的下降而均匀减小。 应用: 交流伺服电机的输出功率一般为0.1-100 W, 电源频率分50Hz、400Hz等多种。它的应用很广 泛,如用在各种自动控制、自动记录等系统中。
No Image
r
交流伺服电动机的特点:不仅要求它在静止状 态下,能服从控制信号的命令而转动,而且要求在 电动机运行时如果控制电压变为零,电动机立即停 转。
但如果交流伺服电动机的参数选择和一般单相 异步电动机相似,电动机一经转动,即使控制等于 零,电动机仍继续转动,电动机失去控制,这种现 象称为“自转”。
直流伺服电机的机 械特性与他励直流电机 相同一样,也可用下式 表示
No Image
n
机械特性曲线如图所示。
O
T
直流伺服电动机的 n=f(T)曲线(U1=常数)
由机械特性可知: (1) 一定负载转矩下,当磁通不变时,U2 n。 (2) U2=0时,电机立即停转。 电动机反转:改变电枢电压的极性,电动机反转。
控制绕组 内定子
励磁绕组
杯形转子
交流伺服电动机结构图
No Image
+ 控制信号
No Image
+
No Image
– +
No Image
1
+
No Image
–
检 测 元 件
放
360 Z rm
–
– 励磁绕组 –
No Image
No Image
1
No Image
+
大 控制绕组 (a)接线图
器
如何克服“自转”现象呢?
正反向旋转磁场的合成转矩特性 T 1 (正向)
正
s1 0 s2 2
转
s 1 1 s 2
反 转
s1 2
s2 0
s
T 2 (反向)
当单相励磁时,在电动机运行范围0<S1<1时,转矩 为正值,产生电动转矩,使转子继续转动。反转时 也同样为电动转矩。
现增大转子电阻,使Sm>1
No Image
(b) 相量图
交流伺服电动机的接线图和相量图
励磁绕组串联电容C , 是为了产生两相旋转磁场。 适当选择电容的大小,可使通入两个绕组的电流 相位差接近90,从而产生所需的旋转磁场。
控制信号
+
No Image
–
检 测 元 件
放 大 器
360 Z rm
+
–
No 控制电压 Image 与电源电压 频 率相同,相位相 同或反相。
T1
s1 0 s2 2
s 1 1 s 2
s1 2
s2 0
T2
s
当单相励磁时,在电动机运行范围0<S1<1时,转矩 为负值,产生制动转矩,使转子停转。反转时也同 样为制动转矩。
加在控制绕组上的控制电压反相时(保持励 磁电压不变),由于旋转磁场的旋转方向发生变 化,使电动机转子反转。
第9章 控制电机
9.1 伺服电动机 9.2 测速发电机
9.3 步进电动机
9.4 自动控制的基本概念
第9章 控制电机
教学要求: 1.了解交流伺服电动机的结构和工作原理。 2.了解直流伺服电动机的结构和工作原理。 3.了解交流测速发电机的结构和工作原理。 4.了解步进电动机的结构和工作原理。
前面介绍的异步电动机、直流电动机等都是 作为动力使用的,其主要任务是能量的转换。 本章介绍的各种控制电机的主要任务是转换和 传递控制信号,能量的转换是次要的。 控制电机的种类很多,本章只讨论常用的几种: 伺服电机、测速电机、步进电机。 各种控制电机有各自的控制任务: 如: 伺服电动机将电压信号转换为转矩和转速以驱 动控制对象;测速发电机将转速转换为电压,并传 递到 输入端作为反馈信号。步进电动机将脉冲信号 转换为角位移或线位移。 对控制电机的主要要求:动作灵敏、准确、 重 量轻、体积小、耗电少、运行可靠等。
9.1.2 直流伺服电动机
直流伺服电动机的结构与直流电动机基本相 同。只是为减小转动惯量,电机做得细长一些。 直流伺服电动机的工作原理也与直流电动机 相同。 供电方式:他励供电。励磁绕组和电枢分别由两 个独立的电源供电。 I I
2 1
放
+
U1为励磁电压, U U2为电枢电压
+
大
器
U2 M
–
U1
–
直流伺服电动机的接线图