光电探测器精品PPT课件
合集下载
《光电导探测器》课件
详细描述
光电导探测器在光通信领域中用于光信号的接收和检测,在光谱分析中用于光 谱仪的光电转换,在环境监测中用于气体和液体的成分分析和浓度测量,在生 物医学中用于医疗诊断和生物分子检测等。
02
CHAPTER
光电导探测器的基本结构
半导体材料
光电导探测器的核心是半导体材料,它们能够吸收光子并产生电子-空穴对。常见的 半导体材料包括硅、锗、硫化铅等。
这些半导体材料具有直接带隙结构,使得它们能够有效地吸收特定波长的光子,产 生光生载流子。
半导体材料的性能决定了光电导探测器的响应速度、光谱响应范围和暗电流等关键 参数。
光敏元件
光敏元件是光电导探测器的核心部分 ,它负责吸收光子并转换为电信号。
光敏元件的形状和尺寸对探测器的性 能有重要影响,例如响应速度、光谱 响应范围和探测率等。
未来发展方向与挑战
交叉学科融合
光电导探测器的发展需要与物理、化学、生物等 多学科交叉融合,开拓新的应用领域。
环境适应性
提高光电导探测器的环境适应性,使其能够在恶 劣环境下稳定工作。
降低成本
通过优化工艺和材料,降低光电导探测器的制造 成本,促进其在民用领域的应用。
THANKS
谢谢
光谱响应
描述光电导探测器在不同波长光下的 响应特性,是决定探测器应用范围的 重要参数。
响应时间与恢复时间
响应时间
光电导探测器从接收到光信号到产生可观测电信号的时间间隔,反映了探测器的反应速 度。
恢复时间
探测器在持续光照下,从最大响应状态回到初始状态所需的时间,影响连续测量时的性 能。
温度稳定性与可靠性
03
CHAPTER
光电导探测器的性能参数
响应度与探测率
光电导探测器在光通信领域中用于光信号的接收和检测,在光谱分析中用于光 谱仪的光电转换,在环境监测中用于气体和液体的成分分析和浓度测量,在生 物医学中用于医疗诊断和生物分子检测等。
02
CHAPTER
光电导探测器的基本结构
半导体材料
光电导探测器的核心是半导体材料,它们能够吸收光子并产生电子-空穴对。常见的 半导体材料包括硅、锗、硫化铅等。
这些半导体材料具有直接带隙结构,使得它们能够有效地吸收特定波长的光子,产 生光生载流子。
半导体材料的性能决定了光电导探测器的响应速度、光谱响应范围和暗电流等关键 参数。
光敏元件
光敏元件是光电导探测器的核心部分 ,它负责吸收光子并转换为电信号。
光敏元件的形状和尺寸对探测器的性 能有重要影响,例如响应速度、光谱 响应范围和探测率等。
未来发展方向与挑战
交叉学科融合
光电导探测器的发展需要与物理、化学、生物等 多学科交叉融合,开拓新的应用领域。
环境适应性
提高光电导探测器的环境适应性,使其能够在恶 劣环境下稳定工作。
降低成本
通过优化工艺和材料,降低光电导探测器的制造 成本,促进其在民用领域的应用。
THANKS
谢谢
光谱响应
描述光电导探测器在不同波长光下的 响应特性,是决定探测器应用范围的 重要参数。
响应时间与恢复时间
响应时间
光电导探测器从接收到光信号到产生可观测电信号的时间间隔,反映了探测器的反应速 度。
恢复时间
探测器在持续光照下,从最大响应状态回到初始状态所需的时间,影响连续测量时的性 能。
温度稳定性与可靠性
03
CHAPTER
光电导探测器的性能参数
响应度与探测率
第十二章光电探测器 PPT
计量起伏噪声(以起伏噪声电压 n为(t)例,噪声电流 i类n (似t) )
n (t) 0噪声电压平均值得瞬间振幅与相位随时间呈无规则变化
___
n2 均方值完全确定,表示单位电阻上所消耗得噪声平均功率
___
n2 —计量噪声电压大小
___
n2 —起伏噪声电压有效值
____记__为_____V_ n2
光电导探测器
利用光电导效应可以制成各种用途得光电元件,如光敏电阻(光 电导探测器)、光电管等。其中光敏电阻具有体积小、坚固耐用、 价格低廉、光谱响应范围宽等优点,广泛用于微弱辐射信号得探 测领域。
#
光电导探测器
光电导效应
本征半导体:
光电导增量
e(nn pp )
n和p
分别就是电子与空穴得迁移率
i
生得具有电量为e得光电子数量
量子效率
Ip / e
单位时间内光子所激励得光电子数
Pi /h
单位时间内入射到探测器表面得光子数
代表入射到探测器得单个光子所能产生得光电子数目
#
光电探测器得性能参数
时间常数
探测器得惰性:
当入射光功率发生突然变化时(如开始或停止照射),光电探测器
得输出总不能完全跟随输入而变化。通常用时间常数 来衡 量
在阶跃输入光功率条件下,光电探测器输出电流 为
is
当is
(t
)
i
[1
exp(t 时,(稳态值
/
)]
)
称is (为t)参数
频率响应
——探测器得响应度随入射光调制频率得变化特征 多数探测器得响应度与调制频率得关系为
(f )
0
1
(1+4 2f 2 2 ) 2
《光电探测器》PPT课件
t 响应速度受三个因素的限制:载流子的扩散时间
t ,耗尽层中漂移时间 diff
dr
和耗尽层电容C与负载电阻R之乘积所决定的RC时间常数。
2021/4/24
28
8.3光敏二极管
6、光敏二极管的一般特性 c、噪声特性 噪声源:热噪声、散粒噪声 热噪声-主要负载; 散粒噪声-信号光电流,背景光电流,反向饱和电流
2021/4/24
8
8.2光敏电阻
1 、 光敏电阻简介
特点:
•光谱响应范围宽(特别是对于红光和红外辐射); •偏置电压低,工作电流大; •动态范围宽,既可测强光,也可测弱光; •光电导增益大,灵敏度高; •无极性,使用方便; •在强光照射下,光电线性度较差 •光电驰豫时间较长,频率特性较差。
2021/4/24
本征半导体的光电导效应。当光子能量E光大于或等于禁带宽度Eg时,光 子把价带中的电子激发到导带,出现自由电子和自由空穴时,从而使材料的
电阻率降低。电导率增加。
E光 =
hc
1240
Eg
1240
Eg
引入长波限λ0,若波长长于λ0, 即无本征吸收
2021/4/24
11
8.2光敏电阻
3、光敏电阻工作原理
2021/4/24
16
8.2光敏电阻
4、光敏电阻的参数与特性 b.响应灵敏度 能够产生光致导电的光主要是波长接近光谱响应峰值的光,这种
光能把电子直接由价带激发导导带。但是,实际上,光把光电导体
中的杂质和晶格缺陷所形成的能级中的电子激发到导带的情况是很
多的,而这些能级与导带间的宽度比禁带宽度要窄的多。这就意味
着,光电导体对波长长于峰值波长的光也具有响应灵敏度,而且,
光电探测器分解课件
光电探测器的应用领域
总结词
光电探测器广泛应用于各种领域,如科学研究、工业 生产、安全监控等。其应用范围涵盖了光谱分析、辐 射监测、激光雷达、光纤通信等众多领域。
详细描述
光电探测器作为一种重要的光电器件,具有广泛的应用 领域。在科学研究领域,光电探测器可用于光谱分析、 辐射监测等实验中,帮助科学家深入了解物质的性质和 行为。在工业生产领域,光电探测器可用于各种自动化 生产线和设备的控制与监测,提高生产效率和产品质量 。此外,在安全监控、激光雷达、光纤通信等领域,光 电探测器也发挥着重要的作用。通过不断的技术创新和 应用拓展,光电探测器的应用前景将更加广阔。
02
薄膜沉积
在衬底上沉积光电探测器的关键薄膜 材料,如半导体材料、金属材料等。
01
封装与测试
将制造完成的光电探测器进行封装和 性能测试,确保其正常工作。
05
03
光刻与刻蚀
通过光刻技术将薄膜材料加工成所需 的结构和图形,然后进行刻蚀以形成 光电探测器的各个部分。
04
掺杂与欧姆接触
对光电探测器的半导体材料进行掺杂 ,并形成欧姆接触,以实现电流的收 集和传输。
光电探测器输出电压与输入光 功率之比,用于衡量光电探测
器的光转换效率。
带宽
光电探测器的响应速度的量度 ,通常以Hz或MHz为单位。
噪声等效功率
在一定的信噪比下,探测器可 检测到的最小光功率。
线性范围
光电探测器输入光功率与输出 电压呈线性关系的范围。
03
光电探测器的制造工艺
制造工艺流程
衬底准备
选择合适的衬底材料,并进行清洗和 加工,为后续制造过程做准备。
光电探测器的发展趋势
高响应速度
光电探测器概况课件
噪声干扰
灵敏度
光电探测器在工作中容易受到环境噪 声的干扰,如热噪声、散粒噪声等, 这些噪声会影响探测器的性能和精度 。
光电探测器的灵敏度也是一大挑战, 尤其是在低光强度或弱光信号的探测 中,需要提高探测器的灵敏度和信噪 比。
响应速度
光电探测器的响应速度是另一个挑战 ,尤其在高速或瞬态光信号的探测中 ,需要提高探测器的响应速度和带宽 。
光电探测器技术的起源
19世纪末
物理学家发现光电效应,为光电 探测器技术奠定理论基础。
20世纪初
科学家开始研究光电材料,探索 光电转换原理。
光电探测器技术的发展阶段
20世纪中叶
半导体材料的发展推动了光电探测器 技术的进步,硅基光电探测器逐渐成 为主流。
20世纪末至今
新型光电材料和器件不断涌现,光电 探测器技术应用领域不断拓展。
光电探测器可以检测空气中的污染物,如烟雾、灰尘等。
光电探测器在医疗领域的应用
医学影像
光电探测器用于医学影像设备,如CT、 MRI等,将X射线或磁共振信号转换为图像 。
激光治疗
在激光治疗中,光电探测器用于检测激光光 束的强度和位置,确保治疗的准确性和安全
性。
06
光电探测器的挑战与 展望
光电探测器面临的主要挑战
• 噪声等效功率:描述光电探测器在特定信噪比下所能探测到的 最小光功率。它反映了探测器在低光功率条件下的探测能力, 是衡量光电探测器性能的重要指标。
探测率与探测极限
探测率
描述光电探测器在单位时间、单位面积内探测到的光子数。它是衡量光电探测器探测能力的关键参数 。
探测极限
指光电探测器在特定噪声等效功率下的最小可探测光功率。它反映了探测器在高信噪比下的探测能力 。
光 电 探 测 器ppt课件
*
PIN 光电二极管
(1)结构与工作原理: 为改善PN结耗尽层只有几 微米,长波长的穿透深度 比耗尽层宽度还大,大部 分入射光被中性区吸收, 使光电转换效率低,响应 时间长,响应速度慢的特 性,在PN结中设置一层掺 杂浓度很低的本征半导体 (称为I),这种结构便是 PIN光电二极管。
P+
I
N+
耗尽层
c
hc Eg
• 量子效率的光谱特 性取决于半导体材 料的吸收系数 α (λ)
0.2 0 0.7 0.9 1.1
10%
1.3
1.5
1.7
PIN响应度、量子效率 与波长的关系
3. 响应时间及频率特性
当光电二极管具有单一的时间常数 前沿和脉冲后沿相同,且接近函数 exp(t / 0 ) 和 exp(t /0 ) , 由此得到脉冲响应时间为 2 . 2 r f 0
R
P+
N+
PIN光电二极管原理图
抗反射膜
电极
Ⅱ(N) 掺杂浓度很低; P P+和N+掺杂浓度很高 Ⅱ(N) 。 且I层很厚,约有 N 5~5 0μm,吸收系数 电极 很小,入射光很容易进 PIN光电二极管结构 入材料内部被充分吸收 而产生大量的电子-空 穴对 ,因而大幅度提高 P+层和N+层很薄,吸 了光电转换效率,两侧
0
时,其脉冲
具有一定时间常数的光电二极管,对于幅度一定 ,频率为 f c 的正弦调制信号,截止频率 2 f 1 0.35
fc
20
r
谢谢!
响应度分为电压响应度和电流响应度
• 电压响应度Rv
光电探测器件输出电压与入射光功率之比 • 电流响应度RI
PIN 光电二极管
(1)结构与工作原理: 为改善PN结耗尽层只有几 微米,长波长的穿透深度 比耗尽层宽度还大,大部 分入射光被中性区吸收, 使光电转换效率低,响应 时间长,响应速度慢的特 性,在PN结中设置一层掺 杂浓度很低的本征半导体 (称为I),这种结构便是 PIN光电二极管。
P+
I
N+
耗尽层
c
hc Eg
• 量子效率的光谱特 性取决于半导体材 料的吸收系数 α (λ)
0.2 0 0.7 0.9 1.1
10%
1.3
1.5
1.7
PIN响应度、量子效率 与波长的关系
3. 响应时间及频率特性
当光电二极管具有单一的时间常数 前沿和脉冲后沿相同,且接近函数 exp(t / 0 ) 和 exp(t /0 ) , 由此得到脉冲响应时间为 2 . 2 r f 0
R
P+
N+
PIN光电二极管原理图
抗反射膜
电极
Ⅱ(N) 掺杂浓度很低; P P+和N+掺杂浓度很高 Ⅱ(N) 。 且I层很厚,约有 N 5~5 0μm,吸收系数 电极 很小,入射光很容易进 PIN光电二极管结构 入材料内部被充分吸收 而产生大量的电子-空 穴对 ,因而大幅度提高 P+层和N+层很薄,吸 了光电转换效率,两侧
0
时,其脉冲
具有一定时间常数的光电二极管,对于幅度一定 ,频率为 f c 的正弦调制信号,截止频率 2 f 1 0.35
fc
20
r
谢谢!
响应度分为电压响应度和电流响应度
• 电压响应度Rv
光电探测器件输出电压与入射光功率之比 • 电流响应度RI
光电导探测器-PPT精品
显然,光敏电阻在弱辐射作用下的 上升时间常数τ r与下降时间常数τ f 近似相等。
2. 强辐射作用情况下的时间响应
0 t=0
0
t≥0
光电导率和光电流变化的规律为
0tanht I I0tanht
停止辐射时,入射辐射通量为
0
0
t=0 t≥0
光电导率和光电流随时间变化的规律为
MnVL2A0
0 d
如何提高M
光电导内增益
选用平均寿命长、迁移率大的半导体材料; 减少电极间距离; 加大偏压
参数选择合适时,M值可达102量级
本 入射光子的能量大于或等于
征 半导体的禁带宽度时能激发
Ec
型 电子-空穴对
Eg
光 敏
0
hc124(0nm) Eg Eg
Ev
电
常用于可见光波段测试
硫化镉光敏电阻的暗态前历效应曲线
1-黑暗放置3分钟后 2-黑暗放置60分钟后 3-黑暗放置24小时后
亮态前历效应
指光敏电阻测试或工作前已处于亮态,当照度与 工作时所要达到的照度不同时,所出现的一种滞后现 象,其效应曲线如下图所示。一般,亮电阻由高照度 状态变为低照度状态达到稳定值时所需的时间要比由 低照度状态变为高照度状态时短。
1 23
4 5 6 7
1--光导层;
2--玻璃窗口;
3--金属外壳;
R
4--电极; 5--陶瓷基座;
G 6-- 黑 色 绝 缘 玻 璃 ;
7--电阻引线。
(a)结构
(b)电极
(c)符号
CdS光敏电阻的结构和符号
光敏面作成蛇形,电极是在一定的掩模下向光电导薄膜上蒸镀金或 铟等金属形成的。这种梳状电极可以保证有较大的受光表面,也可 以减小电极之间距离,从而减小极间电子渡越时间,提高灵敏度。
第四章光电导探测器课件
光子作用于光电导材料产生 本征吸收:
杂质吸收:产生附加的光生载流子。 光电导效应——光照射到光电导 (半导体) 材料 上,使半导体的电导率发生变化。
多数半导体和绝缘体存在这种效应 本征半导体
杂质半导体 4
5
光激发: 产生空穴、电子,跃迁到导带。 杂质半导体: n型:施主能带靠近导带,电子获得足够能量进入 导带参与导电。 p型:受主能带靠近价带,价带电子吸收光子能量 跃迁受主能带,使价带产生空穴参与导电。 表征光电导效应主要有三个参数:
①增大增益系数可得到很高的光谱响应率 ②增益与响应速度是相矛盾的
43
光电导探测器典型光谱曲线
两种类型光电导探 测器光谱特性
44
四、比探测率 D*是包含噪声性能的一个重要参数
1.受热噪声限制 多数光电导探测器工作频率在 1MHz 以上,其
噪声源主要来自热噪声
2.受产生——复合噪声限制 当工作频率在1kHz~1MHz时:主要是
在直线性光电导中, 恒定光照下决定光电导上升规
律的微分方程:
量子产额
以光子计算的 入射光光强
光电导体对光 的吸收系数
光生载流
子 2命
根据上式初始条件: t=0时, Δn=0,方程解 取消光照后,决定光电导下降的微分方程为 设光照停止时(t=0), Δn=Inαβτ,则上式解:
13
直线性光电导上升和下降曲线 直线性光电导的弛豫时间与光强无关。 因为上升和下降是对称的
19
二、光电导探测器的工作原理
半导体受到光照时将产生非平衡载流子,电 导率增加,在外加电压的作用下,将在光电导探 测器输出回路中产生光电流。
分析光电导探测器输出的光电信号 1.光电导探测器的光电流
设样品为 n 型材料,光功 率为P的光辐射沿x方向均
杂质吸收:产生附加的光生载流子。 光电导效应——光照射到光电导 (半导体) 材料 上,使半导体的电导率发生变化。
多数半导体和绝缘体存在这种效应 本征半导体
杂质半导体 4
5
光激发: 产生空穴、电子,跃迁到导带。 杂质半导体: n型:施主能带靠近导带,电子获得足够能量进入 导带参与导电。 p型:受主能带靠近价带,价带电子吸收光子能量 跃迁受主能带,使价带产生空穴参与导电。 表征光电导效应主要有三个参数:
①增大增益系数可得到很高的光谱响应率 ②增益与响应速度是相矛盾的
43
光电导探测器典型光谱曲线
两种类型光电导探 测器光谱特性
44
四、比探测率 D*是包含噪声性能的一个重要参数
1.受热噪声限制 多数光电导探测器工作频率在 1MHz 以上,其
噪声源主要来自热噪声
2.受产生——复合噪声限制 当工作频率在1kHz~1MHz时:主要是
在直线性光电导中, 恒定光照下决定光电导上升规
律的微分方程:
量子产额
以光子计算的 入射光光强
光电导体对光 的吸收系数
光生载流
子 2命
根据上式初始条件: t=0时, Δn=0,方程解 取消光照后,决定光电导下降的微分方程为 设光照停止时(t=0), Δn=Inαβτ,则上式解:
13
直线性光电导上升和下降曲线 直线性光电导的弛豫时间与光强无关。 因为上升和下降是对称的
19
二、光电导探测器的工作原理
半导体受到光照时将产生非平衡载流子,电 导率增加,在外加电压的作用下,将在光电导探 测器输出回路中产生光电流。
分析光电导探测器输出的光电信号 1.光电导探测器的光电流
设样品为 n 型材料,光功 率为P的光辐射沿x方向均
光 电 探 测 器ppt课件
2
(W )
4.探测度D与归一化探测度D*
• 探测度D 为噪声等效功率的倒数,即
• 归一化探测度D*
1 D NEP
由于D与探测器的面积Ad 和放大器带宽 Δ f乘积的平方根成正比,为消除这一影 响,定义: D*越大的探测器其探测能力越强。
1 1 / 2 D DAf ( ) d * N E P
出下降到稳定值所需要的时间。
2.量子效率
量子效率:是指每入射一个光子光电探测器所释放 的平均电子数。它与入射光能量有关。其表达式
为:
I /e P / h
式中,I是入射光产生的平均光电流大小,e是电子 电荷,P是入射到探测器上的光功率。I/e为单位时 间产生的电子数,P/hυ 为单位时间入射的光子数。
光电探测器
光电检测器件
光子器件
真空器件
光电管 光电倍增管 真空摄像管 变像管 像增强管
热电器件
固体器件
光敏电阻 热电偶/热电堆 热辐射计/热敏电 阻 热释电探测器
光电池
光电二极管 光电三极管
光纤传感器
电荷耦合器件 CCD
光电探测器的种类
光电探测器能检测出入射在其上面的光功率,并完成光/电信 号的转换。对光检测器的基本要求是:
+ +
E
收入射光的比例很小,I层几乎占据整个耗尽 层,因而光生电流中漂移分量占支配地位, 从而大大提高了响应速度。还可以通过控制 耗尽层的厚度,来改变器件的响应速度。
为使入射光功率有效转换成光电流,它须在耗尽区内被半 导体材料有效吸收,故要求耗尽区足够厚、材料对入射光 的吸收系数足够大。在厚度W内被材料吸收的光功率可表 W 示为 : P W P 1 e
(W )
4.探测度D与归一化探测度D*
• 探测度D 为噪声等效功率的倒数,即
• 归一化探测度D*
1 D NEP
由于D与探测器的面积Ad 和放大器带宽 Δ f乘积的平方根成正比,为消除这一影 响,定义: D*越大的探测器其探测能力越强。
1 1 / 2 D DAf ( ) d * N E P
出下降到稳定值所需要的时间。
2.量子效率
量子效率:是指每入射一个光子光电探测器所释放 的平均电子数。它与入射光能量有关。其表达式
为:
I /e P / h
式中,I是入射光产生的平均光电流大小,e是电子 电荷,P是入射到探测器上的光功率。I/e为单位时 间产生的电子数,P/hυ 为单位时间入射的光子数。
光电探测器
光电检测器件
光子器件
真空器件
光电管 光电倍增管 真空摄像管 变像管 像增强管
热电器件
固体器件
光敏电阻 热电偶/热电堆 热辐射计/热敏电 阻 热释电探测器
光电池
光电二极管 光电三极管
光纤传感器
电荷耦合器件 CCD
光电探测器的种类
光电探测器能检测出入射在其上面的光功率,并完成光/电信 号的转换。对光检测器的基本要求是:
+ +
E
收入射光的比例很小,I层几乎占据整个耗尽 层,因而光生电流中漂移分量占支配地位, 从而大大提高了响应速度。还可以通过控制 耗尽层的厚度,来改变器件的响应速度。
为使入射光功率有效转换成光电流,它须在耗尽区内被半 导体材料有效吸收,故要求耗尽区足够厚、材料对入射光 的吸收系数足够大。在厚度W内被材料吸收的光功率可表 W 示为 : P W P 1 e
光电探测器的性能与参数 ppt课件
D* D Af
1
(cm Hz 2 / W)
称为归一化探测度。
这时就可以说:D*大的探测器其探测能力一定好。
考虑到光谱的响应特性,一般给出D*值时注明响应波长 λ、光辐射调制频率f及测量带宽Δf,即D*(λ, f ,Δf )。
共28页 21
ppt课件
UP
DOWN
21
BACK
主讲:周自刚《光电子技术》§4.2光电探测器的性能参数
七、其它参数
光电探测器还有其它一些特性参数,在 使用时必须注意到,例如光敏面积,探测器 电阻,电容等。
特别是极限工作条件,正常使用时都不允 许超过这些指标,否则会影响探测器的正常 工作,甚至使探测器损坏。
通常规定了工作电压、电流、温度以及光 照功率允许范围,使用时要特别加以注意。
光敏电阻
共28页 22
1探测器件热电探测元件光子探测元件气体光电探测元件外光电效应内光电效应非放大型放大型光电导探测器光磁电探测器光生伏特探测器本征型掺杂型非放大放大型真空光电管充气光电管光电倍增管变像管摄像管像增强器光敏电阻红外探测器光电池光电二极管光电三极管光电场效应管雪崩型光电二极管夜色降临海面上有一无形的视而不见触而不觉的哨兵红外激光探测器监视着海面当有不速之客到来光线挡断光电探测器探测不到激光而进行声光报警
共28页 3
ppt课件
光电倍增管
3
UP
DOWN BACK
主讲:周自刚《光电子技术》§4.2光电探测器的性能参数
4.2 光电探测器的性能参数
光电倍增管
共28页 4
ppt课件
UP
DOWN
4
BACK
主讲:周自刚《光电子技术》§4.2光电探测器的性能参数
最新常用光电探测器PPT课件
V
Pmax Rg
RL Rg
光敏电阻
时间响应特性
光敏电阻受光照后或被遮光后,回路电流并不立即增 大或减小,而是有一响应时间。响应时间常数是由电流上 升时间和衰减时间表示。
光敏电阻的响应时间与入射光的照度,所加电压、负 载电阻及照度变化前电阻所经历的时间(称为前历时间) 等因素有关。
光敏电阻
稳定特性
P3
- V
+
u2 RL1
u1 o i1
RL2
i2
i
RL1
RL2 RL
i
▪ 第三象限是反偏压状态。这时iD=iS0,是普通二极管中的反向饱和电流,
称为暗电流(对应于光功率P=0),数值很小,这时的光电流(等于i-iS0)是 流过探测器的主要电流,对应于光导工作模式。通常把光导工作模式的
光伏探测器称为光电二极管,因为它的外回路特性与光电导探测器十分
几种国产硅光电池的特性
硅光电池——太阳电池
硅光电池——太阳电池
硅光电池——太阳电池
硅光电池——太阳电池
硅光电池——太阳电池
硅光电池——太阳电池
硅光电池——太阳电池
短路电流和开路电压
短路电流——RL=0 开路电压——RL=∞
光电池等效电路
Cj:结电容 ish:pn结漏电流,很小 Rsh:等效泄露电阻,很大 Rs:引出电极-管芯接触电阻
HgxCd1-xTe探测器:化合物本征型光电导探测器,由 HgTe和GdTe两种材料混在一起的固溶体,其禁带宽度 随组分x呈线性变化。当x=0.2时响应波长为8~14μm, 工作温度77K,用液氮致冷;内电流增益约为500,低 内阻,广泛用于10.6μm的CO2激光探测。
光敏电阻
光电探测器的种类课件
带宽决定了探测器能够响应的 光信号频率上限,对于高速光 信号的探测具有重要意义。
带宽越宽,探测器能够响应的 光信号频率范围越广,适用于 高速光信号的传输和探测。
噪声等效功率ห้องสมุดไป่ตู้
噪声等效功率是指光电探测器的 输出噪声功率与该探测器在相同
带宽下的响应功率之比。
噪声等效功率反映了探测器在接 收光信号时所产生的噪声水平, 是衡量探测器性能的重要参数之
01
02
03
环境监测
用于监测空气质量、水质 、温度等环境参数,实现 实时监控和预警。
智能交通
用于车辆检测、交通信号 控制等领域,提高交通效 率和安全性。
智能家居
用于照明控制、安全监控 、智能家电等领域,提升 居住便利性和舒适性。
光电探测器的发展趋势和未来展望
集成化与小型化
随着微纳加工技术的发展,光电 探测器将不断向集成化和小型化
光电探测器的种类课件
目录
• 光电探测器概述 • 光电探测器的分类 • 光电探测器的性能指标 • 光电探测器的最新发展动态
01
光电探测器概述
光电探测器的定义
01
光电探测器是一种能够将光信号 转换为电信号的器件,通常由光 敏材料和电子线路组成。
02
光敏材料能够吸收光子并产生电 子-空穴对,这些电子-空穴对在 电场的作用下产生电流或电压, 从而将光信号转换为电信号。
04
光电探测器的最新发展动 态
新型光电探测器材料
硅基光电探测器
利用硅材料的优异光电性能,实现高速、高灵敏度的光电探测。
宽禁带半导体光电探测器
如GaN、SiC等,具有高响应速度和高光谱响应范围的特点。
石墨烯光电探测器
光电探测器PPT课件
.
6
3.电子光学系统
电子光学系统是适当设计的电极结构,使前一级发射出来
的电子尽可能没有散失地落到下一个倍增极上,也就是使下一 级的收集率接近于1;并使前一级各部分发射出来的电子,落 到后一级上所经历的时间尽可能相同,即渡越时间零散最小。
.
7
4.倍增系统
倍增系统是由许多倍增极组成的综合体,每个倍增极都是
倍增极材料大致可分以下四类:
1)含碱复杂面主要是银氧铯和锑铯两种,它们既是灵敏的光 电发射体,也是良好的二次电子发射体。
2)氧化物型,主要是氧化镁。 3)合金型,主要是银镁、铝镁、铜镁、镍镁、铜铍等合金。 4)负电子亲合工作电压不致于过高;热发射小,以便整管的暗电流和噪声小
测试阴极灵敏度时,以阴极为一极,其它倍增极和阳极都 连到一起为另一极,相对于阴极加100~300V直流电压,照射 到光电阴极上的光通量约为10-2~10-5lm。
测试阳极灵敏度时,各倍增极和阳极都加上适当电压,因 为阳极灵敏度是整管参量,与整管所加电压有关,所以必须注 明整管所加电压。
积分灵敏度与测试光源的色温有关,一般用色温为2856K 的白炽钨丝灯(A光源)。(色温:辐射源发射光的颜色与黑体 在某一温度下辐射光的颜色相同,则黑体的这一温度称为该辐 射源的色温。)色温不同时即使测试光源的波长范围相同,各单 色光在光谱分布中的组分不同时. ,所得的积分灵敏度也不同。14
侧窗式
端窗式
.
4
1.光窗
光窗分侧窗式和端窗式两种,它是入射光的通道。一般常 用的光窗材料有钠钙玻璃、硼硅玻璃、紫外玻璃、熔凝石英和 氟镁玻璃等。由于光窗对光的吸收与波长有关,波长越短吸收 越多,所以倍增管光谱特性的短波阈值决定于光窗材料。
.
《光电探测器概述》课件
光电探测器概述
本次PPT课件将详细介绍光电探测器的定义、工作原理、分类、应用领域、 性能指标、市场前景等内容,以及总结和展望。
光电探测器的定义
1 什么是光电探测器?
光电探测器是一种将光信 号转化为电信号的器件, 常用于光通信、光电子计 算、光电测量等领域。
2 光电探测器的组成
光电探测器主要由光电转 换器、电子放大器、信号 处理电路等组成。
量子效率
探测器有效响应光子数与入射 光子数之比,常用百分比表示, 值越大,效率越高。
工作波长范围
光电探测器可以工作的光波长 范围,常用纳米、微米等单位 表示。
光电探测器的市场前景
1
新能源行业需求
2
太阳能、光催化、新型半导体等新兴产
业的发展,都需要大量应用光电探测器
的技术。
3
高速互联网需求
随着5G网络、云计算、物联网等技术的 发展,光电ห้องสมุดไป่ตู้测器在高速互联网领域的 应用需求也将持续增长。
3 光电探测器的特点
具有高精度、高速度、高 灵敏度、低噪音等特点, 是光电子技术的核心器件 之一。
光电探测器的工作原理
1
内部光电效应
通过光电效应,将入射光子能量转换成电子,再经由电荷隔离、放大、输出等处 理步骤,获得探测信号。
2
外部光电效应
借助半导体结构中PN结、PIN结等,并通过将入射光子和电子进行复合,使得 PN结两端出现电压,获得探测信号。
军事与安防
光电探测器在红外夜视、导弹制导、火力控制和远 程探测等领域有广泛应用。
新能源领域
光电探测器在太阳能电池、光催化电池等应用中发 挥重要作用。
医疗
光电探测器在CT、MRI、PET、胶片扫描等医疗领 域有广泛应用,可提供更清晰、准确的成像效果。
本次PPT课件将详细介绍光电探测器的定义、工作原理、分类、应用领域、 性能指标、市场前景等内容,以及总结和展望。
光电探测器的定义
1 什么是光电探测器?
光电探测器是一种将光信 号转化为电信号的器件, 常用于光通信、光电子计 算、光电测量等领域。
2 光电探测器的组成
光电探测器主要由光电转 换器、电子放大器、信号 处理电路等组成。
量子效率
探测器有效响应光子数与入射 光子数之比,常用百分比表示, 值越大,效率越高。
工作波长范围
光电探测器可以工作的光波长 范围,常用纳米、微米等单位 表示。
光电探测器的市场前景
1
新能源行业需求
2
太阳能、光催化、新型半导体等新兴产
业的发展,都需要大量应用光电探测器
的技术。
3
高速互联网需求
随着5G网络、云计算、物联网等技术的 发展,光电ห้องสมุดไป่ตู้测器在高速互联网领域的 应用需求也将持续增长。
3 光电探测器的特点
具有高精度、高速度、高 灵敏度、低噪音等特点, 是光电子技术的核心器件 之一。
光电探测器的工作原理
1
内部光电效应
通过光电效应,将入射光子能量转换成电子,再经由电荷隔离、放大、输出等处 理步骤,获得探测信号。
2
外部光电效应
借助半导体结构中PN结、PIN结等,并通过将入射光子和电子进行复合,使得 PN结两端出现电压,获得探测信号。
军事与安防
光电探测器在红外夜视、导弹制导、火力控制和远 程探测等领域有广泛应用。
新能源领域
光电探测器在太阳能电池、光催化电池等应用中发 挥重要作用。
医疗
光电探测器在CT、MRI、PET、胶片扫描等医疗领 域有广泛应用,可提供更清晰、准确的成像效果。
光电探测器概述ppt课件
P区一侧呈现负电荷,N区一侧呈现正电荷,因此空间电荷 区出现了方向由N区指向P区的电场,由于这个电场是载流子扩 散运动形成的,而不是外加电压形成的,故称为内电场。它对多 数载流子的扩散运动起阻挡作用,所以空间电荷区又称为阻挡层。
内电场是由多子的扩散运动引起的,伴随着它的建立将带 来两种影响:一是内电场将阻碍多子的扩散,二是P区和N区的 少数载流子(P区的自由电子和N区的空穴)一旦靠近PN结,便 在内电场的作用下漂移到对方,这种少数载流子在内电场作用 下有规则的运动称为漂移运动,结果使空间电荷区变窄。
光电子发射探测器光电子发射效应或外光电效应金属氧化物或半导体表面光子能量大于逸出功材料内束缚能级的电子逸出表面自由电子光辐射光电导探测器光电导效应或内光电效应半导体材料光子能量大于禁带宽度材料内不导电束缚状态的电子空穴自由电子空穴光辐射电导率变化光伏探测器光生伏特效应或内光电效应光伏探测器光生伏特效应或内光电效应金属氧化物或半导体表面光子能量足够大材料内束缚能级的电子逸出表面电子空穴对光辐射光电磁探测器光电磁效应或内光电效应光电磁探测器光电磁效应或内光电效应垂直磁场中的半导体材料光子能量足够大本征吸收产生电子空穴对载流子浓度梯度光辐射光磁电动势光电池光电二极管雪崩光电二极管pin管及光电晶体管光生电动势选择性探测器即光子波长有长波限
♥ 选择性探测器,即光子波长有长波限。波长长
于长波限的入射辐射不能产生所需的光子 效应,因此无法被探测。
♥ 波长短于长波限的入射辐射,功率一定时,波
长越短,光子数越少,因此光子探测器的理论 响应率应正比于波长。
热探测器(光热效应)
光辐射
材料产生温升
热探测器
物理性质变化
温差电动 (温差电效应)
热电偶
因此,扩散运动使空间电荷区加宽,内电场增强,有利于少 子的漂移而不利于多子的扩散;而漂移运动使空间电荷区变窄, 内电场减弱,有利于多子的扩散而不利于少子的漂移。
光电仪器原理与设计第6章光电探测器课件
• 光电倍增管特点
✓ 响应速度快 ✓ 响应度极高 ✓ 稳定度线性度较好
光电倍增管的应用
单光子探测技术 正电子发射断层扫描仪PET 紫外/可见/近红外光光度计 发光分光光度计
23
内光电效应原理
• 当光照射某种物质时,若入射光子能量足够大,和物质中 的电子相互作用,受激发产生的自由电子仍留在物体内部, 导致物体导电性加强、出现电势差或产生其他效应
• 取不同的参数为参变量可得到
✓ 伏安特性,灵敏度/响应度,光谱灵敏度,幅频特性等
17
第二节 光电探测器的工作原理与分 类
• 客观光探测原理的分类
✓ 光照后探测器材料产生物理或化学变化 ✓ 光子效应:探测器吸收光子后,直接引起原子或分子的内部电子
状态的改变。对光波频率有选择性。响应速度一般较快。 • 外光电效应:光电子发射、光电子倍增 • 内光电效应:光电导、光生伏特效应等
✓ 这样如光电管(灵敏度低)、光敏电阻(线性度差)、光电池 (响应速度慢)之类的器件难以满足要求。其它如光电倍增管、 雪崩光电二极管虽然有优越的探测性能,尤其是灵敏度极高,但 本系统是常规激光光强探测,没有微弱信号探测方面的需求,没 有必要选用这两种器件。
(l)
e
Pel d l
e
l Pel d l
R(l)hc el
✓ h:普朗克常量h,c:光速,e:电hc子电量
13
光电特性——噪声等效功率
• NEP(noise equivalent power)
✓ 指明器件可检测的最小辐射功率 ✓ 探测器输出信号电压的有效值Vs等于噪声均方根电压值Vn时,对
应的入射光功率(单位:W)
19
外光电效应器件——光电管
• 光电管(photocell)
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电探测器的主要工作特性
1
响应特性
2
量子效率
3
噪声等效功率
4 探测度与归一化探测度
1.响应特性
(1)响应度R(或称灵敏度)描述的是光电探测器
的光电转换效率。 定义:光电探测器输出信号与输入光功率之比。
描述的是光电探测器件的光电转换效率。 – 响应度是随入射光波长变化而变化的 – 响应度分电压响应度和电流响应度
热释电探测器
光电探测器的种类
类型 PN结
非PN结 电子管类 其他类
实例
PN光电二极管(Si,Ge, GaAs) PIN光电二极管(Si) 雪崩光电二极管(Si, Ge) 光电晶体管(Si) 集成光电传感器和光电晶闸管(Si) 光电元件(CdS, CdSe, Se, PbS) 热电元件(PZT, LiTaO3, PbTiO3) 光电管,摄像管,光电倍增管
3.噪声等效功率
• 噪声等效功率(NEP)是描述光电探测器探测能力的参数。 定义:单位信噪比时的入射光功率。 噪声等效功率是一个可测量的量 。 设入射辐射的功率为P ,测得的输出电压为U0 , 然后除去辐射源测得探测器的噪 声电压为UN,则按比例计算,要使U0=UN的辐射功率为
4.探测度D与归一化探测度D*
P+
I
N+
耗尽层
R
P+ N+
PIN光电二极管原理图
抗反射膜
电极
Ⅱ(N) 掺杂浓度很低;
P+和N+掺杂浓度很高
P+
。
Ⅱ(N)
且I层很厚,约有 5~5 0μm,吸收系数 很小,入射光很容易进
N+
E
电极
入材料内部被充分吸收
PIN光电二极管结构
而产生大量的电子-空
穴了对光,电因转而换大效幅率度,提两高侧P+层和N+层很薄,吸 收入射光的比例很小,I层几乎占据整个耗尽
光信号
前置放大器 主放大器 光检测器
均衡器
偏压控制
AGC电路
判决器 再生码流
数字光接收机
光电检测器件光电倍增管 真空摄像管 变像管 像增强管
固体器件
光敏电阻 光电池 光电二极管 光电三极管 光纤传感器 电荷耦合器件
CCD
热电偶/热电堆
热辐射计/热敏电 阻
光探测器(Photodetector)是光纤通信系统的重要组成部分, 它的作用是把光源发送并经光纤传输的携带有信息的光信号转 化成相应的电信号(与光源相反),然后放大并恢复为原始电 信号,即将电信号“解调”出来。 光探测器是一种光电信息转换器件。在光纤系统中,光探测器 的作用是将光纤传来的光信号功率变换为电信号电流。
响应度分为电压响应度和电流响应度
• 电压响应度Rv
光电探测器件输出电压与入射光功率之比
• 电流响应度RI
光电探测器件输出电流与入射光功率之比
(2)光谱响应度
光谱响应度R(λ)是响应度随波长变化的性能参数。
大多数光电探测器具有光谱选择性。 定义:探测器在波长为λ的单色光照射下,输出电
压或电流与入射光功率之比。
光电二极管材料。
光检测器吸收光功率后产生的一次光电流可表为
e电子电荷;hf光子能量 (hf=1.24/λeV, λ光波长 μm,h普朗克常数),W 耗尽区宽度,Rf材料界 面的菲涅尔反射系数。
• 探测度D 为噪声等效功率的倒数,即
• 归一化探测度D* 由于D与探测器的面积Ad 和放大器带宽
Δf乘积的平方根成正比,为消除这一影 响,定义: D*越大的探测器其探测能力越强。
PIN 光电二极管
(1)结构与工作原理: 为改善PN结耗尽层只有几 微米,长波长的穿透深度 比耗尽层宽度还大,大部 分入射光被中性区吸收, 使光电转换效率低,响应 时间长,响应速度慢的特 性,在PN结中设置一层掺 杂浓度很低的本征半导体 (称为I),这种结构便是 PIN光电二极管。
层,因而光生电流中漂移分量占支配地位,
从而大大提高了响应速度。还可以通过控制 耗尽层的厚度,来改变器件的响应速度。
为使入射光功率有效转换成光电流,它须在耗尽区内被半 导体材料有效吸收,故要求耗尽区足够厚、材料对入射光 的吸收系数足够大。在厚度W内被材料吸收的光功率可表 示为 :
P0为入射光功率; α (λ)材料的吸收系数,其大小与材料 性质有关,且是波长的函数。通常使用的PIN光电二级管 半导体材料。不同材料适用于不同的波长范围。当工作 波长比材料的带隙波长 λC=1.24/Eg(μm)长时,吸收系数 急剧减小。
(3)频率响应度
频率响应度R(f):
响应度随入射光频率而变化的 性能参数。其表达式为:
度式;中R为(f探)为测频器率的为响f 应时时的间响或应称度时;间R0常为数频,由率材为料零和时外的电响路应
决定。 响应时间:响应时间τ=RC是描述光电探测器对入射光响应
快慢的一个参数。决定了光电探测器频率响应的带宽。
– 上升时间:入射光照射到光电探测器后,光电探测器 输出上升到稳定值所需要的时间。
– 下降时间:入射光遮断后,光电探测器输
出下降到稳定值所需要的时间。
2.量子效率
量子效率:是指每入射一个光子光电探测器所释放 的平均电子数。它与入射光能量有关。其表达式 为:
式中,I是入射光产生的平均光电流大小,e是电子 电荷,P是入射到探测器上的光功率。I/e为单位时 间产生的电子数,P/hυ为单位时间入射的光子数。
色敏传感器 固体图象传感器(SI,CCD/MOS/CPD型) 位置检测用元件(PSD) 光电池
光电探测器能检测出入射在其上面的光功率,并完成光/电信 号的转换。对光检测器的基本要求是: ① 在系统的工作波长上具有足够高的响应度,即对一定的入 射光功率,能够输出尽可能大的光电流; ② 具有足够快的响应速度,能够适用于高速或宽带系统; ③ 具有尽可能低的噪声,以降低器件本身对信号的影响; ④ 具有良好的线性关系,以保证信号转换过程中的不失真; ⑤ 具有较小的体积、较长的工作寿命等。 目前常用的半导体光电探测器有两种: PIN光电二极管 APD雪崩光电二极管(Avalanche Photodiode)。
为获得最佳的转换效率——量子效率及低的暗电流(它随 带隙能量的增加按指数减小),理想光电二极管材料的带 隙能量Eg应略小于与最长工作波长相对应的光子能量。
在0.85μm短波长区,Si是最优选材料,截止波长1.09μm, 吸收系数a(λ)≈600cm-1,穿透深度17μm。
在长波长区,Ge和InGaAs合金可选用为