怎样通过子网掩码划分网段

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何通过子网掩码划分网段
资料一:
一、缺省A、B、C类地址,子网掩码;
二、子网掩码的作用:
code:
IP地址 00010100 00001111 00000101
子网掩码 00000000 00000000
网络ID 00010100 00000000 00000000
主机ID 00000000 00000000 00001111 00000101
计算该子网中的主机数:2^n-2=2^16-2=65534
其中:n为主机ID占用的位数2: , (表示子网广播);
该子网所容纳主机的IP地址范围:
三、实现子网
1.划分子网的理由:
①远程LAN互连;
②连接混合的网络技术;
③增加网段中的主机数量;
④减少网络广播。

2.子网的实现需要考虑以下因素:
①确定所需的网络ID数,确信为将来的发展留有余地;
谁需要占用单独的网络ID?
▲每个子网;
▲每个WAN连接;
②确定每个子网中最大的计算机数目,也要考虑未来的发展;
谁需要占用单独的主机ID?
▲每个TCP/IP计算机网卡;
▲每个TCP/IP打印机网卡;
▲每个子网上的路由接口;
③考虑增长计划的必要性:
假设您在InterNIC申请到一个网络ID:但你有两个远程LAN需要互连,而且每个远程LAN各有60台主
机。

若不划分子网,您就只能使用一个网络ID:,使用缺省子网掩码:,而且在这个子网中可以容纳的主机I
D的范围:,即可以有254台主机。

现在若根据需要划分为两个子网,即借用主机ID中的两位用作网络ID,则子网掩码就应变为: D的位掩
去。

看一看划分出来的子网的情况:

本网段(01 网段)主机数:2n-2=26-2=62或126-65+1=62

本网段(10 网段)主机数:2n-2=26-2=62或190-129+1=62
▲子网号00全0表示本网络,子网号11全1是子网屏蔽,均不可用。

提示:在早期的子网划分标准RFC950中,不能使用全0或全1做为二进制子网标识(在子网划分公式2 n-2中的-2处理)。

在RFC1812中,这个限制已被取消。

下面内容摘自于RFC1812。

“以前版本的文档认为,子网号不能为0或-1,并且至少要有两位长。

在一个CIDR领域,子网号就是网络前缀的一种延伸。

如果没有前缀,那么子网号也就不存在了。

从CIDR观点来看,这种对子网号的限制是
没有意义的,可以安全地忽略。


这个方案可以满足目前需求,但以后如果需要加入新的网段则必须重新划分更多的子网(即借用更多的主机ID位用作网络ID),或如果以后需要每个子网中的主机数更多则必须借用网络I D位来保证更多的主机
数。

四、定义子网号的方法
若InterNIC分配给您的B类网络ID为,那么在使用缺省的子网掩码,您将只有一个网络ID和216-2台主
机(范围是:
1.手工计算法:
①将所需的子网数转换为二进制
4→00000100
②以二进制表示子网数所需的位数即为向缺省子网掩码中加入的位数(既应向主机ID借用的位数)
00000100→3位
③决定子网掩码
缺省的:
借用主机ID的3位以后:,即将所借的位全表示为1,用作子网掩码。

④决定可用的网络ID
列出附加位引起的所有二进制组合,去掉全0和全1的组合情况
code:
组合情况实际得到的子网ID
000╳
001→32(00100000 )
010→64(01000000 )
你一定对IP地址有所了解吧?我们知道在INTERNET中广泛使用的TCP/IP协议就是利用IP地址来区别不同的主机的。

如果你曾经进行过TCP/IP协议设置,那么你一定会遇到子网掩码(Subnet mask)这一名词.
我们知道IP地址是一个4字节(共32bit)的数字,被分为4段,每段8位,段与段之间用句点分隔。

为了便于表达和识别,IP地址是以十进制形式表示的如,每段所能表示的十进制数最大不超过255。

IP地址由两部分组成,即网络号(Netgwork ID)和主机号(Host ID)。

网络号标识的是Internet上的一个子网,而主机号标识的是子网中的某台主机。

网际地址分解成两个域后,带来了一个重要的优点:IP数据包从网际上的一个网络到达另一个网络时,选择路径可以基于网络而不是主机。

在大型的网际中,这一点优势特别明显,因为路由表中只存储网络信息而不是主机信息,这样可以大大简化路由表。

IP地址根据网络号和主机号的数量而分为A、B、C三类:
A类IP地址:用7位(bit)来标识网络号,24位标识主机号,最前面一位为"0",即A类地址的第一段取值介于1~126之间。

A类地址通常为大型网络而提供,全世界总共只有126个只可能的A类网络,每个A类网络最多可以连接台主机。

B类IP地址:用14位来标识网络号,16位标识主机号,前面两位是"10"。

B类地址的第一段取值
介于128~191之间,第一段和第二段合在一起表示网络号。

B类地址适用于中等规模的网络,全世界大约有16000个B类网络,每个B类网络最多可以连接65534台主机。

C类IP地址:用21位来标识网络号,8位标识主机号,前面三位是"110"。

C类地址的第一段取值介于192~223之间,第一段、第二段、第三段合在一起表示网络号。

最后一段标识网络上的主机号。

C 类地址适用于校园网等小型网络,每个C类网络最多可以有254台主机。

从上面的介绍我们知道,IP地址是以网络号和主机号来标示网络上的主机的,只有在一个网络号下的计算机之间才能"直接"互通,不同网络号的计算机要通过网关(Gateway)才能互通。

但这样的划分在某些情况下显得并十分不灵活。

为此IP网络还允许划分成更小的网络,称为子网(Subnet),这样就产生了子网掩码。

子网掩码的作用就是用来判断任意两个IP地址是否属于同一子网络,这时只有在同一子网的计算机才能"直接"互通。

那么怎样确定子网掩码呢?
前面讲到IP地址分网络号和主机号,要将一个网络划分为多个子网,因此网络号将要占用原来的主机位,如对于一个C类地址,它用21位来标识网络号,要将其划分为2个子网则需要占用1位原来的主机标识位。

此时网络号位变为22位为主机标示变为7位。

同理借用2个主机位则可以将一个C类网络划分为4个子网……那计算机是怎样才知道这一网络是否划分了子网呢?这就可以从子网掩码中看出。

子网掩码和IP地址一样有32bit,确定子网掩码的方法是其与IP地址中标识网络号的所有对应位都用"1",而与主机号对应的位都是"0"。

如分为2个子网的C类IP地址用22位来标识网络号,则其子网掩码为:即,A类地址的缺省子网掩码为,B类为,C类为
子网位数子网掩码主机数可用主机数
1 128 126
2 64 62
3 32 30
4 16 14
5 8 6
6 4 2
你可能注意到上表分了主机数和可用主机数两项,这是为什么呢?因为但当地址的所有主机位都为"0"时,这一地址为线路(或子网)地址,而当所有主机位都为"1"时为广播地址。

同时我们还可以使用可变长掩码(VLSM)就是指一个网络可以用不同的掩码进行配置。

这样做的目的是为了使把一个网络划分成多个子网更加方便。

在没有VLSM的情况下,一个网络只能使用一种子网掩码,这就限制了在给定的子网数目条件下主机的数目。

例如你被分配了一个C类地址,网络号为,而你现在需要将其划分为三个子网,其中一个子网有100台主机,其余的两个子网有50台主机。

我们知道一个C类地址有254个可用地址,那么你如何选择子网掩码呢?从上表中我们发现,当我们在所有子网中都使用一个子网掩码时这一问题是无法解决的。

此时VLSM就派上了用场,我们可以在100个主机的子网使用,它可以使用,其中可用主机号为126个。

我们再把剩下的,子网掩码为,另一子网的地址从,这样就达到了要求。

可以看出合理使用子网掩码,可以使IP地址更加便于管理和控制。

参考资料:.cn/learn/net/sm.htm
资料二:IP地址与网络分类
(1)IP地址
不同的物理网络技术有不同的编址方式;不同物理网络中的主机,有不同的物理网络地址。

网间网技术是将不同物理网络技术统一起来的高层软件技术。

网间网技术采用一种全局通用的地址格式,为全网的每一网络和每一主机都分配一个网间网地址,以此屏蔽物理网络地址的差异。

IP协议提供一种全网间网通用的地址格式,并在统一管理下进行地址分配,保证一个地址对应一台网间网主机(包括网关),这样物理地址的差异被IP层所屏蔽。

IP层所用到的地址叫做网间网地址,又叫IP地址。

它由网络号和主机号两部分组成,统一网络内的所有主机使用相同的网络号,主机号是唯一的。

IP地址是一个32为的二进制数,分成4个字段,每个字段8位。

(2)三类主要的网络地址
我们知道,从LAN到WAN,不同种类网络规模相差很大,必须区别对待。

因此按网络规模大小,将网络地址分为主要的三类,如下:
A类:
0 1 2 3 8 16 24
3 1 0网络号主机号
B类:
1 0网络号主机号
C类:
1 1 0网络号主机号
A类地址用于少量的(最多27个)主机数大于216的大型网,每个A类网络可容纳最多224台主机;B类地址用于主机数介于28~216之间数量不多不少的中型网,B类网络最多214个;C类地址用于每个网络只能容纳28台主机的大量小型网,C类网络最多221个。

除了以上A、B、C三个主类地址外,还有另外两类地址,如下:
D类:
1 1 1 0多目地址
E类:
1 1 1 1 0留待后用
其中多目地址(multicast address)是比广播地址稍弱的多点传送地址,用于支持多目传输技术。

E
类地址用于将来的扩展之用。

(3)TCP/IP规定网络地址
除了一般地标识一台主机外,还有几种具有特殊意义的特殊形式。

*广播地址
TCP/IP规定,主机号全为“1”的网络地址用于广播之用,叫做广播地址。

所谓广播,指同时向网上所有主机发送报文。

*有限广播
前面提到的广播地址包含一个有效的网络号和主机号,技术上称为直接广播(directed boradcasting)
地址。

在网间网上的任何一点均可向其他任何网络进行直接广播,但直接广播有一个缺点,就是要知道信宿网络的网络号。

有时需要在本网络内部广播,但又不知道本网络网络号。

TCP/IP规定,32比特全为“1”的网间网地址用于本网广播,该地址叫做有限广播地址(limited broadcast address)。

*“0”地址
TCP/IP协议规定,各位全为“0”的网络号被解释成“本”网络。

*回送地址
A类网络地址127是一个保留地址,用于网络软件测试以及本地机进程间通信,叫做回送地址(loopback address)。

无论什么程序,一旦使用回送地址发送数据,协议软件立即返回之,不进行任何网络传输。

TCP/IP协议规定,一、含网络号127的分组不能出现在任何网络上;二、主机和网关不能为该地址广播任何寻径信息。

由以上规定可以看出,主机号全“0”全“1”的地址在TCP/IP协议中有特殊含义,不能用作一台主机的有效地址。

二、子网掩码
(1)子网TCP/IP网间网技术产生于大型主流机环境中,它能发展到今天的规模是当初的设计者们始料未及的。

网间网规模的迅速扩展对IP地址模式的威胁并不是它不能保证主机地址的唯一性,而是会带来两方面的负担:第一,巨大的网络地址管理开销;第二,网关寻径急剧膨胀。

其中第二点尤为突出,寻径表的膨胀不仅会降低网关寻径效率(甚至可能使寻径表溢出,从而造成寻径故障),更重要的是将增加内外部路径刷新时的开销,从而加重网络负担。

因此,迫切需要寻求新的技术,以应付网间网规模增长带来的问题。

仔细分析发现,网间网规模的增长在内部主要表现为网络地址的增减,因此解决问题的思路集中在:如何减少网络地址。

于是IP网络地址的多重复用技术应运而生。

通过复用技术,使若干物理网络共享同一IP网络地址,无疑将减少网络地址数。

子网编址(subnet addressing)技术,又叫子网寻径(subnetrouting),英文简称subnetting,是最广泛使用的IP网络地址复用方式,目前已经标准化,并成为IP地址模式的一部分。

一般的,32位的IP地址分为两部分,即网络号和主机号,我们分别把他们叫做IP地址的“网间网部分”和“本地部分”。

子网编址技术将本地部分进一步划分为“物理网络”部分和“主机”部分,如图:网间网部分物理网络主机
|←网间网部分→|←────本地部分─────→|
其中“物理网络”用于标识同一IP网络地址下的不同物理网络,既是“子网”。

(2)子网掩码IP协议标准规定:每一个使用子网的网点都选择一个32位的位模式,若位模式中的某位置1,则对应IP地址中的某位为网络地址(包括网间网部分和物理网络号)中的一位;若位模式中的某位置0,则对应IP地址中的某位为主机地址中的一位。

例如位模式:
00000000中,前三个字节全1,代表对应IP地址中最高的三个字节为网络地址;后一个字节全0,代表对应IP地址中最后的一个字节为主机地址。

这种位模式叫做子网模(subnet mask)或“子网掩码”。

为了使用的方便,常常使用“点分整数表示法”来表示一个IP地址和子网掩码,例如B类地址子网掩码(00000000)为:
IP协议关于子网掩码的定义提供一种有趣的灵活性,允许子网掩码中的“0”和“1”位不连续。

但是,这样的子网掩码给分配主机地址和理解寻径表都带来一定困难,并且,极少的路由器支持在子网中使用低序或无序的位,因此在实际应用中通常各网点采用连续方式的子网掩码。


(3)子网掩码与IP地址子网掩码与IP地址结合使用,可以区分出一个网络地址的网络号和主机号。

例如:有一个C类地址为:
192.9.200.13其缺省的子网掩码为:
255.255.255.0则它的网络号和主机号可按如下方法得到:
①将IP地址192.9.200.13转换为二进制00001001 00001101
②将子网掩码255.255.255.0转换为二进制00000000
③将两个二进制数逻辑与(AND)运算后得出的结果即为网络部分00001001 00001101 AND 00000000 00001001 00000000结果为,即网络号为
④将子网掩码取反再与IP地址逻辑与(AND)后得到的结果即为主机部分00001001 00001101 AND 00000000 00000000 00000000 00000000 00000000 00000000 00001101结果为,即主机号为13。

(4)子网掩码与IP地址子网掩码与IP地址结合使用,可以区分出一个网络地址的网络号和主机号。

例如:有一个C类地址为:
192.9.200.13 其缺省的子网掩码为:
255.255.255.0 则它的网络号和主机号可按如下方法得到:
①将IP地址192.9.200.13转换为二进制00001001 00001101
②将子网掩码255.255.255.0转换为二进制00000000
③将两个二进制数逻辑与(AND)运算后得出的结果即为网络部分00001001 00001101 AND 00000000 00001001 00000000结果为,
即网络号为192.9.200.0。

④将子网掩码取反再与IP地址逻辑与(AND)后得到的结果即为主机部分00001001 00001101 AND 00000000 00000000 00000000 00000000 00000000 00000000 00001101 结果为,即主机号为13。

三、子网划分与实例根据以上分析,建议按以下步骤和实例定义子网掩码。

1、将要划分的子网数目转换为2的m次方。

如要分8个子网,8=23。

2、取上述要划分子网数的2的m次方的幂。

如23,即m=3。

3、将上一步确定的幂m按高序占用主机地址m位后转换为十进制。

如m为3 则是,转换为十进制为224,即为最终确定的子网掩码。

如果是C类网,则子网掩码为;如果是B类网,则子网掩码为;如果是C类网,则子网掩码为
在这里,子网个数与占用主机地址位数有如下等式成立:2m=n。

其中,m表示占用主机地址的位数;n表示划分的子网个数。

根据这些原则,将一个C类网络分成4个子网。

若我们用的网络号为192.9.200,则该C类网内的主机IP地址就是,不作为有效的IP地址),现将网络划分为4个部分,按照以上步骤:4=22,取22的幂,即2,则二进制为11,占用主机地址的高序位即为,转换为十进制为192。

这样就可确定该子网掩码为:,4个子网的IP地址范围分别为:
二进制十进制
①00001001 00000001 00001001 00111110 192.9.200.1
192.9.200.62
②00001001 01000001 00001001 01111110 192.9.200.65
192.9.200.126
③00001001 00001001 192.9.200.129
192.9.200.190
④00001001 00001001 192.9.200.193
192.9.200.254
在此列出A、B、C三类网络子网数目与子网掩码的转换表,以供参考。

A类:
子网数目占用位数子网掩码子网中主机数21255.128.0.08,388,606 42255.192.0.04,194,302 83255.224.0.02,097,150 164255.240.0.01,048,574 325255.248.0.0524,286 646255.252.0.0262,142 1287255.254.0.0131,070 1288255.255.0.065,534
B类:
子网数目占用位数子网掩码子网中主机数21255.255.128.032,766 42255.255.192.016,382 83255.255.224.08,190 164255.255.240.04,094 325255.255.248.02,046 646255.255.252.01,022 *******.255.254.0510 *******.255.255.0254
C类:
子网数目占用位数子网掩码子网中主机数21255.255.255.128126 42255.255.255.19262 83255.255.255.22430 164255.255.255.24014 325255.255.255.248 6 646255.255.255.252 2。

相关文档
最新文档