开关弹簧操作机构

合集下载

高压开关柜操作机构和操作电源

高压开关柜操作机构和操作电源

高压开关柜操作机构和操作电源(成都贝锐智能电气有限公司)1、开关柜分合闸的执行机构—电磁操作机构与弹簧操作机构电磁操作机构:早先的开关柜,普遍采用电磁操作机构进行分合闸操作,这种机构需要较大的合闸电流,动作速度低,结构笨重,耗材较多,现已逐渐淘汰。

弹簧操作机构:弹簧操作机构是利用储存在弹簧中的能量完成分合闸的过程,弹簧的储能由储能电机完成。

弹簧操作机构的优点是:需要的分合闸电流小,即可远方电动合、分闸,电机储能,也可就地手动合、分闸和电机储能。

对于弹簧操作机构,大多数的储能电机功率在100W~300W之间,分合闸线圈的功率在200W~400W之间。

2、直流操作电源-直流屏直流屏的原理框图如下:直流屏采用2V规格的电池,串成220V,需要110只,但2V规格的电池,其电压一般都高于2V,在2.2V甚至更高,所以电池组正负两端的电压会达到或超过240V。

直流屏的输出有二路,一路240V(左右),一路220V。

240V输出直接来自于电池组的正负两端。

这样高的电压,如果直接提供给开关柜的其他直流负载,如微机保护装置等,会使其无法承受,因此需要用降压硅链降压到220V,这一路输出就是控制母线电压(KM)。

而早先的电磁操作机构,刚好需要比较大的驱动电流,也能承受较高的直流电压,因此就把电池组两端的电压直接输出供分合闸使用,这一路输出就是合母电压(HM)。

3、分布式直流电源作为开关柜操作电源的使用分布式直流电源具有体积小,造价低,方便使用的特点,其连续功率在100W~200W之间,短时功率(供储能电机)在350W左右(20S),短时功率(供分合闸线圈)能达到600W~100W之间,能完全满足1~2面弹簧操作机构的开关柜使用。

考虑到弹簧操作机构的分合闸线圈功率并不大,对于分布式直流电源,只安排一路输出,电压为220V,不在区分控母输出和合母输出。

4、早先采用两路电源的设计,现改用分布式单路电源时,设计图子的调整方法使用弹簧操作机构的断路器,已无需再分控母(HM)与合母(HM),只需将分布式电源的直流输出直接连接到原来的合母与控母线端即可。

CT19BW型弹簧操作机构

CT19BW型弹簧操作机构

CT19BW型弹簧操作机构
概述:
CT19BW(N)型弹簧操作机构是在元CT19型弹簧操作机构的基础上,针对35kV真空断路器进行加强、改进和完善的,其机械强度、稳定性及可靠都有较大的提高。

CT19BW型可供操动各种户外柱上式35KV真空开关柜(ZW7),其性能符合GB1984《交流高压真空断路器》和本产品《技术条件》的要求,各项指标均达到和超过“IEC”标准。

机构合闸弹簧的储能方式有电动机储能和手动储能两种;分闸操作有分闸电磁铁、过电流脱口电磁铁及手动按钮操作三种;合闸操作有合闸电磁铁及手动按钮操作两种。

4、脱扣的组合及代号:110、100、111、114、1114、400
安装位置示意图:。

断路器(弹簧机构)动作原理及两起合后即分故障案例分析

断路器(弹簧机构)动作原理及两起合后即分故障案例分析

断路器(弹簧机构)动作原理及两起合后即分故障案例分析本文在介绍弹簧机构的结构、动作原理的基础上,分享几起合后即分的故障案例,分析故障产生的原因并提出后续工作建议。

一、弹簧机构动作原理敞开式断路器和组合电器断路器用CT30弹簧机构结构及动作原理如图1~图4所示。

弹簧操动机构分、合闸操作采用两个螺旋压缩弹簧实现。

储能电机通过棘爪、棘轮给合闸弹簧储能。

1415161-分闸弹簧2-合闸弹簧3-合闸掣子4-合闸线圈5-合闸触发撞杆6-分闸线圈7-合闸保持掣子8-分闸掣子9-限位挡块10-拐臂11-棘爪12-凸轮13-棘轮14-分闸掣子15-复位弹簧16-滚轮图1合闸位置(合闸弹簧储能)图2分闸操作过程图3分闸位置(合闸弹簧储能)图4合闸操作过程如图1、图2所示,分闸操作时,分闸电磁铁吸合,分闸电磁铁撞杆触发分闸掣子,分闸掣子逆时针旋转,合闸保持掣子在拐臂的分闸力矩作用下逆时针旋转,分闸弹簧带动拐臂顺时针旋转,分闸弹簧释放能量完成分闸。

分闸操作是一套独立系统,分闸弹簧释放的能量仅作用于断路器分闸。

如图3、图4所示,合闸操作时,合闸线圈带电吸合,并使合闸撞杆撞击合闸掣子。

合闸掣子以顺时针方向旋转,并释放合闸弹簧储能保持掣子,使棘轮带动凸轮轴以逆时针方向旋转,使主拐臂以顺时针旋转,断路器完成合闸。

并同时压缩分闸弹簧,使分闸弹簧储能。

当主拐臂转到行程末端时,分闸掣子和合闸保持掣子将轴销锁住,开关保持在合闸位置。

合闸弹簧释放的能量主要分为两部分,一部分用于断路器合闸,另一部分用于机构分闸弹簧储能。

二、案例1复位弹簧弹力不足(一)故障概况2020年5月25日20时08分53秒,500千伏某站在合上220kV4965开关操作过程中(配合对侧送电,某站站内无工作),在合上4965开关时,A相未正常动作,B、C相正常合闸,三相不一致动作,开关三跳,无其他保护动作。

4965间隔为GIS设备,设备型号为ZFW20-252,弹簧机构型号为CT30,出厂日期2013年12月8日,投运日期2014年6月30日。

断路器弹簧操动机构CT8-114详情说明

断路器弹簧操动机构CT8-114详情说明

一、CT8-114断路器弹簧操动机构称说明概述CT8-114断路器弹簧操动机构称可在工作电流范围内进行频繁的操作或多次开断短路电流;机械寿命可高达30,000次,满容量短路电流开断次数可达50次。

断路器弹簧操动机构适于重合闸操作并有极高的操作可靠性与使用寿命。

断路器弹簧操动机构(普通型)采用了立式的绝缘筒防御各种气候的影响;且在维护和保养方面,通常仅需对操作机构做间或性的清扫或润滑。

断路器弹簧操动机构(极柱型)采用了固体绝缘结构—集成固封极柱,实现了免维护。

断路器弹簧操动机构在开关柜内的安装形式既可以是固定式,也可以是可抽出式的,还可安装于框架上使用动静触头允许磨损累计厚度mm 3四、断路器弹簧操动机构选型用户可根据被保护对象选用不同型号的断路器弹簧操动机构,对使用场所的不同可选用防污型和高原型。

为满足市场的需求我厂可根据用户的要求设计各种非标产品。

《断路器弹簧操动机构CT8-114》五、断路器弹簧操动机构使用条件:1.适用于户内、外;2.环境温度-40℃~+40℃;3.海拔高度不超过3000m(瓷套式不超过1000m);4.电源频率不小于48Hz、不超过62 Hz;5.长期施加在断路器弹簧操动机构端子间的工频电压不超过断路器弹簧操动机构的持续运行电压;6.地震烈度8度及以下地区;7.大风速不超过35m/s。

8.断路器弹簧操动机构保护发电厂、变电站的交流电气设备免受大气过电压和操作电压的损坏。

断路器弹簧操动机构是变电站被保护设备免遭雷电冲击波袭击的设备。

断路器弹簧操动机构测量电流是否超过电动机的额定电流值,调整整定电流值。

电动机运行时过载,热继电器的辅助头,常闭点断开,常开点闭合的特性进行保护。

在继电控制中把常闭点与停止按钮串入,过载时停止电动机运行,并给出报警信号。

六、断路器弹簧操动机构基本原理断路器弹簧操动机构是一种过电压(电流)保护器,主要用于保护电力系统、铁道电气化系统、通讯系统中的各种电气设备(变压器、开关、电容器、阻波器、互感器、发电机、电动力、电力电缆等)免遭大气过电压、电流操作过电压(电流)和工频暂态过电压(电流)等损坏,是电力系统绝缘配合的基础。

开关弹簧操作机构检修及常规缺陷处理

开关弹簧操作机构检修及常规缺陷处理

开关弹簧操作机构检修及常规缺陷处理摘要:本文对电力检修实际中常见的开关弹簧机构检修进行了探讨,分析了此类型开关几类常见故障原因,并提出了改进措施。

关键词:弹簧机构开关故障处理1 引言随着电力系统的不断发展,复杂程度与可靠要求均在不断提升,断路器电路大电流通断控制的主要设备,其可靠性在电力系统中具有重要意义。

弹簧操作机构具有内部构成简单、维护工作量小、安全可靠性高等特点,被广泛用于220kV 及以下电压等级范围内的高压断路器等电网设备。

在实际生产中出现弹簧机构频繁发生原件毁坏不能正常工作、拒动故障、接触不良等现象,对断路器的正常工作产生重大影响。

本文对弹簧操作机构常出现的几种故障进行了列举,并对如何进行检修和如何解决该故障缺陷的提出合理的建议。

2 弹簧操作机构检修方法及注意事项2.1 设备状态检修概述设备状态检修的内容就是利用先进的诊断技术对设备进行状态监测并及时的提供设备状态信息,并根据该诊断信息来判断设备是否异常从而达到预知设备是否出现故障,进而能够在故障发生前进行检修。

随着科技的发展,设备监测数据越来越准确,从而提高了设备故障的准确性,大大提高了预测故障发生率,降低了设备故障的产生。

这种设备状态检修在电网中受到强烈的欢迎和推广应用。

2.2 弹簧操作机构的检修方法对弹簧操作机构进行检修时:①要观察外部结构,在观察过程中,如果无专业人员在现场,不得让人碰触机构内部的接触器的触点并且不能对弹簧操作机构进行储能操作。

通过观察来尝试确定设备出现故障的位置,若弹簧机构外部无明显异常,有可能是其机构内部发生故障,有可能是弹簧操作机构内部生锈腐蚀卡涩或分闸缓冲器漏油等故障,这是可通过近距离的仔细观察机构外部异常运行现象然后进行深入分析从而确定该机构内部的故障发生的位置;②通过对机构外部的气味进行判断,若周围有烧糊的气味,可能是保护插件或者断路器分(合)闸线圈等内部烧坏,在明确原因后,可进一步的对元器件进行检查时以确定故障发生的位置;若通过以上方法仍没有确定故障位置,可以对断路器的分合闸做试验,观察该弹簧机构分别在分合闸的状态下的运行情况,可以快速的判断是否是断路器出现合后即分的故障缺陷;③除通过对外部机构直接判断外,也可以使用万用表测量来快速的找出故障的发生原因。

弹簧储能操作机构的工作原理

弹簧储能操作机构的工作原理

弹簧储能操作机构的工作原理闸操作有合闸电磁铁及手动按钮两种。

1.机械部分原理简介CT19、CT19B(A)型弹簧储能操作机构由电动机提供储能动力,经两级齿轮减速,带动储能轴转动,实现给储能弹簧储能。

弹簧储能到位时,摇臂推动行程开关.切断电动机电源。

人力储能时,将人力储能操作手柄插入储能摇臂插孔中,然后上下摆动,通过摇臂上的棘爪驱动棘轮,并带动储能轴转动实现对合闸弹簧储能。

操作机构储能完成后即保持在储能状态,若准备合闸,可使合闸线圈通电,继而电磁铁动作,储能保持状态被解除,合闸弹簧快速释放能量,完成合闸动作。

分闸时,分闸线圈通电使电磁铁动作,连杆机构的平衡状态被解除,在断路器负载力作用下,完成分闸操作。

CT19、CT19B(A)型弹簧储能操作机构外形见下图。

2.电气控制原理下图是CT19弹簧储能操作机构的电气控制原理图,图中两侧的两条竖线KM是控制电源线,它可以是AV220V或DC220V等电源电压。

当机构处于分闸未储能状态时,行程开关CK常闭触点闭合。

此时按下储能按钮SB.中间继电器KA1的线圈得电,其常开触点KAl-1闭合,中间继电器KA2随之动作.KA2的常闭触点K A2-2打开.常开触点KA2-1闭合,电动机M 与电源接通开始运转,带动合闸弹簧开始储能,直至储能完成松开储能按钮SB。

储能完成以后,行程开关CK的常闭接点断开,中间继电器KA2线圈断电,触点KA2-1断开,电动机M断电停转。

此时若将控制开关SA 投向合闸位置,即使其触点(1)、(2)闭合,合闸线圈YC将通电使电磁铁动作,迫使储能弹簧释放能量,完成合闸动作。

操作机构使断路器合闸后,安装在操作机构内、被称作断路器辅助触点的QF-1和QF-2同时动作,其中常闭触点QF-1断开,切断合闸线圈的电源;常开触点QF-2闭合,为断路器分闸作好准备。

此时若将控制开关SA投向分闸位置,即使其触点(3)、(4)闭合,分闸线圈YR将通电使电磁铁动作,操作机构使断路器实现分闸。

断路器弹簧操作机构

断路器弹簧操作机构

浅谈断路器弹簧操作机构【摘要】本文主要论述了vg1型断路器弹簧操作机构的构成和动作原理,并介绍了弹簧机构在生产和维护中的注意事项以及事故分析与处理方法,可供设计人员和调试、维护人员参考。

【关键词】弹簧操作机构动作原理维护故障分析处理方法断路器由本体和操作机构组成,操作机构是用来使断路器合闸、并使断路器保持在合闸状态且能迅速使断路器分闸的装置,它对断路器的输出特性有着至关重要的影响。

它由储能单元、合闸单元及分闸单元等构成。

1 弹簧机构的特点与结构按合闸所用能源的不同,操作机构可划分为电磁机构、弹簧机构、液压机构和气动机构。

目前35kv及以下断路器主要使用的是弹簧机构。

弹簧操动机构是利用储能的弹簧为动力使开关实现合闸动作。

它可采用人力或小功率交、直流电机来驱动,因而合闸功基本不受外界因素〔如电源电压、气源气压、液压源液压〕的影响,既能够获得较高的合闸速度,又能够实现快速自动重复合闸操作;另外,与电磁操动机构相比,弹簧操动机构成本低,价格便宜,是真空断路器中最常用的一种操动机构,其生产厂家也比较多[1]。

2 弹簧机构的组成弹簧机构尽管种类较多,但一般有由储能单元,合闸单元,分闸单元,本体组成,下面以vbi弹簧机构为例[2],说明如下,见图1:2.1 储能单元储能机构单元位于左侧板和中间隔板之间,为一级齿轮减速机构。

储能既可由储能电动机自动进行,也可用往复摇动储能的手柄进行手动储能,储能状态指示器显示当前的储能情况。

作为自动重合闸顺序的先决条件,操作机构在一次合闸操作后,由储能电动机进行再储能。

2.2 合闸单元合闸单元也位于左侧板和中间隔板之间,主要包括合闸电磁铁、合闸半轴、合闸挚子轴、凸轮等,见图3。

合闸动作原理:当按下手动合闸弯板8或起动合闸电磁铁9,合闸半轴1逆时针转动,合闸挚子6解锁,脱扣机构释放预先已储能的弹簧能量,通过凸轮4撞击主轴拐臂滚轮,直接驱动主轴转动,并通过大连板带动绝缘拉杆,真空灭弧室内的动触头由绝缘拉杆带动向上运动,直到触头接触为止,同时触头弹簧被压紧,以保证主触头有适当的接触压力,在合闸过程中分弹簧也同时被拉伸储能[3]。

弹簧储能机构的操作方式

弹簧储能机构的操作方式

弹簧储能机构的操作方式1、合闸弹簧储能:开关处于起始分闸状态,合闸弹簧和分闸弹簧末储能,开关无法操作;电机得电后,通过驱动机构使合闸弹簧储能,操动机构准备合闸。

弹簧机构在紧急情况下,可用手动储能。

2、合闸通过激励合闸脱扣器,合闸弹簧释放能量,经驱动机构使灭弧单元触头闭合;在此过程中,分闸弹簧实现储能;几乎在合闸过程的同时,电机将自动启动,合闸弹簧重新储能。

3、分闸通过激励分闸脱扣器,分闸弹簧释放能量,经驱动机构使灭弧单元触头拉至分闸位置。

4、合闸弹簧和分闸弹簧释放能量步骤:(1) 断开直流储能电源;(2) 开关分闸(在合闸状态);(3) 开关合闸;(4) 开关再分闸;(5) 断开控制电源。

近年来,35、10 kV具有弹簧储能机构的断路器越来越普及。

与过去的直流电磁机构相比,具有动作速度快、合闸电流小、储能电源容量小、交直流均可使用等优点。

弹簧储能机构的特点是:合开关时,已储能的弹簧释放能量;开关合上后,弹簧储能,为下一次合闸做准备。

也就是在运行中如失去储能电源仍可合闸操作一次,分闸时,储能弹簧能量不释放。

从张掖地区电业局2000年所发生的事故中发现,这种操作机构也存在一些问题。

1 事故情况张掖地区电业局于2000年投运的第一个综合自动化变电站,将所有故障信号通过后台机发出,无功自投通过后台软件控制电容器投切。

在运行中发现115电容器控制回路断线,经检修人员检查系行程开关接点和合闸继电器接点粘连,造成合闸线圈烧坏。

2 事故分析经检查登录信息发现,只有“弹簧储能动作”信号,而无“弹簧储能复归”信号。

如图1所示,这次事故是闭锁合闸的行程开关WJ接点粘连,后台无功自投软件控制电容器合闸,由于弹簧储能机构未储能,开关合不上闸,200 ms后,合闸接点HJ返回,因接点容量有限,断弧造成接点粘连,使合闸线圈长期带电而烧坏。

开关在分合闸时通过开关辅助接点DL来断弧,不能通过行程开关的接点和合闸接点来断弧。

因为10 kV的行程开关接点容量小,加上开关机构性能调整不好,造成开关在合闸时,有的开关连续合闸2次。

断路器弹簧操作机构原理

断路器弹簧操作机构原理

断路器弹簧操作机构原理
断路器弹簧操作机构是在断路器中使用的一种开启和关闭电路的装置,它的原理是通过弹簧的弹性能量,实现对开关的控制。

具体原理如下:
1.弹簧存储能量:断路器弹簧操作机构中的弹簧会被预先压缩,使其具有弹性能量。

2.启动机构:在需要关闭或打开断路器时,先通过启动机构切
断或连接控制电路。

3.释放弹簧能量:启动机构释放时,弹簧的弹性能量会驱动机
构的运动,进而打开或关闭断路器。

4.机械连接:弹簧操作机构与断路器的机械连接,使弹簧的运
动能够直接影响断路器的状态。

5.装置复位:当要复位断路器时,通常需要使用手动装置将压
缩的弹簧重新装入操作机构中,准备下一次操作。

断路器弹簧操作机构的原理充分利用了弹簧的弹性能量,通过合理的机械连接和启动机构来实现对断路器的操作。

这种机构具有结构简单、可靠性高、操作力小等优点,在电力系统中得到广泛应用。

弹簧操作机构的基本动作原理

弹簧操作机构的基本动作原理

弹簧操作机构的基本动作原理合闸弹簧和跳闸弹簧是独立的,储能机构一般只给合闸弹簧储能,而跳闸弹簧一般是靠断路器合闸动作储能.在合闸回路中串联有开关储能接点,也就是说开关未储能就不能进行合闸。

但分闸回路中没有串联有开关未储能接点。

所以就算开关未储能,也可以跳开。

(注意:这里的开关未储能指的是合闸弹簧未储能,而分闸弹簧未储能是没有接点出来的)。

在断路器断开时,分闸弹簧是还没储能的,而合闸弹簧已储能。

合闸时,合闸弹簧释放能量,合闸同时给分闸弹簧储能。

以确保开关在合上的时候能跳开。

合闸弹簧释放完能量时(开关刚合上),电机开始给合闸弹簧储能,这个大概需要十秒钟,此时就算合于故障,因为分闸弹簧已储能,所以能跳开。

这也说明在手合于故障时,开关能马上跳开,但这种跳开之后不能马上再次重合(需要区别于重合闸),因为合闸还没储能,要等储能结束后才能再次送电。

而如果是开关本来是合上的,此时开关的合闸弹簧和分闸弹簧都已储能。

有故障时,分闸弹簧释放能量分闸。

再过1秒左右,(由于合闸弹簧已储能)合闸弹簧释放能量进行合闸。

而在合闸结束的时候,分闸弹簧已储能结束,但合闸弹簧还没有储能好。

如果这次合闸于故障,由于分闸弹簧以储能结束,所以开关能马上跳开。

但跳开之后就不能再次马上合上了,需要等到合闸弹簧储能结束以后才行(一般开关需要30秒后才行,但我们实际情况就要等事故处理完毕后,才能重新再次试合)ZN63—12(VS1)型户内交流真空断路器,是三相交流50HZ 、额定电压为12 kV的户内高压配电装置. 可作接通线路,切断故障电流和保护功能.尤其适合于频繁操作,如投、切电容器组、控制电炉变压器和高压电机等,也可作为联络使用.VS1真空断路器的详细说明1、概述: ZN63—12(VS1)型户内交流真空断路器,是三相交流50HZ 、额定电压为12 kV的户内高压配电装置. 可作接通线路,切断故障电流和保护功能.尤其适合于频繁操作,如投、切电容器组、控制电炉变压器和高压电机等,也可作为联络使用.2、结构特点: 断路器主体部分设置在由环氧树脂采用APG工艺浇注而成的绝缘桶内,这种结构能有效防止外力冲击,因环境污秽等外部因素对真空灭弧室的影响. 断路器配用ZMD1410系列中封式陶瓷或玻璃真空灭弧室,其铜铬触头具有环状纵磁场触头结构,开断能力强,截流水平低,电寿命长. 真空灭弧室置与绝缘捅内,使断路器具有免维护,无污染,无爆炸危险,噪音低, 绝缘水平高. 操动机构为弹簧储能操作机构,机构箱内装有合闸单元,前方面板上设有分、合按钮,手储能操作孔、弹簧储能状态指示牌等.机构与本体前后布置成一体,传动效率高,操作性能好,适用于频繁操作,可装于移开式或固定式开关柜. 3、工作原理: 断路器合闸所需能量由弹簧储能机构供给, 储能机构可以由外部电源驱动电机完成,也可以由手动储能把手储能. 储能完成后, 储能指示牌显示“已储能”.同时, 储能切换开关切断储能电机电源, 断路器处于待合闸状态. 在合闸操作中,不论用手按下“合闸”按钮或远方操作使合闸电磁铁动作,均可使断路器合闸. 合闸动作完成后, 储能指示牌、储能切换开关复位, 电机电源接通. 电机再次储能. 合闸指示牌显示“合”.辅助开关接点转换. 在分闸操作中, 不论用手按下“分闸”按钮或远方操作使合闸电磁铁动作, 均可使断路器分闸, 分闸动作完成后, 分闸指示牌显示“合”.辅助开关接点转换. 同时在分闸操作中,计数器自动进一位,可从面板观察窗看到相应的数字. 4、防误连锁: 合闸操作完成后,在断路器未分闸时, 断路器将不能再次合闸. 断路器合闸操作完成后,如合闸信号未及时去掉, 断路器内部防跳控制回路,将切断合闸回路防止多次重合闸.手车断路器在未到实验位置或工作位置时,断路器不能合闸.如果选用闭锁断路器,在二次控制电路未接同情况下, 闭锁电磁铁将防止手动合闸. 5、断路器符合的标准: 断路器符合GB1984-2003《户内交流高压断路器》,IEC62271的相关要求.1998年涌过了原国家机械部、电力工业部鉴定. 6、断路器特点: 该真空断路器运行性能稳定、开断电流大、设计合理、二次接线方便,很适合我国电网运行.。

弹簧操作机构

弹簧操作机构

弹簧操作机构弹簧操作机构由弹簧贮能、合闸维持、分闸维持、分闸4个部分组成,零部件数量较多,约200个,利用机构内弹簧拉伸和收缩所储存的能量进行断路器合、分闸控制操作。

弹簧能量的储存由储能电机减速机构的运行来实现,而断路器的合、分闸动作靠合、分闸线圈来控制,因此断路器合、分闸操作的能量取决于弹簧储存的能量而与电磁力的大小无关,不需太大的合、分闸电流。

弹簧操作机构的优点主要有:合、分闸电流不大,不需要大功率的操作电源;既可远方电动储能,电动合、分闸,也可就地手动储能,手动合、分闸,因此在操作电源消失或出现操作机构拒绝电动的情况下也可以进行手动合、分闸操作;合、分闸动作速度快,不受电源电压变动的影响,且能快速自动重合闸;储能电机功率小,可交直流两用;弹簧操作机构可使能量传递获得最佳匹配,并使各种开断电流规格的断路器通用同一种操作机构,选用不同的储能弹簧即可,性价比优。

弹簧操作机构的缺点主要有:结构比较复杂,制造工艺复杂,加工精度要求高,制造成本比较高;操作冲力大,对构件强度要求高;容易发生机械故障而使操作机构拒动,烧毁合闸线圈或行程开关;存在误跳现象,有时误跳后分闸不到位,无法判断其合分位置;分闸速度特性较差。

高压开关柜送电操作程序(1)关闭所有柜门及后封板,并锁好。

(2)观察上柜门各仪表、信号指示是否正常。

正常时微机保护装置电源灯亮,手车试验位置灯、断路器分闸指示灯和储能指示灯亮,如所有指示灯均不亮,则打开上柜门,确认各母线电源开关是否合上,如已合上各指示灯仍不亮,则需检查控制回路。

3)将断路器手车摇柄插入摇柄插口并用力压下,顺时针转动摇柄,在摇柄明显受阻并伴有“咔嗒”声时取下摇柄,此时手车处于工作位置,二次插头被锁定,断路器手车主回路接通,查看相关信号(此时手车工作位置灯亮,同时手车试验位置灯灭)4)操作仪表门上合、分转换开关使断路器合闸送电,同时仪表门上红色合闸指示灯亮,绿色分闸指示灯灭,查看带电显示装置、断路器机械分合位置及其它相关信号,一切正常,送电成功(操作合、分转换开关时,把操作手柄顺时针旋转至面板指示合位置,松开手后操作手柄应自动复位至预合位置)。

断路器弹簧操作机构动作过程及问题处理优选稿

断路器弹簧操作机构动作过程及问题处理优选稿

断路器弹簧操作机构动作过程及问题处理集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)断路器弹簧操作机构动作过程及问题处理断路器的操作机构有:机架、棘轮、凸轮、棘爪分装和挚止、拐臂、主拐臂、拉杆、分闸电磁铁、分闸锁闩、分闸挚止、合闸电磁铁、合闸锁闩、合闸挚止、保持挚止、防跳装置、缓冲器等。

其核心部件是弹簧。

从分闸未储能到分闸储能的过程。

电机带动减速器,从而达到减速的效果,间接带动棘爪分装和挚止,再带动棘轮和凸轮转动。

因为棘轮和凸轮、拉杆是一体的,所以它们在转动中,回带动拉杆逆时针转动,从而拉动储能弹簧。

合闸锁闩一直顶住挚止,分闸挚止顶住棘轮内部的圆环,棘轮内环成了分闸挚止的轨迹。

当分闸挚止顶入棘轮内环凹进去的部分,弹簧和合闸锁闩会将分闸挚止顶到棘轮内环凹进去的部分限位轴,使储能过程结束。

分闸未储能状态分闸储能状态从分闸已储能状态到合闸未储能状态的过程。

合闸电磁铁带电,吸合铁心,从而拉动合闸锁闩。

合闸锁闩撤掉给分闸挚止的作用力,弹簧就会将分闸挚止拉开。

限位轴将会失去挚止给它的支持力。

限位轴是棘轮的一部分,因此棘轮也失去一个支持力。

此时,棘轮只剩下弹簧给它的拉力。

因此,弹簧会将棘轮往下拉,使棘轮逆时针转动。

凸轮与棘轮同轴连接。

因此,凸轮也跟着转动。

进过一定行程后,凸轮会打到主拐臂,给主拐臂一个冲击力。

由于杠杆作用,主拐臂靠近棘轮的一端将向棘轮外运动,最终甩到合闸挚止;主拐臂靠近开关连接杆测的部分将靠连接杆测运动,最终推动机构连杆,使开关合闸。

主拐臂靠近棘轮的一端成为了合闸挚止的轨道。

最终合闸挚止通过保持挚止、分闸锁闩支撑,将主拐臂给顶住。

因为拐臂与主拐臂同轴连接,所以在凸轮会打到主拐臂时,拐臂会随着凸轮给主拐臂的冲击力向分闸弹簧方向运动,从而给分闸弹簧储能。

最终,依然是通过合闸挚止将主拐臂顶住,再将拐臂顶住。

分闸已储能状态合闸未储能状态(分闸弹簧已储能)从合闸未储能状态到合闸已储能状态的过程。

35kV断路器弹簧操作机构常见故障原因分析及处理

35kV断路器弹簧操作机构常见故障原因分析及处理

35kV断路器弹簧操作机构常见故障原因分析及处理摘要:在生产运行中,由于检修维护工作不到位,出现了一些故障,如:机构各部件油泥过多,造成分闸半轴不能正常复位,储能弹簧螺栓自备锁母松动或弹性不足造成合闸拒动,行程开关接点粘连、烧毁等。

这些故障甚至影响到了设备的安全稳定运行。

关键词:35kV;断路器;弹簧操作;故障;对策;分析引言:断路器在系统中起接通和切断电路的作用,由于操作频繁,因此经常出现一些故障。

弹簧操作机构故障是造成断路器故障的主要因素,因此,降低弹簧操作机构故障率可提高断路器运行可靠性,缩短线路停电时间。

1.弹簧操作机构故障概述为了确认造成弹簧操作机构故障的主要原因,对发生过此类故障的断路器进行机械特性试验和机构分解检查。

经查,此类故障集中发生在ZN12-10/630型号的户内高压断路器上。

将故障原因按性质分为5大类11个因素,并进行逐个分析,分析方法及操作过程如下。

1.1操作机构延时分闸分闸线圈电磁力小、传动部件摩擦力大、铁芯空程不够都可能造成断路器操作机构延时分闸。

各因素的测试标准为:分闸线圈电磁力应保证分闸迅速、无延迟,分闸声清脆;传动轴销润滑良好,活动灵活;分闸铁芯运行空程符合(20±3)mm,且运动灵活,与铜套之间无卡涩。

在分闸时间试验中,加入80%的额定电压,出现延时动作的次数约占总试验次数的20%,断路器的实际分闸时间为3.1s左右,明显超出标准值65 ms。

在试验中发现,分闸线圈动铁芯虽动作,但不能立即撞开脱扣件进行“清脆分闸”,而是动铁芯吸附一段时间后才解脱分闸半轴进行分闸。

由此确认,分闸线圈电磁力小是要因。

试验中,实测分闸铁芯运行空程全部符合标准(20±3)mm,且铁芯运动灵活,与铜套之间无卡涩,因此铁芯空程小为非要因。

机构解体检查中发现,整个分闸过程,分闸弹簧从作用于主轴至传动到开关导电杆共需经过5个轴销传动,经检查,各轴销润滑良好,活动灵活,因此传动部件摩擦力大为非要因。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、弹簧操动机构
弹簧操动机构是一种以弹簧作为储能元件的机械式操动机构。

弹簧的储能借助电动机通过减速装置来完成,并经过锁扣系统保持在储能状态。

开断时,锁扣借助磁力脱扣,弹簧释放能量,经过机械传递单元使触头运动。

弹簧操动机构结构简单,可靠性高,分合闸操作采用两个螺旋压缩弹簧实现。

储能电机给合闸弹簧储能,合闸时合闸弹簧的能量一部分用来合闸,另一部分用来给分闸弹簧储能。

合闸弹簧一释放,储能电机立刻给其储能,储能时间不超过15s(储能电机采用交直流两用电机)。

运行时分合闸弹簧均处于压缩状态,而分闸弹簧的释放有一独立的系统,与合闸弹簧没有关系。

这样设计的弹簧操动机构具有高度的可靠性和稳定性,既可满足O-0.3 sec -CO-180 sec -CO操作循环,又可满足CO-15sec-CO操作循环,机械稳定性试验达10000次。

1.1 CT20弹簧操动机构动作原理
CT20型弹簧操动机构(图1、图2、图3)利用电动机给合闸弹簧储能,断路器在合闸弹簧的作用下合闸,同时使分闸弹簧储能。

储存在分闸弹簧的能量使断路器分闸。

1.1.1分闸动作过程
图1所示状态为开关处于合闸位置,合闸弹簧已储能(同时分闸弹簧也已储能完毕)。

此时储能的分闸弹簧使主拐臂受到偏向分闸位置的力,但在分闸触发器和分闸保持掣子的作用下将其锁住,开关保持在合闸位置。

分闸操作(图1、2)
分闸信号使分闸线圈带电并使分闸撞杆撞击分闸触发器,分闸触发器以顺时针方向旋转并释放分闸保持掣子,分闸保持掣子也以顺时针方向旋转释放主拐臂上的轴销A,分闸弹簧力使主拐臂逆时针旋转,断路器分闸。

1.1.2合闸操作过程
图2所示状态为开关处于分闸位置,此时合闸弹簧为储能(分
闸弹簧已释放)状态,凸轮通过凸轮轴与棘轮相连,棘轮受到已储能的合闸弹簧力的作用存在顺时针方向的力矩,但合闸触发器和合闸弹簧储能保持掣子的作用下使其锁住,开关保持在分闸位置。

合闸操作(图2、3)
合闸信号使合闸线圈带电,并使合闸撞杆撞击合闸触发器。

合闸触发器以顺时针方向旋转,并释放合闸弹簧储能保持掣子,合闸弹簧储能保持掣子逆时针方向旋转,释放棘轮上的轴销B。

合闸弹簧力使棘轮带动凸轮轴以逆时针方向旋转,使主拐臂以顺时针旋转,断路器完成合闸。

并同时压缩分闸弹簧,使分闸弹簧储能。

当主拐臂转到行
程末端时,分闸触发器和合闸保持掣子将轴销A锁住,开关保持在合闸位置。

1.1.3 合闸弹簧储能过程
图3所示状态为开关处于合闸位置,合闸弹簧释放(分闸弹簧已储能)。

断路器合闸操作后,与棘轮相连的凸轮板使限位开关33HB闭合,磁力开关88M带电,接通电动机回路,使储能电机启动,通过一对锥齿轮传动至与一对棘爪相连的偏心轮上,偏心轮的转动使这一对棘爪交替蹬踏棘轮,使棘轮逆时针转动,带动合闸弹簧储能,合闸弹簧储能到位后由合闸弹簧储能保持掣子将其锁定。

同时凸轮板使限位开关33HB切断电动机回路。

合闸弹簧储能过程结束。

来实现。

图4介绍了机械防跳装置的原理,其动作过程如下: 1). 图a所示状态为开关处于分闸位置,此时合闸弹簧为储能
(分闸弹簧已释放)状态,凸轮通过凸轮轴与棘轮相连,棘轮受到已储能的合闸弹簧力的作用存在顺时针方向的力矩,但合闸触发器和合闸弹簧储能保持掣子的作用下使其锁住,开关保持在分闸位置。

2). 当合闸电磁铁被合闸信号励磁时,铁心杆带动合闸撞杆先压下防跳销钉后撞击合闸触发器。

.合闸触发器以顺时针方向旋转,并释放合闸弹簧储能保持掣子,合闸弹簧储能保持掣子逆时针方向旋转,释放棘轮上的轴销B。

合闸弹簧力使棘轮带动凸轮轴以逆时针方向旋转,使主拐臂以顺时针旋转,断路器完成合闸。

3).滚轮推动脱扣器的回转面,使其进一步逆时针转动。

从而,脱扣器使脱扣杆顺时针转动(见图4b),从防跳销钉上滑脱,而防跳销钉使脱扣杆保持倾斜状态(见图4c).
4).断路器合闸结束,合闸信号消失电磁铁复位(见图4d).
5) .如果断路器此时得到了意外的分闸信号开始分闸,在分闸在这一过程中,只要合闸信号一直保持,脱扣杆由于防跳销钉的作用始终是倾斜的,从而铁心杆便不能撞击脱扣器,因此,断路器不能重复合闸操作(见图4e)实现防跳功能。

当合闸信号解除时,合闸电磁铁失磁,铁心杆通过电磁铁内弹簧返回,则铁心杆和脱扣杆均处于图4a状态,为下次合闸操作作好了准备。

1.3弹簧操作机构的组成
弹簧操作机构主要由箱体、二次控制部分、机构芯架组成。

图 6
1.4)弹簧机构的技术参数1.4.1机构的参数见表2
表2
1弹簧机构活塞杆行程 mm
.00.30.100+-2拐臂滚子和机构凸轮之间间隙
1.4±0.33
合闸弹簧定位螺母与定位杆距离
12.0~47.0
断路器处于分闸状态合闸弹簧已储能。

见图8
合闸电磁铁行程C 5.0~5.5
触发器与脱扣器间隙D 2.0~2.5
4
C -D
3.0~3.5
断路器处于分闸状
态。

见图9
触发器与防跳杆间隙E 1.0~2.5分闸电磁铁行程F 2.8~3.2
触发器与脱扣器间隙G0.8~1.2 5
F-G 1.6~2.4断路器处于合闸状态。

见图10
控制回路与辅助回路参数表 3
序号项目单位数据备注1分、合闸线圈控制电压V DC220DC 110
2分闸线圈电流A2 5.8
3合闸线圈电流A2 3.3
4电机电源电压V
DC110/220
AC220按订货合同
5电机功率W300
6电机转速r.p.m750
7电机电流A 5.5 2.7
电压V220
8
加热器
功率W100
1.4.3 SF 6气体压力参数
SF 6气体压力参数随所配的产品,表4以LW25-126为例
表 4 (20℃)
序号项目
单位数据1额定充气压力MPa 0.50
0.40*
2补气报警压力MPa 0.45±0.030.35±0.033断路器闭锁压力
MPa
0.40±0.030.30±0.03
注:带*0.40为低温使用开断电流31.5kA
1.5 配弹簧机构的断路器在运行中的故障处理见表5
表5
分类
不正常现象
估计主要原因调查事项及对策1.1 电源不良检查控制电压U>80%Ue 1.2 电气控制系统
不良
控制线断线,端子松,合闸线圈故障,辅助开关接点故障1.3 SF6气体压力
不足,压力开关动作闭锁补气到额定压力
1.4弹簧未储能故

电机回路电源故障,检查回路电压U>85%Ue 电机过流或储能过时报警电机或机械系统故障
1..不能电气合闸 1.5 其它手动关合合闸电磁铁,合闸,检查电磁铁间隙
2.1电源不良
检查控制电压U>60%Ue
关合动作的异常
2.2电气控制系统不良控制线断线,端子松,分闸线
圈故障,辅助开关接点故障
2.3 SF6气体压力
不足,压力开
关动作闭锁补气到额定压力
2. 不能电气分闸
2.4其它手动关合分闸电磁铁,分闸,检
查电磁铁间隙


控制系统异常3.SF6气体压力下
降,63GA发出补气报警
漏气补气至额定压力,参考充气作
业要领,查找漏气点,消除漏

1.6)现场使用中几个问题
1.6.1)弹簧操作机构润滑脂的使用
弹簧操作机构的传动零件较多,而其本身又对传动摩擦等反力特别敏感,所以出厂时对诸如轴销,轴承,齿轮,弹簧筒等转动和直动产生相互摩擦的地方涂敷低温2#润滑脂。

在运行了六年后,一些润滑脂需重新涂敷。

注意棘轮齿面部和大小棘爪与棘轮接触处一定不要涂抹低温2#润滑脂,以防影响机构动作的准确性。

具体涂敷见图7。

图7
1.6.2)机构行程的检查和凸轮间隙的确认
手动慢分,慢合机构可以测量机构行程和本体行程见图8,测量值应符合表2的技术要求。

行程不够时,首先测量凸轮间隙,
凸轮间隙越大,行程越小。

1.6.5 合闸弹簧手动储能的方法
当电机回路失去电源时,合闸弹簧可手动储能其方法见图12
将套杆12-1和套板手12-3插入棘爪轴的六角头内,顺时针方向旋
图12 手动操作装置安装
12-1套杆;12-2棘爪轴;12-3套板手;12-4套筒板手;12-5套管;
12-6盖板;12-7机构箱;12-8起重杆;12-9螺母;12-10轴承;
12-11拐臂;12-12合闸弹簧储能示意。

相关文档
最新文档