利用频率估计概率
用频率估计概率(含答案)
一、基础知识: 用频率估计概率一般地,在大量重复试验中,如果事件A 发生的频率会稳定在某一个常数p 的附近,那么事件A 发生的概率P (A )=p .其中0≤p ≤1条件是:在同等条件下,需要做大量的重复试验。
关键是:通过大量重复试验找出频率的稳定值。
二、重难点分析本课教学重点:通过对事件发生的频率的分析来估计事件发生的概率。
本课教学难点:合理设计模拟试验,分析频率稳定值从而得到该事件的概率。
通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法。
培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值。
典型例题分析例1、绿豆在相同条件下的发芽试验,结果如下表所示: 每批粒数n 100 300 400 600 1000 2000 3000 发芽的粒数m 96 282 382 570 948 1912 2850 发芽的频率=nm 0.9600.9400.9550.9500.9480.956 0.950则绿豆发芽的概率估计值是 ( )A .0.96 B .0.95 C .0.94D .0.90率=频数与总情况数之比.例2、一个不透明的口袋中放有若干只红球和白球,这两种球除了颜色以外没有任何其他区别,将袋中的球摇均匀.每次从口袋中取出一只球记录颜色后放回再摇均匀,经过大1,求:(1)取出白球的概率是多少?量的实验,得到取出红球的频率是4(2)如果袋中的白球有18只,那么袋中的红球有多少只?三、感悟中考1、(2014•河北)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是4(2014•贵阳)“六•一”期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;…多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是个.四、专项训练(一)基础练习1、在一个不透明的布袋中,红色、黑色、白色的玻璃球共有50个,除颜色外,形状、大小、质地完全相同.小刚通过多次摸球试验后发现其中摸到红色、黑色球的频率分别稳定在20%和40%,则布袋中白色球的个数很可能是个.姚明在某段时间内进行定点投篮训练,其成绩如下表:投篮次数10 100 10000投中次数9 89 9012试估计姚明在这段时间内定点投篮投中的概率是(精确到0.1)【点评】本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.3、在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%,②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是()A.①②③B.①②C.①③D.②③【点评】此题主要考查了利用频率估计概率,搞清频率与概率的关系是解题关键.(二)提升练习1、(2014•东海县模拟)一个不透明的袋子里有若干个小球,它们除了颜色外,其它都相同,甲同学从袋子里随机摸出一个球,记下颜色后放回袋子里,摇匀后再次随机摸出一个球,记下颜色,…,甲同学反复大量实验后,根据白球出现的频率绘制了如图所示的统计图,则下列说法正确的是()A.袋子一定有三个白球B.袋子中白球占小球总数的十分之三C.再摸三次球,一定有一次是白球D.再摸1000次,摸出白球的次数会接近330次【答案】D2、某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”、“花开富贵”、“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购买了100元的商品,他看到商场公布的前10000张奖券的抽奖结果如下:奖券种类紫气东来花开富贵吉星高照谢谢惠顾出现张数(张)500 1000 2000 6500(1)求“紫气东来”奖券出现的频率;(2)请你帮助小明判断,抽奖和直接获得购物卷,哪种方式更合算?并说明理由.。
25.3利用频率估计概率
学生结合统计表和 统计图思考
地,频率会趋于稳定, “正面朝上”的频率越来越接近 0.5. 这也与我们计算 的概率是一致的,就用 0.5 这个常数表示“正面向上”发生的可能性的大小. 其实, 历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上 数学家做掷币试验的数据统计表(看书 P141 表 25-3). 4.下面我们能否研究一下“反面向上”的频率情况? 学生自然可依照 “正面朝上” 的研究方法, 很容易总结得出: “反面向上” 的频率也相应稳定到 0.5. 5.归纳:即抛掷一枚质地均匀的硬币时, “正面向上”与“反面向上”的可能 性相等(各占一半). 一般地,在大量重复试验中,如果事件 A 发生的频率 m/n 会稳定在某个 常数 p 附近,那么这个常数 p 就叫做事件 A 的概率, 记作 P(A)= p. 思考: ①课本 142 页思考. ②频率与概率有什么区别与联系? 从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计 事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数 (事件发生的概率)附近, 说明概率是个定值,而频率随不同试验次数而有所不 同,是概率的近似值,二者不能简单地等同. ③阅读课本 142 页文字,并思考:如何灵活选用利用频率估计概率与利用公 式求概率. (二)利用频率估计概率的应用 课本问题 1 分析:1 幼树移植成活率问题是概率问题吗? 2 同样条件下,问题中移植的幼树成活可能性相等吗? 3 填表后观察幼树移植的成活率在哪个常数上下摆动? 课本问题 2 分析:1 本问题是概率问题吗? 2 试估测柑橘的损坏率是多少?完好的概率是多少? 3 柑橘完好的质量是多少? 4 这批柑橘的总进价是多少?实际成本的单价是多少? 5 如何计算利润?售价应定为多少可获利润 5000 元? 三、课堂训练 完成课本 142、145 页练习 四、小结归纳 1.本节学习的概率问题有什么特点? 2.利用频率估计概率与利用公式求概率分别适用于什么样的问题?如何灵活 选择方法求事件的概率? 五、作业设计 复习巩固作业和综合运用为全体学生必做; 拓广探索为成绩中上等学生必做; 学有余力的学生,要求模仿编拟课堂上出现的一些补充题目进行重复练习. 补充作业:. 板 课题 利用频率估计概率 教 学 反 思 应用 书 设 计
利用频率估计概率
一、课题:利用频率估计概率二、班级情况及学生特点分析3班共61人,4班共58人,两班共119人。
这两班学生分析解决实际问题的能力较差,鉴于这种因素我举了几个较简单的例子。
三、教学内容分析如果事件A发生的频率会稳定在某个常数附近,那么这个常数就叫作事件A的概率,记为四、教学课时第1课时五、教学. 重点、难点:1.教学重点:利用频率估计概率2.教学难点:理解频率与概率的区别与联系六、教学过程【主要知识点】1. 当试验所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,一般还要通过统计频率来估计概率。
2. 在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率。
一般地,在大量重复实验中,如果事件A发生的频率会稳定在某个常数附近,那么这个常数就叫作事件A的概率,记为。
3. 为了使估计的结果尽可能精确,我们要做尽可能多的重复试验,在按照实际情况试验费时费力的前提下,可以用简便的方法代替试验,例如用卡片代替学生,这样的试验称为模拟试验。
4. 当大量重复实验时,事件发生的频率在某个固定的数值左右摆动,并且摆动的幅度越来越小,我们可以用频率的集中趋势估计概率。
用频率的集中趋势来估计概率劳动量是比较大的,为了简化计算过程,在要求精度不是很高的情况下,不妨用两表中最后一行数据中的频率近似地代替概率。
5. 在做大量重复实验时,可事先根据频率要达到的精度来确定数据表中频率保留的数位,通常我们用频率估计出来的概率要比数据表中的频率保留的数位要少。
【典型例题】[例1] 在一次统计中,调查英文文献中字母E的使用率,在几段文献,统计字母E的使用(2)通过计算表中数据可以发现,字母E的使用频率在左右摆动,并且随着统计数据的增加,这种规律愈加明显,所以估计字母E在文献中使用概率是。
解:(1)0.080,0.098,0.101,0.99,0.100(2)0.100,0.100反思:字母E在文献中的使用率就是字母E在文献出现的频率,字母E的使用频率要由其出现频率来估计。
利用频率估计概率介绍
利用频率估计概率介绍频率估计是一种用于估计概率的方法,它基于观察到的事件发生的频率来推断各个事件发生的概率。
这种方法在实际应用中非常常见,特别是在统计学、机器学习和数据挖掘等领域中。
频率估计的基本思想是根据事件发生的频率来推测该事件发生的概率。
在频率估计中,我们通过观察到的事件发生的次数来估计事件发生的概率。
具体来说,我们首先统计事件在一定样本空间内的发生次数,然后将事件的发生次数除以总的样本次数,就可以得到事件发生的概率。
频率估计的一个简单示例是投掷硬币的问题。
假设我们有一个硬币,我们想要估计这个硬币正面朝上的概率。
为了进行频率估计,我们可以连续地进行多次投掷,并记录正面朝上的次数。
最后,我们可以通过正面朝上的次数除以总的投掷次数来估计硬币正面朝上的概率。
频率估计是一种较为直观和直接的方法,因为它只依赖于观察到的事件发生的频率。
然而,频率估计也有其局限性。
首先,频率估计的结果通常是不准确的,特别是在样本容量较小的情况下。
其次,频率估计假设事件的概率是固定的,但实际上事件的概率可能会随着时间、环境等因素的变化而变化。
此外,频率估计还有可能受到样本选择偏差的影响,这会导致估计结果的偏差。
为了减小估计误差,提高频率估计的准确性,我们可以增加样本容量。
当样本容量足够大时,频率估计可以更加接近真实的概率。
此外,为了减小样本选择偏差的影响,我们可以采用随机抽样的方法,确保样本的代表性。
频率估计在实际应用中具有广泛的应用。
在统计学中,频率估计是参数估计的一种常用方法。
在机器学习和数据挖掘中,频率估计被用于构建概率模型,例如朴素贝叶斯分类器和隐马尔可夫模型等。
此外,频率估计还被用于统计推断、风险评估以及决策分析等领域。
总结起来,频率估计是一种利用事件发生的频率来推断概率的方法。
它是一种直观和直接的方法,但也存在精度不准确、假设固定概率等局限性。
为了提高估计准确性,我们可以增加样本容量和采用随机抽样等方法。
频率估计在统计学、机器学习和数据挖掘等领域中具有广泛的应用。
频率估计概率的公式
频率估计概率的公式
用频率估计概率的公式是f=p,在相同的条件下,进行了n次试验,在这n 次试验中,事件A发生的次数m称为事件A发生的频数。
比值m/n称为事件A发生的频率,用文字表示定义为:每个对象出现的次数与总次数的比值是频率。
某个组的频数与样本容量的比值也叫做这个组的频率。
有了频数(或频率)就可以知道数的分布情况。
在直角坐标系中,横轴表示样本数据,纵轴表示频率与组距的比值,将频率分布表中各组频率的大小用相应矩形面积的大小来表示,由此画成的统计图叫做频率分布直方图。
利用频率估算概率
利⽤频率估算概率
◎利⽤频率估算概率的定义
在同样条件下,做⼤量的重复试验,利⽤⼀个随机事件发⽣的频率逐渐稳定到某个常数,可以估计这个事件发⽣的概率。
注:
(1)当试验的可能结果不是有限个,或各种结果发⽣的可能性不相等时,⼀般⽤统计频率的⽅法来估计概率;
(2)利⽤频率估计概率的数学依据是⼤数定律:当试验次数很⼤时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P。
(3)利⽤频率估计出的概率是近似值。
◎利⽤频率估算概率的知识扩展
在同样条件下,做⼤量的重复试验,利⽤⼀个随机事件发⽣的频率逐渐稳定到某个常数,可以估计这个事件发⽣的概率。
注:(1)当试验的可能结果不是有限个,或各种结果发⽣的可能性不相等时,⼀般⽤统计频率的⽅法来估计概率;
(2)利⽤频率估计概率的数学依据是⼤数定律:当试验次数很⼤时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P。
(3)利⽤频率估计出的概率是近似值。
◎利⽤频率估算概率的教学⽬标
1、理解概率的统计定义。
2、通过全班合作完成的“摸球”试验,学习处理数据的⽅法,体验频率的稳定性规律,体会频率与概率的区别与联系,感受⽤频率估计概率的可靠性,掌握⽤频率估计概率的⼀般步骤。
3、通过点滴了解⼀些数学史知识、亲⾝参与数学实践活动,逐步培养探索和实践的精神,体验偶然性与必然性的关系,逐步建⽴唯物辩证的观点。
◎利⽤频率估算概率的考试要求
能⼒要求:掌握
课时要求:60
考试频率:必考
分值⽐重:4。
利用频率估计概率
利用频率估计概率以下是为您推荐的利用频率估计概率,希望本篇文章对您学习有所帮助。
利用频率估计概率疑难分析:1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2.利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A 出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P.3.利用频率估计出的概率是近似值.例题选讲例1 某篮球运动员在最近的几场大赛中罚球投篮的结果如下:投篮次数n 8 10 12 9 16 10进球次数m 6 8 9 7 12 7进球频率(1)计算表中各次比赛进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?解答:(1)0.75,0.8,0.75,0.78,0.75,0.7;(2)0.75.评注:本题中将同一运动员在不同比赛中的投篮视为同等条件下的重复试验,所求出的概率只是近似值.例2 某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(1) 计算并完成表格:转动转盘的次数n 100 150 200 500 800 1000落在铅笔的次数m 68 111 136 345 546 701落在铅笔的频率(2) 请估计,当很大时,频率将会接近多少?(3) 转动该转盘一次,获得铅笔的概率约是多少?(4) 在该转盘中,标有铅笔区域的扇形的圆心角大约是多少?(精确到1)解答:(1)0.68、0.74、0.68、0.69、0.6825、0.701;(2)0.69;(3)0.69;(4)0.69360248.评注:(1)试验的次数越多,所得的频率越能反映概率的大小;(2)频数分布表、扇形图、条形图、直方图都能较好地反映频数、频率的分布情况,我们可以利用它们所提供的信息估计概率.基础训练一、选一选(请将唯一正确答案的代号填入题后的括号内)1.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为 ( )A. 90个B.24个C.70个D.32个2.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为( ).A. B. C. D.3.下列说法正确的是( ).A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;B.为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;C.彩票中奖的机会是1%,买100张一定会中奖;D.中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论.4.小亮把全班50名同学的期中数学测试成绩,绘成如图所示的条形图,其中从左起第一、二、三、四个小长方形高的比是1∶3∶5∶1.从中同时抽一份最低分数段和一份最高分数段的成绩的概率分别是( ).A. 、B. 、C. 、D. 、5.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有( ).A.10粒B.160粒C.450粒D.500粒6.某校男生中,若随机抽取若干名同学做是否喜欢足球的问卷调查,抽到喜欢足球的同学的概率是,这个的含义是( ).A.只发出5份调查卷,其中三份是喜欢足球的答卷;B.在答卷中,喜欢足球的答卷与总问卷的比为3∶8;C.在答卷中,喜欢足球的答卷占总答卷的 ;D.在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球.7.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为,四位同学分别采用了下列装法,你认为他们中装错的是( ).A.口袋中装入10个小球,其中只有两个红球;B.装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球;C.装入红球5个,白球13个,黑球2个;D.装入红球7个,白球13个,黑球2个,黄球13个.8.某学生调查了同班同学身上的零用钱数,将每位同学的零用钱数记录了下来(单位:元):2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.假如老师随机问一个同学的零用钱,老师最有可能得到的回答是( ).A. 2元B.5元C.6元D.0元二、填一填9. 同时抛掷两枚硬币,按照正面出现的次数,可以分为2个正面、1个正面和没有正面这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚硬币10次,下表为实验记录的统计表:结果第一组第二组第三组第四组第五组第六组两个正面 3 3 5 1 4 2一个正面 6 5 5 5 5 7没有正面 1 2 0 4 1 1由上表结果,计算得出现2个正面、1个正面和没有正面这3种结果的频率分别是___________________.当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:______________.10.红星养猪场400头猪的质量(质量均为整数千克)频率分布如下,其中数据不在分点上组别频数频率46 _ 50 4051 _ 55 8056 _ 60 16061 _ 65 8066 _ 70 3071_ 75 10从中任选一头猪,质量在65kg以上的概率是_____________.11.为配和新课程的实施,某市举行了应用与创新知识竞赛,共有1万名学生参加了这次竞赛(满分100分,得分全为整数)。
九年级数学利用频率估计概率
置信水平和置信区间的概念
1 2
置信水平
表示估计的概率值在真实概率值周围的可信程度, 通常用百分比表示。
置信区间
表示估计的概率值所在的可能范围,通常用区间 表示。
3
置信水平和置信区间之间的关系
置信水平越高,置信区间越窄,估计的精度越高。
05 总结与展望
总结频率与概率的关系
01
频率是概率的近似值
在大量重复实验中,某一事件发生的频率会趋近于该事件发生的概率。
样本大小对频率稳定性的影响
样本越大,频率越稳定,估计的概率越准确。
样本大小与置信水平的关系
样本越大,置信水平越高,置信区间越窄,估计的精度越高。
随机误差和系统误差的影响
随机误差
由于随机抽样而产生的误差,可以通 过增加样本量来减小。
系统误差
由于抽样方法、测量工具或实验设计 等因素产生的误差,需要改进抽样方 法、提高测量精度或调整实验设计来 减小。
02 利用频率估计概率的方法
长期频率稳定性
定义
应用Leabharlann 长期频率稳定性是指当试验次数趋于 无穷时,某一随机事件的相对频率趋 于该事件的概率。
在现实生活中,许多概率可以通过长 期频率稳定性来估计,例如抛硬币正 面朝上的概率约为0.5。
原理
通过大量重复试验,观察某一随机事 件的相对频率,可以近似估计该事件 的概率。
概率论在金融领域的应用
金融领域涉及大量的不确定性和风险,概率论在金融领域的应用十分广泛。未来,随着金 融市场的不断发展和风险管理需求的增加,概率论在金融领域的应用将更加重要和迫切。
THANKS FOR WATCHING
感谢您的观看
因此,可以通过实验中事件发生的频率来估计概率。
经典的用频率估算概率
频数: 在实验中,每个对象出现的次数称为频数,
所考察对象出现的次数与实验的总次数 频率: 的比叫做频率
频数 频率= 总数
概率: 事件发生的可能性,也称为事件发生的概率.
m P A n
A可能发生的情况 可能发生的总情况
做抛硬币的实验:当抛一枚硬币时会出现几种结 2种 其中正面朝上的概率是多少?—— 0.5 无 果?—— 不变 论抛多少次,正面朝上的概率会不会改变? —— 若抛10次,其中4次正面朝上,则正面朝上的 0.4 0.5 频率是多少? ——如果有5次正面向上呢?— —频率是否会改变? 会改变 这就是说同次试验的频率和概率是否相同?
概率。
m 记为P(A)=p 或 P(A)= n
由定义可知:
(1)求一个事件的概率的基本方法是通 过大量的重复试验; (2)只有当频率在某个常数附近摆动时, 这个常数才叫做事件A 的概率; (3)概率是频率的稳定值,而频率是概 率的近似值; (4)概率反映了随机事件发生的可能性 的大小; (5)必然事件的概率为1,不可能事件的 概率为0.因此 0 P A 1.
6 1 20 1 解:3点朝上”的频率是: “5点朝上”的频率是: 60 10 60 3
(1)计算“3点朝上”的频率和“5点朝上”的频率;
(2)小英说:“这次试验中出现5点朝上的概率最大”小红说: “如果掷600次,6点朝上的次数正好是100次”小英和小红的说法 正确吗?为什么? 答:都错误。(1)因为5点朝上的频率最大并不能说明5点朝上的 概率最大,只有当试验次数足够大时,频率稳定在概率的附近,这 时可以用频率来估计概率次数不够大时频率不能估计概率。
• 1.在有一个20万人的 • 解: 小镇,随机调查了 • 根据概率的意义,可以 1000人,其中有250人 认为其概率大约等于 看重庆电视台的早间 250/1000=0.25. 新闻.在该镇随便问 • 该镇约有 一个人,他看早间新 200000×0.25=50000 闻的概率大约是多少? 人看重庆电视台的早 该镇看重庆电视台早 间新闻. 间新闻的大约是多少 人?
25.3利用频率估计概率 TXC
m ) n
估计移植成Leabharlann 率0.9 左右摆动, 由下表可以发现,幼树移植成活的频率在____ 并且随着移植棵数越来越大,这种规律愈加明显. 0.9 所以估计幼树移植成活的概率为_____ .
移植总数(n) 10 成活数(m) 8 成活的频率 ( 0.8
m ) n
50 47 0.94 900 棵. 1.林业部门种植了该幼树1000棵,估计能成活_______ 270 235 0.870 2.我们学校需种植这样的树苗500棵来绿化校园,则至少 0.923 400 369 556 棵. 向林业部门购买约_______ 0.883 750 662 1500 3500 7000 9000 14000 1335 3203 6335 8073 12628 0.890 0.915 0.905 0.897 0.902
m ) n
估计移植成活率
0.9 左右摆动, 由下表可以发现,幼树移植成活的频率在____ 并且随着移植棵数越来越大,这种规律愈加明显. 0.9 所以估计幼树移植成活的概率为_____ .
移植总数(n) 10 50 270 400 750 1500 3500 7000 9000 14000 成活数(m) 8 47 235 369 662 1335 3203 6335 8073 12628 成活的频率 ( 0.8 0.94 0.870 0.923 0.883 0.890 0.915 0.905 0.897 0.902
频率估计概率
基于深度学习的频率估计方法利用神经网络和深度神经网络等模型,通过训练大量数据来学习数据内 在的规律和模式,从而对频率进行准确估计。这种方法在处理大规模数据集时具有显著的优势,能够 有效地处理噪声和异常值,提高估计的鲁棒性。
基于贝叶斯推断的频率估计方法
总结词
贝叶斯推断是一种基于概率的统计方法,能够综合考虑先验信息和样本数据,为频率估计提供更加稳健和准确的 推断。
参数估计的稳定性问题
参数估计的稳定性问题是指由于数据波动或模型不稳定等因素导致的参数估计不 准确。
为了提高参数估计的稳定性,可以采用稳健的统计方法和模型,如加权平均、中 位数等,以及考虑数据的异常值和离群点。
05
未来研究方向与展望
基于深度学习的频率估计方法
总结词
深度学习在频率估计中具有巨大的潜力,能够从大量数据中自动提取特征,提高估计的准确性和效率 。
生的概率。
大数定律的数学表达形式是:当 试验次数趋于无穷时,某一事件 发生的频率趋于该事件发生的概
率。
大数定律是频率估计概率的基础, 它告诉我们当试验次数足够多时,
可以用频率来估计概率。
中心极限定理
中心极限定理是指无论随机变量是来自于什么样的总体分布,只要样本量足够大, 样本均值的分布就趋近于正态分布。
04
频率估计概率的挑战与限制
数据量不足的问题
数据量不足可能导致频率估计的不准确,进而影响概率的估 计。
在数据量有限的情况下,需要采用合适的统计方法和模型, 如贝叶斯方法、Bootstrap等,以减小估计误差。
模型选择的问题
模型选择不当可能导致频率估计的偏差,进而影响概率的 估计。
在选择模型时,需要考虑模型的适用性和合理性,以及模 型的参数设置和假设条件是否符合实际情况。
《用频率估计概率》ppt课件
频率的定义
01
频率是指在一定数量的 试验或观察中某一事件 发生的次数与总次数之 比。
02
03
04
频率通常用分数或小数 表示,并且具有以下特 点
• 频率介于0和1之间, 即0≤频率≤1。
• 当试验次数趋向于无 穷时,频率趋向于某 一固定值,即概率。
频率与概率的关系
频率是概率的近似值,当试验次数足够多时,频率趋近于概率。
人工智能算法
人工智能算法中,频率估计概率的方法也被 广泛应用。许多机器学习算法和自然语言处 理算法都需要用到概率和统计学的知识,而 频率估计概率是其中的重要组成部分。
例如,在自然语言处理中,词频统计是一种 常见的方法,通过对大量文本数据的分析, 可以估计某个词出现的概率,从而更好地理 解和处理自然语言。同样地,在机器学习中 ,频率估计概率的方法也被用于分类、聚类
交叉验证
采用交叉验证等方法评估频率 估计概率的准确性,以提高预
测的可靠性。
05
频率估计概率的应用场景
统计学研究
统计学研究是频率估计概率的重要应用领域之一。在统计 学中,频率估计概率的方法被广泛应用于数据分析和推断 中,例如在样本大小的计算、假设检验和置信区间的确定 等方面。
频率估计概率可以帮助统计学家了解数据分布的特征和规 律,从而为决策提供科学依据。例如,在市场调研中,通 过频率估计概率可以对市场趋势和消费者行为进行预测和 分析。
0到1之间,其中0表示事件不可能发 生,1表示事件一定发生。
概率的估计方法
01
02
03
直接估计
通过观察和实验直接得到 随机事件的频率,从而估 计概率。
间接估计
通过已知的概率分布函数 或者概率密度函数来计算 概率。
5.3利用频率估计概率
25.3 利用频率估计概率(1)教学目标:1、了解随机事件在每次试验中发生与否具有不确定性,但随着试验次数的增加,事件发生的频率逐渐趋于稳定。
2、通过试验,理解大量重复试验所获得的频率可作为概率的估计值。
3、会使用大量重复试验所取得的事件发生的频率估计概率。
教学重点:用事件发生的频率估计概率。
教学难点:对大量重复试验频率趋于稳定性的理解。
教学过程:一、创设情境,引入新课:P140导语:用列举法能够求一些事件的概率,我们还能够利用多次重复试验,通过统计试验结果去估计概率。
我们知道,任意抛掷一枚持质地均匀的硬币,“正面朝上”的概率是0.5。
这是否意味着抛掷一枚硬币100次时,就会有50次“正面朝上”和50次“反面朝上”呢?不妨用试验实行检验。
二、新课讲解:1、P140试验(1)学生合作完成探究实验(2)“正面朝上”的频率有什么规律?(3)介绍历史上很多科学家曾做过成千上万次抛掷硬币实验的部分数据瑞士数学家雅各布.伯努利(1654-1705)最早阐明了能够由频率估计概率即:在相同的条件下,大量的重复实验时,根据一个随机事件发生的频率所逐渐稳定的常数,能够估计这个事件发生的概率。
(看书P141表25-3).表25-3(4)小结一般地,在大量重复试验中,如果事件A发生的频率m/n会稳定在某个常数p附近,那么事件A发生的概率P(A)=p(5)需要注意的是:概率是针对大量重复的试验来说的,大量试验反映的规律并非在每一次试验中出现.更一般地,即使试验的所有可能的结果不是有限个,或各种可能的结果发生的可能性不相等,也能够通过试验的方法去估计一个随机事件发生的概率.只要试验次数是充足大的,频率就能够作为概率的估计值.(6)P142思考2、某运动员投一次篮投中的概率为0.6。
下列说法准确吗?为什么?(1)该运动员投5次篮,必有3次投中。
(错,只有实验次数充足多的情况下,概率才能够代替频率用来估计频数,所以这种方法不适合本题)(2)该运动员投100次篮,约有60次投中。
利用频率估计概率(市示范课)
单击此处添加副标题
目录
贰
单击此处添加标题
壹
单击此处添加标题
第一章
引言
主题简介
利用频率估计概率是概率论中的一个基本概念,它涉及到概率的统计推断方法。这种方法是通过大量重复实验中某一事件发生的频率来估计该事件发生的概率。
在现实生活中,很多情况下我们无法直接得到事件的概率,但可以通过实验和观察频率来估计。例如,抛硬币的结果、抽奖活动的中奖率等。
第三章
频率估计概率的实例分析
抛硬币实验
抛硬币,观察正面和反面的出现次数。 实验过程 频率计算 概率估计 记录正面和反面出现的次数,计算各自出现的频率。 根据频率,估计正面和反面出现的概率。
抛骰子实验
抛骰子,观察每个点数的出现次数。 实验过程 记录每个点数出现的次数,计算各自出现的频率。 频率计算 根据频率,估计每个点数出现的概率。 概率估计
对样本量要求高
为了获得较为准确的频率,需要足够大的样本量。样本量不足会导致估计结果的不准确。
第五章
利用频率估计概率的实际应用
2
1
3
通过分析历史股票价格数据,利用频率估计概率的方法预测未来股票价格的走势,为投资者提供参考。
股票预测
在投资组合管理中,利用频率估计概率的方法评估不同资产的风险,帮助投资者制定合理的资产配置策略。
THANKS FOR
概率的近似计算
对未来的展望
统计学的应用
强调了统计学在各个领域的应用价值,鼓励学生们将所学知识应用于实际问题中。
数学建模的重要性
强调了数学建模在解决实际问题中的重要性,鼓励学生们培养数学建模的能力。
概率论的发展
讨论了概率论的发展趋势和前沿问题,鼓励学生们继续深入学习和探索。
用频率估计概率-完整版PPT课件
当堂练习
1一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通过多次捕
获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个
水塘里有鲤鱼 尾3,鲢10鱼 尾
270
2 养鱼专业户为了估计他承包的鱼塘里有多少条鱼假设 这个塘里养的是同一种鱼,先捕上100条做上标记,然后放回 塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后 ,再捕上100条,发现其中带标记的鱼有10条,鱼塘里大约 有鱼多少条?
解:设鱼塘里有鱼条,根据题意可得
10 100 , 100 x
解得 =1000 答:鱼塘里有鱼1000条
3抛掷硬币“正面向上”的概率是05如果连续抛掷100次,而结 果并不一定是出现“正面向上”和“反面向上”各50次,这是这 什么?
答:这是因为频数和频率的随机性以及一定的规律性或者说 概率是针对大量重复试验而言的,大量重复试验反映的规律 并非在每一次试验中都发生
方法归纳
一般地,当试验的可能结果有很多且各种可能结果发生的 可能性相等时, 则用列举法,利用概率公式PA= 的方m 式得出
n
概率 当试验的所有可能结果不是有限个,或各种可能结果发生 的可能性不相等时,常常是通过统计频率来估计概率,即在同 样条件下,大量重复试验所得到的随机事件发生的频率的稳 定值来估计这个事件发生的概率
226 281 260 238 246 259 1490
450 550 503 487 510 495 2995
0502 0510 0517 049 0483 0523 0497
050
问题2 分析试验结果及下面数学家大量重复试验数据, 大家有何发现?
试验者
棣莫弗 布丰 费勒 皮尔逊 皮尔逊
抛掷次数n “正面向上” 次数m
课件1:25.3用频率估计概率
因为500千克柑橘损坏51.54千克,损坏率是0.103, 可以近似的估算是柑橘的损坏概率
练习
某农科所在相同条件下做了某作物种子发芽率的试验,结果如下表所示:
种子个数 100 200 300 400 500 600 700 800 900 1000
发芽种子个数 94 187 282 338 435 530 624 718 814 981
25.3 用频率估计概率
一 . 利用频率估计概率
当试验的可能结果有很多并且各种结果发生的可能性相等时,我们可以用
P
(A)
=
m n
的方式得出概率,当试验的所有可能结果不是有限个,或各种可能
结果发生的可能性不相等时,我们一般还要通过统计频率来估计概率.
在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐 渐稳定到的常数,可以估计这个事件发生的概率.
成活的频率( m)
n
0.80
50
47
0.94
270
235
0.870
400 750 1500
369 662 1335
0.923 0.883 0.890
3500
3203
0.915
7000 9000 14000
6335 8073 12628
0.905 0.897 0.902
从上表可以发现,幼树移植成活的频率在____9_0_%___左右摆动, 并且随着统计数据的增加,这种规律愈加明显,所以估计幼树 移植成活率的概率为___0_._9___
2 10000 20 2.22元 / 千克
9000
9
设每千克柑橘的销价为x元,则应有(x-2.22)×9 000=5 000
用频率估计概率的方法
解:(1)由表格可得,当n很大时,摸到白球的频率将会接近0.6. (2)P(白)= =m0.6, P(黑)=1-P(白n )=0.4.
(3)白球个数=20×0.6=12(个), 黑球个数=20×0.4=8(个).
【规律总结】 频率是概率的近似值,概率是频率的稳定值,它是频率的科学抽象,当试 验次数越来越多时,频率围绕概率摆动的平均幅度会越来越小,即频率靠近概率.
类型二:模拟实验估计概率 例2 王叔叔承包了鱼塘养鱼,到了收获时期,他想知道池塘里大约有多少条鱼,于 是他先捞出1 000条鱼,将它们做上标记,然后放回鱼塘,经过一段时间后,待有标 记的鱼完全混合于鱼群后,从中捕捞出150条鱼,发现有标记的鱼有3条,则 (1)池塘内约有多少条鱼? (2)如果每条鱼重0.5千克,每千克鱼的利润为1元,那么估计它所获得的利润为多 少元?
断重复,共摸球400次,其中88次摸到白球,估计盒中大约有黑球(
(A)28个
(B)30个 (C)36个 (D)42个
)A
2.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学
进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90
次,则黄色乒乓球的个数估计为(
解:(1)由题意得1 000÷ 3=50 000(条), 所以池塘内约有50 000条15鱼0 . (2)50 000×0.5×1=25 000(元), 所以估计所获得的利润为25 000元.
1.一个密闭不透明的盒子里有若干个黑球,在不允许将球倒出来的情况下,为估计黑球的
个数,小刚向其中放入8个白球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不
的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别
正3利用频率估计概率(第1课时)课件
频率稳定性定理
由频率可以估计概率是由瑞士数 学家雅各布· 伯努利(1654-1705 )最早阐明的,因而他被公认为 是概率论的先驱之一.
定义
对一般的随机事件,在做大量重复试验 时,一个事件出现的频率,总是在某个常数 附近摆动,显示出一定的稳定性.
概率的统计定义: 一般地,在大量重复试验中, 如果事件发生的频率(m/n) 会稳定在某个常数 p 附近, 那么,事件发生的概率为 p.
记做P(A)
注: (1)求一个事件的概率的基本方法是通过大量的重复试验; (2)只有当频率在某个常数附近摆动时,这个常数才叫做事件A 的概率; (3)概率是频率的稳定值,而频率是概率的近似值; (4)概率反映了随机事件发生的可能性的大小; (5)必然事件的概率为1,不可能事件的概率为0.因此0P(A)1
于众多微小的偶然因素的影响,每次测得的结果虽不尽相 同,但在做大量重复试验时,随着试验次数的增加,一个 事件出现的频率,总在一个固定数的附近摆动,显示出一 定的稳定性.这称为大数法则,亦称大数定律.即:在相同的
条件下,做大量的重复实验时,根据一个随机事件发生的频率所逐 渐稳定的常数,可以估计这个事件发生的概率。
“正面向下” 的概率哪
当重复抛掷一枚硬币时,“正面向上”的频率在0.5左右摆动。
随着抛掷次数的增加,一般地频率呈现出一定的稳定性:在0.5
左右摆动的幅度会越来越小。我们称“正面向上”的概率是0.5
材料2:
0.9 则估计油菜籽发芽的概率为___
数学史实
在长期的实践中,人们观察到,对一般的随机试验,由
新课
用列举法可以求一些事件概率,还可以利用多 次重复试验,通过统计实验结果去估计概率
例如,历史上曾有人做过抛掷硬币的大量重复试验,结果如 材料 下表 : m 正面向上次 抛掷次数(n) 频率( ) 数(频数m) n 2048 4040 12000 24000 30000 72088 1061 2048 6019 12012 14984 36124 0.5181 0.5069 0.5016 05005 0.4996 0.5011
利用频率估计概率
讨 论
某班有48人,现需要调查任意“6 某班有48人,现需要调查任意“6个 人中有两个人星座相同”的概率,你能 设计一种试验来估计“6 设计一种试验来估计“6个人中有两个人 星座相同”的概率吗?
分 析
把全班分成6人一组,共8 把全班分成6人一组,共8组,调查 6个人中是否有2人的星座相同,统计全 个人中是否有2 班结果,共计为8 班结果,共计为8次试验,再由每位学生 提供6 提供6位亲友的星座情况,进行第二轮统 计,以此类推,进行48组、共统计56次 计,以此类推,进行48组、共统计56次 试验,计算出6人中2 试验,计算出6人中2人星座相同的频率, 然后估计出概率来。 这次统计合理吗? 这次统计合理吗?
分 析
⑵能利用频率估计概率的实验方法估 算非规则图形的面积。 设计方案:如图, 设计方案:如图,①设计一 个可测量面积的规则图形将非 规则图形围起来(如正方形, 规则图形围起来(如正方形, 其 面积为S)。 面积为S)。
②往图形中掷点(如蒙上眼往图形中 往图形中掷点( 随意掷石子,掷在图外不作记录) 随意掷石子,掷在图外不作记录)。 ③当掷点数充分大(如1万次),记录并 当掷点数充分大( 万次) 统计结果,设掷入正方形内m次,其中n 统计结果,设掷入正方形内m次,其中n 次掷图形内。
移植总数(n) 成活率(m) 移植总数(n) 成活率(m) 1500 3500 7000 9000 14000 1335 3203 6335 8073 12628
m 成活的频率( 成活的频率( ) n
0.890 0.915 0.905 0.897 0.902 由上表可知,幼树移植成活的频率在 ____左右摆动,并且随着统计数据的增加, ____左右摆动,并且随着统计数据的增加, 0.9 这种规律愈加明显,所以估计幼树移植成 活的概率为____. 活的概率为____. 0.9
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用频率估计概率
陈德前
当实验的所有可能结果不是有限个,我们可以通过统计频率来估计概率.
例1绿豆在相同条件下的发芽试验,结果如下表所示:
每批粒数n 100 300 400 600 1000 2000 3000 发芽的粒数m 96 282 382 570 948 1912 2850
发芽的频数m
n
0.96 0.94 0.955 0.95 0.948 0.956 0.95
则绿豆发芽的概率估计值是()
A 0.96
B 0.95
C 0.94
D 0.90
解析:当n足够大时,发芽的频率逐渐稳定于0.95,故用频率估计概率,绿豆发芽的概率估计值是0.95.故选B.
例2一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a的值大约是____.
解析:由题意,可由大量重复实验后较稳定的频率20%来估计概率,所以3
a
×
100%=20%,解得a=15.
例3研究“掷1个图钉,钉尖朝上”的概率,两个小组用同一个图钉做实验进行比较,他们的统计数据如下:
掷图钉的次数50 100 200 300 400 针尖朝上的次数
第1小组23 39 79 121 160
第2小组24 41 81 124 164
(1)请你估计第1小组和第2小组所得的概率分别是多少?
(2)你认为哪个小组的结果更准确?为什么?
解析:(1)根据题意,因为实验次数越多,估计出的概率就越精确,所以选取实验次数最多的进行计算.
第1小组所得的概率是160
400
≈0.4;第2小组所得的概率是
164
400
≈0.41.
(2)不能确定哪个更准确.因为实验数据可能有误差,不能准确说明偏向.。