七年级数学苏科版全等图形PPT优秀课件

合集下载

华师大版七年级数学下册第十章《10.5 图形的全等》优质课件

华师大版七年级数学下册第十章《10.5 图形的全等》优质课件
7.自学P135例
课后作业
1.教材P136习题10.5第1、2、3题; 2.完成练习册本课时的习题.
学习如果想有成效,就必须专 心。学习本身是一件艰苦的事,只 有付出艰苦的劳动,才会有相应的 收获。 —— 谷超豪
这一 样个 的人 人所 才受 有的 学教 问育 。超
过 了 自 己 的 智 力 ,
随堂演练
1. 下列说法正确的是(C )
①用一张像纸冲洗出来的10张1寸像片是全等图形;
②我国国旗上的4颗小五角星是全等图形;
③所有的正方形是全等图形;
④全等图形的面积一定相等.
A.1个
B.2个
C.3个
D.4个
2.对于两个图形,给出下列结论:①两个图形的周长
相等;②两个图形的面积相等;③两个图形的周长
【归纳结论】
能够完全重合的两个图形 叫做全等图形.
P133做一做:观察图中的平面图形,你能发现哪两个 图形是全等图形吗?
【归纳结论】
图形的翻折、旋转、平 移是图形的三种基本的运动. 图 形经过这样的运动,位置虽然 发生了变化,但形状、大小却 没有改变,前后两个图形是全 等的.反过来,两个全等的图形 经过这样的运动一定能够重合.
P134思考:观察下图中的两对多边形,其中的一个可以 经过怎样的运动和另一个图形重合?
上面的两对多边形都是全等图形,也称为全等多边 形.两个全等的多边形,经过运动而重合,相互重合的 顶点叫做对应顶点,相互重合的边叫做对应边,相互 重合的角叫做对应角.
如下图中的两个五边形是全等的,记作五边形 ABCDE≌五边形A′B′C′D′E′.(这里,符号“≌”表 示全等,读作“全等于”.).点A与A′,B与B′,C 与C′,D与D′,E与E′分别是对应顶点.

新北师大版七年级数学下册第四章《4.2图形的全等》优课件(共38张PPT)

新北师大版七年级数学下册第四章《4.2图形的全等》优课件(共38张PPT)

(2)
(3)
(4)
(5)
(6)
(7)
(9)
(8)
(10)
(11)
(12)
(13)
(14)
请欣赏并找 出 全 等 图 形
请欣赏并找 出 全 等 图 形
观察下图3组全等三角形,在各组图中,第2 个三角形是怎样由第1个三角形改变位置得到 的?按照相同的方法,在图(1)、(2)、 (3)中分别画出第3、4个三角形
1、你能说出生活中全等图形的例子吗? 2、观察下面两组图形,它们是不是全等图形?为什么?
形状 相同
大小 相同
全等图形的形状和大小都相同
探索空间
沿图形中的虚线,分别把下面图形划分为两个 全等图形(至少找出两种方法)
判断:
(1)两个正方形一定是全等图形--------( × ) (2)面积相等的两个三角形是全等图形-( × )
(3)面积相等的两个正方形是全等形----( √ )
(4)一个图形通过平、旋转、翻折得到的图形
与原图形全等
-------------( √ )
(5)边数相同的图形一定能互相重合---( × )
(6)所有的圆都是全等图形---------------( × )
图中共有多少对全等图形?分别是哪些?
(1)
说一说:
说说你生活中见过的全等图形的例子。
想一想
思 考:观察下图中的两对多边形,其中的一个 可以经过怎样的运动和另一个图形重合?
上面的两对多边形都是全等图形,也称为全等多 边形.两个全等的多边形,经过运动而重合,相互 重合的顶点叫做对应顶点,相互重合的边叫做对应 边,相互重合的角叫做对应角 .
议一议
图形才可能重合,才可能全等。

苏科版八年级数学上册1.1《全等图形》(共11张PPT)

苏科版八年级数学上册1.1《全等图形》(共11张PPT)

(3)
图(1)、(2)、(3)中的两个全等图形, 怎样改变其中一个图形的位置可以得到另一 个图形?
B C
90°
A
1.8
D
1.如图,四边形ABCD与四边形EFGH全等,根据 图中的数据,则CD=____,EH=___,∠E=_____
练一练
2.用不同的方法沿着网格线把 正方形分割成两个全等图形。
练一练
我们看看下面的几种划分方法,与你的 划分方法对比一下,看看自己是如何划 分的。
议一议: 上图中,(4)和(7)、(5)和 (10)为什么不是全等图形?
(4)
(7)
(5)
(10)
两个图形面积相同, 但形状不同;
两个图形形状相同, 但大小不同。 形状与 它们不能重合,不是全等图形 大小全 都相同
全等图形的特征是:能够完全重合。
练一练:请判断下列哪些属于全等图形__________ (1)两个面积相等的等腰三角形 (2)两个周长相等的等腰三角形 (3)两个面积相等的等边三角形 (4)两个周长相等的等边三角形 (5)两个周长相等的长方形(矩形) (6)两个面积相等的长方形(矩形) (7)两个周长相等的圆 (8)两个面积相等的圆
观察下面的图形:
你有什么发现?
能完全重合的图形叫做全等图形.
两个图形全等,它们的形状、大小相同.
A D
பைடு நூலகம்
B
C E
F
请举例,生活中还有哪些属于全等图形?
观察下图,从中找出全等图形,与同学交流。
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
全等图形有: (1)和(9)、(2)和(8)、(3)和(6)。

1.1 全等图形 课件 2023—2024学年苏科版数学八年级上册

1.1 全等图形 课件 2023—2024学年苏科版数学八年级上册
设计问题1、2,通过对图形的观察与操作,发展学生的几何 直观能力和实践能力.
预习导学
观察下面的6组图形,其中是全等图形的有( B )
A.3组 C.5组
B.4组 D.6组
合作探究
等分图形 1.如图,请你在图中画两条直线,把这个“ ”图形分成四 个全等的图形(要求至少要画出两种方法).
解:如图所示:
全 重合 . ⁠
预习导学
·导学建议· 课本提供了3组生活中的图案,通过引导学生观察和讨论,
在学生对全等图形有了感性认识的基础上,揭示全等图形的概 念.实际教学时,教师可以展示生活中的其他素材或让学生交流 身边的全等图形,丰富学生对全等图形的认知.
归纳总结 能 完全重合 的图形叫做全等图形.两个图形 ⁠
合作探究
变式演练 如图,这是由一个正方形和一个等腰直角三角 形拼成的图形(称作直角梯形),现要把它分割成4个全等的图 形,并且形状与原来图形相同,如何进行划分?(画图或涂不同 色加以说明)
Байду номын сангаас
解:如图所示:
合作探究
合作探究
方法归纳交流 在方格中将一个图形分割成两个全等图 形,一般根据图形的面积和对称性寻找解题途径.若将一个图形 分割成几个全等图形,就是将整个图形面积几等分,再根据新 图形面积,确定图形的形状.
合作探究
变式演练 如图,把正方形ABCD沿着BC边向右平移2个单 位长度得到正方形DCEF,则阴影部分的面积是 4 .

方法归纳交流 把一个图形整体沿某一直线方向移动,会
得到一个新的图形,新图形与原图形的 形状 和 大小 完


全相同.根据平移前后图形全等进行转化计算.
预习导学
(2)图1-1中的(6)和(12)是全等图形吗?为什么?(5)和 (8)呢?

〔苏科版〕全等图形教学PPT课件

〔苏科版〕全等图形教学PPT课件
40、对人不尊敬,首先就是对自己的 不尊敬 。 —— 惠特曼
41、一个人的真正伟大之处就在于他 能够认 识到自 己的渺 小。 —— 保 罗
42、自我控制是最强者的本能。 —— 萧伯纳
43、勿以恶小而为之,勿以善小而不 为。惟 贤惟德 ,能服 于人。 —— 刘备
44、要使别人喜欢你,首先你得改变 对人的 态度, 把精神 放得轻 松一点 ,表情 自然, 笑容可 掬,这 样别人 就会对 你产生 喜爱的 感觉了 。 —— 卡耐基
两个图形面积相同,
两个图形形状相同,
但形状不同;
但大小不同。
它们不能重合,不是全等图形
形状与 大小全
都相同
全等图形的特征是:能够完全重合。
图片欣赏 从中找出全等图形。
观察下图3组全等三角形,在各组图中,第2 个三角形是怎样由第1个三角形改变位置得到 的?按照相同的方法,在图(1)、(2)、 (3)中分别画出第3、4个三角形
6、真者,精诚之至也,不精不诚,不 能动人 。—— 《庄子 •渔夫 》 37、勿以恶小而为之,勿以善小而不 为。惟 贤惟德 ,能服 于人。 刘 备
38、傲不可长,欲不可纵,乐不可极 ,志不 可满。 —— 魏 徵 39、不傲才以骄人,不以宠而作威。 —— 诸葛亮
40、人生的旅途,前途很远,也很暗 。然而 不要怕 ,不怕 的人的 面前才 有路。 —— 鲁 迅 名人名言激励励志名言名语名句100句 (励志 古诗词 篇,附 出处)
49、春蚕到死丝方尽,人至期颐亦不 休。一 息尚存 须努力 ,留作 青年好 范畴。 —— 吴玉章 50、学习的敌人是自己的满足,要认 真学习 一点东 西,必 须从不 自满开 始。对 自己,“ 学而不 厌”, 对人家 ,“诲人 不倦” ,我们 应取这 种态度 。——

《全等三角形》数学教学PPT课件(6篇)

《全等三角形》数学教学PPT课件(6篇)
加深理解
E A
F
B
C
∆ABC ≌ ∆FDE
对应顶点 对应顶点 对应顶点 对应角 对应角 对应角 对应边 对应边 对应边
41
课堂测试 1.如果∆ABC≌ ∆ADC,AB=AD,∠B=70°, BC=3cm,那么∠D=___7_0,D°C=____3cm
D
课堂测试
2、若△AOC≌△BOD,对应边是 应角是 ;
小组讨论完成
解:∵ △ABD ≌ △EBC,∴AB=EB,BD=BC, ∵BD=ED+EB ∴DE=BD-EB=BC-AB=5-3=2cm.
三、巩固练习
基础练习(教材第三十二页练习1-2题)
四、课堂小结,请大家回顾一下:
这节课你学到了什么?还有哪些疑惑?学生充分讨论回答。
点评梳理:
(1)全等三角形的概念及表示方法; (2)全等三角形的性质及应用。
思考
将两个全等三角形重合在一起,
重合的顶点叫对应顶点
A
D
重合的边叫对应边
重合的角叫对应角
根据动画效果,你能说出
这两个全等三角形的对应顶点、
B
CE
F 对应边、对应角各是什么吗?
36
全等三角形表示
如果两个三角形全等,那么该如何表示吗?
A
D
右图中的∆ABC和∆DEF全等
记作: ∆ABC ≌ ∆DEF
五、课后练习
1、教材第33-34页,1-6题。
第十二章 全等三角形
12.1 全等三角形
人教版 数学(初中) (八年级 上)
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text

北师大版七年级数学下册《图形的全等》三角形PPT优质课件

北师大版七年级数学下册《图形的全等》三角形PPT优质课件

5:如图,已知ΔAEF是ΔABC绕A点顺时针旋转55° 得到的,求∠BAE,∠CAF和∠BME的度数.
6:如图,已知ΔABE≌ΔACD,且∠1=∠2, ∠B=∠C,请指出其余的对应边和对应角.
课堂小结
两个能够重合 的图形称为全等图形; 如果两个图形全等,那么它们的__形___状___大___小____ 一定都相同; 把一个图形可以划分为两个全等图形 ; 几个全等的图形拼成一个大的图案。
课后作业
习题4.5 第2、3题
∠O=65°,∠C=20°,则∠OAD=
.
3:如图,若ΔABC≌ΔAEF, AB=AE,∠B=∠E,则下列结 论:①AC=AF, ②∠FAB=∠EAB, ③EF=BC,
④ ∠FAC=∠EAB,其中正确结论的个数是(

A.1个 个
Bபைடு நூலகம்2个
C.3个
D.4
4:如图,已知ΔABD≌ΔAEC, ∠B和∠E是对 应角,AB与AE是对应边,试说明:BC=DE.
形状相同,大小不同
面积相同,形状不同
全等图形的特征是:能够完全重合,即 形状和大小完全相同。
课堂练习
1 若ΔDEF≌ΔABC, ∠A=70°,∠B=50°,点A的 对应点是点D,AB=DE,那么∠F的度数等于( ) A.50° B.60° C.50° D.以上都不对
2 如图,若ΔOAD≌ΔOBC, 且
说一说:
说说你生活中见过的全等图形的例子。
你能找出图 中有几对全 等图形?
(2)与(4 ) (3)与(6 )
观察下列各组图形是不是全等图形?为什么?
交 流 1. 讨 论 2.
不全等,大小不等
全等,大小、形状 均相同
全等,大小、形状

第10讲 认识三角形与图形全等-七年级数学下册同步精品讲义

第10讲  认识三角形与图形全等-七年级数学下册同步精品讲义

第10讲认识三角形与图形全等目标导航知识精讲知识点01三角形(1)三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.组成三角形的线段叫做三角形的边.相邻两边的公共端点叫做三角形的顶点.相邻两边组成的角叫做三角形的内角,简称三角形的角.(2)按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).(3)三角形的主要线段:角平分线、中线、高.(4)三角形具有稳定性.【知识拓展1】(2021秋•阳新县期末)如图表示的是三角形的分类,则正确的表示是()A.M表示三边均不相等的三角形,N表示等腰三角形,P表示等边三角形B.M表示三边均不相等的三角形,N表示等边三角形,P表示等腰三角形C.M表示等腰三角形,N表示等边三角形,P表示三边均不相等的三角形D.M表示等边三角形,N表示等腰三角形,P表示三边均不相等的三角形【即学即练1】(2021秋•静安区期末)下列说法错误的是()A.任意一个直角三角形都可以被分割成两个等腰三角形B.任意一个等腰三角形都可以被分割成两个等腰三角形C.任意一个直角三角形都可以被分割成两个直角三角形D.任意一个等腰三角形都可以被分割成两个直角三角形【即学即练2】(2021秋•双牌县期末)下面是小强用三根火柴组成的图形,其中符合三角形概念的是()A.B.C.D.知识点02三角形的角平分线、中线和高(1)从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.(2)三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.(3)三角形一边的中点与此边所对顶点的连线叫做三角形的中线.(4)三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.(5)锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.【知识拓展2】(2021秋•两江新区期末)如图,在△ABC中,AB=5,AC=3,AD为BC边上的中线,则△ABD与△ACD的周长之差为()A.2B.3C.4D.5【即学即练1】(2021秋•沙坪坝区校级期末)数学课上,同学们在作△ABC中AC边上的高时,共画出下列四种图形,其中正确的是()A.B.C.D.【即学即练2】(2021秋•思明区校级期末)如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是()A.BC=2AD B.AB=2AF C.AD=CD D.BE=CF知识点03三角形的面积(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.(2)三角形的中线将三角形分成面积相等的两部分.【知识拓展3】(2021秋•正阳县期末)如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且△ABC的面积为24,则△BEF的面积是()A.2B.4C.6D.8【即学即练1】(2021秋•同安区期末)如图,S△ABD=S△ACD,已知AB=8cm,AC=5cm,那么△ABD和△ACD的周长差是cm.【即学即练2】(2021秋•嘉鱼县期末)如图,在△ABC中,AD,AE分别是边BC上的高和中线,AD=2cm,△ACE的面积是3cm2,则BC=cm.知识点04三角形的重心(1)三角形的重心是三角形三边中线的交点.(2)重心的性质:①重心到顶点的距离与重心到对边中点的距离之比为2:1.②重心和三角形3个顶点组成的3个三角形面积相等.③重心到三角形3个顶点距离的和最小.(等边三角形)【知识拓展4】(2021秋•泉州期末)如图,在Rt△ABC中,∠C=90°,点G是△ABC的重心,GE⊥AC,垂足为E,若GE=3,则线段CB的长度为()A.10B.9C.6D.【即学即练1】(2021秋•莱州市期末)如图,点O是△ABC的重心,连接AO并延长交BC于点D.若BC =6,则CD=.【即学即练2】(2021秋•广丰区期末)三角形的中线把三角形分成了面积相等的两部分,而三条中线交于一点,这一点叫此三角形的心.知识点05三角形三边关系(1)三角形三边关系定理:三角形两边之和大于第三边.(2)在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.(3)三角形的两边差小于第三边.(4)在涉及三角形的边长或周长的计算时,注意最后要用三边关系去检验,这是一个隐藏的定时炸弹,容易忽略.【知识拓展5】(2021秋•樊城区期末)若线段AP,BP,AB满足AP+BP>AB,则关于P点的位置,下列说法正确的是()A.P点一定在直线AB上B.P点一定在直线AB外C.P点一定在线段AB上D.P点一定在线段AB外【即学即练1】(2021秋•宜春期末)下列长度的三条线段能组成三角形的是()A.3,4,8B.5,6,11C.5,6,10D.4,5,9【即学即练2】(2021秋•岑溪市期末)已知一个三角形有两边长分别为3和9,则它的第三边长可能是()A.4B.5C.6D.7知识点06三角形内角和定理(1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.(2)三角形内角和定理:三角形内角和是180°.(3)三角形内角和定理的证明证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.(4)三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.【知识拓展6】(2021秋•大余县期末)如图,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC,∠ABC的平分线.∠BAC=50°,∠ABC=60°.则∠DAE+∠ACD等于()A.75°B.80°C.85°D.90°【即学即练1】(2021秋•铅山县期末)如图,BD平分∠ABC,CD平分∠ACD,若∠A=80°,则∠D的度数为()A.100°B.120°C.130°D.140°【即学即练2】(2021秋•连江县期末)如图,已知△ABC中,BD,CE分别是△ABC的角平分线,BD与CE交于点O,如果设∠A=n°(0<n<180),那么∠COD的度数是()A.45°+n°B.90°C.90°﹣D.180°﹣n°知识点07全等图形(1)全等形的概念能够完全重合的两个图形叫做全等形.(2)全等三角形能够完全重合的两个三角形叫做全等三角形.(3)三角形全等的符号“全等”用符号“≌”表示.注意:在记两个三角形全等时,通常把对应顶点写在对应位置上.(4)对应顶点、对应边、对应角把两个全等三角形重合到一起,重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.【知识拓展1】(2021秋•潜江期末)下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个全等图形形状一定相同C.两个周长相等的图形一定是全等图形D.两个正三角形一定是全等图形【即学即练1】图中所示的网格是正方形网格,则下列关系正确的是()A.∠1>∠2B.∠1<∠2C.∠1+∠2=90°D.∠1+∠2=180°【即学即练2】(2021秋•辛集市期末)观察下面的6组图形,其中是全等图形的有()A.3组B.4组C.5组D.6组知识点08直角三角形的性质(1)有一个角为90°的三角形,叫做直角三角形.(2)直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边的平方和等于斜边的平方(勾股定理).性质2:在直角三角形中,两个锐角互余.性质3:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积.性质5:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.【知识拓展8】(2021秋•富川县期末)在一个直角三角形中,一个锐角等于56°,则另一个锐角的度数是()A.26°B.34°C.36°D.44°【即学即练1】(2021秋•越城区期末)如图,在△ABC中,点P在边BC上(不与点B,点C重合),()A.若∠BAC=90°,∠BAP=∠B,则AC=PCB.若∠BAC=90°,∠BAP=∠C,则AP⊥BCC.若AP⊥BC,PB=PC,则∠BAC=90°D.若PB=PC,∠BAP=∠CAP,则∠BAC=90°【即学即练2】(2021秋•嘉鱼县期末)在△ABC中,∠A=90°,∠B=40°,则∠C =度.能力拓展【考点1】:认识三角形例题1.(2021·石家庄市第四十一中学七年级期末)若三角形的两边长是2cm 和5cm,第三边长的数值是奇数,则这个三角形的周长是()A.9cm B.12cm C.10cm D.14cm【变式1】(2021·山东烟台市·七年级期末)用直角三角板作ABC的高,下列作法正确的是()A.B.C.D.【变式2】(2021·浙江温州市·七年级期末)如图,三角形ABC 中,AC BC ⊥,CD AB ⊥于点D ,则下列线段关系成立的是( )A .AD BC AB +< B .BD AC AB +< C .2BC AC CD +>D . AC BC AB +<例题2.(2020·辽宁锦州市·七年级期末)已知三角形ABC ,且AB =3厘米,BC =2厘米,A 、C 两点间的距离为x 厘米,那么x 的取值范围是________.【变式1】(2021·广西南宁市·七年级期末)现有一张边长为1的正方形纸片,第一次沿着线段1AP 剪开,留下三角形1ABP ;第二次取1BP 的中点2P ,再沿着2AP 剪开,留下三角形2ABP ;第三次取2BP 的中点3P ,再沿着3AP 剪开,留下三角形3ABP ;…,如此进行下去,在第n 次后,被剪去图形的面积之和是________.【变式2】(2020·浙江杭州市·七年级期末)已知直线//m n ,将一块含有45︒角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 相交于点D .若124︒∠=,则2∠的度数为_______.例3.(2021·兰州市第三十六中学七年级期末)把两个形状相同,大小不同的三角板如图所示拼在一起,已知B DAC x ∠=∠=,2C BAD x ∠=∠=. (1)求C ∠的度数;(2)如图,如果ACF BCF ∠=∠,试比较AEC ∠和BFC ∠的大小.【变式1】(2021·浙江台州市·七年级期末)如图,在平面内有三个点、、A B C(1)根据下列语句画图: ①连接AB ; ②作直线BC ;③作射线AC ,在AC 的延长线上取一点D 使得CD CB =,连接BD ; (2)比较,,AB BD AB BC CD AD +++的大小关系.【变式2】(2021·四川绵阳市·东辰国际学校七年级期末)如图,两个形状、大小完全相同的含有30°、60°的直角三角板如图①放置,PA、PB与直线MN重合,且三角板PAC、三角板PBD均可绕点P逆时针旋转(1)试说明∠DPC=90°;(2)如图②,若三角板PBD保持不动,三角板PAC绕点P逆时针旋转旋转一定角度,PF平分∠APD,PE 平分∠CPD,求∠EPF;(3)如图③.在图①基础上,若三角板PAC开始绕点P逆时针旋转,转速为5°/秒,同时三角板PBD绕点P逆时针旋转,转速为1°/秒,(当PA转到与PM重合时,两三角板都停止转动),在旋转过程中,PC、PB、PD三条射线中,当其中一条射线平分另两条射线的夹角时,请求出旋转的时间.【考点2】:图形的全等例题1.(2001·浙江省杭州第十中学七年级期末)如图所示,某同学将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①②去【变式1】(2020·四川成都市·七年级期末)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A .90°B .120°C .135°D .150°【变式2】(2020·山东泰安市·七年级期末)下列说法正确的是( )A .全等三角形是指形状相同的两个三角形B .全等三角形是指面积相等的两个三角形C .两个等边三角形是全等三角形D .全等三角形是指两个能完全重合的三角形例题2.(2021·湖北黄石市·七年级期末)如图,是一个33⨯的正方形网格,则∠1+∠2+∠3+∠4=________.【变式1】(2020·重庆七年级期末)如图,图中由实线围成的图形与①是全等形的有______.(填番号)【变式2】(2020·山西临汾市·七年级期末)如图,ABC ADE ≅,如果5,7,6AB cm BC cm AC cm ===,那么DE 的长是______.例题3.(2020·江苏苏州市·七年级期末)如图,用三种不同的方法沿网格线把正方形分割成4个全等的图形(三种方法得到的图形相互间不全等).【变式1】(2018·全国七年级期末)如图,在△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,DE⊥AB,垂足为点F,且AB=DE.(1)求证:BD=BC;(2)若BD=6cm,求AC的长.【变式2】(2019·山东青岛市·七年级期末)图①,图②都是由一个正方形和一个等腰直角三角形组成的图形.(1)用实线把图①分割成六个全等图形;(2)用实线把图②分割成四个全等图形.分层提分题组A 基础过关练一.选择题(共6小题)1.(2021秋•思明区校级期末)如图,CM是△ABC的中线,AM=4cm,则BM的长为()A.3cm B.4cm C.5cm D.6cm2.(2021秋•东城区校级期末)如图,AD是△ABC中∠BAC的角平分线,DE⊥AC于点E,DE=4,AC=6,那么△ACD的面积是()A.10B.12C.16D.243.(2021秋•玉林期末)下列长度的三条线段能构成三角形的是()A.3,4,8B.5,6,11C.5,5,10D.3,7,94.(2021秋•全椒县期末)如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠BAC=50°,∠ABC=60°,则∠DAE=()A.5°B.4°C.8°D.6°5.(2021秋•无为市期末)如图,已知方格纸中是4个相同的正方形,则∠1+∠2=()A.60°B.90°C.100°D.120°6.(2021秋•望城区期末)在一个直角三角形中,有一个锐角等于25°,则另一个锐角的度数是()A.25°B.55°C.65°D.75°二.填空题(共8小题)7.(2021秋•岚皋县校级月考)图中以AE为边的三角形共有个.8.(2021秋•天河区期末)在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多3cm,已知AB=4cm,则AC的长为cm.9.(2021秋•定海区校级月考)如图,△ABC中,D是BC边上的一点(不与B,C重合),点E,F是线段AD的三等分点,记△BDF的面积为S1,△ACE的面积为S2,若S1+S2=3,则△ABC的面积为.10.(2021秋•港南区期中)如图,BD、CE是△ABC的高,若AB=4,AC=6,CE=5,则BD的长度是.11.(2021秋•广丰区期末)三角形的中线把三角形分成了面积相等的两部分,而三条中线交于一点,这一点叫此三角形的心.12.(2021秋•巢湖市期末)△ABC的两边长分别是2和5,且第三边为奇数,则第三边长为.13.(2021秋•包河区期末)如图,在△ABC中,∠ACB=90°,点D在AB上,将△BDC沿CD折叠,点B落在AC边上的点B′处,若∠ADB′=20°,则∠A的度数是.14.(2021秋•大连月考)直角三角形中两个锐角的差为20°,则较小的锐角度数是°.三.解答题(共3小题)15.(2021秋•启东市期末)如图,在△ABC中,∠CAE=18°,∠C=42°,∠CBD=27°.(1)求∠AFB的度数;(2)若∠BAF=2∠ABF,求∠BAF的度数.16.(2021秋•双台子区期末)如图,在△ABC中,CD平分∠ACB,AE⊥CD,垂足为F,交BC于点E,若∠BAE=33°,∠B=37°,求∠EAC的度数.17.(2021秋•临漳县期末)阅读并填空将三角尺(△MPN,∠MPN=90°)放置在△ABC上(点P在△ABC 内),如图1所示,三角尺的两边PM、PN恰好经过点B和点C.我们来探究:∠ABP与∠ACP是否存在某种数量关系.(1)特例探索:若∠A=50°,则∠PBC+∠PCB=度;∠ABP+∠ACP=度;(2)类比探索:∠ABP、∠ACP、∠A的关系是;(3)变式探索:如图2所示,改变三角尺的位置,使点P在△ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则∠ABP、∠ACP、∠A的关系是.题组B 能力提升练一.选择题(共7小题)1.(2021秋•兴城市期末)如图,在△ABC中,∠C=90°,∠B=70°,点D、E分别在AB、AC上,将△ADE沿DE折叠,使点A落在点F处.则∠BDF﹣∠CEF=()A.20°B.30°C.40°D.50°2.(2021秋•椒江区期末)如图,在△ABC中,∠A=60°,∠B=70°,CD是∠ACB的平分线,CH⊥AB 于点H,则∠DCH的度数是()A.5°B.10°C.15°D.20°3.(2021秋•开州区期末)如图,在△ABC中,D在BC的延长线上,过D作DF⊥AB于F,交AC于E.已知∠A=35°,∠ECD=85°,则∠D=()A.30°B.40°C.45°D.50°4.(2021秋•忠县期末)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AC上一点,将△ABD 沿线段BD翻折,使得点A落在A'处,若∠A'BC=30°,则∠CBD=()A.5°B.10°C.15°D.20°5.(2021秋•密山市期末)如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF=4,则S△ABC等于()A.16B.24C.32D.306.(2021秋•潮安区期末)如图,AD是△ABC的中线,点E是AD的中点,连接BE、CE,若△ABC的面积是8,则阴影部分的面积为()A.4B.2C.6D.87.(2021秋•江宁区期中)如图,在四边形ABCD与四边形A'B'C'D'中,AB=A'B',∠B=∠B',BC=B'C'.下列条件中:①∠A=∠A',AD=A'D';②∠A=∠A',CD=C'D';③∠A=∠A',∠D=∠D';④AD=A'D',CD=C'D'.添加上述条件中的其中一个,可使四边形ABCD≌四边形A'B'C'D'.上述条件中符合要求的有()A.①②③B.①③④C.①④D.①②③④二.填空题(共8小题)8.(2021秋•博兴县期末)如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=76°,∠C=64°,则∠DAE的度数是.9.(2021秋•平罗县期末)如图,△ABC中,D在BC的延长线上,过D作DF⊥AB于F,交AC于E.已知∠A=35°,∠ECD=85°,则∠D=.10.(2021秋•博白县期末)如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C 平分∠ACB,若∠BA'C=120°,则∠1+∠2的度数为.11.(2020秋•十堰期末)如图,在2×2的方格纸中,∠1+∠2等于.12.(2021秋•鹿城区校级月考)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示,连接BE并延长交AD于点F,若AG=2BG,则=.13.(2021春•东阳市期末)如图,把一张长方形纸板裁去两个边长为3cm的小正方形和两个全等的小长方形,再把剩余部分(阴影部分)四周折起,恰好做成一个有底有盖的长方体纸盒,纸盒底面长方形的长为3kcm,宽为2kcm,则:(1)裁去的每个小长方形面积为cm2.(用k的代数式表示)(2)若长方体纸盒的表面积是底面积的正整数倍,则正整数k的值为.14.(2021秋•湖州期末)如图,在△ABC中,AE是△ABC的角平分线,D是AE延长线上一点,DH⊥BC 于点H.若∠B=30°,∠C=50°,则∠EDH=.15.(2021秋•山亭区期末)定义:当三角形中一个内角α是另一个内角的两倍时,我们称此三角形为“倍角三角形”,其中α称为“倍角”,如果一个“倍角三角形”的一个内角为99°,那么倍角α的度数是.三.解答题(共4小题)16.(2021秋•建昌县期末)如图,AD是∠BAC的平分线,CE是△ADC边AD上的高,若∠BAC=70°,∠ECD=20°.求∠ACB的度数.17.(2021秋•沙依巴克区校级期末)如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE 平分∠BAC,求∠EAD的度数.18.(2021秋•南昌期末)如图,在△ABC中,∠B=2∠C,AD⊥BC于点D,AE平分∠BAC交BC于点E.(1)若∠C=40°,求∠DAE的度数;(2)若EF⊥AE,交AC于点F,请补全图形,并在第(1)问的条件下,求∠FEC的度数.19.(2021秋•邗江区期末)点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,一直角三角板的直角顶点放在点O处.(1)如图1,将三角板DOE的一边OD与射线OB重合时,则∠COD=∠COE;(2)如图2,将图1中的三角板DOE绕点O逆时针旋转一定角度,当OC恰好是∠BOE的角平分线时,求∠COD的度数;(3)将图1中的三角尺DOE绕点O逆时针旋转旋转一周,设旋转的角度为α度,在旋转的过程中,能否使∠AOE=3∠COD?若能,求出α的度数;若不能,说明理由.题组C 培优拔尖练一.选择题(共3小题)1.(2021秋•拱墅区校级月考)如图,O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合),S四边形BCHG,S△AGH分别表示四边形BCHG和△AGH的面积,则的最大值是()A.B.1C.D.2.(2021春•九龙坡区校级期末)如图,在△ABC中,延长CA至点F,使得AF=CA,延长AB至点D,使得BD=2AB,延长BC至点E,使得CE=3CB,连接EF、FD、DE,若S△DEF=36,则S△ABC为()A.2B.3C.4D.53.(2021春•青山区期末)如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF 交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠F AG=2∠ACF;④BH=CH.A.①②③④B.①②③C.②④D.①③二.填空题(共3小题)4.(2021秋•武昌区期末)如图,在△ABC中,∠ACB=2α,CD平分∠ACB,∠CAD=30°﹣α,∠BAD =30°,则∠BDC=.(用含α的式子表示)5.(2021春•高邮市期中)如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2;…;按此规律继续下去,可得到△A4B4C4,则其面积S4=.6.(2021春•宝应县月考)如图,A,B,C分别是线段A1B、B1C、C1A的中点,若△A1B1C1的面积是28,那么△ABC的面积是.三.解答题(共5小题)7.(2021秋•青田县期末)如图,直线l∥线段BC,点A是直线l上一动点.在△ABC中,AD是△ABC的高线,AE是∠BAC的角平分线.(1)如图1,若∠ABC=65°,∠BAC=80°,求∠DAE的度数;(2)当点A在直线l上运动时,探究∠BAD,∠DAE,∠BAE之间的数量关系,并画出对应图形进行说明.8.(2021秋•西湖区校级期末)新定义:在△ABC中,若存在一个内角是另外一个内角度数的n倍(n为大于1的正整数),则称△ABC为n倍角三角形.例如,在△ABC中,∠A=80°,∠B=60°,∠C=40°,可知∠A=2∠C,所以△ABC为2倍角三角形.(1)在△DEF中,∠E=40°,∠F=35°,则△DEF为倍角三角形.(2)如图1,直线MN与直线PQ相交于O,∠POM=30°,点A、点B分别是射线OP、OM上的动点;已知∠BAO、∠OBA的角平分线交于点C,在△ABC中,如果有一个角是另一个角的2倍,请求出∠BAC 的度数.(3)如图2,直线MN⊥直线PQ于点O,点A、点B分别在射线OP、OM上,已知∠BAO、∠OAG的角平分线分别与∠BOQ的角平分线所在的直线交于点E、F,若△AEF为3倍角三角形,试求∠ABO的度数.9.(2021秋•兴庆区校级期末)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当△PMN所放位置如图①所示时,求出∠PFD与∠AEM的数量关系;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=15°,∠PEB=30°,求∠N的度数.10.我们把两个能够互相重合的图形称为全等形.(1)请你用四种方法把长和宽分别为5和3的矩形分成四个均不全等的小矩形或正方形,且矩形或正方形的各边长均为整数;(2)是否能将上述3×5的矩形分成五个均不全等的整数边矩形?若能,请画出.11.(2021秋•思明区校级期末)问题提出:(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”.如图1,△ABC中,AC=7,BC=9,AB=10,P为AC上一点,当AP=时,△ABP与△CBP是偏等积三角形;问题解决:(2)如图2,四边形ABED是一片绿色花园,△ACB、△DCE是等腰直角三角形,∠ACB=∠DCE=90°(0<∠BCE<90°),①△ACD与△BCE是偏等积三角形吗?请说明理由;②已知BE=60m,△ACD的面积为2100m3.如图3,计划修建一条经过点C的笔直的小路CF,F在BE 边上,FC的延长线经过AD中点G.若小路每米造价600元,请计算修建小路的总造价.。

北师大版七年级数学下册 4.2《图形的全等》教学课件%28共32张PPT%29

北师大版七年级数学下册 4.2《图形的全等》教学课件%28共32张PPT%29

EF=7,求∠DEF的度数和CF的长.
E
D
解:∵△ABC≌△DEF,∠A=70°, ∠B=50°,BF=4,EF=7, ∴∠DEF=∠B=50°,BC=EF=7, ∴CF=BC-BF=7-4=3.
C A
F B
典型例题
例4.如图,△ABC≌△ADE,∠CAD=10°,∠B=∠D= 25°,∠EAB=120°,求∠ACB的度数.
探究新知
②如图,已知△ABC≌△A′B′C′,在△A′B′C′中画出与线段DE相 等的对应线段.
典型例题
例1.下列四个图形是全等图形的是( C)
A .(1)和(3) C .(2)和(4)
B .(2)和(3) D .(3)和(4)
典型例题
例2.如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三
探究新知
下面这些图形中有些是完全一样的,如果把它们叠在一起,它们 就能重合.你能分别从图中找出这样的图形吗?
定义:能够完全重合的两个图形称为全等图形.
探究新知
观察下面三组图形,它们是不是全等图形?为什么?
全等图形的性质:如果两个图形全等,它们的形状和大小一定都相同.
探究新知
A
D
B
C
E
F
能够完全重合的两个三角形叫做全等三角形.
(2)如图,△ACB≌△A′C′B′,∠BCB′=30°,则∠ACA′的度数 为___3_0_°_____ .
随堂练习
(3)如图,C为直线BE上一点,△ABC≌△ADC,∠DCF= ∠ECF,则AC和CF的位置关系是 A_C__⊥__C_F.
随堂练习
4.找出下列图形中的全等图形.
(1) (2) (3) (4) (5) (6)

苏科版八年级数学上册《图形的全等》课件(共26张PPT)

苏科版八年级数学上册《图形的全等》课件(共26张PPT)
A B
AB
例5:已知 AC=DB, ∠1=∠2. 求证: ∠A=∠D
A
D
B
1
2
C
证明:在△ABC和△DCB中 AC=DB ∠1=∠2 BC=CB
∴ △ABC≌△DCB (SAS) ∴ ∠A=∠D
练习5:如图,已知E在AB上,∠1=∠2, ∠3=∠4,那么AC等于AD吗?为什么?
C
3
AE
1 2
4
D
充的条件可以是 AB=ED
或 AC=EF
或 BC=DF
或 DC=BF
D
C
A
E
F
B
返回
练习
1:如图,已知,AB∥DE,AB=DE,AF=DC。请问图中有那几对全
等三角形?请任选一对给予证明。
E
答: △ABF≌△DEC
A
F
C
D
△ABC≌△DEF △CBF≌△FEC
B
练2
练习
1:如图,已知,AB∥DE,AB=DE,AF=DC。请问图中有那几对全
B
C D
CB=CD ∴ △ABC≌△ADC (SSS)
∴ ∠BAC= ∠DAC
∴ AC平分∠BAD
例2:如图,AC和BD相交于点O,OA=OC,OB=OD
求证:DC∥AB
D
C
证明:在△ABO和△CDO中
O
OA=OC
AБайду номын сангаас
B
∠AOB= ∠COD
OB=OD
∴ △ABO≌△CDO (SAS)
∴ ∠A= ∠C
已知: EG∥AF 求证:
A
E
B
G
D
C F

全等图形 PPT课件 2 苏科版

全等图形 PPT课件 2 苏科版


38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。

39、人的价值,在遭受诱惑的一瞬间被决定。

40、事虽微,不为不成;道虽迩,不行不至。

41、好好扮演自己的角色,做自己该做的事。

42、自信人生二百年,会当水击三千里。

43、要纠正别人之前,先反省自己有没有犯错。

74、先知三日,富贵十年。付诸行动,你就会得到力量。

75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。

76、好习惯成就一生,坏习惯毁人前程。

77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。

78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。

79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。
全等图形
江南中学 沈晖
请欣赏
请欣赏
请欣赏
请欣赏
请欣赏
请欣赏
请欣赏
请欣赏
请欣赏
说一说
像前面这些能完__全___重___合__ 的图形叫 做全等图形(congruent figures)
如果两个图形全等,它们的形___状__ 和大___小_ 一定都相等。
找出全等图形
做一做
1、P130页:观察图12-2中3组全等三角形 : 在各组图形中,第② 个三角形是怎样由 第 ①个三角形改变位置得到的? 按照同样的方法,在图12-2(1)、(2)、 (3)中分别画出第③、第④个三角形。
23、天行健君子以自强不息;地势坤君子以厚德载物。

苏科版七年级数学下课件:11.2 全等三角形

苏科版七年级数学下课件:11.2 全等三角形

C
D
O
A
B
二.如图,BD是长方形ABCD的一条对角线。
(1) △ABD与△CDB全等吗?你是怎样知道的? (2) 如果你认为△ABD与△CDB全等,请用符号
表示,并说出它们的对应边和对应角。
D
C 什么收获?
全等三角形
下列各组图形的形状与大小有什么特点?
(1)
(2)
(3)能够重合的图形叫做(全4)等图形 能够重合的两个三角形叫做全等三角形
小试身手
下列说法是否正确,并简要说明理由:
(1) 边长相等的正方形都是全等图形; (正确) (2) 同一面中华人民共和国国旗上,4个小
五角星都是全等图形. (正确) (3) 面积相等的两个三角形是全等三角形(错误)
(4) 两个全等三角形的面积相等 (正确)
(5) 半径相等的两个圆是全等图形(正确)
你还能说出生活中的其 它一些全等图形吗?
它们会全 等吗?
试一试,摆一摆
任意剪两个全等的三角形,摆一摆它 们的位置,使其符合下列图形
C
B
C
BD
C
O
O
A
A
D
D
A
B
A
D
B如果△ABC与△CDEFE会互相重合, F 顶点A与顶点_D__重合,顶点B与顶点_E__ 重合,顶点C与顶点_F__重合。
AB边与__D_E__ 边重合, BC边与 __E_F__ 边重合,AC边与_D__F__边重合。
∠A与_∠__D__重合,∠B与 _∠_E___重合, ∠C与 ___重∠合F 。
A
D
B
F
C
E
两个全等三角形重合时,互相重合 的顶点叫对应顶点,互相重合的 边叫做对应边,互相重合的角叫 做对应角。

初中数学《图形的全等》课堂课件北师大版1

初中数学《图形的全等》课堂课件北师大版1

活动探究
探究点一: 全等图形
初中数学《图形的全等》课堂课件北 师大版1
初中数学《图形的全等》课堂课件北 师大版1
活动探究
探究点一: 全等图形
初中数学《图形的全等》课堂课件北 师大版1
初中数学《图形的全等》课堂课件北 师大版1
活动探究
探究点一: 全等图形
初中数学《图形的全等》课堂课件北 师大版1
初中数学《图形的全等》课堂课件北 师大版1
4.2 图形的全等
七年级下册
答疑解惑
1.完成课本“做一做”,请问发现了什么?得到什么结论? 画三角形的一条角平分线,即可得两个全等的三角形,画三角形三个内角的 平分线,即可得三个全等的三角形,画三角形的三条中位线可得四个全等的三角形. 2.通过对课本中“议一议”的思考学习,你发现了什么规律? 能够完全重合的两个三角形叫做全等三角形;全等三角形的对应边、对应角相 等;全等三角形对应边上的中线相等,对应边上的高相等,对应角平分线相等;全 等三角形的周长相等、面积也相等.
应顶点,AF与DE交于点M,则∠DCE等于( A )
A.∠B
B.∠A
C.∠EMF
D.∠AFB
初中数学《图形的全等》课堂课件北 师大版1
初中数学《图形的全等》课堂课件北 师大版1
随堂检测
4、如图,将长方形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1
=35°,则∠2的度数为( A )
初中数学《图形的全等》课堂课件北 师大版1 初中数学《图形的全等》课堂课件北 师大版1
再见
A.20°
B.30° C.35° 师大版1
初中数学《图形的全等》课堂课件北 师大版1
课堂小结
本节课都学到了什么?

《图形的全等》课件2(15页)(苏科版七年级下)

《图形的全等》课件2(15页)(苏科版七年级下)

E
B
C
BE=CE ∴ △ABE≌△ACE (第一步) (SSS)
∴ ∠AEB=∠AEC (第二步()全等三角形的对应角相等)
通过这道题,你知道什 么是全等三角形吗?全 等三 角形有那些性质呢?有那些判定方法呢?
复习知识与要点
1、全等三角形的概念:
能够完全重合的两个三角形,叫做全等三角形。
2、全等三角形的性质:
A、2 B、3 C、4
D、5
O
△ABD≌ △CDB △ADC≌△CBA B
△AOB≌ △COD △AOD≌△COB
C
D C
4、如图:已知AC=AD, A
B
只需附加一个条件,就能
使△ACB≌△ADB,请写
D
出一个符合的条件__B_C__=_B__D__或___(。∠CAB=∠DAB)
基础训练
5、已知:AB=AC,AD=AE,试说明:△ABE≌△ACD
EB O
CD
(2)图中共有多少对相等线段,一一把它们找出来,
并说明理由
课堂小结与课外作业
1、小结:
(1)全等三角形的概念; (2)全等三角形的性质 (;3)全等三角形的判定方法;
2、作业 书P158 . 5, 6, 7, 8.
D
E
CB
O CB
O
C
已知:
AD=AE
已知:
∠DAC=∠EAB ∠DOB=∠EOC
1、已知:在AB、AC上各取一点D、E,使AD=AE, 连结BE、 CD相交于点O,∠1=∠2,试说明:∠B=∠C
已解知: 在△AOD和△AOE 中
A
AD=AE ∠1=∠2 AO=AO ∴ △AOD≌△AOE (SAS) ∴ ∠DOA=∠EOA

七年级数学ppt课件

七年级数学ppt课件

函数的最值是指函数在某区间内的最大值或最小值。最值是函数的一个
重要属性,它可以用来解决实际问题中的优化问题。同时,通过求最值
,可以进一步了解函数的性质和规律。
03
第三章:一元一次方程
一元一次方程的定义
总结词
一元一次方程是最简单的线性方 程,它只含有一个未知数,并且 未知数的最高次数为1。
详细描述
几何图形的性质与特点
总结词
掌握几何图形的性质和特点是解决几何问题的关键。
详细描述
每种几何图形都有其独特的性质和特点。例如,三角形具有稳定性,即只要不改变其三个边的长度, 那么它的形状就不会改变;矩形的对角线相等且相互平分,而且它的四个角都是直角。这些性质和特 点可以帮助我们解决各种几何问题,例如计算角度、长度等。
合理性。
问题解决中的数学思维方法
归纳与类比
通过归纳已知信息,类比未知 信息,寻找规律和解决方法。
演绎推理
根据已知信息,通过逻辑推理 和演绎,得出结论和答案。
数学建模
将实际问题转化为数学模型, 利用数学方法解决实际问题。
方程与不等式
通过建立方程或不等式,解决 与数量关系、代数表达式等有
关的数学问题。
代数式的简化的应用:代数式的 简化在数学问题中应用广泛,如 求值、解方程等问题都需要进行
简化。
02
第二章:函数与图像
函数的定义
函数的定义
函数是数学中的一个基本概念,它描述了两个变量之间的关系,即一个变量的取值依赖于 另一个变量的取值。函数的概念对于理解数学中的变量关系和建立数学模型具有重要意义 。
05
第五章:几何基础
几何图形的定义与分类
总结词
了解几何图形的定义和分类是学习几何的基础。

《全等图形》课件2(18页)(苏科版七年级下)

《全等图形》课件2(18页)(苏科版七年级下)

作业:
• 习题 第3题
把自己称为一个“图
形艺术家”,他专门从 事于木板画。在1956年 举办的历次画展得到了 许多数学家的称赏,在 他的作品中数学的原则 和思想得到了非同寻常 艺术家M.C.埃舍尔 的形象化。
通过这节课的学习,你对全等图形有哪些 认识?
• 1 能完全重合的两个图形叫全等图形
• 2 全等图形的大小和形状相同
请欣赏下列图片
找出下列各对全等图形
议一议:
观察下面两组图形,它们是不是全等图形?为什么的形状和大小都相同
沿图形中的虚线,分别把下面图形划分为两个 全等图形(至少找出两种方法)
把一个等边三角形分成2个、3个、4个全等 图形
把下列图形分成4个全等图形
了解世界:

全等图形ppt7(10份) 苏科版

全等图形ppt7(10份) 苏科版


63、彩虹风雨后,成功细节中。

64、有些事你是绕不过去的,你现在逃避,你以后就会话十倍的精力去面对。

65、只要有信心,就能在信念中行走。

66、每天告诉自己一次,我真的很不错。

67、心中有理想 再累也快乐

68、发光并非太阳的专利,你也可以发光。

69、任何山都可以移动,只要把沙土一卡车一卡车运走即可。

39、人的价值,在遭受诱惑的一瞬间被决定。

40、事虽微,不为不成;道虽迩,不行不至。

41、好好扮演自己的角色,做自己该做的事。

42、自信人生二百年,会当水击三千里。

43、要纠正别人之前,先反省自己有没有犯错。

44、仁慈是一种聋子能听到、哑巴能了解的语言。

45、不可能!只存在于蠢人的字典里。
(1)
(2)
如果两个图形全等,它们的 形状一定相同,大小一定相 等!
? 能够完全重合的两个三
思 角形叫做全等三角形.

AD
BE
FC
记作: ∆ABC ≌ ∆DEF
读作:∆ABC全等于 ∆DEF
A
D
B
C
E
F
把两个全等的三角形重合在一起
●重合的顶点叫对应顶点
●重合的边叫对应边
●重合的角叫对应角
A
D
图(1)
B
C
E
F
D
E
A
A
B
C
B
C 图(2)
图(3)
D
注意:对应顶点的字母写在对应的位置上.
如图(1): △ A B C≌△ D E F
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各组图形中,第②个三角形是怎 么由第①个三角形改变位置得到 的?
请你仿造同样的方法在图中 分别画出第③和第④ 形分割成两个全等的图形
如图,做四个全等的小“L”型纸片,将 它们拼成一个与大“L”全等的图案。
艺术家 M.C.埃舍尔
把自己称 为一个“图形 艺术家”他专 门从事于木板 画。在1956年 举办的艺术画 展得到了许多 数学家的称赏, 在他的作品中 数学的原则和 思想得到了非 同寻常的形象 化。
1初1.中1 (数全苏学等七科图年版级)形下册
平移
像上面那些能够完全重合的图形叫做全等图形 (congruent figures)
议一议
1、你能说出生活中全等图形的例子吗? 2、观察下面两组图形,它们是不是全等图形?为什么?
形状 相同
大小 相同
全等图形的形状和大小都相同
观察图中三组全等图形,在
你能在方格纸上利用全等图形的 有关知识设计一 幅精美的图案吗?
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
相关文档
最新文档