基于51单片机的温度控制系统设计说明
基于单片机的智能温度控制系统设计
毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
基于单片机的温度控制系统论文.
基于单片机的温度控制系统设计基于单片机的温度控制系统设计摘要:现今,单片机在检测和控制系统中得到了广泛的应用。
与此同时,温度是一个系统经常需要测量、控制和保持的量,而温度是一个模拟量,不能直接与单片机交换信息,因此需要采用适当的技术将模拟的温度量转化为数字量,在原理上虽然不困难但成本却较高,还会遇到其它方面的问题。
因此对单片机温度控制系统的研究有重要目的和意义。
The design of the temperature control system based on singlechip Abstract: Nowadays,the singlechip has a extensive application in the detect and control system.Meanwhile,the temperature is a variable parameter which need to test ,control and maintain in the system,however,the temperature is a analog quantity so that we cannot exchange message with the singlechip directly.In case that we should take appropriate technology to turn the temperature of the analog into the digital quantity. Even though the theory is not difficuilt ,the cost is sharply high.what is more,we would encounter others problems,too.Therefore,the research of the temperature control system based on singlechip is of high significance.一、系统参数要求:1.1温度参数:要求温度控制为(学号+50)℃,在本方案中标准温度为63℃;1.2外设口地址:以(学号+30)H为起始地址,本方案中以63H为起始地址,同时每增加一个外设,口地址+1。
单片机恒温箱温度控制系统的设计说明
课程设计课题:单片机培养箱温控系统设计本课程设计要求:温度控制系统基于单片机,实现对温度的实时监控,实现控制的智能化。
设计了培养箱温度控制系统,配备温度传感器,采用DS18B20数字温度传感器,无需数模/数转换,可直接与单片机进行数字传输,采用PID控制技术,可保持温度在要求的恒定范围内,配备键盘输入设定温度;配备数码管L ED显示温度。
技术参数及设计任务:1、使用单片机AT89C2051控制温度,使培养箱保持最高温度110 ℃ 。
2、培养箱温度可预设,干燥过程恒温控制,控温误差小于± 2℃.3、预设时显示设定温度,恒温时显示实时温度。
采用PID控制算法,显示精确到0.1℃ 。
4、当温度超过预设温度±5℃时,会发出声音报警。
和冷却过程没有线性要求。
6、温度检测部分采用DS18B20数字温度传感器,无需数模/数转换,可直接与单片机进行数传7 、人机对话部分由键盘、显示器、报警三部分组成,实现温度显示和报警。
本课程设计系统概述一、系统原理选用AT89C2051单片机作为中央处理器,通过温度传感器DS18B20采集培养箱的温度,并将采集的信号传送给单片机。
驱动培养箱的加热或冷却。
2、系统整体结构总体设计应综合考虑系统的总体目标,进行初步的硬件选型,然后确定系统的草案,同时考虑软硬件实现的可行性。
经过反复推敲,总体方案确定以爱特梅尔公司推出的51系列单片机为温度智能控制系统核心,选用低功耗、低成本的存储器、数显等元器件。
总体规划如下:图1 系统总体框图2、硬件单元设计一、单片机最小系统电路Atmel公司的AT2051作为89C单片机,完全可以满足本系统所需的采集、控制和数据处理的需要。
单片机的选择在整个系统设计中非常重要。
该单片机具有与MCS-51系列单片机兼容性高、功耗低、可在接近零频率下工作等诸多优点。
广泛应用于各种计算机系统、工业控制、消费类产品中。
AT 89C2051 是 AT89 系列微控制器中的精简产品。
基于单片机的温室大棚温度控制系统设计_毕业论文剖析
ORG 00H
JMP START
ORG 0BH
JMP TIM0
START: MOV TMOD,#01H
MOV TH0,#60
MOV TL0,#76
SETB TR0
MOV IE,#82H
MOV R4,#09H
MOV R0,#30H
CLEAR: MOV @R0,#00H
DJNZ R4,CLEAR
JMP WAIT
ADC: MOVX A,@R0
MOV 37H,A
CLR C
SUBB A,36H
JC TDOWN
TUP: MOV A,37H
CLR C
SUBB A,34H
JNC POFF
JMP LOOP
PON: CLR P2.1
JMP START0
POFF: SETB P2.1
JMP LOOP
TDOWN: MOV A,37H
图4 ADC0804
如图4,A/D转换器就是模拟/数字转换器,是将输入的模拟信号转换成数字信号。信号输入端的信号可以是传感器或是转换器的输出,而ADC输出的数字信号可以提供给微处理器,以便更广泛地应用。
ADC0804电压输入与数字输出关系如下表2所示:
十六进制
二进制码二
与满刻度的比率
相对电压值VREF=2.56伏
A
1010
10/16
10/256
3.200
0.200
9
1001
9/16
9/256
2.880
0.180
8
1000
8/16
8/256
2.560
0.160
7
0111
7/16
基于51单片机和CC1101的无线温度监控系统设计
基于51单片机和CC1101无线温度监控系统设计前言目前,科学技术的发展日新月异,单片机等大规模集成电路的进步与发展,温度监控技术的应用越来越广泛。
在传统微机化的温度监控系统中,均是以有线方式来实现温度监控。
传统的温度监控系统,其突出的问题是由于有线通信,线缆传输连线麻烦,需要特制接口,颇为不便,且实用性不强,成本高,造成系统的普及性降低,同时也带来了制作繁琐,外围电路复杂的缺点。
近年来,随着各种单片机及无线收发芯片的出现与推广,使得基于CC1101的无线温度监控系统的实现成为可能。
温度是工业、农业生产中常见的和最基本的参数之一,在生产过程中常需对温度进行检测和监控,采用微型机进行温度检测、数字显示、信息存储及实时控制,对于提高生产效率和产品质量、节约能源等都有重要的作用。
伴随工业科技、农业科技的发展,温度测量需求越来越多,也越来越重要。
但是在一些特定环境温度监测环境范围大,测点距离远,布线很不方便。
这时就要采用无线方式对温度数据进行采集。
利用无线技术实现数据传输比使用传统的有线电缆有不可比拟的优点,如可移动性、方便灵活性等多方面都更能满足人们的实际需要。
实现无线数据传输的方法多种多样,使用高频无线电技术、激光技术、红外技术等等均能满足无线传输要求。
本设计是以宏晶科技推出的STC89C52RC单片机作为控制核心,提出以DS18B20的单线分布式温度采集与控制系统,通过CC1101无线收发模块收发信息。
监控点将接收到主控点的信息后,经过一些处理,然后相应的监控点将采集并发送数据给主控点。
主控点通过串口将收到的温度信息回馈到上位机(PC机),从而远程实现对整个系统的检测与控制。
一.总体方案设计温度监控系统有着共同的特点:测量点多、环境复杂、布线分散、现场离监控室远等。
若采用一般温度传感器采集温度信号,则需要设计信号调理电路、A/D 转换及相应的接口电路,才能把传感器输出的模拟信号转换成数字信号送到计算机去处理。
基于at89c51单片机生物培养液温度控制系统设计_毕业论文
1绪论1.1背景在现代化的到来世界,生物培养液的利用大大提高了生物的繁殖与生长,但其温度的控制至关重要,为此我们需要掌握其信息,同时信息需要温度传感器将信息传递出来。
作为获取信息的手段——传感器技术得到了显著的进步,其应用领域越来越广泛,对其要求越来越高,需求越来越迫切。
传感器技术已成为衡量一个国家科学技术发展水平的重要标志之一。
因此,了解并掌握各类传感器的基本结构、工作原理及特性是非常重要的。
由于传感器能将各种物理量、化学量和生物量等信号转变为电信号,使得人们可以利用计算机实现自动测量、信息处理和自动控制,但是它们都不同程度地存在温漂和非线性等影响因素。
传感器主要用于测量和控制系统,它的性能好坏直接影响系统的性能。
因此,不仅必须掌握各类传感器的结构、原理及其性能指标,还必须懂得传感器经过适当的接口电路调整才能满足信号的处理、显示和控制的要求,而且只有通过对传感器应用实例的原理和智能传感器实例的分析了解,才能将传感器和信息通信和信息处理结合起来,适应传感器的生产、研制、开发和应用。
另一方面,传感器的被测信号来自于各个应用领域,每个领域都为了改革生产力、提高工效和时效,各自都在开发研制适合应用的传感器,于是种类繁多的新型传感器及传感器系统不断涌现。
温度传感器是其中重要的一类传感器。
其发展速度之快,以及其应用之广,并且还有很大潜力。
1.2控制要求生物繁殖培养液的温度要保证在适于细胞繁殖的温度内,这主要在控制程序设计中考虑。
温度控制范围为15 ~25,升温、降温阶段的温度控制精度要求为0.5度,保温阶段温度控制精度为 0.5度。
正常情况下,系统投入自动。
模拟手动操作当系统发生异常,投入手动操作,并用LED显示。
1.3方案论证方案一:采用纯硬件的闭环控制系统。
该系统的优点在于速度较快,但可靠性比较差控制精度比较低、灵活性小、线路复杂、调试、安装都不方便。
且要实现题目所有的要求难度较大。
方案二:FPGA/CPLD或采用带有IP内核的FPGA/CPLD方式。
基于51单片机的温度检测系统_单片机C语言课题设计报告
单片机C语言课题设计报告设计题目:温度检测电气系2011级通信技术一班级通信技术一班通才达识,信手拈来通才达识,信手拈来1摘要本课题以51单片机为核心实现智能化温度测量。
利用18B20温度传感器获取温度信号,将需要测量的温度信号自动转化为数字信号,利用单总线和单片机交换数据,最终单片机将信号转换成LCD 可以识别的信息显示输出。
基于STC90C516RD+STC90C516RD+的单片机的智能温度检测系统,的单片机的智能温度检测系统,设计采用18B20温度传感器,其分辨率可编程设计。
本课题设计应用于温度变化缓慢的空间,综合考虑,以降低灵敏度来提高显示精度。
设计使用12位分辨率,因其最高4位代表温度极性,故实际使用为11位半,位半,而温度测量范围为而温度测量范围为而温度测量范围为-55-55-55℃~℃~℃~+125+125+125℃,℃,则其分辨力为0.06250.0625℃。
℃。
设计使用LCD1602显示器,可显示16*2个英文字符,显示器显示实时温度和过温警告信息,和过温警告信息,传感器异常信息设。
传感器异常信息设。
传感器异常信息设。
计使用蜂鸣器做警报发生器,计使用蜂鸣器做警报发生器,计使用蜂鸣器做警报发生器,当温度超过当温度超过设定值时播放《卡农》,当传感器异常时播放嘟嘟音。
单片机C 语言课题设计报告语言课题设计报告电动世界,气定乾坤2目录一、设计功能一、设计功能................................. ................................. 3 二、系统设计二、系统设计................................. .................................3 三、器件选择三、器件选择................................. .................................3 3.1温度信号采集模块 (3)3.1.1 DS18B20 3.1.1 DS18B20 数字式温度传感器数字式温度传感器..................... 4 3.1.2 DS18B20特性 .................................. 4 3.1.3 DS18B20结构 .................................. 5 3.1.4 DS18B20测温原理 .............................. 6 3.1.5 DS18B20的读写功能 ............................ 6 3.2 3.2 液晶显示器液晶显示器1602LCD................................. 9 3.2.1引脚功能说明 ................................. 10 3.2.2 1602LCD 的指令说明及时序 ..................... 10 3.2.3 1602LCD 的一般初始化过程 (10)四、软件设计四、软件设计................................ ................................11 4.1 1602LCD 程序设计流程图 ........................... 11 4.2 DS18B20程序设计流程图 ............................ 12 4.3 4.3 主程序设计流程图主程序设计流程图................................. 13 五、设计总结五、设计总结................................. ................................. 2 六、参考文献六、参考文献................................. ................................. 2 七、硬件原理图及仿真七、硬件原理图及仿真......................... .........................3 7.1系统硬件原理图 ..................................... 3 7.2开机滚动显示界面 ................................... 4 7.3临界温度设置界面 ................................... 4 7.4传感器异常警告界面 (4)电气系2011级通信技术一班级通信技术一班通才达识,信手拈来通才达识,信手拈来3温度温度DS18B20 LCD 显示显示过温函数功能模块能模块传感器异常函数功能模块数功能模块D0D1D2D3D4D5D6D7XT XTAL2AL218XT XTAL1AL119ALE 30EA31PSEN29RST 9P0.0/AD039P0.1/AD138P0.2/AD237P0.3/AD336P0.4/AD435P0.5/AD534P0.6/AD633P0.7/AD732P2.7/A1528P2.0/A821P2.1/A922P2.2/A1023P2.3/A1124P2.4/A1225P2.5/A1326P2.6/A1427P1.01P1.12P1.23P1.34P1.45P1.56P1.67P1.78P3.0/RXD 10P3.1/TXD11P3.2/INT012P3.3/INT113P3.4/T014P3.7/RD17P3.6/WR 16P3.5/T115U180C51X1CRYST CRYSTAL ALC122pFC222pFGNDR110kC31uFVCCGND234567891RP1RESPACK-8VCC0.0DQ 2VCC 3GND 1U2DS18B20R24.7K LCD1LM016LLS2SOUNDERMUC八、程序清单八、程序清单................................. .................................5 一、设计功能·由单片机、温度传感器以及液晶显示器等构成高精度温度监测系统。
基于51单片机的温度报警控制系统报告
报告评分批改老师《现代电子综合实验》课程设计报告基于单片机的温度检测控制系统设计学生姓名 学 号专 业 班 级同组学生 提交日期 年 月 日指导教师目录2一、实验目的 .....................................................................................2二、实验要求 .....................................................................................2三、实验开发环境及工具 ...........................................................................2四、按键扫描和液晶显示功能实现 ...................................................................24.1矩阵键盘电路 ...............................................................................4.1.1矩阵键盘电路简介 .....................................................................224.1.2矩阵式按键扫描原理 ...................................................................24.1.3 按键扫描子程序设计思想及流程图 ......................................................34.2 LCD1602显示电路 ..........................................................................34.2.1 LCD1602模块简介 ....................................................................34.2.2 LCD1602模块引脚说明 .................................................................4.2.3 LCD1602控制方式及指令 ..............................................................344.2.4 LCD1602液晶显示子程序设计思想及流程图 ..............................................5五、基于单片机的温度检测控制系统设计过程 .........................................................55.1 系统整体电路框图及功能说明 ................................................................55.2 DS18B20数字温度传感器电路 ..............................................................55.2.1 单总线通信方式简介 ..................................................................65.2.2 DS18B20简介 ......................................................................5.2.3 DS18B20读写操作 ..................................................................665.3 声光报警及控制电路 ........................................................................75.4 软件设计 ..................................................................................5.4.1 主程序设计流程图 ....................................................................775.4.2 DS18B20子程序设计思想及流程图 ...................................................85.4.3 声光报警子程序设计思想及流程图 .....................................................9七、 实验过程及实验结果 ...........................................................................9八、实验中遇到的问题及解决方法 ...................................................................10附件 ............................................................................................一、实验目的(1). 掌握单片机应用系统的设计方法与步骤;(2).掌握硬件电路各功能模块的工作原理、应用电路与编程方法;(3).熟练掌握单总线的应用及编程;(4). 掌握基于单片机的温度检测控制系统的设计与实现。
毕业设计15基于AT89C2051单片机的温度控制系统的设计正文
第一章绪论温度控制,在工业自动化控制中占有非常重要的地位。
单片机系统的开发应用给现代工业测控领域带来了一次新的技术革命,自动化、智能化均离不开单片机的应用。
将单片机控制方法运用到温度控制系统中,可以克服温度控制系统中存在的严重滞后现象,同时在提高采样频率的基础上可以很大程度的提高控制效果和控制精度。
现代自动控制越来越朝着智能化发展,在很多自动控制系统中都用到了工控机,小型机、甚至是巨型机处理机等,当然这些处理机有一个很大的特点,那就是很高的运行速度,很大的内存,大量的数据存储器。
但随之而来的是巨额的成本。
在很多的小型系统中,处理机的成本占系统成本的比例高达20%,而对于这些小型的系统来说,配置一个如此高速的处理机没有任何必要,因为这些小系统追求经济效益,而不是最在乎系统的快速性,所以用成本低廉的单片机控制小型的,而又不是很复杂,不需要大量复杂运算的系统中是非常适合的。
温度控制,在工业自动化控制中占有非常重要的地位,如在钢铁冶炼过程中要对出炉的钢铁进行热处理,才能达到性能指标,塑料的定型过程中也要保持一定的温度。
随着科学技术的迅猛发展,各个领域对自动控制系统控制精度、响应速度、系统稳定性与自适应能力的要求越来越高,被控对象或过程的非线性、时变性、多参数点的强烈耦合、较大的随机扰动、各种不确定性以及现场测试手段不完善等,使难以按数学方法建立被控对象的精确模型的情况。
随着电子技术以及应用需求的发展,单片机技术得到了迅速的发展,在高集成度,高速度,低功耗以及高性能方面取得了很大的进展。
伴随着科学技术的发展,电子技术有了更高的飞跃,我们现在完全可以运用单片机和电子温度传感器对某处进行温度检测,而且我们可以很容易地做到多点的温度检测,如果对此原理图稍加改进,我们还可以进行不同地点的实时温度检测和控制。
1.1 设计指标设计一个温度控制系统具体化技术指标如下。
1. 被控对象可以是电炉或燃烧炉,温度控制在0~100℃,误差为±0.5℃;2. 恒温控制;3. LED实时显示系统温度,用键盘输入温度;1.2 本文的工作详细分析课题任务,设计了电源电路,键盘电路,单片机系统,显示电路,执行器电路,报警电路,复位电路,时钟电路,A/D转换电路等系统。
基于单片机的温度控制系统设计
基于51单片机的水温自动控制系统沈统摘要:在现代化的工业生产中,温度是常用的测量机被控参数。
本水温控制系统采用AT89C51为核心控制器件,实现对水温在30℃到96℃的自动控制。
由精密摄氏温度传感器LM35D构成前置信号采集和调理电路,过零检测双向可控硅输出光电耦合器MOC3041构成后向控制电路,由74LS164和LED数码管构成两位静态显示用于显示实时温度值。
关键词:89C51单片机;LM35D温度传感器;ADC0809;MOC3041光电藕耦合器;水温自动控制0 引言在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。
而智能化的控制系统成为一种发展的趋势。
本文所阐述的就是一种基于89C51单片机的温度控制系统。
本温控系统可应用于温度范围30℃到96℃。
1 设计任务、要求和技术指标1.1任务设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。
1.2要求(1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。
(2)当液位低于某一值时,停止加热。
(3)用AD转换器把采集到的模拟温度值送入单片机。
(4)无竞争-冒险,无抖动。
1.3技术指标(1)温度显示误差不超过1℃。
(2)温度显示范围为0℃—99℃。
(3)程序部分用PID算法实现温度自动控制。
(4)检测信号为电压信号。
2 方案分析与论证2.1主控系统分析与论证根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。
AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。
其引脚图如图1所示。
2.2显示系统分析与论证显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。
在显示驱动电路中拟订了两种设计方案:方案一:采用静态显示的方案采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。
基于51单片机和DS18B20的数字温度计设计说明
基于51单片机和DS18B20的数字温度计设计说明
1.硬件设计:
-51单片机:选择合适的型号,如STC89C52或AT89C52等。
-DS18B20温度传感器:该传感器是一种数字温度传感器,具有单总线接口和高精度测量能力。
-接口电路:将51单片机和DS18B20传感器连接起来,要注意电平转换和信号线的阻抗匹配。
2.软件设计:
-初始化:在主函数中,首先对单片机进行初始化设置,包括时钟设置、串口配置等。
-DS18B20通信协议:使用单总线协议与DS18B20传感器进行通信,包括发送复位信号、读写数据等操作。
-温度测量:通过向DS18B20发送读取温度的命令,从传感器中读取温度值并保存。
-数据传输:将温度值转换为可显示的格式,如摄氏度或华氏度,并通过串口输出或LED显示。
3.程序流程:
-初始化单片机,设置时钟和串口参数。
-进入主循环,循环执行以下操作:
-发送复位信号,启动温度转换。
-等待转换完成,发送读取温度命令。
-读取温度值,并进行数据处理转换。
-输出温度值。
4.其他功能:
-可以添加LCD显示模块,将温度值显示在液晶屏上。
-可以添加按键输入模块,通过按键切换温度单位或进行其他操作。
需要注意的是,该设计只是一个简单的示例,实际应用中可能需要根据具体需求进行扩展和修改。
同时,在程序设计过程中,也要注意低功耗和数据稳定性等方面的考虑。
单片机基于51单片机的温度传感器设计ppt课件
引脚介绍
P3口:P3口是一组带有内部上拉电阻的8位双向I/O口。P3 口输出缓冲级可驱动(输入或输出)4个TTL逻辑门电路。 对P3口写入“1”时,他们被内部上拉电阻拉高并可作为输 入口。此时,被外部拉低的P3口将用上拉电阻输出电流。
RST:复位输入。当振荡器工作时,RST引脚出现两个机器 周期以上高电平将使单片机复位。
温度传感器AD590
1脚接VCC 2脚接电流输出端 3脚一般不用
AD590温度与电流关系
AD590模块
电阻选用9.6K 滑动变阻器 选用1K 通过微调使 得总电阻精确 到10K
AD590模块
选用运放741做电压跟随器,提高输入阻抗。 仿真时,用滑动变阻器改变电压,模拟实际中的温度变化。
放大电路
XTAL1:振荡器反相放大器及内部时钟发生器的输入端。 XTAL2 :振荡器反相放大器的输出端。
数码管显示模块
开始
初始化
P2.0=1
读P0口
P2.1=1
读P0口
P2.2=1
读P0口 结束
P2.3=1 读P0口
数码管显示流程图
数码管动态显示代码部分
/*****************************************
优点: 便于迅速进行大范围的调节
缺点: 增大调节到某一精确值的难度
温度超限报警
2024/2/12
具体思路
1 用LED灯和蜂鸣器共同实现报警功能 2 用软件程序实现单片机输出控制信号 3 搭建外围电路,实现信号对报警器的控制
硬件连接图
2024/2/12
程序代码
2024/2/12
if(temp>highlimt||temp<lowlimt)
毕业论文-基于51单片机的温湿度检测控制系统
毕业论文-基于51单片机的温湿度检测控制系统摘要本次设计是采用MSC-51系列单片机中的AT89S51和DHT11构成的低成本的温湿度的检测控制系统。
单片机AT89S51是一款低消耗、高性能的CMOS8位单片机,由于它强大的功能和低价位,因此在很多领域都是用它。
DHT11温湿度传感器是一款含有已校准数字输出的温湿度复合传感器,传感器包括一个电阻式感湿原件和一个NTC测温元件,该产品具有品质卓越、超快响应、抗干扰能力强、性价比极高等优点。
设计主要包括硬件电路的设计和系统软件的设计。
硬件电路主要包括单片机、温湿度传感器、显示模块、报警器以及控制设备等5部分。
其中由DHT11温湿度传感器及1602字符型液晶模块构成系统显示模块;测温湿度控制电路由温湿度传感器和预设温度值比较报警电路组成;用户根据需要预先输入预设值,当实际测量的温湿度不符合预设的温湿度标准时,发出报警信号(蜂鸣器蜂鸣),启动相应控制。
软件部分包括了主程序、显示子程序、测温湿度子程序。
关键词:AT89S51;DHT11;温湿度传感器AbstractMicrocontroller AT89S51 is a low consumption, high performance CMOS8 bit microcontroller.Because of its powerful features and low price, so it is used in many areas.DHT11 temperature and humidity sensor is a temperature and humidity combined sensor contains a calibrated digital output, the sensor consists of a resistor in the original sense of wet and a NTC temperature measurement devices.The product has many advantage,such as excellent quality, fast response, strong anti-jamming capability . This design is fromed by the AT89S51 in MSC-51 Series and DHT11 constitute which is a low-cost temperature and humidity measurement and control system. The design includes the design of hardware circuit design and system software.The hardware has Five modules.They are a microcontroller, temperature and humidity sensors, display module, alarm and control equipment. The 1602-character LCD module constitute the system display module.The temperature and humidity control circuit by the temperature and humidity sensors and preset temperature alarm circuit.According to the need of pre-enter the default value, when the actual measurement of the temperature humidity does not conform the preset temperature and humidity standards, send the alarm signal (buzzer will beep), and start the corresponding control.The software part includes the main program, the display routines, temperature and humidity subroutine.Key words:Temperature and humidity measurement;Temperature and humidity control;AT89S51 ;DHT11前言1.1本文研究的背景及意义粮库已经被广泛的运用,是存储粮食的一个重要方式。
基于51单片机数字体温计设计
基于STC89C52最小系统的数字体温计设计摘要现代信息技术的三大基础是信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)。
传感器属于信息技术的前沿尖端产品,尤其是温度传感器种类日益繁多,数字温度传感器更因适用于各种微处理器接口组成的自动温度控制系统具有可以克服模拟传感器与微处理器接口时需要信号调理电路和A/D转换器的弊端等优点,被广泛应用于工业控制、电子体温计、测温仪器等各种温度控制系统中。
智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。
它是微电子技术、计算机技术和自动测试技术(ATE)的结晶。
它们内部都包含温度传感器、A/D转换器、信号处理器、存储器(或寄存器)和接口电路。
有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。
智能温度传感器的特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU);并且它是在硬件的基础上通过软件来实现测试功能的,其智能化程度也取决于软件的开发水平。
对某些智能温度传感器而言,单片机还可通过相应的寄存器来设定其A/D转换速率(典型产品为MAX6654),分辨力及最大转换时间(典型产品为DS1624)。
随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,采用单片机控制已经成为了一种潮流。
本文将介绍一种基于STC89C52单片机控制的数字体温计,配合采用DS18B20为温度采集模块,HS1602液晶显示模块显示结果,另外用MAX232模块进行电压转换进行程序的烧写,实现对体温的采集与再现。
关键词:52单片机,DSI8B20,HS1602,体温计THE DIGITAL THERMOMETERS DESIGN BASED ON ST C89C52’S MINUIMUM SYSTEMABSTRACTModern information technology is based on the three information collection (ie, sensor technology), information transfer (ICT) and information processing (computer technology). Sensor belongs to the forefront of cutting-edge information technology products, especially the increasingly diverse types of temperature sensors, digital temperature sensor is more suitable for a variety of microprocessor interface for the composition of the automatic temperature control system can overcome the analog sensors and signal conditioning required for microprocessor interfacing circuit and A / D converter defects, etc., are widely used in industrial control, electronic thermometer, thermometer, etc. of various temperature control systems. Smart temperature sensor (also known as digital temperature sensor) in the mid-1990s, came out. It is the micro-electronics technology, computer technology and automated testing techniques (ATE) of the crystal. They contain the internal temperature sensor, A / D converter, signal processor, memory (or registers) and the interface circuit. Some products are also with the multiplexer, the central controller (CPU), random access memory (RAM) and read-only memory (ROM). Smart temperature sensor is characterized by the temperature data can be exported and the related amount of temperature control, fit a variety of microcontrollers (MCU); and it is based on the hardware to achieve through software testing capabilities, and its degree depends on intelligent in the software development level. Some smart temperature sensor, the controller can also register through the appropriate set of its A / D conversion rate (typical products MAX6654), the maximum resolution and conversion time (typical product DS1624). With the progress and development, microcontroller technology has spread to our lives, work, research in various fields, has become a relatively mature technology, using SCM hasbecome a trend. This article describes a microcontroller based control of digital thermometers STC89C52, with the use of DS18B20 the temperature acquisition module, HS1602 liquid crystal display module displays the results, another module with a MAX232 voltage conversion, to achieve the temperature of the acquisition and reproduction.Keywords: 52 microcontroller; DSI8B20; HS1602; thermometer目录1引言-------------------------------------------------------------- 1 2总体设计方案------------------------------------------------------ 32.1方案论证----------------------------------------------------- 32.1.1单片机系统--------------------------------------------- 32.1.2电源模块----------------------------------------------- 32.1.3温度传感器--------------------------------------------- 32.1.4显示模块----------------------------------------------- 42.1.5确定方案----------------------------------------------- 42.2总体设计----------------------------------------------------- 43 硬件设计---------------------------------------------------------- 53.1 单片机系统-------------------------------------------------- 53.1.1单片机最小系统----------------------------------------- 73.1.2 复位电路----------------------------------------------- 83.1.3 时钟振荡电路------------------------------------------- 83.1.4电源模块----------------------------------------------- 9 3.2温度传感器模块-------------------------------------------------- 93.2.1 DS18B20原理------------------------------------------- 93.2.2 DS18B20电路连接-------------------------------------- 133.3 液晶显示模块----------------------------------------------- 133.4串口通信模块------------------------------------------------ 15 4软件设计--------------------------------------------------------- 174.1 软件流程--------------------------------------------------- 174.2 DS18B20模块程序设计--------------------------------------- 184.2.1 程序流程------------------------------- 错误!未定义书签。
(完整)基于单片机的温湿度控制系统
\基于单片机的温湿度控制系统一、研究背景温度、湿度和人类的生产、生活有着密切的关系,同时也是工业生产中最常见最基本的工艺参数,例如机械、电子、石油、化工等各类工业中广泛需要对温度湿度的检测与控制。
并且随着人们生活水平的提高,人们对自己的生存环境越来越关注.而空气中温湿度的变化与人体的舒适度和情绪都有直接的影响,所以对温度湿度的检测及控制就非常有必要了.随着科技的飞速发展和普及,高性能设备越来越多,各行各业对温湿度的要求也越来越高。
传统的温湿度检测模式是以人为基础,依靠人工轮流值班,人工巡回查看等方式来测量和记录环境状况信息。
在这种模式下,不仅效率低不利于人才资源的充分利用,而且缺乏科学性,许多重大事故都是由人为因素造成的,人工维护缺乏完整的管理系统。
而问世监控系统就可以解决这样人才资源浪费,管理不及时的问题,这是由于它的智能化设计所决定的。
故本次设计对于类似项目还具有普遍意义。
二、国内外研究现状(1)温度传感器智能温度传感器(亦称数字温度传感器)在20世纪90年代中期问世。
它是微电子技术、计算机技术和自动测试技术(ATE_)的结晶。
目前,国际上已开发出多种智能温度传感器系列产品.智能温度传感器内部包含温度传感器、A/D转换器、信号处理器、存储器(或寄存器)和接口电路。
有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。
智能温度传感器能输出温度数据及相关的温度控制量,适配各种微控制器(MCU),并且可通过软件来实现测试功能,温度计也越来越智能化。
(2)湿度传感器湿度传感器产品及湿度测量属于90年代兴起的行业.湿度传感器主要分为电阻式和电容式两种,产品的基本形式都是在基片上涂覆感湿材料形成感湿膜。
空气中的水蒸汽吸附在感湿材料上后,元件的阻抗、介质常数发生很大的变化,从而制成湿敏元件。
近年来,国内外在湿度传感器研发领域取得了较大的发展。
湿敏传感器正从简单的湿敏元件向集成化、智能化、多参数检测的方向迅速发展。
基于单片机的温度控制系统设计
基于单片机的温度控制系统设计温度控制系统是现代生活中不可或缺的一部分,常见于家庭的的空调、电饭煲、烤箱等家用电器,以及工业生产中的各种自动化设备。
本文基于单片机设计针对室内温度控制系统的实现方法进行说明,包括温度采集、温度控制器的实现和人机交互等方面。
一、温度采集温度采集是温度控制系统的核心部分。
目前比较常见的温度采集器主要有热电偶、热敏电阻和半导体温度传感器。
在本文中我们以半导体温度传感器为例进行说明。
常见的半导体温度传感器有DS18B20、LM35等,本次实验中采用DS18B20进行温度采集。
DS18B20是一种数字温度传感器,可以直接与单片机通信,通常使用仅三根导线连接。
其中VCC为控制器的电源正极,GND为电源负极,DATA为数据传输引脚。
DS18B20通过快速菲涅耳射线(FSR)读取芯片内部的温度数据并将其转换为数字信号。
传感器能够感知的温度范围通常为-55℃至125℃,精度通常为±0.5℃。
为了方便使用,DS18B20可以通过单片机内部的1-Wire总线进行控制和数据传输。
具体实现方法如下:1.首先需要引入相关库文件,如:#include <OneWire.h> //引用1-Wire库#include <DallasTemperature.h> //引用温度传感器库2.创建实例对象,其中参数10代表连接传感器的数字I/O引脚:OneWire oneWire(10); //实例化一个1-Wire示例DallasTemperature sensors(&oneWire); //实例化一个显示温度传感器示例3.在setup中初始化模块:sensors.begin(); // 初始化DS18B204.在主循环中,读取传感器数据并将温度值输出到串口监视器:sensors.requestTemperatures(); //请求温度值float tempC = sensors.getTempCByIndex(0); // 读取温度值Serial.println(tempC); //输出温度值二、温度控制器的实现温度控制器是本次实验的关键部件,主要实现对温度的控制和调节,其基本原理是根据温度变化情况来控制输出电压或模拟脚电平,驱动继电器控制电器设备工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于51单片机的水温自动控制系统0 引言在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。
而智能化的控制系统成为一种发展的趋势。
本文所阐述的就是一种基于89C51单片机的温度控制系统。
本温控系统可应用于温度围30℃到96℃。
1 设计任务、要求和技术指标1.1任务设计并制作一水温自动控制系统,可以在一定围(30℃到96℃)自动调节温度,使水温保持在一定的围(30℃到96℃)。
1.2要求(1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。
(2)当液位低于某一值时,停止加热。
(3)用AD转换器把采集到的模拟温度值送入单片机。
(4)无竞争-冒险,无抖动。
1.3技术指标(1)温度显示误差不超过1℃。
(2)温度显示围为0℃—99℃。
(3)程序部分用PID算法实现温度自动控制。
(4)检测信号为电压信号。
2 方案分析与论证2.1主控系统分析与论证根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。
AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。
其引脚图如图1所示。
2.2显示系统分析与论证显示模块主要用于显示时间,由于显示围为0~99℃,因此可采用两个共阴的数码管作为显示元件。
在显示驱动电路中拟订了两种设计方案:方案一:采用静态显示的方案采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的容无闪烁,但电路消耗的电流较大。
方案二:采用动态显示的方案由单片机的I/O口直接带数码管实现动态显示,占用资源少,动态控制节省了驱动芯片的成本,节省了电 ,但编程比较复杂,亮度不如静态的好。
由于对电路的功耗要求不大,因此就在尽量节省I/O口线的前提下选用方案一的静态显示。
图1 AT89C51引脚图2.3 检测系统分析与论证1 温度检测:有选用AD590和LM35D两种温度传感器的方案,但考虑到两者价格差距较大,而本系统中对温度要求的精度不很高,因而选用比较廉价LM35D。
温度传感器采用的是NS公司生产的LM35D,他具有很高的工作精度和较宽的线性工作围,他的输出电压与摄氏温度线性成比例,且无需外部校准或微调,可以提供±1/ 4 ℃的常用的室温精度。
L M35的输出电压与摄氏温度的线形关系可用下面公式表示 ,0 ℃时输出为 0 V , 每升高 1 ℃ , 输出电压增加10 mV。
其电源供应模式有单电源与正负双电源两种,其接法如图2与图3所示。
正负双电源的供电模式可提供负温度的测量,单电源模式在25 ℃下电流约为50 mA ,非常省电。
本系统采用的是单电源模式。
Vout=10mV/℃×T(℃)2 液位检测:同样考虑到成本问题,选用自己做一个液位传感装置。
图2 单电源模式图3 双电源模式2.4控制系统分析与论证由于需要用大功率加热装置对水温进行调节,故采用带过零检测双向可控硅输出光电耦合器MOC3041构成后向控制电路。
3 系统原理框图硬件组成框图如图4所示:主要由AT89C51单片机、温度信号采集和调理、AD转换、数码显示电路、温度控制等部分组成。
图4 硬件框图电源开启后,可以显示出实时的温度,并且可以判断出此时的温度是否需要对水进行加热操作4 硬件电路4.1温度信号检测和调理电路LM35D 采用单电源供电模式如图2将采集到的电压信号送入运放uA741进行放大处理,如图5。
图5 信号采集调理电路4.2 显示电路显示电路由两片74LS164和两个数码管构成,为了PCB 中作图的方便,故采用如图6的连接方式。
温度采集电 路 信号调理电 路A/D 转 换电路单 片 机 系 统温度显 示 执行电 路液位检测图6 温度显示电路时钟由单片机的P1.1提供,第一个数码管的数据由单片机的P1.0提供,第二个数码管的数据由第一个164的Q7提供。
164的时序图如图7所示。
图7 74LS164的时序图4.3 温度控制电路温度控制电路由光电耦合器MOC3041和双向晶闸管BT137构成,硬件连接如图8。
图8 温度控制电路4.4 AD转换电路本部分电路由ADC0809和一些74系列芯片构成,其中74LS74用于对单片机的ALE信号进行分频作为0809的时钟,74LS373用做地址锁存实现单片机P0口的分时复用。
该部分硬件电路如图9所示。
图9 AD转换电路4.5主控系统电路该系统由AT89C51构成,由5V电源供电,采用6Mhz的晶振。
主控系统电路主要承担显示及对温度的PID控制的核心引用,各功能通过软件软件实现。
图10为单片机的主控电路。
图10 单片机主控电路4.6整体PCB图见附件A5 软件部分5.1主程序流程说明主程序的任务主要是循环检测采集到的温度值,不断比较实现PID控制。
流程图如下:图11 主程序流程图5.2各子程序模块流程5.2.1显示部分显示部分主要包括三个小模块:第一、原始数据的拆分;第二、待显示数据查表;第三、待显示数据的输出。
数据分配表如图12,送待显示数据流程如图13,查表流程如图14图13 待显示数据输出流程图14 查表程序流程5.2.2中断程序部分中断部分包括定时器中断(主要实现1秒刷新一次显示)和外部中断(检测液位。
为防止抖动,设置一个标志位,进入中断后判断标志位,如果一秒钟没有出中断,则响应,否则不响应),流程图分别如图15和图16。
图15 定时器中断流程图 图16 外中断流程图 5.3整体程序见附件C6 系统调试 6.1 软件调试调试所用软件:Keil uVision2和Proteus7。
将编写好的程序用Keil uVision2汇编编译成hex 格式的文件后导入Proteus7中的原理图(附件B )。
结果正常显示,说明程序本身没有问题。
6.2 硬件调试调试所用工具:直流稳压电源,示波器,万用表等。
6.2.1 放大电路的调试:将信号调理部分电路的输入端接地,调节电位器,使输出电压为零(用万用表毫伏档测量)。
输入一定的电压值0—1V 围,观察电路的输出电压,调节电阻值,使输出为输入的5倍。
6.2.2 显示电路的调试:先写一个简单的显示程序,烧入单片机,接好电路,观察显示是否正常。
6.2.3 AD 转换电路的调试:写一个简单的控制ADC0809的程序,用示波器观察ADC0809所接受到的信号是否正确,如时钟信号、开始信号等、给定输入端一个电压,给OE 端持续加高电平,使允许输出,用万用表或示波器测量各个输出引脚的转换情况,结果与计算值是否相符合。
6.2.4 系统的整体调试:将编写好的程序烧入单片机中,接好整体电路,观察输出结果是否正确。
调试中显示一直是99,最后去掉373和排阻,显示正常。
主要是因为加的排阻过小,只有330欧姆,而ADC0809向单片机送数据的时间有很短,所以,即使送入0也可能会被单片机认为是1,所以一直显示99。
6.2.5 系统存在的问题:由于实验调试时,只是观察led灯的亮灭变化,没有接上实际的光耦驱动大功率加热器件,而实际测试时,led灯的亮度不高说明驱动电流太小,因而在驱动光耦时还需加入74LS07以增大P1.2口的驱动电流,使之能够驱动光耦。
调试的过程中发现所购买的ADC0809的IN0输入端直接与地短接,所以,真正做成的系统用的是通道1。
又加上调试时去掉了排阻和74LS373,因而选地址时是直接把地址选择端接成了高低电平,虽然实现了功能但是与初衷不符。
参考资料:【1】谢自美电子线路综合设计华中科技大学【2】毅刚单片机原理及应用附件A:整体PCB图附件B:PROTEUS仿真图附件C:本系统所用程序:DIN BIT P1.0CLK BIT P1.1JR BIT P1.2F1 BIT 21HORG 0000HSJMP MAINORG 0003HLJMP INT00ORG 000BHLJMP INTDISPORG 0030HMAIN: SETB EASETB EX0SETB ET0MOV TMOD,#01HMOV TH0,#3CHMOV TL0,#0B0Hmov 20h,#10SETB TR0 ;中断初始化CLR F1CJ1: MOV R0,#30HLCALL D1SLCALL AD0809MOV B,ACJ2: MOV R0,#31HLCALL D1SLCALL AD0809CJNE A,B,COMPLJMP CJ2COMP: CJNE A,#30H,N30SETB CTROLJMP CJ1N30: JNC COM96 SETB JRLJMP CJ1COM96:CJNE A,#96H,N96CLR JRLJMP CJ1N96: JC COMABCLR JRLJMP CJ1COMAB:CJNE A,B,DRLJMP CJ2DR: JC DOWNRISE: SETB JRLJMP CJ1DOWN: CLR JRLJMP CJ1AD0809: ;数据采集转换MOV DPTR,#0FFF8HLOOP:MOVX @DPTR,AMOV R7,#0AHDELAY:NOPNOPNOPDJNZ R7,DELAYMOVX A,@DPTRMOV DPTR,#TBCDMOVC A,@A+DPTRMOV @R0,ARETDISP0: ;拆分MOV R1,#40HMOV A,@R0MOV B,AANL A,#0F0HSWAP AMOV @R1,Ainc R1MOV A,BANL A,#0FHMOV @R1,ARETDISP1: ;查表 MOV R0,#40HMOV R1,#50HMOV R7,#2L1:MOV DPTR,#SEGTABMOV A,@R0MOVC A,@A+DPTRMOV @R1,AINC R0INC R1DJNZ R7,L1RETDISP2: ;显示 MOV R0,#50HMOV R1,#2L2:MOV A,@R0MOV R7,#8L3:RLC AMOV DIN,CCLR CLKSETB CLKDJNZ R7,L3INC R0DJNZ R1,L2RETDISP:PUSH ACCPUSH Bmov 33h,r0LCALL DISP0LCALL DISP1LCALL DISP2mov r0,33hPOP BPOP ACCRETD100MS:MOV R3,#200DEL0: MOV R4,#125DEL1: DJNZ R4,DEL1DJNZ R3,DEL0RETD1S: MOV R5,#10DEL2: CALL D100MSDJNZ R5,DEL2RETINT00:JNB F1,LINTCLR JRSJMP RETURNLINT:SETB F1LCALL D1SRETURN:RETIINTDISP:PUSH ACCPUSH BMOV TH0,#3CHMOV TL0,#0B0Hdjnz 20h,backmov 20h,#10LCALL DISPback:POP BPOP ACCRETITBCD:DB 00H,00H,01H,01H,02H,02H,02H,03H DB 03H,04H,04H,04H,05H,05H,05H,06H DB 06H,07H,07H,07H,08H,08H,09H,09H DB 09H,10H,10H,11H,11H,11H,12H,12H DB 12H,13H,13H,14H,14H,14H,15H,15H DB 16H,16H,16H,17H,17H,18H,18H,18H DB 19H,19H,20H,20H,20H,21H,21H,21H DB 22H,22H,23H,23H,23H,24H,24H,25H DB 25H,25H,26H,26H,27H,27H,27H,28H DB 28H,28H,29H,29H,30H,30H,30H,31HDB 31H,32H,32H,32H,33H,33H,34H,34H DB 34H,35H,35H,35H,36H,36H,37H,37H DB 37H,38H,38H,39H,39H,39H,40H,40H DB 41H,41H,41H,42H,42H,43H,43H,43H DB 44H,44H,44H,45H,45H,46H,46H,46H DB 47H,47H,48H,48H,49H,49H,49H,50H DB 50H,50H,51H,51H,51H,52H,52H,53H DB 53H,53H,54H,54H,55H,55H,55H,56H DB 56H,57H,57H,57H,58H,58H,59H,59H DB 59H,60H,60H,60H,61H,61H,62H,62H DB 62H,63H,63H,64H,64H,64H,65H,65H DB 66H,66H,66H,67H,67H,67H,68H,68H DB 69H,69H,69H,70H,70H,71H,71H,71H DB 72H,72H,73H,73H,73H,74H,74H,74H DB 75H,75H,76H,76H,76H,77H,77H,78H DB 78H,78H,79H,79H,80H,80H,80H,81H DB 81H,82H,82H,82H,83H,83H,83H,84H DB 84H,85H,85H,85H,86H,86H,87H,87H DB 87H,88H,88H,89H,89H,89H,90H,90H DB 90H,91H,91H,92H,92H,92H,93H,93H DB 94H,94H,94H,95H,95H,96H,96H,96H DB 97H,97H,98H,98H,98H,99H,99H,99HSEGTAB: DB 77H,14H,0B3H,0B6H,0D4HDB 0E6H,0E7H,34H,0F7H,0F6H END。