最新图像校正及分割处理软件设计与实现 模式识别与智能系统
模式识别与智能系统简况
模式识别与智能系统简况模式识别与智能系统是二十世纪八十年代发展起来的新型交叉学科,该学科包含自动控制、模式识别、人工智能、模糊逻辑、仿生学和计算机科学等多种学科。
该学科以信息处理与模式识别的理论技术为核心,探索对各种信息进行处理、分类、理解,并在此基础上构造出具有某些智能特性的系统或装置的方法、途径与实现。
该学科在经济建设和国防建设具有广泛的实际背景,二十多年来,已引起了国内外有关学者的极大重视,被称其为面向二十一世纪的控制科学。
本学科点开始于我校省级重点学科计算机应用学科,从该学科人工智能方向发展而来。
最早的团队可以追溯到二十世纪八十年初,从承担航空基金立体仓库机器人开始。
经过近三十年的发展,该学科逐步形成了稳定的研究方向,于2003年从计算机应用学科独立出来,成为独立的学科,2005年获得“模式识别与智能系统”硕士学位授予权。
主要研究方向包括:神经网络与模式识别、图象处理与模式识别、智能机器人与人工智能和智能检测与智能控制等。
当前正在筹建“自主武器技术平台研究中心”,这是目前我省唯一一所高等院校首次建立的平台研究中心,中心下设6个实验室分别为飞行器仿真与模拟技术实验室、智能机器人与目标探测技术实验室、综合健康管理技术实验室、任务设备检测技术实验室、武器应用环境仿真实验室和导弹实验室,其中,导弹实验室近2-3年内投资200万多万元,购置了3枚导弹等,实验室已初具规模。
本学科主要关注与武器平台自主运行有关的技术,即主要关注:自主控制、环境感知、导航制导、保障与健康管理、电源、部分任务的关键技术研究和工程验证研究,逐步发展对平台总体设计、搭载任务武器等技术研究和工程验证。
本学科具有一定师资力量基础,现拥有双聘院士1人,博士生导师5人(外校兼职,本学科点没有博士授予权),硕士生导师9人,教授12人,副教授16名,其中,具有博士学位的教师有20名。
目前本学科点已培养硕士研究生10多名,学科梯队结构合理,整体实力强。
遥感影像快速处理与智能解译系统
遥感影像快速处理与智能解译系统随着空间科学技术的快速发展,遥感影像的获取和分析已成为地理信息系统(GIS)、环境监测、城市规划、土地资源调查等领域的重要工具。
然而,遥感影像的解析往往面临处理量大、处理速度慢以及解译精度不高等问题。
为了解决这些问题,本文将介绍一种遥感影像快速处理与智能解译系统。
一、遥感影像快速处理系统遥感影像快速处理系统主要包括以下四个步骤:数据预处理、图像融合、图像分类和图像分割。
1、数据预处理:这个步骤主要是对原始数据进行质量检查、格式转换和噪声去除等操作,以确保数据的准确性和一致性。
2、图像融合:通过将多源遥感影像进行融合,可以获取更全面和准确的信息。
常用的图像融合方法包括基于波段融合、基于空间融合和基于光谱融合等。
3、图像分类:这个步骤主要是利用计算机视觉和深度学习技术对遥感影像进行自动分类,以实现快速、准确的数据处理。
4、图像分割:对于一些特定的应用场景,可能需要对遥感影像进行更精细的处理,例如目标检测、边缘检测等,这时就需要用到图像分割技术。
二、智能解译系统智能解译系统是遥感影像解析的关键部分,它主要包括以下三个步骤:特征提取、分类识别和结果输出。
1、特征提取:从遥感影像中提取有用的特征是智能解译系统的第一步。
这些特征可以包括颜色、形状、纹理等,具体提取哪些特征需要根据实际应用场景来确定。
2、分类识别:在提取出有用的特征之后,就需要利用这些特征来进行分类识别。
常用的分类识别方法包括支持向量机(SVM)、随机森林(RF)、神经网络等。
3、结果输出:智能解译系统需要将分类识别的结果以易于理解的方式输出,例如生成报告、绘制图表等。
三、总结遥感影像快速处理与智能解译系统是遥感技术发展的重要方向,它可以大大提高遥感影像的处理速度和解译精度,从而为各领域的决策提供更准确、更及时的数据支持。
虽然现有的系统已经取得了很大的进展,但是仍存在一些挑战和问题需要解决,例如如何进一步提高处理速度和解译精度,如何更好地适应各种复杂的应用场景等。
计算机视觉与图像处理、模式识别、机器学习学科之间的关系
计算机视觉与图像处理、模式识别、机器学习学科(xuékē)之间的关系计算机视觉与图像处理、模式识别、机器学习(xuéxí)学科之间的关系在我的理解里,要实现计算机视觉必须有图像处理的帮助,而图像处理倚仗与模式识别的有效(yǒuxiào)运用,而模式识别是人工智能领域的一个重要分支,人工智能与机器学习密不可分。
纵观一切关系,发现计算机视觉的应用服务于机器学习。
各个环节缺一不可,相辅相成。
计算机视觉(shìjué)(computer vision),用计算机来模拟人的视觉机理获取和处理信息(xìnxī)的能力。
就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,用电脑处理成为更适合人眼观察或传送给仪器检测的图像。
计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息(xìnxī)’的人工智能系统。
计算机视觉的挑战是要为计算机和机器人开发具有与人类水平相当的视觉能力。
机器视觉需要图象信号,纹理和颜色建模,几何处理和推理,以及物体建模。
一个有能力的视觉系统应该把所有这些处理都紧密地集成在一起。
图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。
又称影像处理。
基本内容图像处理一般指数字图像处理。
数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。
图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。
常见的处理有图像数字化、图像编码、图像增强、图像复原、图像分割和图像分析等。
图像处理一般指数字图像处理。
模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。
基于MATLAB的车牌智能识别设计
基于MATLAB的车牌智能识别设计摘要:车牌智能识别技术是智能交通系统中的重要组成部分,能够提高交通管理效率和安全性。
本文基于MATLAB平台,设计了一种车牌智能识别系统,通过图像处理和模式识别技术实现车牌号码的准确识别。
该系统能够实现对车辆行驶过程中的车牌信息进行实时提取和识别,具有较高的准确性和稳定性,可以有效应用于停车场管理、交通违法抓拍等领域。
关键词:车牌智能识别;MATLAB;图像处理;模式识别一、引言随着汽车数量的快速增长,交通拥堵和交通管理成为社会发展中的一大难题。
为了提高交通管理效率和安全性,智能交通系统得到了广泛的关注和应用。
车牌智能识别技术作为智能交通系统中的重要组成部分,能够实现对车辆行驶过程中的车牌信息进行实时提取和识别,为交通管理和监控提供了重要的支持。
二、相关技术及方法1. 图像处理技术图像处理技术是车牌智能识别系统中的核心技术之一,主要包括灰度化、二值化、边缘检测、形态学处理等操作。
灰度化是将彩色图像转换为灰度图像,简化了图像信息的处理;二值化将灰度图像转换为二值图像,方便进行特征提取和分割操作;边缘检测可以准确提取车牌的轮廓信息;形态学处理可以用于去除图像中的噪声点和填充孔洞,提高字符的连通性。
2. 字符分割与特征提取字符分割是指将车牌图像中的字符分离出来,是车牌识别的关键步骤之一。
在字符分割后,需要进行字符的特征提取,包括字符的大小、形状、像素点分布等特征。
这些特征可以用于字符的识别和分类,提高识别的准确性和鲁棒性。
3. 模式识别算法模式识别算法是车牌智能识别系统中的另一个核心技术,主要包括基于模板匹配的模式识别、基于统计学习的模式识别、基于深度学习的模式识别等方法。
这些算法能够对字符进行准确的识别和分类,为车牌智能识别系统提供了强大的分析和识别能力。
三、车牌智能识别系统设计基于MATLAB平台,设计的车牌智能识别系统主要包括图像预处理、字符分割与特征提取、模式识别和结果输出四个主要模块。
图像校正与分割处理软件设计与实现模式识别与智能系统方案
图像校正及分割处理软件设计与实现《图像分析与模式识别》课程期末大作业报告课程名称:___________ 图像分析与模式识别_____________ 学院:_____________ 信息工程与自动化学院____________ 专业:_________________ 计算机技术 __________________ 年级:___________________ 2014级 ___________________ 学生姓名:_________________ 樊祥锰___________________ 学生学号:_____________ 2014704101 ______________ 扌旨导教师:______________ 刘辉_____________________2015-01-01昆明理工大学信息工程与自动化学院目录图像校正及分割处理软件设计与实现 (3)1 软件需求 (3)1.1 操作界面需求分析 (3)1.2 图像几何校正需求分析 (4)1.2 ISODATA 聚类算法的图像分割需求分析 (4)2 算法原理及流程图 (4)2.1 Hough 变换 (5)2.1.1 Hough 变换原理 (5)2.1.2 图像几何校正流程 (6)2.2 ISODATA 算法原理 (7)2.2.1 ISODATA 算法原理步骤 (7)2.2.1 ISODATA 算法流程图 (9)3 程序设计框图 (10)4 实验结果及分析 (11)4.1 图像几何 (11)4.1.1 支票图像几何校正结果 (11)4.1.1 支票图像几何校正结果分析 (12)4.2 图像分割 (12)4.2.1 图像分割结果 (12)4.2.1 图像分割结果分析 (15)附录: (16)附录一:图像几何校正代码 (16)附录一:ISODATA 聚类算法图像分割代码 (16)附录一:MATLAB 的GUI 操作界面代码 (22)图像校正及分割处理软件设计与实现摘要:设计一种图像几何校正及图像分割处理软件,实现对倾斜支票图像校正为水平,及对已给的图像进行分割。
计算机视觉中的图像分割与目标检测
计算机视觉中的图像分割与目标检测随着计算机技术的发展和进步,计算机视觉的应用逐渐成为现实。
在计算机视觉领域中,图像分割和目标检测是两个重要的任务。
本文将就图像分割和目标检测的概念、算法原理以及应用领域进行详细介绍。
一、图像分割图像分割是将一幅图像分割成若干个区域或者像素的过程。
其目的是将图像分为具有独立语义的子图像,从而更好地实现对图像内容的理解和分析。
图像分割在计算机视觉中被广泛应用,如医学图像分析、图像识别、图像压缩等。
图像分割算法有很多种,常见的包括阈值分割、边缘检测、区域生长等。
阈值分割是最简单的图像分割方法,其基本思想是根据像素的灰度值与设定的阈值进行比较,将像素分为不同的区域。
边缘检测是通过提取图像中的边缘信息来实现分割的方法。
区域生长算法则是以种子点为起点,通过生长的方式将与种子点相连的像素归为同一区域。
二、目标检测目标检测是计算机视觉中的另一个重要任务,其目的是在图像中找出感兴趣的目标并进行位置的确定。
目标检测在很多应用领域都有广泛的应用,如智能交通监控、人脸识别、无人驾驶等。
目标检测的算法也有多种,常见的有基于特征的方法和基于深度学习的方法。
基于特征的方法主要是通过提取图像中的特征信息,并采用分类器来进行目标的检测。
其中,常用的特征包括Haar特征、HOG 特征等。
基于深度学习的方法则是利用神经网络对图像进行端到端的处理,通过卷积神经网络(CNN)或者循环神经网络(RNN)实现目标的检测。
三、图像分割与目标检测的应用图像分割和目标检测在众多领域中都有广泛应用。
以医学图像分析为例,图像分割能够帮助医生更好地分割出肿瘤等病灶区域,从而为疾病的诊断提供更准确的依据。
而目标检测则能够帮助医生快速定位并识别出疾病部位,为手术治疗提供指导。
在智能交通监控领域,图像分割可以将车辆与背景进行分离,为车辆的跟踪和计数提供基础。
目标检测则能够实现对交通标志、车辆等感兴趣目标的实时检测和识别,从而帮助交通管理部门进行交通流量统计和道路安全监控。
面向电气工程研究生的“数字图像处理”课程改革
面向电气工程研究生的“数字图像处理”课程改革作者:郭斯羽温和凌志刚刘敏来源:《教育教学论坛》2023年第40期[摘要]人工智能技术在电气工程领域的应用日益广泛。
图像处理与机器视觉作为人工智能的重要分支,在电气工程专业研究生的知识体系中的重要性在不断提高。
针对这一需求,对“数字图像处理”课程进行了改革。
根据电气工程专业研究生的培养目标,设计了课程的教学目标,进而根据电气工程领域对图像处理的实际需求调整了教学内容;根据电气工程领域的实际工程应用设计了具有较高复杂度的实践教学内容;改革了课程的考核方式与内容,以有效评估学生在课程中的能力达成情况。
改革后的课程教学,有效提高了学生在课程和实践中的参与度,强化了实践效果,使学生在课程结束时基本具备了在电气工程领域复杂工程问题中应用和评价基于图像的解决方案能力。
[关键词]电气工程;人工智能;图像处理;研究生教学[基金项目] 2020年度湖南省学位与研究生教育改革研究项目“电气信息类研究生人工智能核心知识与能力培养体系与模式探索”(2020JGYB058)[作者简介]郭斯羽(1975—),男,湖南长沙人,博士,湖南大学电气与信息工程学院副教授,主要从事图像处理与机器视觉研究;温和(1982—),男,湖南益阳人,博士,湖南大学电气与信息工程学院教授,主要从事智能电气量测研究;凌志刚(1978—),男,湖南平江人,博士,湖南大学电气与信息工程学院副教授,主要从事图像处理与机器视觉研究。
[中图分类号] G643.2 [文献标识码] A [文章编号] 1674-9324(2023)40-0180-05 [收稿日期] 2022-08-09引言近年来,以深度学习、强化学习和迁移学习等高级机器学习理论的迅猛发展为代表,人工智能领域迎来了新的高速发展[1],也带动了电力人工智能的进一步发展,成为能源数字化变革的一个关键的驱动技术[2]。
为响应技术发展的趋势与需求,众多高校的电气工程相关本科与研究生专业均加强了有关人工智能的课程教学。
基于图像处理的自动识别系统设计与实现
基于图像处理的自动识别系统设计与实现摘要:自动识别系统是现代信息技术领域的重要研究方向之一,它基于图像处理技术实现对图像、视频中的目标进行快速准确的识别和分类。
本文将介绍一种基于图像处理的自动识别系统的设计与实现,包括图像获取、预处理、特征提取和目标识别等几个关键步骤,以及系统的整体架构和算法优化方法。
通过实验验证,该系统在目标识别的准确率和效率方面取得了显著的改善,具有较好的应用前景。
1. 引言自动识别系统是一种能够自动从图像或视频中提取出目标对象并进行准确识别的技术,广泛应用于安防监控、智能交通、人脸识别等领域。
图像处理技术是自动识别系统实现的基础,通过对图像进行预处理、特征提取和目标识别等步骤,可以高效地实现自动目标识别。
本文将介绍一种基于图像处理的自动识别系统的设计与实现,以期提供一种解决方案,用于改善目标识别的准确率和效率。
2. 系统设计与实现2.1 图像获取在自动识别系统中,图像获取是第一步,决定了后续处理的质量。
可以使用摄像机、监控设备或其他传感器获取图像或视频流,并传输到图像处理模块进行处理。
为了提高系统的适应性,本文采用了基于网络的图像获取方式,可通过局域网或互联网连接远程设备,并获取实时图像。
2.2 预处理预处理是自动识别系统中的关键步骤之一,旨在对获取到的图像进行去噪、增强和调整等处理,为后续的特征提取和目标识别提供更好的图像质量。
预处理的常用方法包括灰度化、平滑滤波、对比度增强和直方图均衡化等。
其中,平滑滤波可以减少图像中的噪声干扰,对比度增强能够提高图像的清晰度和辨识度。
2.3 特征提取特征提取是自动识别系统中的核心步骤,通过分析图像中的特征信息,提取出具有代表性的特征描述符,用于目标的类别判别。
常用的特征提取方法有颜色特征、纹理特征和形状特征等。
其中,颜色特征可通过对图像进行颜色空间转换,提取出颜色直方图或颜色矩等;纹理特征可通过对图像进行纹理分析,提取出纹理统计量等;形状特征可通过对图像进行边缘检测、细化和轮廓提取等,获取目标的形状信息。
模式识别课程设计
模式识别课程设计聚类图像分割一.图像分割概述图像分割是一种重要的图像分析技术。
在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣。
这些部分常称为目标或前景(其他部分称为背景)。
它们一般对应图像中特定的、具有独特性质的区域。
为了辨识和分析图像中的目标,需要将它们从图像中分离提取出来,在此基础上才有可能进一步对目标进行测量,对图像进行利用。
图像分割就是把图像分成各具特性的区域并提取出感兴趣目标的技术和过程。
现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。
近年来,研究人员不断改进原有的图像分割方法并把其它学科的一些新理论和新方法用于图像分割,提出了不少新的分割方法。
图象分割是图象处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。
图象分割应用在许多方面,例如在汽车车型自动识别系统中,从CCD摄像头获取的图象中除了汽车之外还有许多其他的物体和背景,为了进一步提取汽车特征,辨识车型,图象分割是必须的。
因此其应用从小到检查癌细胞、精密零件表面缺陷检测,大到处理卫星拍摄的地形地貌照片等。
在所有这些应用领域中,最终结果很大程度上依赖于图象分割的结果。
因此为了对物体进行特征的提取和识别,首先需要把待处理的物体(目标)从背景中划分出来,即图象分割。
但是,在一些复杂的问题中,例如金属材料内部结构特征的分割和识别,虽然图象分割方法已有上百种,但是现有的分割技术都不能得到令人满意的结果,原因在于计算机图象处理技术是对人类视觉的模拟,而人类的视觉系统是一种神奇的、高度自动化的生物图象处理系统。
目前,人类对于视觉系统生物物理过程的认识还很肤浅,计算机图象处理系统要完全实现人类视觉系统,形成计算机视觉,还有一个很长的过程。
因此从原理、应用和应用效果的评估上深入研究图象分割技术,对于提高计算机的视觉能力和理解人类的视觉系统都具有十分重要的意义。
图像处理与模式识别课程设计
01
02
03
人脸检测
通过图像处理技术,在输 入的图像中检测出人脸的 位置和大小。
特征提取
提取人脸的特征,如眼睛、 鼻子、嘴巴等部位的形状、 大小、位置等信息。
身份识别
将提取出的特征与已知人 脸特征进行比对,实现身 份的识别或验证。
文字识别系统
图像预处理
01
对输入的文字图像进行去噪、二值化、倾斜校正等操作,以提
03 颜色模型
常见的颜色模型有RGB、CMYK和灰度等,每种 模型都有自己的特点和适用场景。
图像的灰度化处理
01
灰度图像
灰度图像只有黑白两种颜色,通过调整像素的亮 度来模拟色彩。
02
灰度化处理方法
包括最大值法、平均值法和加权平均值法等,可 以改善图像的视觉效果。
图像的滤波与平滑
滤波器
滤波器用于减少图像中的噪声和细节,常见的滤 波器有高斯滤波器、中值滤波器和双边滤波器等。
本课程设计的收获与不足
培养了解决实际问题的能力和创新思维。 提高了团队协作和沟通能力。
本课程设计的收获与不足
不足
实践环节时间较短,未能充分掌握所有技 术。
部分理论知识较为抽象,难以理解。
缺乏实际应用案例,导致对知识理解不够 深入。
未来研究的方向与展望
研究方向 深度学习在图像处理与模式识别中的应用。 图像识别技术在医疗、安全等领域的应用研究。
人工智能将在未来成为图像处理与模式识别的重要研究方向。
THANKS
感谢观看
采用滤波器去除图像中的噪声和干扰。
实现方法与步骤
• 边缘检测:提取图像中的边缘信息,用于特征提取。
实现方法与步骤
特征提取
2. 使用特征选择算法,筛 选出对分类或检测任务最 有用的特征。
上海交通大学电院专业设置
自动化系模式识别与智能系统专业本学科创建于80年代初,是国内首批有权授予硕士学位、博士学位并设有博士后流动站,现为国家重点学科,是国家“211工程”、“985工程”的资助学科。
现有博士生导师6名,具有博士学位的中青年副教授10余名,国内外顾问和客座教授6名。
本学科依托图象处理与模式识别研究所,主要从事数字图象(图形)的融合、分析和渲染、文本信息处理、模式识别、机器视觉、自然语言理解、智能技术和系统等信息技术领域中前沿性的应用基础研究,具有软硬件开发工具和网络环境下的工作站,个人机及专用的图象输入输出设备。
主要承接国家科技攻关,国家自然科学基金及面向应用的开发研究项目。
现已培养博士后、博士、硕士将近300名,他们主要在国内外大学、科研机构、高新技术产业从事教学、科研及高新技术的研究开发工作。
专业研究方向图象处理与分析、模式识别与机器视觉、计算机图形学及虚拟现实、计算机网络与通信、文本信息处理、智能技术与系统、多媒体技术及应用、人工智能及演化计算专业课程设置1.学位课程自然辩证法概论、科学社会主义理论与实践、基础英语、专业英语、随机过程、矩阵理论、近世代数、数字图象处理、智能原理与系统、计算机模式识别。
2.非学位课程计算机图形学、人工神经网、多媒体技术与系统、中文信息处理、语音处理与识别、图象通信、计算机通信网、图象分形与小波变换、学术报告会学位毕业研究生适合从事的工作学位获得者业务上具有数字信息及网络技术坚实而宽广的理论基础,了解国内外在模式识别信息技术的发展动向,熟练掌握数字图象处理和智能技术的专业知识。
毕业生适合从事IT及其它高新技术产业的研究开发工作。
控制理论与控制工程专业本学科1978年开始招收研究生,是首批获得硕士及博士学位授予权的学科,1985年首批获准建立博士后科研流动站,1987年被评为国家重点学科,1995-2001年是国家“211工程”和“985工程”的资助学科,2002年再度被评为国家重点学科。
《基于机器视觉的手势识别系统设计与实现》
《基于机器视觉的手势识别系统设计与实现》一、引言随着人工智能技术的不断发展,机器视觉作为其重要组成部分,在各个领域得到了广泛的应用。
手势识别作为机器视觉的一个重要研究方向,具有广泛的应用前景。
本文旨在设计并实现一个基于机器视觉的手势识别系统,以提高人机交互的便捷性和自然性。
二、系统设计1. 硬件设计本系统主要包含摄像头、计算机等硬件设备。
其中,摄像头用于捕捉手势图像,计算机则负责处理这些图像信息。
为保证系统识别的准确性和实时性,我们选用高分辨率、低延迟的摄像头,以及具有强大计算能力的计算机。
2. 软件设计软件设计是本系统的核心部分,主要包括图像预处理、特征提取、模式识别等模块。
(1) 图像预处理图像预处理是为了提高图像的质量,以便后续的特征提取和模式识别。
主要包括图像滤波、二值化、归一化等操作。
其中,图像滤波用于消除图像中的噪声,二值化将图像转化为黑白二值图像,归一化则将图像的尺寸和亮度进行统一处理。
(2) 特征提取特征提取是手势识别的关键步骤,主要目的是从预处理后的图像中提取出手势的特征。
本系统采用基于深度学习的特征提取方法,通过训练卷积神经网络(CNN)来提取手势的特征。
(3) 模式识别模式识别是对提取出的特征进行分类,以确定手势的种类。
本系统采用支持向量机(SVM)进行模式识别,通过训练大量的手势样本,建立手势与类别之间的映射关系。
三、系统实现1. 数据采集与处理首先,我们需要采集大量的手势数据。
这些数据可以通过专业的手势采集设备获取,也可以通过网络资源进行收集。
然后,对采集到的数据进行预处理,包括图像滤波、二值化、归一化等操作,以便后续的特征提取和模式识别。
2. 特征提取与训练利用深度学习技术,我们训练一个卷积神经网络来提取手势的特征。
在训练过程中,我们需要大量的带标签的手势数据。
通过不断调整神经网络的参数,使网络能够准确地提取出手势的特征。
3. 模式识别与测试在特征提取完成后,我们使用支持向量机进行模式识别。
基于人工智能的图像处理系统设计与实现
基于人工智能的图像处理系统设计与实现随着人工智能技术的不断发展,人工智能在各行各业中的应用也日益广泛。
其中,基于人工智能的图像处理系统也越来越受到关注和重视。
在本文中,我将详细介绍基于人工智能的图像处理系统的设计与实现。
一、介绍人工智能图像处理系统的背景和意义图像处理是指对数字图像进行优化、增强、变换等工作,以获得更好的质量和更有信息量的图像。
在实际应用中,图像处理技术广泛应用于医学图像、遥感图像、安全监控图像等领域,以及生活中的照片美化、视频编辑等方面。
然而,传统的图像处理技术受制于算法性能、人工干预等因素的限制,难以实现自动化、快速化和精准化的处理效果。
而基于人工智能的图像处理系统可以利用深度学习、机器学习等先进技术,从大量的图像数据中自动学习、识别、提取特征,并自动进行图像分析、处理和优化,从而实现更加精准、快速、高效的图像处理效果。
因此,基于人工智能的图像处理系统具有广泛的应用前景和深远的意义。
二、基于人工智能的图像处理系统设计与实现基于人工智能的图像处理系统的设计与实现主要包括以下几个方面:1、图像数据采集图像数据采集是构建基于人工智能的图像处理系统的关键步骤。
在数据采集之前,需要先明确自己的应用场景、图像处理任务和图像数据来源。
常见的图像数据来源有:摄像头采集、互联网爬虫、数据库等。
在采集图像数据时,还需要考虑数据规模、质量、标注等问题。
2、图像数据预处理图像数据采集完成后,需要对采集到的图像数据进行预处理。
预处理主要包括:图像清洗、图像分割、图像增强等。
通过对图像进行预处理,可以使得图像更加干净、整洁,从而提高后续图像处理的效率和准确性。
3、数据标注在进行基于人工智能的图像处理系统的训练与应用时,需要对图像数据进行标注。
图像数据标注是指为图像中的不同对象或区域进行分类、定位、追踪等标记。
常用的图像数据标注方法有:边框标注、语义分割标注和关键点标注等。
图像数据标注工作需要耗费大量人工时间,因此有必要寻找一些自动标注的方法。
基于计算机视觉的智能图像识别与分析系统设计
基于计算机视觉的智能图像识别与分析系统设计一、引言随着计算机视觉技术的快速发展,智能图像识别与分析系统在各个领域中得到了广泛应用。
这些系统利用计算机视觉算法和模型,能够自动地对图像进行识别、分类、分析和理解,为人们提供了便捷的图像处理和分析工具。
本文将详细介绍一个基于计算机视觉的智能图像识别与分析系统的设计。
二、系统设计1. 数据收集与预处理在图像识别与分析中,数据是非常重要的。
系统首先需要进行大量的数据收集工作,收集不同类别的图像数据集,以用于训练和测试。
收集到的图像数据需要进行预处理,包括图像去噪、图像增强、图像缩放等。
预处理能够提高图像的质量,并且降低后续处理的难度。
2. 特征提取与表示特征是图像中最具表征性的信息,通过提取和表示图像的特征可以帮助系统识别图像。
常用的特征提取方法包括边缘检测、颜色直方图、纹理特征等。
通过使用适当的特征提取算法,可以有效地捕捉到图像的关键信息。
3. 训练模型在系统设计中,训练模型是一个非常重要的步骤。
训练模型是指使用训练数据来训练一个模型,使其能够对新的图像进行准确地识别和分析。
常用的模型训练方法包括深度学习、机器学习等。
通过训练模型,系统可以学习到图像的特征分布和类别信息,从而提高图像识别和分析的准确性。
4. 图像识别与分析在训练好模型之后,系统可以利用训练好的模型对新的图像进行识别和分析。
系统通过输入待识别的图像,利用模型进行图像分类,并且给出识别结果。
同时,系统还可以对图像进行进一步的分析,比如目标检测、物体跟踪、图像分割等。
通过图像识别和分析,系统可以实现对图像的智能化处理和理解。
5. 系统优化与改进在实际应用中,系统的准确性和实时性是非常重要的指标。
为了提高系统性能,可以对系统进行优化和改进。
优化方法包括算法优化、硬件优化等。
同时,系统还需要不断地进行模型训练和更新,以适应新的图像数据和场景。
三、应用场景1. 安防监控基于计算机视觉的智能图像识别与分析系统可以应用于安防监控领域。
图像语义分割算法最新发展趋势
图像语义分割算法最新发展趋势近年来,随着计算机视觉和深度学习的快速发展,图像语义分割算法也取得了显著的进展。
图像语义分割是指将图像中的每个像素标记为属于特定类别的过程,其在自动驾驶、智能辅助医疗、人机交互等领域具有重要的应用价值。
以下将介绍图像语义分割算法的最新发展趋势。
1. 基于深度学习的图像语义分割算法深度学习在图像语义分割任务中取得了巨大的成功。
传统的图像分割算法主要基于手工设计的特征和机器学习算法,而深度学习算法则通过神经网络自动学习特征和分类器。
最新的基于深度学习的图像语义分割算法采用了各种类型的神经网络结构,包括全卷积网络(Fully Convolutional Network, FCN)、编码器-解码器网络(Encoder-Decoder Network)、空洞卷积网络(Dilated Convolutional Network)等。
这些网络结构能够在不同尺度上有效地提取图像的语义信息,从而实现更准确的分割结果。
2. 融合多模态信息的图像语义分割算法除了利用图像本身的信息进行分割,最新的图像语义分割算法还试图将多模态信息(如深度图像、红外图像、激光雷达等)融合到分割过程中。
这种融合可以提供更丰富的输入特征,从而改善分割结果的准确性。
同时,多模态信息的融合也有助于解决部分单模态图像难以分割的问题。
例如,在自动驾驶领域,融合激光雷达和图像信息可以帮助精确分割道路和障碍物。
3. 弱监督学习的图像语义分割算法传统的图像语义分割算法通常需要大量标注的像素级标签数据来训练模型。
然而,标注大规模图像数据是一项耗时费力的工作。
最新的图像语义分割算法开始探索利用弱监督学习方法来降低对标注数据的依赖性。
弱监督学习方法通过利用较低精度的标签或辅助信息来训练模型,例如图像级标签、边界框或图像级标签估计。
这样可以大幅降低标注数据的需求,并且保持分割结果的准确性。
4. 增强学习在图像语义分割中的应用增强学习是指智能体通过与环境的交互来学习如何做出决策以最大化累积奖励的过程。
Matlab中的模式识别系统设计与实现
Matlab中的模式识别系统设计与实现一、介绍在计算机科学和人工智能领域,模式识别是一种重要的技术,它可以用于自动识别和分类不同的模式或对象。
Matlab作为一种强大的数值计算和科学计算软件,不仅被广泛用于数据处理和分析,也被应用于模式识别系统的设计和实现。
二、模式识别概述模式识别是一种研究和应用统计理论、计算机科学和机器学习等方法的交叉学科。
其主要目标是通过对数据样本进行分析和学习,建立起一个可以自动识别和分类新样本的系统。
在现实生活中,我们可以使用模式识别来解决许多实际问题,如人脸识别、声音识别和手写体识别等。
三、Matlab在模式识别中的应用由于其强大的矩阵运算和数据处理能力,Matlab成为实现模式识别系统的理想工具之一。
Matlab提供了一系列丰富的函数和工具箱,可以帮助我们实现从数据预处理到特征提取、分类和测试等一系列步骤。
1. 数据预处理在构建模式识别系统之前,通常需要对原始数据进行预处理,以提高系统的鲁棒性。
Matlab提供了一些重要的函数和工具,如数据清洗、数据平滑和降噪等,用于处理和准备原始数据。
此外,Matlab还支持其它功能,如数据拟合和插值,用于填充丢失的数据。
2. 特征提取特征提取是模式识别系统中的一个关键步骤,其目的是从原始数据中提取出具有代表性的特征向量。
在Matlab中,我们可以使用多种方法和技术来实现特征提取,如主成分分析(PCA)、线性判别分析(LDA)和小波变换等。
这些方法可以帮助我们选择和提取最相关的特征,从而增强模式识别系统的性能。
3. 分类和测试在特征提取之后,我们需要通过设计合适的分类器来对模式进行分类。
Matlab提供了一系列强大的分类和回归算法,如支持向量机(SVM)、朴素贝叶斯(NB)和人工神经网络(ANN)等。
这些算法可以根据特征向量的模式将其分配到正确的类别中。
四、案例研究为了更好地理解Matlab在模式识别系统中的应用,我们以人脸识别为例进行案例研究。
图像处理与模式识别
图像处理与模式识别图像处理与模式识别是一门涉及计算机视觉、人工智能和模式识别等多领域知识的交叉学科。
在当今信息时代,图像处理与模式识别技术的应用越来越广泛,涵盖了医学影像分析、人脸识别、车牌识别、安防监控、智能交通等诸多领域。
本文将从图像处理和模式识别的基本概念、应用领域、算法模型以及未来发展趋势等方面进行探讨。
一、基本概念图像处理是利用计算机对图像进行数字化处理的技术,旨在提取、改善、增强或还原图像的质量。
常见的图像处理操作包括灰度变换、形态学处理、滤波处理等,通过这些操作可以实现图像的去噪、增强、分割等功能。
而模式识别则是利用计算机算法对图像中的模式或特征进行分析和识别的过程,如人脸识别、手写体识别、物体识别等。
图像处理与模式识别技术的结合,可以实现对图像信息的自动化处理和解读,为人类生活和产业生产带来了极大的便利。
二、应用领域图像处理与模式识别技术广泛应用于医学影像分析领域。
通过对医学影像进行分割、特征提取和识别,医生可以及时准确地进行病灶定位和诊断,提高医疗效率和精度。
此外,在安防监控领域,图像处理与模式识别技术可以实现对监控视频的实时分析和异常检测,帮助提高社会治安水平。
另外,智能交通系统也是图像处理与模式识别技术的重要应用领域,通过对交通摄像头捕获的图像进行分析和识别,可以实现车辆违章检测、拥堵检测等功能,提高交通管理效率。
三、算法模型图像处理与模式识别技术主要依靠一系列经典的算法模型来实现,如卷积神经网络(CNN)、循环神经网络(RNN)、支持向量机(SVM)等。
其中,卷积神经网络是当前图像处理与模式识别领域应用最为广泛的深度学习算法,通过多层卷积层和池化层的组合,实现对图像的特征提取和分类。
而支持向量机则是一种基于统计学习理论的监督学习算法,具有较强的泛化能力和分类性能,广泛应用于图像分类、目标检测等任务。
四、未来发展趋势随着人工智能和数字技术的不断发展,图像处理与模式识别技术也将迎来更加广阔的发展前景。
2024 机器视觉就业方向与前景
2024 机器视觉就业方向与前景机器视觉是一门涵盖图像处理、模式识别和机器学习等技术的跨学科领域,在当前科技发展的浪潮下呈现出广阔的就业方向和发展前景。
1. 机器视觉工程师:机器视觉工程师是从事机器视觉系统开发和应用的专业人员。
他们负责设计、开发和实施用于图像处理和模式识别的算法和软件工具,并将其应用于各个领域,如自动驾驶、智能监控、医疗诊断等。
2. 图像算法工程师:图像算法工程师致力于开发和改进机器视觉算法,提高图像处理和模式识别的性能。
他们需要熟悉各种图像处理技术和算法,如图像滤波、边缘检测、图像分割和目标识别等,并能够将其转化为实际应用。
3. 深度学习工程师:深度学习在机器视觉领域中发挥着重要作用。
深度学习工程师专注于设计和训练深度神经网络模型,用于解决图像分类、目标检测、图像生成等机器视觉任务。
他们需要熟悉深度学习框架和算法,如TensorFlow、PyTorch、卷积神经网络等。
4. 自动驾驶工程师:自动驾驶是机器视觉应用的重要领域之一。
自动驾驶工程师致力于开发和优化用于感知、决策和控制的视觉系统,使无人驾驶汽车能够实现准确的环境感知和智能决策。
5. 智能监控工程师:智能监控系统利用机器视觉技术,实现对监控场景的实时分析和警报。
智能监控工程师负责设计和开发监控算法和系统,使其能够实现准确的目标检测、行为识别和异常检测等功能。
随着人工智能和大数据等技术的迅速发展,机器视觉在各个行业中的应用前景广阔。
例如,在制造业中,机器视觉可用于检测和质量控制;在医疗领域中,它可用于医学影像分析和疾病诊断;在农业领域中,它可用于植物生长监测和病虫害检测等。
总之,机器视觉作为一门重要的技术领域,将为各个行业带来巨大的变革和创新。
有着机器视觉背景的专业人才在未来将会面临更多的就业机会和发展空间。
除了以上提到的就业方向,机器视觉还涉及到其他一些相关的工作岗位和领域。
6. 数据标注和标定工程师:机器学习和深度学习模型的成功训练离不开高质量的标注数据。
基于人工智能的自动化图像处理与识别技术
基于人工智能的自动化图像处理与识别技术在当今数字化的时代,图像信息以惊人的速度增长,如何高效、准确地处理和识别这些图像成为了一项至关重要的任务。
基于人工智能的自动化图像处理与识别技术应运而生,为我们带来了前所未有的便捷和可能性。
图像处理与识别技术并非新生事物,但在人工智能的加持下,其能力得到了极大的提升。
过去,传统的图像处理方法往往依赖于人工设计的特征提取和分类算法,不仅效率低下,而且在面对复杂的图像场景时,准确性和鲁棒性往往不尽人意。
人工智能的出现改变了这一局面。
它能够自动从大量的数据中学习到图像的特征和模式,无需人工进行繁琐的特征设计。
通过使用深度学习技术,特别是卷积神经网络(CNN),图像的处理和识别精度得到了显著提高。
以图像分类为例,传统方法可能需要人工提取图像的颜色、形状、纹理等特征,然后使用分类器进行分类。
而基于人工智能的方法则是将大量已标注的图像数据输入到神经网络中,让网络自动学习到不同类别图像的特征。
这样训练出来的模型能够对新的图像进行准确的分类,无论是简单的物体识别,还是复杂的场景理解。
在目标检测方面,人工智能同样表现出色。
它能够在图像中快速准确地定位和识别出多个目标,并给出它们的类别和位置信息。
这在安防监控、自动驾驶等领域具有重要的应用价值。
例如,在自动驾驶中,车辆需要实时检测道路上的行人、车辆、交通标志等目标,以便做出正确的驾驶决策。
图像分割是另一个重要的图像处理任务,它将图像分割成不同的区域,每个区域具有相似的特征。
基于人工智能的分割方法能够根据图像的内容自动生成准确的分割结果,为图像编辑、医学图像分析等提供了有力的支持。
然而,基于人工智能的自动化图像处理与识别技术并非完美无缺。
数据的质量和数量对模型的性能有着至关重要的影响。
如果数据存在偏差、噪声或者数量不足,可能会导致模型的过拟合或欠拟合,从而影响其准确性和泛化能力。
此外,模型的计算复杂度也是一个需要解决的问题。
深度学习模型通常需要大量的计算资源进行训练和推理,这在一些资源受限的场景下可能会受到限制。
智能图像处理与分析识别
“深度学习在图像处理和分析中发挥着越来越重要的作用。它通过使用多层神 经网络来学习和提取图像中的复杂特征。”
这句话展示了深度学习在图像处理和分析领域的广泛应用。深度学习技术可以 自动地学习和提取图像中的特征,从而提高了分析和识别的准确性。
阅读感受
在阅读完《智能图像处理与分析识别》这本书之后,我对于图像处理和识别领 域有了更深入的了解。这本书不仅涵盖了图像处理的基本概念和算法,还介绍 了各种先进的图像分析技术,以及如何应用这些技术来提高图像识别的准确性 和效率。
这本书的目录体现了其内容的深度和广度。它涵盖了智能图像处理与分析识别 的各个方面,包括图像预处理、特征提取、分类器设计、识别算法等。同时, 它也介绍了各种先进的图像处理和分析技术,如深度学习、神经网络等。这些 内容不仅体现了这本书的学术价值,也展示了其在实践中的应用价值。
这本书的目录还体现了其理论与实践的结合。每个章节都提供了丰富的实例和 案例分析,使得读者可以通过实例了解理论知识的应用。同时,它也提供了大 量的
这本书介绍了图像处理的基本概念和基础知识,包括图像的表示、图像的变换、 图像的滤波等。这些基础知识对于理解后续的图像处理和分析技术非常重要。
接下来,这本书介绍了各种先进的图像分析技术,包括边缘检测、轮廓提取、 特征提取等。这些技术可以帮助我们从图像中提取有用的信息,为后续的图像 识别和分类提供支持。
目录分析
《智能图像处理与分析识别》是一本介绍智能图像处理与分析识别的专业书籍。 通过对这本书的目录进行分析,我们可以了解到这本书的主要内容和结构。
这本书的目录结构清晰,层次分明。它按照章节和节点的形式,将整个书籍的 内容进行了系统的分类和组织。每个章节都有明确的主题和内容,使得读者可 以快速找到自己感兴趣的部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像校正及分割处理软件设计与实现模式识别与智能系统图像校正及分割处理软件设计与实现《图像分析与模式识别》课程期末大作业报告课程名称:图像分析与模式识别学院:信息工程与自动化学院专业:计算机技术年级: 2014级学生姓名:樊祥锰学生学号: 2014704101 指导教师:刘辉2015-01-01昆明理工大学信息工程与自动化学院目录图像校正及分割处理软件设计与实现 (2)1 软件需求 (2)1.1 操作界面需求分析 (2)1.2 图像几何校正需求分析 (2)1.2 ISODATA聚类算法的图像分割需求分析 (3)2 算法原理及流程图 (3)2.1 Hough变换 (3)2.1.1 Hough变换原理 (3)2.1.2图像几何校正流程 (4)2.2 ISODATA算法原理 (4)2.2.1 ISODA TA算法原理步骤 (4)2.2.1 ISODA TA算法流程图 (6)3 程序设计框图 (7)4 实验结果及分析 (8)4.1 图像几何 (8)4.1.1支票图像几何校正结果 (8)4.1.1支票图像几何校正结果分析 (9)4.2 图像分割 (9)4.2.1图像分割结果 (9)4.2.1图像分割结果分析 (11)附录: (12)附录一:图像几何校正代码 (12)附录一:ISODA TA聚类算法图像分割代码 (12)附录一:MATLAB的GUI操作界面代码 (18)图像校正及分割处理软件设计与实现摘要:设计一种图像几何校正及图像分割处理软件,实现对倾斜支票图像校正为水平,及对已给的图像进行分割。
图像几何校正主要通过边缘检测、Hough变换、求倾斜角、图像旋转等算法实现;图像分割采用ISODATA聚类算法实现。
实验结果表明,实现了对倾斜支票图像几何校正和对图像的分割功能。
关键词:边沿检测;Hough变换、图像旋转、ISODATA算法;图像分割;1 软件需求需求分析是指对要解决的问题进行详细的分析,弄清楚问题的要求,包括整个系统所要实现的功能。
根据题目,设计需要编写带有操作界面的图像处理软件,功能包含图像几何校和基于ISODATA聚类算法的图像分割。
开发工具使用MATLAB。
根据MATLAB的特点及需要实现的软件功能,软件需求分析如下:1.1 操作界面需求分析软件实现的功能是图像处理,因此操作界面中需要一个按钮,用于选择待处理的图像,称为“图像选择”按钮;选择的原始图像需要在操作界面中显示,因此需要一个用于显示原始图像的坐标控件;由于软件需要实现多功能,需要一个下拉框实现功能的选择;一个开始功能处理的按钮,称为“开始处理”按钮;一个用于显示图像处理结果的坐标控件。
最后需要一个退出操作界面的按钮,称为“退出”按钮。
1.2 图像几何校正需求分析原始图像在拍照时出现了倾斜,需要将图像校正,消除倾斜。
通过对图像的观察,图像是一张支票,支票上存在表格。
因此想法是通过检测支票表格边框线的倾斜角,就是整张图像的倾斜程度,然后根据这个倾斜角旋转,便可得到校正的水平图像。
要检测支票图像表格边框直线。
需要对图像的边缘进行检测,图像的边缘检测方法很多,如:sobel算子边缘检测,prewitt算子边缘检测,roberts算子边缘检测,log算子边缘检测,canny算子边缘检测等,由于原图的噪声并不是很严重,因此上面这些边缘检测办法都能胜任,这里使用log 算子进行边缘检测,为了适应其它边缘检测方法,本设计需要尽量在改变边缘检测方法时尽可能少地修改代码。
边缘检测后,采用Hough变换提取直线,然后在提取的直线上找两个点,计算出直线的倾斜角度。
最后根据这个倾斜角度对图像进行旋转。
1.2 ISODATA聚类算法的图像分割需求分析ISODATA聚类算法的图像分割功能,ISODATA比较复杂,因此主要是ISODATA算法的实现。
设计的处理过程是,在操作界面选择了待处理的图像后,选择图像分割功能,点击开始处理按钮后,弹出图像,通过鼠标左键选择聚类中心点,然后按回车键或者单击鼠标右键确认后,调用ISODATA对图像进行分割。
2 算法原理及流程图设计的功能有图像几何和基于ISODATA聚类算法的图像分割。
图像几何校正功能中,采用Hough变换对支票表格边框直线进行检测;ISODATA聚类算法的图像分割功能和核心是ISODATA聚类算法。
对其原理及实现的流程图分析如下。
2.1 Hough变换哈夫变换是利用图像全局特性而直接检测目标轮廓,就可将边缘像素连接起来组成区域封闭边界的一种方法。
在预先知道区域形状的条件下,利用哈夫变换可以方便地得到边界曲线而将不连续的边缘像素点连接起来。
2.1.1 Hough变换原理哈夫变换的基本思想是点-线对偶性。
图像变换前在图像空间,变换后在参数空间。
在图像空间XY里,所有过点(x, y)的直线都满足方程:y=px+q写成:q=-px+y (1)可以认为代表参数空间PQ中过点(p,q)的一条直线。
YQq'p 图1 图像空间图2 参数空间图像空间的点(xi, yi)和(xj, yj)对应参数空间两条直线,它们的交点(p’,q’)对应图像空间XY中过(xi, yi)和(xj, yj)的直线,这样,图像空间XY中过(xi, yi)和(xj,yj)的直线上的所有点都对应参数空间PQ里的一条直线,这些直线相交于点(p’,q’) 。
在图像空间中共线的点对应在参数空间中相交的线,反过来,在参数空间中交于同一个点的所有直线在图像空间中都有共线的点相对应,这就是点-线对偶性。
根据点-线对偶性,当给定图像空间的一些边缘点,就可以通过哈夫变换确定连接这些点的直线方程,哈夫变换把图像空间中的直线检测问题转换到参数空间里点检测的问题。
2.1.2 图像几何校正流程图像几何校正中使用的Hough变换算法采用MATLAB已经封装好的hough 函数,这里不要详细阐述其流程,整个图像几何校正的流程如图3所示:图3 图像几何校正流程图2.2 ISODATA算法原理ISODATA算法的思想是,在每轮迭代过程中,样本重新调整类别之后计算类内及类间有关参数,并和设定的门限比较,确定是两类合并为一类还是一类分裂为两类,不断地“自组织”,以达到在各参数满足设计要求条件下,使各模式到其类心的距离平方和最小。
2.2.1 ISODATA算法原理步骤⑴预置①设定聚类分析控制参数:c=预期的类数,N c=初始聚类中心个数(可以不等于c),θn =每一类中允许的最少模式数目,θs =类内各分量分布的距离标准差上界,(分裂用)θD =两类中心间的最小距离下界,(合并用)L =在每次迭代中可以合并的类的最多对数,I =允许的最多迭代次数。
② 将待分类的模式特征矢量读入;③④ 选定初试聚类中心,可从待分类的模式特征矢量集中任选N c 个模式特征矢量作为初始聚类中心;(2)按最小距离原则将模式集中每一个模式分到某一类中;(3)依据每一类中允许的最少模式数目判断合并;(4)计算分类后的参数:分类中心,;类平均距离及中体平均距离;① 计算各类的中心∑∈=j i x i j j x n z ω1),,2,1(c N j = (2) ② 计算各类中模式到类心的平均距离∑∈-=ji x j i j j z x n d ω1),,2,1(c N j = (3) ③ 计算各个模式到其类内中心的总体平均距离 j cN j j d n N d ∑==11(4) (5)依据I p , N c 判断停止、分类或合并;(6)计算各类类内距离的标准差矢量;),,,(21'=nj j j j σσσσ),,2,1(c N j =),,2,1,,2,1()(1212c x kj ki j kj N j n k z x n j i==⎥⎥⎦⎤⎢⎢⎣⎡-=∑∈ωσ (5)(7)对每一次聚类,求出类内距离标准差矢量中的最大分量;(8)在(7)所得结果中对任一最大值大于类内各分量分布的距离标准差上界则分裂;(9)计算各对聚类中心间的距离;(10)依据两类中心间的最小距离下界判断合并;(11)如果迭代次数I p 已达I 次或过程收敛,则结束,否则,I p =I p +1,若需要调整参数,则转(1),若不改变参数则转(2);2.2.1 ISODATA算法流程图图4 ISODATA聚类算法流程图3 程序设计框图根据需求分析,对整个操作界面及其中的函数调用等,对整个程序进行分析。
操作界面运行后,单击选择图像按钮选择待处理的图像。
然后选择要对图形进行处理的功能,单击开始处理按钮,调用相应的处理方法进行处理,整个程序的设计框图如图5所示:图5 程序设计框图设计好的操作界面如下图所示:图6 操作界面设计结果4 实验结果及分析4.1 图像几何4.1.1 支票图像几何校正结果图像几何校正功能中,对支票图像的校正如下图所示:图7 图像结合校正处理中图8 图像结合校正处理中4.1.1 支票图像几何校正结果分析通过支票图像几何校正结果可知,设计达到了预计的结果。
通过MATLAB 运行提取计算斜率的坐标为 (1200,522)和(1540, 511)。
直线的斜率为slope = -0.0324,通过次斜率计算出的倾斜角度为angle = -1.8530。
根据人眼观测结果显示支票的请倾斜角也比较小,而且根据校正后的支票图像结果显示已经水平。
即达到了实验设计目的。
4.2 图像分割4.2.1图像分割结果在运行图像分割功能时,需要通过鼠标选择预期聚类,其中选择之一如图9所示:请选取预期聚类的中心点,完成后请按回车键或单击鼠标右键图9 选择预期的聚类中心图10 图像分割处理中最终对图像的分割结果如下图所示:图11 图像分割结果(a)图11 图像分割结果(b)图13 图像分割结果(c)图14 图像分割结果(d)4.2.1图像分割结果分析通过多次选择不同的预期聚类中心的实验结果表明,设计基本完成了所需的功能。
同时也证明了设计的合理性,以及ISODATA聚类算法在图像分割中的运用。
结果显示,把鸭子的眼睛分成了一类,把鸭子的嘴分成了一类,把鸭子的身体分成了一类,虽然有时分类结果不是非常好。
但选择预期聚类中心时有一定的影响。
总体来看,仍然达到了图像分割的目的。
本学期在《图像分析与模式识别》课程中学到很多,学到的不仅仅是课程相关的知识。
更重要的是学到了许多处理和解决问题的思想,相信对今后的学习会有很大的帮助。
这都是刘辉老师教导的结果,在此对刘辉老师表示衷心感谢!附录:附录一:图像几何校正代码function jiaozheng = jiaozheng(cheque)BW_laplace = edge(cheque,'log');% log算子边缘检测BW2 = bwmorph(BW_laplace, 'thin',Inf);%细化[H,T,R] = hough(BW2); %Hough变换P = houghpeaks(H,5); %提取Hough变换后参数平面上的峰值点lines = houghlines(BW2,T,R,P); %提取直线for k = 1:length(lines)xy = [lines(k).point1; lines(k).point2]; %提取坐标endslope=(xy(2,2)- xy(1,2))/(xy(2,1)-xy(1,1)); %求斜率radian=atan(slope);%求角度angle=radian*180/pi; %转化成角度jiaozheng=imrotate(cheque,angle); %图像校正imshow(jiaozheng);close ;附录一:ISODATA聚类算法图像分割代码function isodata=isodata_zsy(I)%%%%%%%%%%%%%%%%%1..样本点为所有的像素点%%%%%%%%%% %%%%%%%%%%%%%%% 2...聚类中心点的确定%%%%%%%%%%%%%% figure(1);imshow(I,[]),title('请选取预期聚类的中心点,完成后请按回车键或单击鼠标右键');[m,n]=size(I);k=4; % k 用来记录预期聚类的数目这里假定为4c=k; % c来记录实际分类时的数目hold on;[p,q]=getpts; %获取聚类中心,返回去类中心的坐标,p存放第一个坐标点,q存放第二个坐标点(数对)J=zeros(1,3*c); %?for i=1:cf=round(q(i)); %分为c类 J来记录各类的中心像素值...(坐标和像素值)d=round(p(i));J(i)=I(f,d);end%disp(J);%%%%%%%%%%%%%%%%%3...将样本点分到各个聚类中心去%%%%%%%%%%%%%max_gen=10; %max_gen最大迭代次数w=1;%while w<max_genA=zeros(m,n);for i=1:mfor j=1:ndis=[0,0,0,0]; %用来记录样本点与每个聚类中心的距离for x=1:4dis(1,x)=(I(i,j)-J(x))*(I(i,j)-J(x));end%disp(dis);[min1,temp]=min(dis);A(i,j)=J(temp);endend%disp(A);%%%%%%%%%%%4....依据一个类中的最小聚类数判断是否舍去聚类点%%%%%%%%%%sN=6; %sN一个聚类中至少含有的样本数目count=zeros(1,3*c); %count数组用来记录每个聚类中含有的样本数目for i=1:mfor j=1:nfor x=1:cif A(i,j)==J(x)count(x)=count(x)+1;endendendendfor x=1:c-1if count(x)<sNJ(x)=J(x+1);count(x)=count(x+1); %类的数目减少一个c=c-1;endendif count(x)<sNcount(x)=0;c=c-1;end%%%%%%%%%%%5...更新聚类中心%%%%%%%%%%%%%%%%%%%%%%%%%%%for x=1:csum=0;for i=1:mfor j=1:nif A(i,j)==J(x)sum=sum+I(i,j);endendendJ(x)=round(1.0/count(x)*sum*1.0); %更新中心end%%%%%%%%%%%%%%%6....各类的样本离开中心的平均距离%%%%%%%%%%%%meandis=zeros(1,c);for x=1:csum=0;for i=1:mfor j=1:nif A(i,j)==J(x)sum=sum+abs(I(i,j)-J(x));endendendmeandis(x)=1.0/count(x)*sum;end%%%%%%%%%%7...所有样本离开其相应的聚类中心的平均距离%%%%%%%%g_meandis=0; %g_meandis记录平均距离N=m*n;for x=1:cg_meandis=g_meandis+count(x)* meandis(x); %endg_meandis=g_meandis/N;%%%%%%%%%%%%8....决定是走向合并还是分裂%%%%%%%%%%%% sC=1.5; %sC为合并参数if w==max_gen-1 %如果这是最后一次迭代置合并参数为0sC=0;enddisp(g_meandis);if c<k/2+1|mod(w,2)==1 %继续做步骤8 %%%%%%%%%%%%9...实际聚类中心数跟预期数相比太小要进行分裂%%%%%%%%%%%%%%%%%%%%%%%%对各个聚类求标准偏差%%%%%%%%%%%%%%%%%%%%%%%%std_err=zeros(1,c);for x=1:csum1=zeros(1,c);for i=1:mfor j=1:nif A(i,j)==J(x)sum1(x)=sum1(x)+((I(i,j)-J(x))*(I(i,j)-J(x)));endendendstd_err(x)=sqrt(1/count(x)*sum1(x)*1.0);end%%%%%%%%%%%%%10..求最大标准差分量..灰度图特征分量为1%%%%%%%%%%%%%%%%%%%%%%11..决定是否分裂%%%%%%%%%%%%%%%%%%%% t=0.6 ; % t为(0,1]之间的数保证样本仍在两个集合中r=zeros(1,c);J_rec=J;for x=1:cif std_err(x)> g_meandis&count(x)>2*(sN+1)r(x)=t*meandis(x);c=c+1; %实际类的数目加1J_rec(x)=J(x); %记录原中心点的灰度值J(x)=J(x)+r(x);J(c)=J(x)-r(x);for i=1:m %将分裂之后的像素重新安排所归属的类中心 for j=1:nif A(i,j)==J_rec(x)if abs(I(i,j)-J(c))<abs(I(i,j)-J(x))A(i,j)=J(c);count(c)=count(c)+1; %记录新增的类含样本的个数 elseA(i,j)=J(x);endendendendcount(x)=count(x)-count(c); %count(x)含样本的个数endend%%%%%%%%%%%%%%%%12...计算所有的聚类中心两两距离%%%%%%%%%%%elsebetwen_dis=zeros(c,c);for i=1:cfor j=1:ibetwen_dis(i,j)=abs(J(i)-J(j));betwen_dis(j,i)=betwen_dis(i,j); % 这个矩阵为一对称矩阵endend%%%%%%%%%%%%%%%%%13..将小于最小合并参数的 betwen_dis(i,j)%%%%%%%%sL=2; %每次迭代允许的最大聚类对的数目line=zeros(1,c*c)-1;s=1;for i=1:cfor j=1:iif betwen_dis(i,j)<sCline(s)=betwen_dis(i,j);s=s+1;endendendif s>1for i=1:s-1temp1=i;for j=i+1:sif line(j)<line(temp1) %选择排序法对line进行排序temp1=j;endif temp1~=itemp2=line(temp1);line(temp1)=line(i);line(i)=temp2;endendendendif s>sL % 当s超过最大合并对数时将s的值变为允许的最大聚类对的数目s=sL;end%%%%%%%%%%%%%%14...从最小的进行合并%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%temp_c=c;for x=1:sfor i=1:temp_cfor j=1:temp_cJ_temp=J;if betwen_dis(i,j)==line(x)&i>j %矩阵为一对称矩阵.....只看下三角 c=c-1;J(j)=round(1.0/(count(i)+count(j)))*(count(i)*J(i)+count(j)*J(j));count(j)=count(i)+count(j); %合并后聚类中新含有新样本的个数for g=1:m %将合并之后的像素重新安排所归属的类中心 for h=1:nif A(g,h)==J_temp(i)|A(g,h)==J_temp(j)A(g,h)=J(j);endendendif i==temp_ccount(i)=0;elsefor g=i:c-1J(g)=J(g+1); %将记录后面类中心像素值前移count(g)=count(g+1);endendendendendend%%%%%%%%%%%%%%%%%15....计数器加1进行迭代直到结束endw=w+1; %进行下一次迭代A=round(A);isodata=mat2gray(A);close;附录一:MATLAB的GUI操作界面代码function varargout = sztxfx_mssb_zsy(varargin)gui_Singleton = 1;gui_State = struct('gui_Name', mfilename, ...'gui_Singleton', gui_Singleton, ...'gui_OpeningFcn', @sztxfx_mssb_zsy_OpeningFcn, ...'gui_OutputFcn', @sztxfx_mssb_zsy_OutputFcn, ...'gui_LayoutFcn', [] , ...'gui_Callback', []);if nargin && ischar(varargin{1})gui_State.gui_Callback = str2func(varargin{1});endif nargout[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});elsegui_mainfcn(gui_State, varargin{:});end% End initialization code - DO NOT EDIT% --- Executes just before sztxfx_mssb_zsy is made visible.function sztxfx_mssb_zsy_OpeningFcn(hObject, eventdata, handles, varargin) % Choose default command line output for sztxfx_mssb_zsyhandles.output = hObject;% Update handles structureguidata(hObject, handles);% --- Outputs from this function are returned to the command line.function varargout = sztxfx_mssb_zsy_OutputFcn(hObject, eventdata, handles) varargout{1} = handles.output;% --- Executes during object creation, after setting all properties.function axes1_CreateFcn(hObject, eventdata, handles)set(hObject,'xTick',[]);set(hObject,'ytick',[]);set(hObject,'box','on');% Hint: place code in OpeningFcn to populate axes1% --- Executes during object creation, after setting all properties.function axes2_CreateFcn(hObject, eventdata, handles)set(hObject,'xTick',[]);set(hObject,'ytick',[]);set(hObject,'box','on');% Hint: place code in OpeningFcn to populate axes2% --- Executes on button press in togglebutton1.function togglebutton1_Callback(hObject, eventdata, handles)global imgage% global info[filename,pathname]=uigetfile({'*.bmp';'*.tif';'*.jpg';'*.gif';'*.*'},'选择图片'); if pathname == 0return;endstr=[pathname filename];% info=imfinfo(str);imgage=imread(str);axes(handles.axes1);imshow(imgage);% Hint: get(hObject,'Value') returns toggle state of togglebutton1% --- Executes on selection change in popupmenu1.function popupmenu1_Callback(hObject, eventdata, handles)global valuevalue = get(hObject,'Value');switch valuecase 1cla;end% --- Executes during object creation, after setting all properties.function popupmenu1_CreateFcn(hObject, eventdata, handles)if ispc && isequal(get(hObject,'BackgroundColor'),get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');end% --- Executes on button press in togglebutton2.function togglebutton2_Callback(hObject, eventdata, handles) global imgageglobal value[m n]=size(imgage);axes(handles.axes2);switch valuecase 1cla;case 2h = waitbar(0.1,'正在处理,请稍候...');IMG=jiaozheng(imgage);% waitbar(1,h,'ok!');pause(0.6);% delete(h);imshow(IMG);case 3h = waitbar(0.1,'正在处理,请稍候...');isodata=isodata_zsy(imgage);waitbar(1,h,'ok!');pause(0.6);delete(h);imshow(isodata);%figure ,imshow(B);title('hough变换后的图像');%xlabel('\theta'), ylabel('\rho');%axis on, axis normal, hold on;endclear;% Hint: get(hObject,'Value') returns toggle state of togglebutton2 % --- Executes on button press in togglebutton3.function togglebutton3_Callback(hObject, eventdata, handles) clc;clear;close(gcbf);% Hint: get(hObject,'Value') returns toggle state of togglebutton3。