蔬菜大棚智能测控系统

合集下载

《智能温室大棚监控系统的研究与设计》范文

《智能温室大棚监控系统的研究与设计》范文

《智能温室大棚监控系统的研究与设计》篇一一、引言随着现代科技的不断进步,农业科技作为支撑现代农业发展的重要支柱,也正在逐步升级与优化。

智能温室大棚监控系统是这一进步的体现之一,它不仅为农业种植提供了精准的环境控制,还能显著提高农作物的产量与品质。

本文旨在探讨智能温室大棚监控系统的设计与实现,通过对其系统架构、技术运用以及实施效果的研究,为现代农业的智能化发展提供一定的理论支持与实践指导。

二、系统架构设计1. 硬件架构智能温室大棚监控系统的硬件架构主要包括传感器网络、数据传输设备、中央处理单元和控制执行设备等部分。

传感器网络负责实时监测温室内的环境参数,如温度、湿度、光照强度等;数据传输设备将收集到的数据传输至中央处理单元;中央处理单元对数据进行处理与分析,并发出控制指令;控制执行设备则根据指令调整温室内的环境条件。

2. 软件架构软件架构则包括数据采集模块、数据处理与分析模块、控制指令输出模块以及用户交互界面等部分。

数据采集模块负责从传感器网络中获取数据;数据处理与分析模块对数据进行处理与存储,并运用算法进行环境预测与优化;控制指令输出模块根据分析结果发出控制指令;用户交互界面则提供友好的操作界面,方便用户进行系统操作与监控。

三、关键技术运用1. 传感器技术传感器技术是智能温室大棚监控系统的核心之一。

通过使用高精度的传感器,系统能够实时监测温室内的环境参数,如温度、湿度、光照强度等,为后续的数据处理与分析提供准确的数据支持。

2. 数据处理与分析技术数据处理与分析技术是智能温室大棚监控系统的关键环节。

通过对传感器收集到的数据进行处理与分析,系统能够实时掌握温室内的环境状况,并运用算法进行环境预测与优化,为控制指令的发出提供依据。

3. 控制执行技术控制执行技术是实现智能温室大棚监控系统精确控制的关键。

通过控制执行设备,系统能够根据中央处理单元发出的指令,调整温室内的环境条件,如开启或关闭通风口、调整遮阳设备等。

智能农业大棚控制系统的介绍

智能农业大棚控制系统的介绍

智能农业大棚控制系统的介绍
一、简介
智能农业大棚控制系统是一种新型的智能农业网络系统,它可以实现
温室大棚内环境参数(如温度、湿度、光照、土壤温度、土壤湿度等)的
监测、控制和调节,以保证大棚内环境条件的良好,可以为农业生产提供
最优的农业环境。

二、智能农业大棚控制系统的功能
1、温湿度控制:通过温湿度控制,可以实现温室大棚内部温度和湿
度的监测,以达到良好的温室环境条件,从而促进农作物生长发育。

2、气象参数检测:包括大气温度,大气湿度,大气压,大气温度,
风速,风向,降水。

这些参数可以提供及时准确的气象信息,以促进种植
体系之间的协调,使种植顺利进行。

3、植保控制:系统可以对农药,农膜,灌溉,温室照明,空气循环,农肥,种子等进行控制,以节约成本,保证植物健康生长发育。

4、自动灌溉控制:通过检测土壤湿度,可以自动控制灌溉,以保证
植物得到充足的水分,减少灌溉时间,节约农业水源。

5、远程控制:系统支持远程连接,可以通过手机,网络或其他移动
设备来进行智能化管理,实现远程监控和控制。

三、智能农业大棚控制系统的特点。

蔬菜大棚智能自动控制系统的信息管理系统的系统设计样本

蔬菜大棚智能自动控制系统的信息管理系统的系统设计样本

第1章绪论1.1 选题目和意义中华人民共和国农业发展必要走当代化农业这条道路,随着国民经济迅速增长,农业研究和应用技术越来越受到注重,特别是温室大棚已经成为高效农业一种重要构成某些。

当代化农业生产中重要环节就是对农业生产环境某些重要参数进行检测和控制。

例如:空气温度、湿度、二氧化碳含量、土壤含水量等。

在农业种植问题中,温室环境与生物生长、发育、能量互换密切有关,进行对监测数据分析,结合伙物生长发育规律,控制环境条件,使作物达到优质、高产、高效栽培目。

以蔬菜大棚为代体当代农业设施在当代化农业生产中发挥着巨大作用。

大棚内温度、湿度与二氧化碳含量等参量,直接关系到蔬菜和水果生长。

国外温室设施已经发展到比较完备限度,并形成了一定原则,但是价格非常昂贵,缺少与国内气候特点相适应测试软件。

而当今大多数对大棚温度、湿度、二氧化碳含量检测与控制都采用人工管理,这样不可避免有测控精度低、劳动强度大及由于测控不及时等弊端,容易导致不可弥补损失,成果不但大大增长了成本,挥霍了人力资源,并且很难达到预期效果。

因而,为了实现高效农业生产科学化并提高农业研究精确性,推动国内农业发展,必要大力发展农业设施与相应农业工程,科学合理地调节大棚内温度、湿度以及二氧化碳含量,使大棚内形成有助于蔬菜、水果生长环境,是大棚蔬菜和水果早熟、优质、高效能重要环节。

当前,随着蔬菜大棚迅速增多,人们对其性能规定也越来越高,特别是为了提高生产效率,对大棚自动化限度规定也越来越高。

因此急需一种高效实时监控设备,能实现大棚实时监控,迅速理解大棚内环境状态。

1.2 国内外有关研究综述1.2.1 国外状况世界发达国家如荷兰、美国、以色列等大力发展集约化温室产业,温室内温度、光照、水、气、肥实现了计算机调控,从品种选取、栽培管理到采集收包装形成了一整套规范化技术体系。

美国是最早创造计算机国家,也将计算机应用于温室控制和管理最早、最多国家之一。

美国有发达设施栽培技术,综合环境控制技术水平非常高。

《2024年智慧农业大棚监控系统的设计与实现》范文

《2024年智慧农业大棚监控系统的设计与实现》范文

《智慧农业大棚监控系统的设计与实现》篇一一、引言随着科技的发展,智慧农业成为了农业领域发展的重要方向。

智慧农业大棚监控系统是智慧农业的重要组成部分,通过集成物联网、传感器、大数据等先进技术,实现对农业大棚环境的实时监测和智能调控,提高农业生产效率和产品质量。

本文将介绍智慧农业大棚监控系统的设计与实现过程。

二、系统设计1. 系统架构设计智慧农业大棚监控系统采用分层设计的思想,主要包括感知层、传输层、应用层。

感知层负责采集大棚环境数据,传输层负责将数据传输到服务器端,应用层负责数据的处理和展示。

2. 硬件设计(1)传感器:传感器是智慧农业大棚监控系统的核心组成部分,主要包括温度传感器、湿度传感器、光照传感器、CO2浓度传感器等,用于实时监测大棚环境参数。

(2)控制器:控制器负责接收传感器数据,并根据预设的阈值进行相应的调控操作,如调节温室遮阳帘、通风口等。

(3)网络设备:网络设备包括无线通信模块和有线网络设备,用于将传感器数据传输到服务器端。

3. 软件设计(1)数据采集与处理:软件系统通过与硬件设备的通信,实时采集大棚环境数据,并进行预处理和存储。

(2)数据分析与展示:软件系统对采集的数据进行分析和挖掘,通过图表、报表等形式展示给用户,帮助用户了解大棚环境状况和作物生长情况。

(3)智能调控:软件系统根据预设的阈值和调控策略,自动或手动调节温室设备,如调节温室遮阳帘、通风口等,以保持大棚环境在最佳状态。

三、系统实现1. 硬件实现硬件设备选型与采购:根据系统需求,选择合适的传感器、控制器和网络设备,并进行采购。

设备安装与调试:将硬件设备安装在大棚内,并进行调试,确保设备能够正常工作并采集准确的数据。

2. 软件实现(1)数据采集与处理模块:通过与硬件设备的通信,实时采集大棚环境数据,并进行预处理和存储。

采用数据库技术对数据进行管理和维护。

(2)数据分析与展示模块:通过数据分析算法对采集的数据进行分析和挖掘,以图表、报表等形式展示给用户。

设施农业(温室大棚)环境智能监控系统解决方案

设施农业(温室大棚)环境智能监控系统解决方案

设施农业(温室大棚)环境智能监控系统解决方案1、系统简介该系统利用物联网技术,可实时远程获取温室大棚内部的空气温湿度、土壤水分温度、二氧化碳浓度、光照强度及视频图像,通过模型分析,远程或自动控制湿帘风机、喷淋滴灌、内外遮阳、顶窗侧窗、加温补光等设备,保证温室大棚内环境最适宜作物生长,为作物高产、优质、高效、生态、安全创造条件。

同时,该系统还可以通过手机、PDA、计算机等信息终端向农户推送实时监测信息、预警信息、农技知识等,实现温室大棚集约化、网络化远程管理,充分发挥物联网技术在设施农业生产中的作用。

本系统适用于各种类型的日光温室、连栋温室、智能温室。

2、系统组成该系统包括:传感终端、通信终端、无线传感网、控制终端、监控中心和应用软件平台。

620)this.style.width=620;" border=0>(1)传感终端温室大棚环境信息感知单元由无线采集终端和各种环境信息传感器组成。

环境信息传感器监测空气温湿度、土壤水分温度、光照强度、二氧化碳浓度等多点环境参数,通过无线采集终端以GPRS方式将采集数据传输至监控中心,以指导生产。

(2)通信终端及传感网络建设温室大棚无线传感通信网络主要由如下两部分组成:温室大棚内部感知节点间的自组织网络建设;温室大棚间及温室大棚与农场监控中心的通信网络建设。

前者主要实现传感器数据的采集及传感器与执行控制器间的数据交互。

温室大棚环境信息通过内部自组织网络在中继节点汇聚后,将通过温室大棚间及温室大棚与农场监控中心的通信网络实现监控中心对各温室大棚环境信息的监控。

620)this.style.width=620;" border=0>(3)控制终端温室大棚环境智能控制单元由测控模块、电磁阀、配电控制柜及安装附件组成,通过GPRS模块与管理监控中心连接。

根据温室大棚内空气温湿度、土壤温度水分、光照强度及二氧化碳浓度等参数,对环境调节设备进行控制,包括内遮阳、外遮阳、风机、湿帘水泵、顶部通风、电磁阀等设备。

蔬菜大棚智能环境参数测控系统的研究

蔬菜大棚智能环境参数测控系统的研究
Ab t a t s r c :On id o tlie t a u e n nd c n r l y tm s t d c d I u e it b td c n r l y t m d C ek n f n el n i g me s r me t a o to se Wa i r u e . t s d d sr u e o t se a A s n o i o s n N
wet e o dtei a prme r, ess m w la tmacl o t l e l tcl h r e a s r e t t r e etro n y n el aa ts t t i uo t al cnr e r gt e j ae b h d f o t wa re o t h h h n h h t

要: 构建 了一种蔬菜大棚智 能环境参数测控系统。 系统采用分布式结构 , A 总线通讯方 式。 该 CN 系统通
过实时检 测温室环境 温度 、 湿度 、 光照度和 C 2 O 浓度以及土壤湿度 , 与预设的参数指标进行 比较 , 如果超 出范围, 自 动打开控 制系统,控制 电灯、风机 、喷水器、加热器 、降温泵等进行操作,使 蔬菜 生长环境实现 自动控制.上 位机软件采用 V B语言编写 ,可实现数据 的存储 、显示、控制参数设置、数据查询和打 印等功能。
果超 出范 围 ,自动 打 开控 制 系 统 , 制 电灯 、风机 、喷水 器 、 控
育且对生长环境要求苛刻的植物,如花卉 、药材等,在温室
中准确地控制植物生长所 需的环境条件 ,具有重要作用。目 前 , 室环境测控系统通讯方式主要有: 温 基于 4 5总线、 A 8 C N
加热器 、 降温泵等进行操 作, 使植物 生长环境实现 自动控制。 1 蔬菜大棚智能环境参数测控系统的原理

课程设计—蔬菜大棚自动控制系统

课程设计—蔬菜大棚自动控制系统

检测课程设计—蔬菜大棚智能控制系统学院:电气学院专业班级:电仪09—3班姓名:朱学政指导教师:董爱华李良目录1.摘要-----------------------------------------32. 实验所需元器件-------------------------------33. 实验整体结构图-------------------------------44. 传感器简介------------------------------------------------------74.1.1 DS18B20简介----------------------------------------------------74.1.2 DS18B20的性能特点-------------------------------------------74.2.1 DHT11简介-------------------------------------------------------74.2.2 DHT11的性能特点----------------------------------------------84.3 热释电传感器模块简介及特性---------------------------------104.4 光敏电阻传感器原理及特性------------------------------------114.5 ZigBee无线模块简介---------------------------------------------125. 温室大棚控制系统软件设计------------------------125.1.1 下位机软件设计-------------------------------------------------125.1.2 编程软件简介----------------------------------------------------155.2.1 上位机软件设计-------------------------------------------------155.2.2 Microsoft Visual Studio 2008编程软件简介----------------166. 总结-------------------------------------------------------------17附录------------------------------------------------------------------18参考文献----------------------------------------37蔬菜大棚智能控制系统1. 摘要随着单片机和传感技术的迅速发展,自动检测领域发生了巨大变化,温室环境自动监测控制方面的研究有了明显的进展,并且必将以其优异的性能价格比,逐步取代传统的温湿度与光照强度的控制措施。

基于单片机的农业大棚智能监控网络系统设计

基于单片机的农业大棚智能监控网络系统设计

基于单片机的农业大棚智能监控网络系统设计随着科技的发展和人工智能的应用,农业大棚智能监控系统已经成为农业生产中不可或缺的一部分。

这个系统可以帮助农民监测植物生长环境的各种参数,辅助农民进行农作物的及时管理和调控,提高生产效率和质量。

在这篇文章中,我们将介绍一个基于单片机的农业大棚智能监控网络系统的设计,以及它的工作原理和应用前景。

一、系统设计概述1)系统功能基于单片机的农业大棚智能监控网络系统通常包括环境监测模块、数据传输模块、数据处理模块和用户界面模块。

系统的功能主要包括:- 监测大棚内温度、湿度、光照等环境参数;- 基于传感器数据,实时分析大棚内环境的变化;- 控制通风、灌溉等设备,实现远程操控;- 数据传输和存储,实现数据的远程监控和管理;- 用户界面的设计,便于农民远程监控和管理。

2)系统组成系统主要由传感器、单片机、无线通信模块、执行器等组成。

传感器用于采集环境参数数据,单片机负责数据处理和控制,无线通信模块用于数据传输和远程控制,执行器用于执行控制指令。

3)系统优势相比传统的农业生产方式,基于单片机的农业大棚智能监控网络系统具有以下优势: - 实时监测:可以实时监测大棚内的环境参数,及时发现和解决问题;- 远程控制:农民可以通过手机或电脑远程控制大棚内的设备,方便灵活;- 数据分析:系统可以通过数据分析,为农民提供决策参考;- 节约成本:降低人工成本和资源浪费,提高生产效率和质量。

二、系统工作原理1)传感器采集数据传感器负责采集大棚内的环境参数数据,包括温度、湿度、光照等。

不同类型的传感器可以满足不同的监测需求,比如温湿度传感器、光照传感器等。

2)单片机数据处理单片机负责接收传感器采集的数据,并进行处理和分析。

单片机可以根据预设的环境参数范围,判断当前环境是否符合要求,如果不符合要求,可以发出报警或控制指令。

3)无线通信模块传输数据单片机处理后的数据通过无线通信模块传输到远程监控中心或用户手机、电脑上。

基于PLC的智能蔬菜大棚控制系统设计简述

基于PLC的智能蔬菜大棚控制系统设计简述

基于PLC的智能蔬菜大棚控制系统设计简述随着人口的不断增长和城市化的加速,对蔬菜的需求越来越大。

传统的农业种植方式受到地域、气候等因素的限制,无法满足人们对高品质蔬菜的需求。

在这种情况下,智能蔬菜大棚被提上了议事日程。

智能蔬菜大棚利用先进的技术对温度、湿度、光照等环境因素进行精准控制,以达到最佳的种植条件,不仅可以提高蔬菜的产量和品质,还可以降低能耗和投入,是一种可持续发展的农业种植方式。

在智能蔬菜大棚中,PLC(可编程逻辑控制器)是至关重要的设备。

PLC是一种专门用于工业自动化控制的计算机,通过输入输出模块与传感器、执行器等设备相连,对整个系统进行监控和控制。

因其可靠性高、操作简单、抗干扰能力强等优点,PLC在智能蔬菜大棚控制系统中得到了广泛应用。

智能蔬菜大棚控制系统的设计一般包括传感器模块、执行器模块、PLC控制器、软件程序等组成部分。

传感器模块负责感知大棚内的环境因素,如温度、湿度、光照等;执行器模块则负责控制大棚内的设备,如灯光、喷灌系统等。

PLC控制器是整个系统的核心,负责接收传感器模块的反馈信号,根据预设的逻辑程序控制执行器模块,以实现对大棚内环境的精准调控。

在设计智能蔬菜大棚控制系统时,首先需要充分了解大棚内的种植环境要求,包括不同蔬菜种类对温湿度、光照等因素的需求。

然后根据这些需求,选择合适的传感器和执行器,并与PLC控制器相连接。

接下来,编写PLC控制程序,通过逻辑判断和控制命令实现对大棚内环境的智能调控。

最后进行系统集成和调试,确保系统能够稳定可靠地运行。

在智能蔬菜大棚控制系统的设计中,需要考虑以下几个方面:1. 灵活性:不同蔬菜种类和生长阶段对环境的需求有所不同,因此系统需要具备一定的灵活性,能够根据实际需要进行调整。

这要求PLC控制程序能够简单易懂、易于修改。

2. 稳定性:智能蔬菜大棚是一种长期运行的系统,稳定性是其设计的重要指标。

PLC控制器需要具备高可靠性和抗干扰能力,能够应对各种突发情况。

智能温室大棚环境监测系统

智能温室大棚环境监测系统

智能温室大棚环境监测系统一、产品介绍智能温室大棚环境监测系统是由超声波气象传感器、土壤温度水分传感器、土壤温度水分电导率三合一变送器、气象监控主机和LED显示屏构成,可以实现对温室大棚内的温度、湿度、光照、土壤温度、土壤含水量、CO,浓度等与农作物生长紧密相关环境参数的实时采集,并将数据实时上传竞道农业四情测报平台。

二、监测内容针对温室大棚的空气温度、湿度、二氧化碳和光照强度的连续监测实时告警。

三、监测效果通过安装超声波气象传感器对温室大棚环境温度、湿度、二氧化碳和光照强度进行实现监测。

变送器通过RS485智能接口及通讯协议接入气象监控主机,由4G无线传输或RJ45网口将数据上传至服务器,发送到农业四情测报平台进行实时监测。

当温度、湿度、二氧化碳和光照强度超过设置的上下阈值时,系统自动触发短信、语音、邮件告警,通知管理人员紧急处理。

四、监测功能超声波气象传感器采纳ASA工程塑料材质,体积小、重量轻,采纳优质抗紫外线材质,使用寿命长,采纳高灵敏度的探头,信号稳定,精度高。

关键部件采纳进口器件,稳定牢靠,具有测量范围宽、线形度好、防水性能好、使用便利、便于安装、传输距离远等特点。

五、监测参数空气温度:—40—60℃(0.3℃);2、空气湿度:0—100%RH(3%RH);3、PM2.5:0—1000ug/m3(10%)4、PM10:0—1000ug/m3(10%)5、土壤水分:测量范围:0—100%,精度:3%,探针长度:5.5cm,探针直径:3mm,探针材料:不锈钢6、土壤温度:测温范围—40+125℃,测量精度0.5℃,辨别率:0.1℃7、土壤电导率:测量范围可选量程:0—5000us/cm,10000us/cm,20000us/cm,测量精度0—10000us/cm范围内为3%;10000—20000us/cm范围内为5%,辨别率0—10000us/cm内10us/cm,100000—20000us/cm内50us/cm。

基于PLC的智能蔬菜大棚控制系统设计简述

基于PLC的智能蔬菜大棚控制系统设计简述

基于PLC的智能蔬菜大棚控制系统设计简述智能蔬菜大棚控制系统是利用PLC(可编程逻辑控制器)作为核心,通过传感器、执行器等装置对大棚环境进行监测和控制,实现对蔬菜生长环境的精准调控。

本文将针对基于PLC的智能蔬菜大棚控制系统的设计进行简述。

1. 系统结构智能蔬菜大棚控制系统的结构主要包括传感器、执行器、PLC控制器、人机界面(HMI)以及通信网络等组成。

传感器用于感知大棚内部的环境参数,例如温度、湿度、光照等;执行器用于控制大棚内的设备,例如通风系统、灌溉系统等;PLC控制器则是系统的核心,接收传感器的信号并根据预设的控制逻辑进行对环境的调控;人机界面则是用户与系统交互的接口,通过HMI界面用户可以实时监测大棚环境、设置参数以及进行控制操作;通信网络用于实现系统与外部设备的数据交换和远程监控。

2. 控制策略智能蔬菜大棚控制系统的控制策略主要包括温度控制、湿度控制、光照控制、CO2浓度控制、灌溉控制等。

通过传感器感知大棚内的环境参数,并根据预设的控制策略,PLC控制器可以对大棚内部设备进行精准的调控。

例如在温度控制方面,PLC控制器可以根据预设的温度范围,控制通风系统和加热系统的开关,以保持大棚内的温度在适宜的范围内;在灌溉控制方面,根据土壤湿度传感器的反馈,PLC控制器可以控制灌溉系统的开关,保持土壤的适宜湿度。

3. 系统优势基于PLC的智能蔬菜大棚控制系统相较于传统的人工操作具有诸多优势。

系统能够自动化地监测和控制大棚内的环境参数,无需人工持续进行监测和调控,降低了劳动成本。

系统具有精准的控制能力,可以根据蔬菜的生长需求精确调控大棚内的环境,提高了蔬菜的产量和质量。

通过人机界面用户可以远程对大棚进行监控和控制,实现了远程智能化管理。

4. 系统实现基于PLC的智能蔬菜大棚控制系统的实现需要经过系统设计、硬件选型、程序编写、现场调试等多个工程阶段。

在系统设计阶段,需要根据大棚的实际情况和蔬菜的生长需求,确定系统的功能模块和控制策略,并选择合适的传感器、执行器、PLC控制器和人机界面等硬件设备。

基于云平台的智能农业大棚系统

基于云平台的智能农业大棚系统

基于云平台的智能农业大棚系统智能农业大棚系统是一种基于云平台的先进技术,利用物联网、大数据、人工智能等技术,结合现代农业生产实践,实现对大棚内环境进行监测和控制,提高农业生产效率和质量,实现节约资源、减少环境污染、优化农业生产。

智能农业大棚系统的设计、开发和运行,体现了科技与农业的紧密结合,是农业现代化的重要组成部分。

一、智能农业大棚系统的构成智能农业大棚系统主要包含以下几个部分:1.传感器设备:用于监测大棚内的温度、湿度、光照强度、二氧化碳浓度、土壤湿度等环境指标。

2.执行器设备:用于控制大棚内的通风、灌溉、遮阳等设备,维持大棚内适宜的生长环境。

3.数据采集和处理设备:用于采集传感器设备的数据,并对数据进行处理和分析,为决策提供依据。

4.云平台:作为智能农业大棚系统的中枢,接收和存储数据,进行数据分析和挖掘,为用户提供决策支持。

5.用户终端:用户可以通过手机客户端或网页端查看大棚内各项环境指标,进行远程控制和管理。

三、智能农业大棚系统的应用范围智能农业大棚系统可以广泛应用于蔬菜、水果、草莓、花卉等多种作物的生产中,特别是在大棚种植上具有广阔的应用前景。

智能农业大棚系统不仅适用于现代农业生产,也适用于城市居民家庭自建的户外蔬菜大棚、农村家庭的小棚设施等多种场景。

四、智能农业大棚系统的实际应用案例1.上海交通大学农业科学与工程学院建设了一座智能大棚,利用云平台实现了对大棚内环境的实时监控和控制,结合大数据分析和人工智能技术,实现了高效、节约资源、环保的种植模式,实现了优质、高产、安全的生产效果。

2.北京农业大学在海淀校区建设了一座智能大棚,应用了物联网技术和大数据分析技术,实现了大棚内光照、温湿度、CO2浓度等参数的实时监测和控制,结合温室气候模型和作物生长模型,为大棚内的蔬菜生产提供了科学的管理决策。

五、智能农业大棚系统的未来发展随着农业现代化水平的不断提高,智能农业大棚系统将在未来得到更广泛的应用。

基于单片机的蔬菜大棚温湿度智能控制系统设计

基于单片机的蔬菜大棚温湿度智能控制系统设计

基于单片机的蔬菜大棚温湿度智能控制系统设计前言随着我国国民经济的发展,人民生活水平日益提高,尤其是在北方地区的寒冷冬季,仅靠南菜北调的长途运输,不仅成本高,而且延误蔬菜的最佳食用周期,所以大力推广蔬菜大棚温湿度智能控制,事在必行。

随着社会的不断发展,人们生活水平的不断提高,物质需求的增长也不断增加,尤其实在寒冷的北方地区,冬季的蔬菜尤其重要,仅靠南菜北调不仅难以满足日渐庞大的需求,同时也会消耗大量的人力物力,所以蔬菜大棚的管理势在必行。

蔬菜大棚的设计其实就是反季节种植,大棚内部的环境必然与外界环境有很多不同之处,在保证内部温度的同时还要做到湿度的控制,所以蔬菜大棚温湿度智能控制系统是蔬菜大棚设计的首选。

智能系统的设计必须满足对大棚内各部分温湿度数据的检测与控制,保证大棚内温度、湿度、光照的必须条件切误差不能过大,蔬菜大棚的温湿度控制不是线性的,所以系统的延迟性不能过高,否则影响大棚的控制。

结合以上特点,传统的大棚人工控制是落后且浪费资源的,温湿度智能控制系统采用了多点温湿度传感器采集各点数据,首先就保证了数据的准确性,及时性,其次采集信息通过4位数码管显示,方便我们排查干扰条件,当采集条件超过我们预设的最低或最高值时,系统通过报警电路对我们进行及时的数据报警,保证大棚环境的稳定。

这些新技术的发明,为当代人们打开了一个全新的技术领域.1 系统设计功能1.1 蔬菜大棚特点及监控要求分析塑料大棚种植蔬菜是反季节种植,外界环境的变化与正常蔬菜生长发育所处自然环境的变化相反;同时,塑料大棚本身调节环境因素的能力有限,必然导致蔬菜生长发育与环境因素以及大棚内环境因素之间的矛盾难以调和,给生产带来诸多问题。

塑料大棚环境的主要特点是:①塑料大棚的半封闭式结构不利于人工检测棚内各个点的温湿度。

②塑料大棚的半封闭式结构决定了棚内湿度大,湿度过大极易导致病虫害发生。

③棚内环境多变、复杂,光照不足、温度低,同时还存在温差过大等问题,温度过高过低或温差大都不利于蔬菜生长。

基于PLC的智能蔬菜大棚控制系统设计简述

基于PLC的智能蔬菜大棚控制系统设计简述

基于PLC的智能蔬菜大棚控制系统设计简述
智能蔬菜大棚控制系统是一种基于PLC(可编程逻辑控制器)的自动化控制系统,旨在实现对蔬菜大棚环境的监测和调控,提高蔬菜的生长环境,并提高生产效率和品质。

该系统主要包括环境监测、水肥控制、温度调控和光照控制等功能。

在环境监测方面,系统通过传感器实时监测大棚内温度、湿度、二氧化碳浓度等参数,并将数据传输到PLC
中进行处理。

水肥控制方面,系统可以通过PLC控制水肥的供给和排水,根据蔬菜的需求
来定时浇水和施肥,确保蔬菜的营养摄取。

温度调控方面,系统通过控制大棚内通风设备、加温设备、降温设备等来维持适宜的温度,保证蔬菜的正常生长。

光照控制方面,系统通
过PLC控制大棚内照明设备的开关和亮度,提供适宜的光照条件,促进蔬菜的光合作用。

系统还可以通过云端平台进行远程监控和控制,实现远程操作和数据查询。

通过手机APP或者电脑浏览器,用户可以随时随地监测大棚内的环境参数和蔬菜生长状况,并可以
进行相应的调控,提高管理效率和决策准确性。

整个系统的设计需要考虑到大棚内的各个环境参数的相互关联性和对蔬菜生长的影响,需要根据蔬菜种类和生长阶段来确定合适的环境条件和控制策略。

系统的安全性和可靠性
也是需要考虑的因素,如防雷击、防火灾等安全措施的设计。

基于PLC的智能蔬菜大棚控制系统通过自动化技术和数据管理手段,可以有效提升蔬
菜生产的质量和产量,降低劳动成本,实现智能化和可持续发展。

智能蔬菜大棚温度控制系统设计

智能蔬菜大棚温度控制系统设计

Part 5
系统软件设计
系统主流程
系统软件设计
开开始始
6、升温电路
➢ 系统通电,个器件初始化
➢ 温度传感器启动,同时读 取当前环境温度值,读取 成功后线性拟合数据。
➢ 将温度数据在显示器显示。
➢ 将读取的环境温度值与设 定的温度上下限进行比较, 如果环境温度过限,则蜂 鸣器发出声音报警,并启 动机械控制设备;
➢ K4:减小键,减小上限 温度和下限温度,分度 值1℃;
➢ K5:确定键
系统硬件设计
5、机械控制电路
➢ 直流电机 ➢ 继电器 ➢ 通过三极管的导通与截
止,控制电机的转动, LED的发光。
系统硬件设计
6、升温电路
➢ 发热电阻丝 ➢ 继电器 ➢ 通过三极管的导通与截
止,控制发热电阻丝的 通电与断电,LED的发 光。
Part 2
论文主要内容
论文结构 具体内容
论文主要内容
系统设计方案
➢ 系统设计要求
➢ 系统功能需求分析
➢ 系统的结构组成
➢ 各模块的设计
02
系统软件设计
➢ 主程序
➢ 测温读取子程序 ➢ 显示子程序
04
➢ 机械控制子程序
➢ 定时器子程序
01
系统硬件设计
➢ 单片机最小系统
➢ 温度采集电路
➢ 显示电路
聆听谢
恳请各位老师批评指正!
系统硬件设计
2、温度采集电路
➢ DS18B20温度传感器 ➢ 测量范围为-55℃~
+125℃ ➢ 可以直接读出被测
温度值
3、显示电路
➢ LCD1602 ➢ 可以显示2行16个
字符
系统硬件设计

智慧大棚检测系统设计设计方案

智慧大棚检测系统设计设计方案

智慧大棚检测系统设计设计方案智慧大棚检测系统设计方案一、系统概述智慧大棚检测系统是基于物联网技术的智能农业解决方案之一,通过传感器和网络通信技术,实时监测大棚内的环境参数,为农民提供科学的种植指导和决策支持,提高农作物的产量和质量。

二、系统组成智慧大棚检测系统主要由传感器模块、数据采集模块、数据处理模块和用户界面模块组成。

1. 传感器模块:采用多种环境参数传感器,例如温湿度传感器、光照传感器、土壤湿度传感器等,用于实时监测大棚内的温湿度、光照及土壤湿度等关键环境参数。

2. 数据采集模块:负责将传感器模块获取的环境参数数据进行采集,并通过无线通信方式发送给数据处理模块。

3. 数据处理模块:接收数据采集模块发送的数据,并进行数据处理、分析和存储,通过算法模型对环境参数进行实时分析和预测,为农民提供及时的决策支持。

4. 用户界面模块:为农民提供友好的用户交互界面,通过应用软件或网页页面形式展示传感器采集的数据,包括环境参数趋势图、警报信息等,同时提供交互功能,农民可以通过界面模块进行设备的远程控制、设置参数等操作。

三、系统功能1. 实时监测:通过传感器模块,实时监测大棚内的环境参数,包括温度、湿度、光照强度、土壤湿度等。

2. 数据采集和传输:数据采集模块将传感器获取的数据进行采集,并通过无线通信方式传输给数据处理模块。

3. 数据处理与分析:数据处理模块负责接收数据,进行数据分析和处理,并通过算法模型对环境参数进行实时分析和预测。

4. 决策支持:根据数据处理模块的分析结果,为农民提供科学的种植指导和决策支持,包括灌溉、通风、温度控制等。

5. 警报和报警功能:当系统检测到某个环境参数超过设定阈值时,会自动发送警报和报警信息给农民,及时解决问题,避免损失。

6. 远程控制:通过用户界面模块,农民可以实现对大棚内的设备进行远程控制,包括灌溉系统、温度调节器等的开关控制,方便操作。

7. 数据存储和查询:系统将采集的数据进行实时存储,农民可以通过用户界面模块进行数据查询,并生成环境参数的趋势图等数据分析报告。

《2024年智慧农业大棚监控系统的设计与实现》范文

《2024年智慧农业大棚监控系统的设计与实现》范文

《智慧农业大棚监控系统的设计与实现》篇一一、引言随着科技的飞速发展,智慧农业逐渐成为农业现代化的重要方向。

智慧农业大棚监控系统作为智慧农业的重要组成部分,能够实现对大棚内环境参数的实时监测、控制与管理,提高农作物的产量与品质。

本文将详细介绍智慧农业大棚监控系统的设计与实现过程。

二、系统设计1. 需求分析在系统设计阶段,首先需要进行需求分析。

需求分析主要包括对大棚环境参数的监测需求、对大棚内设备的控制需求以及对系统操作界面的需求等。

根据实际需求,确定系统需要监测的环境参数包括温度、湿度、光照强度等,需要控制的设备包括灌溉系统、通风系统等。

2. 系统架构设计根据需求分析结果,设计系统架构。

智慧农业大棚监控系统采用分层架构设计,包括感知层、传输层、控制层和应用层。

感知层负责采集大棚内环境参数和设备状态信息;传输层负责将感知层采集的数据传输到控制层;控制层负责根据应用层的指令对设备进行控制;应用层提供用户界面,方便用户进行操作和管理。

3. 硬件设计硬件设计主要包括传感器选择、数据采集器选择、通信模块选择等。

传感器用于采集大棚内环境参数和设备状态信息,数据采集器用于将传感器采集的数据进行整合和预处理,通信模块用于将数据传输到控制层。

此外,还需要设计电源模块、控制模块等硬件设备,以保证系统的稳定运行。

4. 软件设计软件设计主要包括操作系统选择、数据处理与分析软件选择、用户界面设计等。

操作系统用于支撑整个系统的运行,数据处理与分析软件用于对采集的数据进行处理和分析,用户界面用于方便用户进行操作和管理。

此外,还需要设计相应的算法,以实现对大棚内环境的智能调控。

三、系统实现1. 硬件实现根据硬件设计,制作相应的硬件设备。

传感器应选择精度高、稳定性好的产品,数据采集器应具备高性价比和易用性,通信模块应支持多种通信协议,以保证系统的兼容性和可扩展性。

同时,需要制作电源模块和控制模块等设备,以确保整个系统的稳定运行。

2. 软件实现在软件实现阶段,首先需要搭建操作系统平台,然后开发数据处理与分析软件和用户界面。

基于PLC的智能蔬菜大棚控制系统设计简述

基于PLC的智能蔬菜大棚控制系统设计简述

基于PLC的智能蔬菜大棚控制系统设计简述随着科技的发展和人们对健康生活的追求,蔬菜大棚种植技术得到了广泛的应用。

为了提高大棚蔬菜的产量和质量,以及优化生产流程,智能化控制系统逐渐成为蔬菜大棚种植的必备装备之一。

本文将基于PLC的智能蔬菜大棚控制系统进行设计简述,以期为相关领域的从业者提供参考和借鉴。

1.系统组成智能蔬菜大棚控制系统主要由传感器、PLC控制器、执行机构、人机界面(HMI)、数据采集和处理模块等组成。

传感器用于感知大棚内的环境参数,包括温度、湿度、光照强度、CO2浓度等;PLC控制器负责对传感器采集的数据进行分析和处理,控制大棚内的灯光、喷灌、通风等设备的运行;执行机构则是根据PLC的指令,实现对大棚内环境的调控;人机界面用于与操作人员进行交互,展示大棚内各种参数和状态,并提供远程监控和控制的功能;数据采集和处理模块则负责采集、存储和分析大棚内的数据信息,为生产决策提供依据。

2.系统功能智能蔬菜大棚控制系统的主要功能包括自动控温、自动控湿、自动补光、自动喷灌、CO2浓度控制等。

在温度方面,系统能够根据设定的温度范围,自动控制大棚内的加热和通风设备的运行,以维持大棚内的温度在适宜的范围内;在湿度方面,系统通过控制喷雾设备和通风设备的运行,实现大棚内湿度的自动调节;在光照方面,系统能够根据光照传感器采集的数据,自动调节补光灯的亮度和工作时间,以确保蔬菜在充足的光照下生长;在喷灌方面,系统能够根据土壤湿度传感器采集的数据,自动控制喷灌系统的开关,实现对蔬菜的定量喷灌;在CO2浓度控制方面,系统能够根据CO2浓度传感器采集的数据,自动调控通风设备的运行,以保持大棚内的CO2浓度在适宜的范围内。

3.系统设计智能蔬菜大棚控制系统的设计需要充分考虑到大棚内的环境特点和作物的生长需求,同时考虑到系统的稳定性、可靠性和安全性。

在传感器选择上,需要选择精度高、稳定性好的传感器,以保证传感器采集的数据的准确性和可靠性;在PLC控制器的选型上,需要选择适合大棚环境工作的PLC控制器,以及具备丰富的输入输出接口和通信接口,以满足大棚内各种设备的控制需求;在执行机构的选型上,需要选择能够适应大棚环境的执行机构,具备良好的响应速度和稳定性;在人机界面的设计上,需要考虑到操作人员的使用习惯和操作便捷性,以及系统的可视化和易操作性;在数据采集和处理模块的设计上,需要选择存储容量大、计算速度快的设备,并采用合适的数据处理算法,以保证大棚内的数据信息能够及时、准确地被采集和处理。

智能农业大棚控制系统使用指南

智能农业大棚控制系统使用指南

智能农业大棚控制系统使用指南第一章概述 (3)1.1 系统简介 (3)1.2 功能特点 (3)1.2.1 实时监测 (3)1.2.2 自动调控 (3)1.2.3 数据分析 (3)1.2.4 远程控制 (3)1.2.5 故障报警 (4)1.2.6 节能环保 (4)1.2.7 扩展性强 (4)第二章系统安装与调试 (4)2.1 硬件安装 (4)2.1.1 安装前准备 (4)2.1.2 安装步骤 (4)2.2 软件配置 (5)2.2.1 软件安装 (5)2.2.2 参数配置 (5)2.2.3 系统调试 (5)2.3 系统调试 (5)第三章用户界面与操作 (6)3.1 界面布局 (6)3.1.1 主界面 (6)3.1.2 功能模块界面 (6)3.2 功能模块操作 (7)3.2.1 环境监测模块操作 (7)3.2.2 设备控制模块操作 (7)3.2.3 数据统计模块操作 (7)3.3 数据查看与导出 (7)3.3.1 数据查看 (7)3.3.2 数据导出 (7)第四章环境监测与控制 (8)4.1 温湿度监测与调节 (8)4.1.1 温湿度监测 (8)4.1.2 温湿度调节 (8)4.2 光照监测与调节 (8)4.2.1 光照监测 (8)4.2.2 光照调节 (8)4.3 土壤监测与调节 (8)4.3.1 土壤监测 (8)4.3.2 土壤调节 (9)第五章作物管理 (9)5.2 生长周期管理 (9)5.3 肥水管理 (10)第六章病虫害防治 (10)6.1 病虫害监测 (10)6.1.1 监测方法 (10)6.1.2 监测流程 (11)6.2 防治措施 (11)6.2.1 物理防治 (11)6.2.2 化学防治 (11)6.2.3 综合防治 (11)6.3 预警与提醒 (11)6.3.1 预警功能 (11)6.3.2 提醒功能 (11)6.3.3 信息推送 (11)第七章数据分析与报告 (11)7.1 数据分析 (11)7.1.1 数据采集 (11)7.1.2 数据处理 (12)7.1.3 数据分析指标 (12)7.1.4 数据分析结果展示 (12)7.2 报告 (12)7.2.1 报告模板 (12)7.2.2 报告内容 (12)7.2.3 报告流程 (12)7.3 报告导出与打印 (12)7.3.1 报告导出 (12)7.3.2 报告打印 (12)第八章系统维护与保养 (13)8.1 硬件维护 (13)8.1.1 检查内容 (13)8.1.2 维护方法 (13)8.2 软件升级 (13)8.2.1 升级原因 (13)8.2.2 升级方法 (14)8.3 故障处理 (14)8.3.1 常见故障 (14)8.3.2 故障处理方法 (14)第九章安全与隐私 (14)9.1 数据安全 (14)9.1.1 数据加密 (15)9.1.2 数据备份 (15)9.1.3 数据访问权限管理 (15)9.2 用户隐私 (15)9.2.2 用户行为数据保护 (15)9.2.3 用户隐私设置 (15)9.3 系统防护 (15)9.3.1 防火墙设置 (15)9.3.2 入侵检测与防护 (15)9.3.3 安全漏洞修复 (16)9.3.4 系统更新与维护 (16)第十章常见问题与解答 (16)10.1 系统操作问题 (16)10.2 硬件故障问题 (16)10.3 软件使用问题 (16)第一章概述1.1 系统简介智能农业大棚控制系统是一款集成了现代传感技术、信息处理技术、网络通信技术及自动控制技术的高科技产品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蔬菜大棚智能测控系统第一章绪论1.1 选题的背景及研究意义:中国农业的发展必须走现代化农业这条道路,随着国民经济的迅速增长,农业的研究和应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。

现代化农业生产中的重要一环就是对农业生产环境的一些重要参数进行检测和控制。

例如:空气的温度、湿度、二氧化碳含量、土壤的含水量等。

在农业种植问题中,温室环境与生物的生长、发育、能量交换密切相关,进行环境测控是实现温室生产管理自动化、科学化的基本保证,通过对监测数据的分析,结合作物生长发育规律,控制环境条件,使作物达到优质、高产、高效的栽培目的。

以蔬菜大棚为代表的现代农业设施在现代化农业生产中发挥着巨大的作用。

大棚内的温度、湿度与二氧化碳含量等参数,直接关系到蔬菜和水果的生长。

国外的温室设施己经发展到比较完备的程度,并形成了一定的标准,但是价格非常昂贵,缺乏与我国气候特点相适应的测控软件。

而当今大多数对大棚温度、湿度、二氧化碳含量的检测与控制都采用人工管理,这样不可避免的有测控精度低、劳动强度大及由于测控不及时等弊端,容易造成不可弥补的损失,结果不但大大增加了成本,浪费了人力资源,而且很难达到预期的效果。

因此,为了实现高效农业生产的科学化并提高农业研究的准确性,推动我国农业的发展,必须大力发展农业设施与相应的农业工程,科学合理地调节大棚内温度、湿度以及二氧化碳的含量,使大棚内形成有利于蔬菜、水果生长的环境,是大棚蔬菜和水果早熟、优质、高效益的重要环节。

目前,随着蔬菜大棚的迅速增多,人们对其性能要求也越来越高,特别是为了提高生产效率,对大棚的自动化程度要求也越来越高。

由于单片机及各种电子器件性价比的迅速提高,使得这种要求变为可能......第2章检测电路设计2.1基于嵌入式Web服务器的智能温室监控系统:现代化的温室监控系统用来实时采集温室内温度、湿度、光照、土壤温度、CO2浓度、叶面湿度、露点温度等环境参数,根据种植作物的需求提供各种声光报警信息。

当温湿度超过设定值的时候,自动开启或者关闭指定设备。

现有的温室监控系统采用无线方式的居多,且传输范围有限,价格比较昂贵,与其他系统的兼容性不好。

本设计提出基于以太网的温室监控系统,使用Luminary公司的LM3S102处理器,在其有限的内存空间上构建精简的TCP /IP协议栈,实现通用的嵌入式Web服务器,实现基于以太网的智能温室大棚监控功能。

1 系统设计:系统由传感器子系统、Web服务器子系统、外设控制子系统、人机接口子系统4个部分组成。

基本结构如图1所示。

系统工作流程简述如下:通过传感器子系统采集,获得温室中的光照、温度、湿度等关键信息后处理加工,变成可以经TCP/IP协议传输的以太网数据包。

数据传输采用监控终端计算机主动获取的方式,可以始终获取,也可以在需要的时候获取。

监控终端计算机只需具备通用的IE浏览器,即可访问嵌入式Web服务器的控制界面,查看每一个温室监控节点的数据信息,实现对大棚电动卷帘机、温室电热器、植物生长灯、微管喷滴灌等系统的实时控制。

本文从4个部分介绍系统的设计与实现,先从硬件角度构建主要的传感器子系统、Web 服务器子系统、外设控制子系统,然后从软件角度出发,设计实现精简的TCP/IP协议栈。

1.1 传感器子系统:考虑到LM3S102接口有限,传统的模拟传感器需要A/D转换后方可使用,不适合本系统。

设计选用I2C接口的数字传感器SHT10,该传感器将外界环境的湿度、温度信息采集以后存储在自身内存中,将其挂接在LM3S102处理器的I2C总线上实现数据的读取。

在后续部分可以看到,I2C总线上还挂接了用来扩展I/O口的专用芯片。

温度与湿度传感器电路如图2所示。

图3是获取外界光照条件的方案。

设计选用廉价的光电管,当光照强度大时,光电管导通电流大,从而在VIN_N端得到更低的电压。

VIN_N端和 LM3S102内置的模拟比较器相接,将采集到的数据存于RAM中,和SHT10采集到的湿度、温度信息一起,由TCP/IP协议封装发送。

1.2 Web服务器子系统:为了构建Web服务器子系统,必须找到合适的网络功能实现方法。

如图4所示,系统选用SPI接口的网络芯片ENC28J60实现网络MAC和PHY的功能,充分利用LM3S102的外设接口。

TPOUT和TPIN端送往隔离变压器,外接通用的RJ45网口。

后续部分将介绍在此硬件平台上TCP/IP协议的实现。

1.3 外设控制子系统:为了实现对温室自动卷帘的远程智能升降控制,设计采用PWM控制步进电机的方法。

步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。

这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点,使得在速度、位置等控制领域用步进电机来控制非常简单。

接口芯片MPC17529用来驱动步进电机。

在实际运用中,可采用各种方法增大后级电路的驱动能力,以实现对重型卷帘门的自如控制。

图5为电机控制电路的实现方法。

由于LM3S102的I/O口有限,本设计采用I2C接口扩展I/O口的专用芯片PCA9554。

挂接在I2C总线上的该芯片可以扩展出8路GPIO,在演示时采用用8盏LED灯来表示温室电热器、植物生长灯、微管喷滴灌、气体肥料释放机等温室常用设备。

实际应用时加上继电器电路以后便可以方便地实现对温室中诸多科技农业控制系统的实时控制。

电机控制电路如图6所示。

经过各子系统的硬件设计,LM3S102的片上接口与片内资源得到了充分的利用。

1.4 设计实现精简的TCP/IP协议栈:嵌入式Web服务器运行的目标系统大多是各类专用设备,内存资源和存储器资源非常有限,它通常作为一种监控、管理手段去控制和配置各种电子设备,实现设备的智能化和信息化。

嵌入式Web服务器的应用系统框架如图7所示。

考虑到嵌入式Web服务器的硬件处理速度慢并且存储容量相对较小的限制,在TCP/IP 协议栈中能够实现ARP、IP、TCP协议即可。

采用精简的 TCP/IP协议栈,在上层实现了HTTP 协议。

包括ENC28J60网络芯片的驱动和IP包与ARP包的相应,实现了基于TCP协议的HTTP 包的收发,协议栈省去了作为精简’Web服务器不需要的UDP协议和ICMP协议,并且不实现SOCKET函数,使得代码空间降到最小,却能够完成所有需要的功能。

裁剪后的嵌入式专用TCP/IP协议栈结构如图8所示,软件模块分层工作流程如图9所示。

第3章温室大棚地热线控制器:在北方的冬、春季节,农户为了增加温室大棚内的地温,促进秧苗、蔬菜的生长,通常采用铺设地热线来辅助增温。

电路工作原理该温室大棚地热线控制器电路电控制电路、工作状态指示电路和低压照明电路组成,如图所示。

图温室大棚地热线控制器电路控制电路由刀开关Q1、熔断器FU1、控制按钮S1、S2、交流接触器KM和地热线EH组成。

工作状态指示电路由电源变压器T1、指示灯HL1、H12和KM的控制触点KM3、KM4组成.低压照明电路由电源变压器T1、刀开关Q2、03、熔断器FU2、FU3和照明灯EL1~EL4组成。

由于大棚、温室内湿度较大,为安全起见,照明供电采用36V安全电压,且除了照明灯EL1~EL4和地热线EH外,其余部分均安装在大棚、温室以外的专用配电室或休息室、值班室内。

安装时,地热线EH应埋在深度为5~15cm(根据不同作物和播种育苗、成苗栽培等有所不同)的地下。

当地温较低,需要使用加温装置时,先接通刀开关Q1,然后按下加温控制按钮S1,KM通电吸合,KM的常开触头KM1~KM3接通,常闭触头KM4断开,地热线EH通电工作;220V交流电压经”降压后,将工作指示灯HL1点亮。

松开S1后,KM在KM2的作用下维持吸合状态。

需要照明时,可接通Q2和Q3,220V交流电压经T1降压后,将EL1~EM点亮。

不需要加温时,按动停止加温控制按钮S2,使KM释放,KM1~KM3触头断开,KM4触头接通,HL1熄灭,HL2点亮,指示地热线EH处于停止加温状态。

元器件选择T1应根据照明灯的总功率进行选择,若使用4只100W、36V灯泡,可选用500W、二次电压为36V的电源变压器;若使用8只100W、36V灯泡,则应选用1kW、二次电压为36V的电源变压器。

T2选用5W、二次电压为1O~15V的电源变压器。

地热线EH可选用DV20410(电压为220V、电流为2A、线长100m时功率为400W,工作时温度为45℃)或DV21012(电压为220V、电流为5A、线长120m时功率为1000W,工作时温度为40℃)型专用电热加温线。

KM选用CDC10-5型220V交流接触器。

Q1选用HK2-30型刀开关;Q7和Q3选用HK1-15型刀开关。

FU1~FU3应根据负载的功率合理选用第4章总结和展望:温室设施是农业的重要组成部分,温室大棚测控系统是实现温室生产管理自动化、科学化的基本保证。

通过对监测数据的分析,结合作物生长规律,控制环境条件,使作物在不适宜生长的反季节中,可获得比室外生长更优的环境条件,从而使作物达到优质、高产、高效的栽培目的。

对解放我国农村劳动力,提高劳动力利用率,缓解季节性蔬菜供应不足具有重要意义。

[参考文献][1] 张福学.传感器应用及其电路精选[M].北京:北京电子工业出版社,1992[2] 杜深慧.温湿度检测装置的设计与实现[J].华北电力大学,2004[3] 纪建伟.微型计算机温室监控系统的研究[J].沈阳农业大学学报,2001[4] 张廷锋.温室监控系统的设计与实现.西北农林科技大学学报,2005等等。

相关文档
最新文档