电磁学复习题答案分析
电磁学复习题集及答案
电磁学复习题集及答案电磁学是物理学的重要分支之一,涉及电场、磁场以及它们之间的相互作用。
为了帮助大家复习电磁学知识,本文将提供一系列电磁学的复习题及答案。
希望通过这些题目的练习,能够加深对电磁学概念和原理的理解。
一、选择题1. 电场是指:A. 带电粒子所在空间B. 带电物体周围决定其它带电敏感物体运动状态的场C. 带电物体周围由于电介质作用而存在的场答案:B2. 磁感应强度的单位是:A. 特斯拉B. 高斯C. 法拉第答案:A3. 电路中最基本的电路元件是:A. 电源B. 电容器C. 电阻器答案:C4. 以下哪个物理量与电势差有关:A. 电场强度B. 电荷量C. 电容答案:A5. 以下哪个式子描述了法拉第电磁感应定律:A. U = IRB. F = maC. ε = -dφ/dt答案:C二、填空题1. 应用安培环路定理,计算通过一圈电流为2A的闭合回路的磁场的磁感应强度,如果这一圈回路的面积为0.5平方米,则磁感应强度大小为_________.答案:4特斯拉2. 自感系数也被称为________,单位是亨利。
答案:互感系数3. 电感为0.1亨的线圈通以频率为50Hz的交流电流,求其电感应电动势的峰值_________.答案:31.4伏三、解答题1. 一个长直导线中传过电流I,求与这根导线距离为r处点的磁感应强度B。
导线的长度为L。
解答:根据比奥-萨伐尔定律,磁感应强度B与电流I、距离r和导线长度L的关系为:B = (μ0 * I)/(2πr)其中,μ0 为真空中的磁导率,其数值为4π*10^(-7) 特斯拉·米/安培。
2. 有一个平行板电容器,两个平行金属板之间的空气介电常数为ε,两板间的距离为d,面积为A。
如果在这个电容器中加上电压U,求电场强度大小E以及电场能量密度u。
解答:电场强度E与电压U和板间距离d的关系为:E = U/d电场能量密度u与介质电容率ε、电场强度E的关系为:u = ε * E^2 / 2根据上述关系,将U和d代入公式可得到答案。
电磁学第二版答案解析
第一章静电场§ 1.1 静电的基本现象和基本规律思考题:1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等址异号电荷的方向。
你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。
你所用的方法是否要求两球大小相等?答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。
然后两球分开,再移去玻璃棒,两金厲球分别带等量异号电荷。
本方法不要求两球大小相等。
因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。
2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。
试解释之。
答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。
但接触棒后往往带上同种电荷而相互排斥。
3、用手握铜棒与丝绸摩擦,铜棒不能带电。
戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。
为什么两种情况有不同结果?答:人体是导体。
当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。
戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。
7、两个点电荷带电2q和q,相距1,第三个点电荷放在何处所受的合力为零?解:设所放的点电荷电量为Q。
若Q与q同号,则三者互相排斥,不可能达到平衡;故Q 只能与q异号。
当Q在2q和q联线之外的任何地方,也不可能达到平衡。
由此可知,只有Q与q异号,且处于两点荷之间的联线上,才有可能达到平衡。
设Q到q的距离为X.8、三个相同的点电荷放置在等边三角形的各顶点上。
在此三角形的中心应放置怎样的电荷,才能使作用在每一点电荷上的合力为零?解:设所放电荷为Q, Q应与顶点上电荷q异号。
中心Q所受合力总是为零,只需考虑q 受力平衡。
平衡与三角形边长无关,是不稳定平衡。
9、电量都是Q的两个点电荷相距为1,联线中点为O;有另一点电荷q,在联线的中垂面上距O为r处。
电磁学复习计算题[附的答案解析]
《电磁学》计算题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.EqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRⅠⅡ Ⅲ dba 45︒cEσAσBA BOa θ0 q AR ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λdd/2 d/226. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )1 m41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
大学物理电磁学复习题含答案
题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-= 1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的. 解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场010=E,ρ-球在O 点产生电场'dπ4π3430320OO r E ερ= ∴ O 点电场'd33030OO r E ερ= ; (2) ρ+在O '产生电场'dπ4d 3430301OO E ερπ=' ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερr E PO=,3ερr E O P '-=' ,∴ 0003'3)(3ερερερd OO r r E E E OP PO P=='-=+='∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C -1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p在外场E 中受力矩E p M⨯=∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示0π41ε=O U 0)(=-R q Rq0π41ε=O U )3(R q R q -R q0π6ε-=∴ Rqq U U qA o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d RRx x xxU ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C) 解: 设均匀带电直线电荷密度为λ,在电子轨道处场强 rE 0π2ελ=电子受力大小 re eE F e0π2ελ==∴ rv mr e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压. 解: 平行板电容器内部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E与电势U 的关系U E -∇= ,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图).解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r r q r r U E ε=∂∂-= 0r为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4x R qU +=ε∴ ()ix R qxi xUE 2/3220π4+=∂∂-=ε (3)偶极子l q p=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql llr qU εθθθε=+--=∴ 30π2cos r p r U Erεθ=∂∂-= 30π4sin 1r p U r E εθθθ=∂∂-=8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同. 证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即222204321=---εσεσεσεσ 又∵ +2σ3=σ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴ 2d d21===ACAB AB AC E E σσ 且 1σ+2σSq A =得 ,32Sq A =σ Sq A 321=σ而 7110232-⨯-=-=-=A Cq S qσCC10172-⨯-=-=S q B σ (2)301103.2d d ⨯===AC AC AC A E U εσV8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R q rr q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且π4'π4'π4'202010=+-+-=R q q R q R q U A εεε 得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R q R R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε 得 -='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力. 解: 由题意知 02π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =',小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q. ∴ 小球1、2间的作用力00294π43232F r q q F ==ε*8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+65432154326543002101σσσσσσσσσσεσσσσεσσd U S qSq d U U C S S q B A解得 Sq 261==σσSq dU2032-=-=εσσ Sq dU2054+=-=εσσ所以CB 间电场 S qd U E00422εεσ+==)2d(212d 02Sq U E U U CB C ε+===注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2U U C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强;(2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内303π4,π4r rQ E r Qr D ε ==外(2)介质外)(2R r >电势rQ E U 0rπ4r d ε=⋅=⎰∞外介质内)(21R r R <<电势2020π4)11(π4R Q R r q rεεε+-=)11(π420R r Q r r-+=εεε (3)金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=222020π44πdr R R Rr r Qdr rQ εεε)11(π4210R R Q r r-+=εεε 8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求:(1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S 则rlDSD S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑ ∴ rlQ D π2= (1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w Wεευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε(3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε==*8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41rq q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41rq q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U . 解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U86)35251(5021=+=+=U U U AB V8-32 1C 和2C 两电容器分别标明“200 pF 、500 V”和“300 pF、900 V”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿?解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求:(1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021U U U C U C q q U C U C q q q q解得 (1) =1q UC C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0。
高考物理电磁学大题练习20题Word版含答案及解析
高考物理电磁学大题练习20题Word版含答案及解析方向与图示一致。
金属棒的质量为m,棒的左端与导轨相接,右端自由。
设金属棒在磁场中的电势能为0.1)当磁场的磁感应强度为B1时,金属棒在匀强磁场区域内做匀速直线运动,求金属棒的速度和通过电阻的电流强度。
2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,求金属棒的最大速度和通过电阻的最大电流强度。
答案】(1) v=B1d/2m。
I=B1d2rR/(rL+dR) (2) vmaxBmaxd/2m。
ImaxBmaxd2rR/(rL+dR)解析】详解】(1)由洛伦兹力可知,金属棒在匀强磁场区域内受到向左的洛伦兹力,大小为F=B1IL,方向向左,又因为金属棒在匀强磁场区域内做匀速直线运动,所以受到的阻力大小为F1Fr,方向向右,所以有:B1IL=Fr解得:v=B1d/2m通过电阻的电流强度为:I=B1d2rR/(rL+dR)2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,其大小为:e=BLv所以金属棒所受的合力为:F=BLv-Fr当合力最大时,金属棒的速度最大,即:BLvmaxFr=0解得:vmaxBmaxd/2m通过电阻的电流强度为:ImaxBmaxd2rR/(rL+dR)题目一:金属棒在电动机作用下的运动一根金属棒在电动机的水平恒定牵引力作用下,从静止开始向右运动,经过一段时间后以匀速向右运动。
金属棒始终与导轨相互垂直并接触良好。
问题如下:1) 在运动开始到匀速运动之间的时间内,电阻R产生的焦耳热;2) 在匀速运动时刻,流过电阻R的电流方向、大小和电动机的输出功率。
解析:1) 运动开始到匀速运动之间的时间内,金属棒受到电动机的牵引力向右运动,电阻R中会产生电流。
根据欧姆定律和焦耳定律,可以得到电阻R产生的焦耳热为:$Q=I^2Rt$,其中I为电流强度,t为时间。
因此,我们需要求出这段时间内的电流强度。
根据电动机的牵引力和电阻R的阻值,可以得到电路中的总电动势为$E=FL$,其中F为电动机的牵引力,L为金属棒的长度。
高中物理电磁学常考题总结(带答案解析)
高中物理电磁学常考题总结(带答案解析)姓名:__________ 班级:__________考号:__________*注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx分钟收取答题卡一、综合题(共60题;共0分)1.如图所示,厚度不计的圆环套在粗细均匀、长度为0.8m的圆柱顶端。
圆环可在园柱上滑动,同时从静止释放,经0.4s圆柱与地相碰,圆柱与地相碰后速度瞬间变为0,且不会倾倒。
(1)求静止释放瞬间,圆柱下端离地的高度(2)若最终圆环离地的距离为0.6m,则圆环与圆柱间的滞动摩擦力是圆环重力的几倍?(3)若圆环速度减为0时,恰好到达地面,则从静止释放时圆环离地的高度为多少?2.如图所示,ABCD是游乐场中的滑道,它位于竖直平面内,由两个半径分别为R1=10m和R2=2m的1/4光滑田弧,以及长L=10m、动摩擦因数=0.1的水平滑连组成,所有滑道平滑连接,D点恰好在水面上。
游客(可视为质点)可由AB弧的任意位置从静止开始下滑,游客的质量为m=50kg。
(1)若到达AB弧的末端时速度为5m/s,此时游客对滑道的压力多大?(2)若要保证游客能滑入水中,开始下滑点与B点间网弧所对应的圆心角要足什么条件。
(可用三角函数表示)(3)若游客在C点脱离滑道,求其落水点到D点的距离范围。
3.如图1所示是某质谱仪的模型简化图,P点为质子源,初速度不计的质子经电压加速后从O点垂直磁场边界射入,在边界OS的上方有足够大的垂直纸面的匀强磁场区域,B=0.2T。
a、b间放有一个宽度为L ab =0.1cm的粒子接收器S,oa长度为2m。
质子的比荷,质子经电场、磁场后正好打在接收器上。
(1)磁场的方向是垂直纸面向里还是向外?(2)质子进入磁场的角度范围如图2所示,向左向右最大偏角,所有的质子要打在接收板上,求加速电压的范围(结果保留三位有效数字,取cos80=0.99, )。
(3)将质子源P换成气态的碳I2与碳14原子单体,气体在P点电离后均帯一个单位正电(初速度不计),碳12的比荷C/kg,碳14的比荷保持磁感应强度不变,从O 点入射的角度范围不变,加速电压可以在足够大的范围内改变。
电磁学课后部分习题答案解析
电磁学课后部分习题答案解析1.2.2 两个同号点电荷所带电荷量之和为Q.在两者距离一定的前提下,他们带电荷量各为多少时相互作用力最大?解答:设一个点电荷的电荷量为1q q =,另一个点电荷的电荷量为()2q Q q =-,两者距离为r,则由库仑定律求得两个电电荷之间的作用力为()204q Q q F rπε-=令力F 对电荷量q 的一阶导数为零,即()2004Q q qdF dq r πε--== 得122Qq q == 即取 122Qq q ==时力F 为极值,而222202204Q q d Fdq rπε==-<故当 122Qq q ==时,F 取最大值 1.2.6 两个电荷量相等的同性点电荷相距为2a ,在两者连线的中垂面上置一试探点电荷0q , 求0q 受力最大的点的轨迹.解答:如图(a)所示,设有两个电荷量为q 的点电荷 ,坐标分别为(-a ,0,0)和(a ,0,0),试探点电荷0q 置于二者连线的中垂面Oyz 上坐标为(0,y,z).r y j zk =+ 为原点O 至试探点电荷0q 的失径,距离为r = ,如图(b)所示.根据对称性, 所受合力的方向与失径r 平行或反平行.其大小为()003222222sin 2q q q qrF k k r a r a α==++ 求上式的级值,去F 对r 的一阶导数并令其为零,的方程 ()22230r r a -++=求得22ar =求二阶导数并带入22ar =,得()272222022120a r d Fa kqq r a rdr -==-+<说明此时F 取极大值因此,0q 受力最大的点的轨迹是在中垂面上的圆心坐标为(0,0,0)半径为2a的圆. 1.3.6 附图中均匀带电圆环的半径为R,总电荷量为q (1)求数轴线上离环心O 为x 处的场强E (2) 轴线上何处场强最大?其值是多少? (3)大致画出E-x 曲线.解答:设圆环的带电线密度为 2q Rηπ=如图(a)所示,圆环一小段dl 到轴上一点P 的距离为r ,即有dq dl η=,cos xrα=,该小段对P 点产生的场强大小为 22dqdl dE kk r r η== 根据对称性,P 点场强仅有x 分量, d E 在x 轴的分量大小为()3222cos x xdldE dE kRxηα==+()()()33322222222200224x xRxqx E dE kR RxR xR xηηπεπε====+++⎰P 点场强为()322204qx E iR xπε=+(2)应求dE dx并令其值为0,求得当22R x =,E 取极值,而2220R x d E dx =<,根据对称性,位于轴上22R x =±点的场强取最大值,其值为 2063E i Rπε=±(3)如图(b )所示。
电磁学考试题库及答案详解
电磁学考试题库及答案详解一、单项选择题1. 真空中两个点电荷之间的相互作用力遵循()。
A. 牛顿第三定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:B解析:库仑定律描述了真空中两个点电荷之间的相互作用力,其公式为F=k*q1*q2/r^2,其中F是力,k是库仑常数,q1和q2是两个电荷的量值,r是它们之间的距离。
2. 电场强度的方向是()。
A. 从正电荷指向负电荷B. 从负电荷指向正电荷C. 垂直于电荷分布D. 与电荷分布无关解析:电场强度的方向是从正电荷指向负电荷,这是电场的基本性质之一。
3. 电势能与电势的关系是()。
A. 电势能等于电势的负值B. 电势能等于电势的正值C. 电势能等于电势的两倍D. 电势能与电势无关答案:A解析:电势能U与电势V的关系是U=-qV,其中q是电荷量,V是电势。
4. 电容器的电容C与板间距离d和板面积A的关系是()。
A. C与d成正比B. C与d成反比C. C与A成正比D. C与A和d都成反比解析:电容器的电容C与板间距离d成反比,与板面积A成正比,公式为C=εA/d,其中ε是介电常数。
5. 磁场对运动电荷的作用力遵循()。
A. 洛伦兹力定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:A解析:磁场对运动电荷的作用力遵循洛伦兹力定律,其公式为F=qvBsinθ,其中F是力,q是电荷量,v是电荷的速度,B是磁场强度,θ是速度与磁场的夹角。
二、多项选择题1. 以下哪些是电磁波的特性?()A. 传播不需要介质B. 具有波粒二象性C. 传播速度等于光速D. 只能在真空中传播答案:ABC解析:电磁波的传播不需要介质,具有波粒二象性,传播速度等于光速,但它们也可以在其他介质中传播,只是速度会因为介质的折射率而改变。
2. 以下哪些是电场线的特点?()A. 电场线从正电荷出发,终止于负电荷B. 电场线不相交C. 电场线是闭合的D. 电场线的疏密表示电场强度的大小答案:ABD解析:电场线从正电荷出发,终止于负电荷,不相交,且电场线的疏密表示电场强度的大小。
电磁学复习题与答案
,U = Q 4πε 0 R
。
(
)
6、某电场的电力线分布情况如图所示,一负电荷从 M 点移到 N
点。有人根据这个图作出下列几点结论,其中哪点是正确的?
(A)、电场强度 Em < En; (C)、电势能 Wm < Wn;
(B)、电势 Um < Un; (D)、电场力的功 A > 0。
(
)
7、一球形导体,带电量 q 置于一任意形状的空腔导体中。当用导线将两者
能为零?
(A)、仅在象限Ⅰ;
(B)、仅在象限Ⅱ;
(C)、仅在象限Ⅰ,Ⅲ; (D)、仅在象限Ⅰ,Ⅳ;
(E)、仅在象限Ⅱ,Ⅳ。
(
)
17、有一个圆形回路1及正方形回路 2,圆直径和正方形的边长相等,二者中通有大小相等
的电流,它们在各自中心产生的磁感应强度的大小之比 B1/B2 为:
(A)、0.90; (B)、1.00; (C)、1.11; (D)、1.22。
(E)、高斯定理仅适用于具有高度对称性的电场。
(
)
4、在某电场区域内的电场线(实线)和等势面(虚线)如图所示,由图
判gt; Ec,Va > Vb > Vc; (B)、Ea > Eb > Ec,Va < Vb < Vc; (C)、Ea < Eb < Ec,Va > Vb > Vc; (D)、Ea < Eb < Ec,Va < Vb < Vc。
(
)
15、如图所示,有两个完全相同的回路 L1 和 L2,回路内包含有无限长直电流 I1 和 I2,但在 (b)图中 L2 外又有一无限长直电流 I3。P1 和 P2 是回路上两位置相同的点,请判断正误:
大学电磁学试题及答案
大学电磁学试题及答案一、选择题1. 下列哪个不是电磁场的性质?A. 磁场比电场强B. 磁场可以存储能量C. 磁场的形状与电流的形状无关D. 磁场可以做功2. 下列哪个不是电场的性质?A. 电场是矢量场B. 电场可以存储能量C. 电场的形状与电荷的分布有关D. 电场可以做功3. 以下哪个定理描述了电场的闭合性?A. 麦克斯韦方程组B. 电场强度叠加定理C. 安培环路定理D. 电场能量密度定理4. 以下哪个定理描述了磁场的无源性?A. 麦克斯韦方程组B. 磁场强度叠加定理C. 安培环路定理D. 磁场能量密度定理5. 在匀强电场中沿着电场方向移动电荷,电荷所受的力是:A. 垂直于电场方向的力B. 与电场方向相反的力C. 与电场方向相同的力D. 没有受力6. 以下哪个定理描述了磁场的涡旋性?A. 麦克斯韦方程组B. 磁场强度叠加定理C. 安培环路定理D. 磁场能量密度定理7. 当通过匀强磁场的导线以垂直于磁场方向的速度运动时,导线中将感应出电动势。
这个现象被称为:A. 法拉第现象B. 洛伦兹力C. 磁通量D. 磁感应强度8. 以下哪个定理描述了电磁感应现象?A. 麦克斯韦方程组B. 磁场强度叠加定理C. 安培环路定理D. 法拉第定律9. 高频交流电的传输会存在什么现象?A. 电流大于电压B. 电流和电压同相C. 电流小于电压D. 电流和电压反相10. 在电磁波中,电场和磁场之间的关系是:A. 电场和磁场互相作用B. 电场和磁场无关联C. 电场和磁场相互垂直D. 电场和磁场相互平行二、解答题1. 描述安培环路定理的表达式以及其含义。
安培环路定理的表达式是:$\oint \mathbf{B}\cdot d\mathbf{l} =\mu_0I_{\text{enc}}$。
该定理表示通过某一闭合回路的磁感应强度的环路积分等于该回路所围绕的电流的总和与真空中的磁导率的乘积。
即磁场的闭合性质。
2. 描述麦克斯韦方程组中法拉第电磁感应定律的表达式以及其含义。
电磁学题型及答案解析
1.4.6 一 半径为 R 的 带电球,起体电荷密度)1(0Rr-=ρρ,0ρ为一常数,r 为空间某带至球心的距离。
试求:(1)球内,外的强度分布。
(2) 为多大时,场强最大,该点的?max =E解:(1))1(0Rr-=ρρ,ρ与r 是线性关系。
在球内 0P 做一个半径为r 的与带电球同心的 球面斯面如图,根据对称性分析,此球面上的场强大小相等,方向与 r 的一致。
由高斯面定理:0εqS d =•E ⎰⎰由高斯定理得:仍作球形高斯面。
时,即在球外过任一点当内内内p R r RrRr r Rr dr R r q d E r E E r r r ErrR r ),)(431(3)34(4)34(4)1(400023020230<<-=∴-=∴-=-==⎰⎰⎰ερερρπρππππErE s d 外外24π=•⎰⎰Rr dr R r q Rr33314)1(0ρππρ=-=⎰R E r302314ρππ=外rR E 23012ερ=∴外0)231(3)2(0=-=Rrdr d E ερ内32R r =∴ 强无极值。
单调减小,因而球外场越大,外E r 1.4.7 如图所示,两条平行的无线长均匀带电直线,相距为2a ,电荷线密度分别为+a ,求这两条直线在空间任一点的场强。
解:利用高斯定理分别求出两条均匀带电直线在点p 的电场强度:r r E +=∧++επη02r r E--=∧--επη2\j i r ∧+∧+∧+=+θθsin cosjri rya x ∧+∧+++=jri rr ya x ∧-∧-∧+-=r +=επη02)(j ri rya x ∧+∧+++r --επη02)(j ri rya x ∧-∧-+--∧-+-+⎥⎥⎦⎤⎢⎢⎣⎡-+⎪⎪⎭⎫ ⎝⎛+=i r x r x r a r a )(222220επη j r yr y ∧+--)(2220επη 其中:222)(a x y r ++=+ 222)(a x y r -+=-EE E-++=1.4.8解答:(1)图1.4.8为所挖的空腔,T 点为空腔中任意一点,空腔中电荷分布可看作电荷体密度为ρ的实心均匀带电球在偏心位置处加上一个电荷体密度为ρ-的实心均匀带电球的叠加结果,因此,空腔中任意点T 的场强E应等于电荷体密度为ρ的均匀带电球在T 点产生场强E ρ与电荷体密度为ρ-的均匀带电球在T 点产生场强E ρ-的叠加结果。
电磁学习题总结与答案
1. 如图所示,竖直方向的平行线表示匀强电场的电场线,但未标明方向。
电场中有一个带电微粒,仅受电场力的作用,从A 点运动到B 点, 表示该带电微粒在A 、B 两点的动能,UA 、UB 表示A 、B 两点的电势,下列说法正确的是( ) 。
A .若 ,则UA 一定小于UBB .若 ,则该电荷的运动轨迹可能是虚线aC .若UA <UB .则该电荷一定是负电荷D .若该电荷的运动轨迹是虚线b 且微粒带负电,则UA>UB2. 如图所示,虚线 a 、 b 、 c 代表电场中的三个等势面,相邻等势面之间的电势差相等,即U ab =U bc , 实线为一带正电的质点仅在电场力作用下通过该区域时的运动轨迹, P 、 Q 是这条轨迹上的两点,据此可知 ( )( A )三个等势面中, a 的电势最高 ( B )带电质点通过P 点时的电势能较大 ( C )带电质点通过P 点时的动能较大( D )带电质点通过P 点时的加速度较大3.长为L 的水平极板间,有垂直纸面向内的匀强磁场,如图所示,磁感强度为B ,板间距离也为L ,板不带电,现有质量为m ,电量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度V 水平射入磁场,欲使粒子不打在极板上,可采用的办法是:() A .使粒子的速度V <BqL /4m ; B .使粒子的速度V >5BqL /4m ;C .使粒子的速度V >BqL /m ;D .使粒子速度BqL /4m <V <5BqL /4m 。
4..如图所示,空间存在一匀强磁场B (方向垂直纸面向里)和一电荷量为+Q 的点电荷的电场,一带电粒子-q (不计重力)以初速度v 0从某处垂直于电场、磁场入射,初位置到点电荷+Q 的距离为r ,则粒子在电、磁场中的运动轨迹可能是( )A .沿初速度v 0方向的直线B .以点电荷+Q 为圆心,以r 为半径,在纸面内的圆C .初阶段在纸面内向右偏的曲线D .初阶段在纸面内向左偏的曲线5.如图所示,界面PQ 与水平地面之间有一个正交的匀强磁场B 和匀强电场E ,在PQ 上方有一个带正电的小球A 自O 静止开始下落,穿过电场和磁场到达地面.设空气阻力不计,下列说法中正确的是( )A .在复合场中,小球做匀变速曲线运动B .在复合场中,小球下落过程中的电势能减小C .小球从静止开始下落到水平地面时的动能等于其电势能和重力势能的减少量总和D .若其他条件不变,仅增大磁感应强度,小球从原来位置下落到水平地面时的动能不变6.如图所示,实线表示在竖直平面内匀强电场的电场线,电场线与水平方向成α角,水平方向的匀强磁场与电场正交,有一带电液滴沿斜向上的虚线l 做直线运动,l 与水平方向成β角,且α>β,则下列说法中错误的是( )A.液滴一定做匀变速直线运动 B.液滴一定带正电C.电场线方向一定斜向上 D.液滴一定做匀速直线运动7.如图所示,光滑绝缘杆固定在水平位置上,使其两端分别带上等量同种正电荷Q1、Q2,杆上套着一带正电小球,整个装置处在一个匀强磁场中,磁感应强度方向垂直纸面向里,将靠近右端的小球从静止开始释放,在小球从右到左的运动过程中,下列说法中正确的是( )A.小球受到的洛伦兹力大小变化,但方向不变B.小球受到的洛伦兹力将不断增大C.小球的加速度先减小后增大D.小球的电势能一直减小8.医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度.电磁血流计由一对电极a和b以及一对磁极N和S构成,磁极间的磁场是均匀的.使用时,两电极a、b 均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图8-4-17所示.由于血液中的正负离子随血流一起在磁场中运动,电极a、b之间会有微小电势差.在达到平衡时,血管内部的电场可看作是匀强电场,血液中的离子所受的电场力和磁场力的合力为零.在某次监测中,两触点间的距离为3.0 mm,血管壁的厚度可忽略,两触点间的电势差为160 μV,磁感应强度的大小为0.040 T.则血流速度的近似值和电极a、b的正负为( )A.1.3 m/s,a正、b负 B.2.7 m/s,a正、b负C.1.3 m/s,a负、b正 D.2.7 m/s,a负、b正9.如图所示,一个带正电荷的物块m,由静止开始从斜面上A点下滑,滑到水平面BC上的D点停下来.已知物块与斜面及水平面间的动摩擦因数相同,且不计物块经过B处时的机械能损失.先在ABC所在空间加竖直向下的匀强电场,第二次让物块m从A点由静止开始下滑,结果物块在水平面上的D′点停下来.后又撤去电场,在ABC所在空间加水平向里的匀强磁场,再次让物块m从A点由静止开始下滑,结果物块沿斜面滑下并在水平面上的D″点停下来.则以下说法中正确的是( )图8-4-18A.D′点一定在D点左侧 B.D′点一定与D点重合C.D″点一定在D点右侧 D.D″点一定与D点重合10.如图所示,电源电动势为E,内阻为r,滑动变阻器电阻为R,开关K闭合.两平行极板间有匀强磁场,一带电粒子(不计重力)正好以速度v匀速穿过两板.以下说法正确的是( )A.保持开关闭合,将滑片P向上滑动一点,粒子将可能从下极板边缘射出B.保持开关闭合,将滑片P向下滑动一点,粒子将可能从下极板边缘射出C .保持开关闭合,将a 极板向下移动一点,粒子将一定向下偏转D .如果将开关断开,粒子将继续沿直线穿出11.在某地上空同时存在着匀强的电场与磁场,一质量为m 的带正电小球,在该区域内沿水平方向向右做直线运动,如图所示,关于场的分布情况可能的是( ) A .该处电场方向和磁场方向重合B .电场竖直向上,磁场垂直纸面向里C .电场斜向里侧上方,磁场斜向外侧上方,均与v 垂直D .电场水平向右,磁场垂直纸面向里 12.有关洛伦兹力和安培力的描述,正确的是 A .通电直导线在匀强磁场中一定受到安培力的作用 B .安培力是大量运动电荷所受洛伦兹力的宏观表现 C .带电粒子在匀强磁场中运动受到的洛伦兹力做正功 D .通电直导线在磁场中受到的安培力方向与磁场方向平行13.质量为m 、带电荷量为q 的粒子(忽略重力)在磁感应强度为B 的匀强磁场中做匀速圆周运动,形成空间环形电流.已知粒子的运动速率为v 、半径为R 、周期为T ,环形电流的大小为I.则下面说法中正确的是A .该带电粒子的比荷为q m =BR vB .在时间t 内,粒子转过的圆弧对应的圆心角为θ=qBtmC .当速率v 增大时,环形电流的大小I 保持不变D .当速率v 增大时,运动周期T 变小 14.回旋加速器是加速带电粒子的装置.其主体部分是两个D 形金属盒,两金属盒处于垂直于盒底的匀强磁场中,并分别与高频交流电源两极相连接,从而使粒子每次经过两盒间的狭缝时都得到加速,如图所示,现要增大带电粒子从回旋加速器射出时的动能,下列方法可行的是A .增大金属盒的半径B .减小狭缝间的距离C .增大高频交流电压D .减小磁场的磁感应强度15.如图所示,ABC 为与匀强磁场垂直的边长为a 的等边三角形,磁场垂直纸面向外,比荷为em 的电子以速度v 0从A 点沿AB 方向射入,欲使电子能经过BC 边,则磁感应强度B 的取值应为A .B >3mv 0ae B .B <2mv 0ae C .B <3mv 0ae D .B >2mv 0ae16.如图所示,在垂直纸面向里的匀强磁场的边界上,有两个质量和电荷量均相同的正负离子(不计重力),从点O 以相同的速率先后射入磁场中,入射方向与边界成θ角,则正负离子在磁场中A .运动时间相同B .运动轨道的半径相同C .重新回到边界时速度的大小和方向相同D .重新回到边界的位置与O 点距离相等17.空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界。
电磁学第四版赵凯华习题答案解析
电磁学第四版赵凯华习题答案解析第一章:电磁现象和电磁场基本定律
1. 问题:什么是电磁学?
答案:电磁学是研究电荷和电流相互作用所产生的现象和规律的科学。
2. 问题:什么是电磁场?
答案:电磁场是指由电荷和电流引起的空间中存在的物理场。
3. 问题:什么是电场?
答案:电场是指电荷在周围空间中所产生的物理场。
4. 问题:什么是磁场?
答案:磁场是指电流或磁体在周围空间中所产生的物理场。
5. 问题:电磁场有哪些基本定律?
答案:电磁场的基本定律有高斯定律、安培定律、法拉第定律和麦克斯韦方程组。
第二章:静电场
1. 问题:什么是静电场?
答案:静电场是指电荷分布不随时间变化的电场。
2. 问题:什么是电势?
答案:电势是指单位正电荷在电场中所具有的能量。
3. 问题:什么是电势差?
答案:电势差是指在电场中从一个点到另一个点所需做的功。
4. 问题:什么是电势能?
答案:电势能是指带电粒子在电场中由于位置改变而具有的能量。
5. 问题:什么是电容?
答案:电容是指导体上带电量与导体电势差之间的比值。
以上是电磁学第四版赵凯华习题的部分答案解析。
详细的解析请参考教材。
大学物理(电磁学部分)试题库及答案解析
大学物理(电磁学部分)试题库及答案解析一、 选择题1.库仑定律的适用范围是()A 真空中两个带电球体间的相互作用; ()B 真空中任意带电体间的相互作用; ()C 真空中两个正点电荷间的相互作用; ()D 真空中两个带电体的大小远小于它们之间的距离。
〔 D 〕2.在等量同种点电荷连线的中垂线上有A 、B 两点,如图所示,下列结论正确的是()A A B E E ,方向相同;()B A E 不可能等于B E ,但方向相同;()C A E 和B E 大小可能相等,方向相同;()D A E 和B E 大小可能相等,方向不相同。
〔 C 〕4.下列哪一种说法正确()A 电荷在电场中某点受到的电场力很大,该点的电场强度一定很大;()B 在某一点电荷附近的任一点,若没放试验电荷,则这点的电场强度为零;()C 若把质量为m 的点电荷q 放在一电场中,由静止状态释放,电荷一定沿电场线运动;()D 电场线上任意一点的切线方向,代表点电荷q 在该点获得加速度的方向。
〔 D 〕5.带电粒子在电场中运动时()A 速度总沿着电场线的切线,加速度不一定沿电场线切线;()B 加速度总沿着电场线的切线,速度不一定沿电场线切线;()C 速度和加速度都沿着电场线的切线;()D 速度和加速度都不一定沿着电场线的切线。
〔 B 〕7.在真空中的静电场中,作一封闭的曲面,则下列结论中正确的是A.通过封闭曲面的电通量仅是面内电荷提供的B.封闭曲面上各点的场强是面内电荷激发的C.由高斯定理求得的场强仅由面内电荷所激发的D.由高斯定理求得的场强是空间所有电荷共同激发的〔 D 〕9、下面说法正确的是(A)等势面上各点场强的大小一定相等;(B)在电势高处,电势能也一定高;(C)场强大处,电势一定高;(D)场强的方向总是从电势高处指向低处〔 D 〕10、已知一高斯面所包围的体积内电量代数和为零,则可肯定:(A )高斯面上各点场强均为零。
(B )穿过高斯面上每一面元的电通量均为零。
高三物理电磁学试题答案及解析
高三物理电磁学试题答案及解析1.如图甲所示,空间存在一有界匀强磁场,磁场的左边界如虚线所示,虚线右侧范围足够大,磁场方向竖直向下.在光滑绝缘水平面内有一长方形金属线框,线框质量m=0.1kg,在水平向右的外力F作用下,以初速度v=1m/s一直做匀加速直线运动,外力F大小随时间t变化的图线如图乙所示.以线框右边刚进入磁场时开始计时,求:(1)线框cd边刚进入磁场时速度v的大小;=0.27J,则在此过程中线框产生的焦耳热Q为多少?(2)若线框进入磁场过程中F做功为WF【答案】(1)2m/s (2)0.12J【解析】(1)当后,对线框:解得:又解得:(2)根据功能关系得:解得:【考点】功能关系;牛顿定律的应用.2.如图所示,在xoy平面第一象限里有竖直向下的匀强电场,电场强度为E。
第二象限里有垂直于纸面向外的匀强磁场,磁感应强度为B。
在x轴上-a处,质量为m、电荷量为e的质子以大小不同的速度射入磁场,射入时速度与x轴负方向夹角为。
不计空气阻力,重力加速度为g。
求:(1)在-x轴上有质子到达的坐标范围;(2)垂直于y轴进入电场的质子,在电场中运动的时间;(3)在磁场中经过圆心角为2的一段圆弧后进入电场的质子,到达x轴的动能。
【答案】(1)(2)(3)【解析】(1)设-x轴的第一个坐标点为x1(2)质子垂直进入电场时距x轴的距离:(3)在磁场中运动情景如图所示。
由牛顿定律可知:由动能定理:【考点】带电粒子在磁场中的运动;动能定理.3.如图在xoy坐标系第Ⅰ象限,磁场方向垂直xoy平面向里,磁感应强度大小为B=1.0T;电场方向水平向右,电场强度大小为E=N/C.一个质量m=2.0×10﹣7kg,电荷量q=2.0×10﹣6C的带射入第Ⅰ象限,恰好在xoy平面中做匀速直线运动.0.10s后改正电粒子从x轴上P点以速度v变电场强度大小和方向,带电粒子在xoy平面内做匀速圆周运动,取g=10m/s2.求:大小和方向;(1)带电粒子在xoy平面内做匀速直线运动的速度v(2)带电粒子在xoy平面内做匀速圆周运动时电场强度E′的大小和方向;(3)若匀速圆周运动时恰好未离开第Ⅰ象限,x轴上入射P点应满足何条件?【答案】(1)2m/s,方向斜向上与x轴正半轴夹角为60°;(2)1N/C,方向竖直向上.(3)0.27m【解析】(1)如图粒子在复合场中做匀速直线运动,设速度v与x轴夹角为θ,依题意得:解得所以:θ=60°即速度v大小2m/s,方向斜向上与x轴正半轴夹角为60°(2)带电粒子在xOy平面内做匀速圆周运动时,电场力F电必须与重力平衡,洛伦兹力提供向心力:解得E′=1N/C,方向竖直向上.(3)如图带电粒子匀速圆周运动恰好未离开第1象限,圆弧左边与y轴相切N点;PQ匀速直线运动,PQ=vt="0.2" m洛伦兹力提供向心力:,得R=0.2m由几何知识得:OP=R+Rsin60°-PQcos60°OP==0.27m故:x轴上入射P点离O点距离至少为0.27m【考点】带电粒子在复合场中的运动;4.图中L为自感系数足够大的理想电感,C是电容量足够大的理想电容,R1、R2是阻值大小合适的相同电阻,G1、G2是两个零刻度在中央的相同的灵敏电流表,且电流从哪一侧接线柱流入指针即向哪一侧偏转,E是可以不计内阻的直流电源.针对该电路下列判断正确的是( )A.电键S闭合的瞬间,仅电流计G1发生明显地偏转B.电键S闭合的瞬间,两电流计将同时发生明显的偏转C.电路工作稳定后,两电流计均有明显不为零的恒定示数D.电路工作稳定后再断开电键S,此后的短时间内,G1的指针将向右偏转,G2的指针将向左偏转【答案】BD【解析】电路接通瞬间,由于自感系数足够大,所以有电流通过R1,直流电不能通过电容器,则有电流通过R2,所以电键S闭合的瞬间,两电流计将同时发生明显的偏转,故A错误,B正确;L为理想电感,电路温度后,R1被短路,则没有电流通过,示数为零,故C错误;电路工作稳定后再断开电键S,此后的短时间内,电容器放电,电流从右端通过R1,从左端通过R2,则G1的指针将向右偏转,G2的指针将向左偏转,故D正确.故选BD.【考点】自感现象.【名师】此题考查自感以及电容器问题;解决本题的关键知道电感器对电流的变化有阻碍作用:当电流增大时,会阻碍电流的增大,当电流减小时,会阻碍其减小,而电阻没有此特点,当K断开电阻、电容构成一回路,电容器可以储存电荷。
电磁学课后习题答案及解析
第五章 静 电 场5 -9若电荷Q 均匀地分布在长为L 的细棒上.求证:<1>在棒的延长线,且离棒中心为r 处的电场强度为<2>在棒的垂直平分线上,离棒为r 处的电场强度为若棒为无限长<即L →∞>,试将结果与无限长均匀带电直线的电场强度相比较.分析这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为整个带电体在点P 的电场强度接着针对具体问题来处理这个矢量积分.<1>若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,<2>若点P 在棒的垂直平分线上,如图<A >所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是证 <1>延长线上一点P 的电场强度⎰'=L r πεq E 202d ,利用几何关系 r ′=r -x 统一积分变量,则 ()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.<2>根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为利用几何关系 sin α=r /r ′,22x r r +='统一积分变量,则当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度此结果与无限长带电直线周围的电场强度分布相同[图<B >].这说明只要满足r 2/L 2<<1,带电长直细棒可视为无限长带电直线.5 -14设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析方法1:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=S S d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而解1由于闭合曲面内无电荷分布,根据高斯定理,有依照约定取闭合曲面的外法线方向为面元d S 的方向,解2取球坐标系,电场强度矢量和面元在球坐标系中可表示为①5 -17设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析通常有两种处理方法:<1>利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有2S π4d r E ⋅=⋅⎰S E 根据高斯定理⎰⎰=⋅V ρεd 1d 0S E ,可解得电场强度的分布. <2>利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为r r ρq ''⋅=d π4d 2,每个带电球壳在壳内激发的电场0d =E ,而在球壳外激发的电场由电场叠加可解得带电球体内外的电场分布解1因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理⎰⎰=⋅V ρεd 1d 0S E 得球体内<0≤r ≤R > 球体外<r >R >解2将带电球分割成球壳,球壳带电由上述分析,球体内<0≤r ≤R >球体外<r >R >5 -20一个内外半径分别为R 1和R 2的均匀带电球壳,总电荷为Q 1,球壳外同心罩一个半径为R 3的均匀带电球面,球面带电荷为Q 2.求电场分布.电场强度是否为离球心距离r 的连续函数?试分析.分析以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而24d r πE ⋅=⎰S E .在确定高斯面内的电荷∑q 后,利用高斯定理∑⎰=0/d εq S E 即可求出电场强度的分布.解取半径为r 的同心球面为高斯面,由上述分析r <R 1,该高斯面内无电荷,0=∑q ,故01=ER 1<r <R 2,高斯面内电荷()31323131R R R r Q q --=∑ 故 ()()23132031312π4rR R εR r Q E --= R 2<r <R 3,高斯面内电荷为Q 1,故r >R 3,高斯面内电荷为Q 1+Q 2,故电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图<B >所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3的带电球面两侧,电场强度的跃变量这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1和R 2>R 1>,单位长度上的电荷为λ.求离轴线为r 处的电场强度:<1>r <R 1,<2> R 1<r <R 2,<3>r >R 2.分析电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解作同轴圆柱面为高斯面,根据高斯定理r <R 1,0=∑q 在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1<r <R 2,L λq =∑r >R 2,0=∑q 在带电面附近,电场强度大小不连续,电场强度有一跃变这与5-20题分析讨论的结果一致.5 -22如图所示,有三个点电荷Q 1、Q 2、Q 3沿一条直线等间距分布且Q 1=Q 3=Q .已知其中任一点电荷所受合力均为零,求在固定Q 1、Q 3的情况下,将Q 2从点O 移到无穷远处外力所作的功.分析由库仑力的定义,根据Q 1、Q 3所受合力为零可求得Q 2.外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:<1>根据功的定义,电场力作的功为 其中E 是点电荷Q 1、Q 3产生的合电场强度.<2>根据电场力作功与电势能差的关系,有其中V 0是Q 1、Q 3在点O 产生的电势<取无穷远处为零电势>.解1由题意Q 1所受的合力为零解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1、Q 3激发的电场在y 轴上任意一点的电场强度为将Q 2从点O 沿y 轴移到无穷远处,<沿其他路径所作的功相同,请想一想为什么?>外力所作的功为解2与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1、Q 3在点O 的电势将Q 2从点O 推到无穷远处的过程中,外力作功比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.5 -23已知均匀带电长直线附近的电场强度近似为为电荷线密度.<1>求在r =r 1和r =r 2两点间的电势差;<2>在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取?试说明.解 <1>由于电场力作功与路径无关,若沿径向积分,则有<2>不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等.5 -27两个同心球面的半径分别为R 1和R 2,各自带有电荷Q 1和Q 2.求:<1>各区域电势分布,并画出分布曲线;<2>两球面间的电势差为多少?分析通常可采用两种方法<1>由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.<2>利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为在球面内电场强度为零,电势处处相等,等于球面的电势其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 <1>由高斯定理可求得电场分布由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1时,有当R 1≤r ≤R 2时,有当r ≥R 2时,有<2>两个球面间的电势差解2 <1>由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1,则若该点位于两个球面之间,即R 1≤r ≤R 2,则若该点位于两个球面之外,即r ≥R 2,则<2>两个球面间的电势差第六章 静电场中的导体与电介质6 -1将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将〔 〔A 升高 〔B 降低 〔C 不会发生变化 〔D 无法确定分析与解不带电的导体B 相对无穷远处为零电势。
电磁学考研试题及答案解析
电磁学考研试题及答案解析一、选择题(每题3分,共30分)1. 一个带正电的点电荷Q,放入电场中某点,测得其受到的电场力为F,那么该点的电场强度大小为:A. F/QB. Q/FC. F*QD. F2. 在静电场中,电场线的方向规定为:A. 从正电荷指向负电荷B. 从负电荷指向正电荷C. 任意方向D. 与电荷运动方向相同3. 电容器的电容定义式为:A. C=Q/UB. U=Q/CC. Q=C*UD. U=C*Q4. 一个电路中包含一个电阻R和一个电感L串联,当交流电源频率增加时,电路的总阻抗将:A. 增加B. 减少C. 不变D. 先增加后减少5. 根据法拉第电磁感应定律,闭合电路中的感应电动势的大小与:A. 磁通量的变化率成正比B. 磁通量的大小成正比C. 磁通量的方向有关D. 电路的电阻有关6. 麦克斯韦方程组中,描述磁场的两个方程是:A. 高斯定律和安培环路定律B. 高斯定律和法拉第电磁感应定律C. 安培环路定律和法拉第电磁感应定律D. 高斯定律和位移电流定律7. 一个导体棒在垂直于它的方向上的磁场中以速度v匀速运动,产生的电动势大小为:A. B*L*vB. B*v*LC. B*v/LD. L*B*v8. 根据电磁波理论,电磁波在真空中传播的速度是:A. 光速B. 声速C. 光速的一半D. 无限大9. 两个频率相同的电磁波在真空中传播,它们的:A. 波速相同,波长也相同B. 波速不同,波长也不同C. 波速相同,波长不同D. 波速不同,波长相同10. 一个均匀带电的绝缘球壳,其内部没有净电荷,那么球壳内部的电场强度为:A. 不为零B. 零C. 无法确定D. 取决于球壳的厚度二、简答题(每题10分,共20分)11. 请简述电磁感应中的楞次定律及其应用。
12. 解释什么是电磁波,以及电磁波的产生和传播机制。
三、计算题(每题20分,共40分)13. 一个平行板电容器的板间距离为d,板面积为A,两板间的电介质为相对介电常数为ε_r的均匀介质。
高考物理专题电磁学知识点之电磁感应分类汇编及答案解析
高考物理专题电磁学知识点之电磁感应分类汇编及答案解析一、选择题1.如图所示,在垂直纸面向里、范围足够大的匀强磁场中,放置一个金属圆环,圆环平面与磁场方向垂直,若要使圆环中产生如图中箭头所示方向的瞬时感应电流,下列方法可行的是A.使匀强磁场均匀增强B.使匀强磁场均匀减弱C.使圆环向左或向右平动D.使圆环向上或向下平动2.如图所示,L是自感系数很大的线圈,但其自身的电阻几乎为零。
A和B是两个完全相同的小灯泡。
下列说法正确的是()A.接通开关S瞬间,A灯先亮,B灯不亮B.接通开关S后,B灯慢慢变亮C.开关闭合稳定后,突然断开开关瞬间,A灯立即熄灭、B灯闪亮一下D.开关闭合稳定后,突然断开开关瞬间,A灯、B灯都闪亮一下3.下列关于教材中四幅插图的说法正确的是()A.图甲是通电导线周围存在磁场的实验。
这一现象是物理学家法拉第通过实验首先发现B.图乙是真空冶炼炉,当炉外线圈通入高频交流电时,线圈产生大量热量,从而冶炼金属C.图丙是李辉用多用电表的欧姆挡测量变压器线圈的电阻刘伟手握线圈裸露的两端协助测量,李辉把表笔与线圈断开瞬间,刘伟觉得有电击说明欧姆挡内电池电动势很高D.图丁是微安表的表头,在运输时要把两个接线柱连在一起,这是为了保护电表指针,利用了电磁阻尼原理4.如图所示,一带铁芯线圈置于竖直悬挂的闭合铝框右侧,与线圈相连的导线abcd内有水平向里变化的磁场.下列哪种变化磁场可使铝框向左偏离 ( )A.B.C.D.5.如图所示,用粗细均匀的铜导线制成半径为r、电阻为4R的圆环,PQ为圆环的直径,在PQ的左右两侧均存在垂直圆环所在平面的匀强磁场,磁感应强度大小均为B,但方向相反,一根长为2r、电阻为R的金属棒MN绕着圆心O以角速度ω顺时针匀速转动,金属棒与圆环紧密接触。
下列说法正确的是()A.金属棒MN两端的电压大小为2B rωB.金属棒MN中的电流大小为2 2B r R ωC.图示位置金属棒中电流方向为从N到MD.金属棒MN转动一周的过程中,其电流方向不变6.如图所示为地磁场磁感线的示意图,在北半球地磁场的竖直分量向下。
高中物理《电磁学》练习题(附答案解析)
高中物理《电磁学》练习题(附答案解析)学校:___________姓名:___________班级:___________一、单选题1.下列哪种做法不属于防止静电的危害()A.印染厂房中保持潮湿B.油罐车的尾部有一铁链拖在地上C.家用照明电线外面用一层绝缘胶皮保护D.在地毯中夹杂一些不锈钢丝纤维2.避雷针能起到避雷作用,其原理是()A.尖端放电B.静电屏蔽C.摩擦起电 D.同种电荷相互排斥3.2022年的诺贝尔物理学奖同时授予给了法国物理学家阿兰•阿斯佩、美国物理学家约翰•克劳泽及奥地利物理学家安东•蔡林格,以表彰他们在“纠缠光子实验、验证违反贝尔不等式和开创量子信息科学”方面所做出的杰出贡献。
许多科学家相信量子科技将改变我们未来的生活,下列物理量为量子化的是()A.一个物体带的电荷量B.一段导体的电阻C.电场中两点间的电势差D.一个可变电容器的电容4.关于电流,下列说法中正确的是()A.电流跟通过截面的电荷量成正比,跟所用时间成反比B.单位时间内通过导体截面的电量越多,导体中的电流越大C.电流是一个矢量,其方向就是正电荷定向移动的方向D.国际单位制中,其单位“安培”是导出单位5.转笔(Pen Spinning)是一项用不同的方法与技巧、以手指来转动笔的休闲活动,如图所示。
转笔深受广大中学生的喜爱,其中也包含了许多的物理知识,假设某转笔高手能让笔绕其上的某一点O做匀速圆周运动,下列有关该同学转笔中涉及到的物理知识的叙述正确的是()A.笔杆上的点离O点越近的,做圆周运动的向心加速度越大B.若该同学使用中性笔,笔尖上的小钢珠有可能因快速的转动做离心运动而被甩走C.若该同学使用的是金属笔杆,且考虑地磁场的影响,由于笔杆中不会产生感应电流,因此金属笔杆两端一定不会形成电势差D.若该同学使用的是金属笔杆,且考虑地磁场的影响,那么只有在竖直平面内旋转时,金属笔杆两端才会形成电势差6.关于电场力做功与电势差的关系,下列说法正确的是()A.M、N两点间的电势差等于将单位电荷从M点移到N点电场力做的功B.不管是否存在其他力做功,电场力对电荷做多少正功,电荷的电势能就减少多少C.在两点间移动电荷电场力做功为零,则这两点一定在同一等势面上,且电荷一定在等势面上移动D.在两点间移动电荷,电场力做功的多少与零电势的选取有关7.图甲和乙是教材中演示自感现象的两个电路图,L1和L2为电感线圈。
高考物理新电磁学知识点之磁场知识点总复习有答案解析(1)
高考物理新电磁学知识点之磁场知识点总复习有答案解析(1)一、选择题1.如图,条形磁铁平放于水平桌面上,在它的正中央上方固定一根直导线,导线与磁场垂直,现给导线中通以垂直于纸面向外的电流,则下列说法正确的是()A.桌面对磁铁的支持力增大B.桌面对磁铁的支持力减小C.桌面对磁铁的支持力不变D.以上说法都有可能2.如图甲是磁电式电流表的结构图,蹄形磁铁和铁芯间的磁场均匀辐向分布。
线圈中a、b两条导线长度均为l,未通电流时,a、b处于图乙所示位置,两条导线所在处的磁感应强度大小均为B。
通电后,a导线中电流方向垂直纸面向外,大小为I,则()A.该磁场是匀强磁场B.线圈平面总与磁场方向垂直C.线圈将逆时针转动D.a导线受到的安培力大小始终为BI l3.对磁感应强度的理解,下列说法错误的是()A.磁感应强度与磁场力F成正比,与检验电流元IL成反比B.磁感应强度的方向也就是该处磁感线的切线方向C.磁场中各点磁感应强度的大小和方向是一定的,与检验电流I无关D.磁感线越密,磁感应强度越大4.电磁血流量计是基于法拉第电磁感应定律,运用在心血管手术和有创外科手术的精密监控仪器。
工作原理如图所示,将患者血管置于磁感应强度为B的匀强磁场中,测出管壁上MN两点间的电势差为U,已知血管的直径为d,则血管中的血液流量Q为()A.πdUBB.π4dUBC.πUBdD.π4UBd5.如图,一带电粒子在正交的匀强电场和匀强磁场中做匀速圆周运动。
已知电场强度为E,方向竖直向下,磁感应强度为B,方向垂直于纸面向外。
粒子圆周运动的半径为R,若小球运动到最高点A时沿水平方向分裂成两个粒子1和2,假设粒子质量和电量都恰好均分,粒子1在原运行方向上做匀速圆周运动,半径变为3R,下列说法正确的是()A.粒子带正电荷B.粒子分裂前运动速度大小为REB gC.粒子2也做匀速圆周运动,且沿逆时针方向D.粒子2做匀速圆周运动的半径也为3R6.如图所示,在半径为R的圆形区域内,有匀强磁场,磁感应强度为B,方向垂直于圆平面(未画出)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题(每小题3分)1、如图一边长为a 的等边三角形两顶点A ,B 上分别放电量为+q 的两点电荷,问顶点C 处的电场强度大小为 2043a q πε 。
2、如图边长为L 的等边三角形的三个顶点,若在A 、B 、C 三个顶点处分别放置带电量为q 的正点电荷,则A 、B 、C 三点电荷在等边三角形三条中线交点上产生的合场强的大小为 0 。
3、两无限大的带电平面,其电荷密度均为+σ,则两带电平面之间的场强为 0 。
4、均匀带电(电荷面密度为σ)无限大均匀带电平板,距平板距离为r 处一点平p 处的电场强度大小为 02εσ 。
5、一无限大均匀带电平面,电荷面密度为σ,则带电平面外任一点的电场强度的大小为 02εσ 。
6、两无限大的带电平面,其电荷密度分别为+σ,-σ,则两带电平面之间的场强为 0εσ 。
7、均匀带电圆环带电量q ,圆环半径为R ,则圆环中心点处的电场强度大小为 0 。
8、ABCD 是边长为L 的正方形的四个顶点,若在A 、B 、C 、D 四个顶点处分别放置带电量为q 的正点电荷,则A 、B 、C 、D 四点电荷在正方形对角线交点上产生的合场强的大小为 0 。
9、静电场力做功的特点:静电场力做功与路径 无关 (填“有关”或“无关” )10、如图所示,一点电荷q +位于立方体的中心,则通过abcd 面的E r 的电通量φ大小为 06εq 。
11、静电平衡导体的表面电荷面密度为α,则表面处的电场强度E =0εα 。
12、半径为R 的球壳均匀带电荷q ,电场中球面处的电势为 Rq04πε 。
13、半径为R 的球面均匀带电荷q ,在真空中球心处的电势为 R q04πε 。
14、设点电荷q 的电场中的某一点距电荷q 的距离为处r 的电场强度的大小为 204r qπε ,该点的电势为 r q 04πε 。
15、通过磁场中某一曲面的磁场线叫做通过此曲面的磁通量,则通过任意闭合曲面的磁通量为 0 。
16、真空中,半径为R 的圆形载流导线的电流为I ,则在圆心处的磁感应强度大小为R I 20μ 。
(真磁导率为0μ) 17、如图所示,电流元l Id ϖ在A 处产生的磁感应强度大小为 204sin rIdl πθμ 。
18.通有电流I 半径为R 圆形导线,放在均匀磁场B 中,磁场与导线平面垂直,则磁场作用在圆形导线上的最大力矩为 IB R 2π 。
19、一通有电流I 的无限长载流导线,距导线垂直距离R 处的一点P 处的磁感应强度B r 大小为 RI πμ20 。
20、一无限长通电螺线管,单位长度上线圈的匝数为n ,通有电流为I ,则螺线管内部磁感应强度大小为 nI 0μ 。
21、一个直径为D 的线圈有N 匝,载有电流I ,将它置于磁感强度为B 的匀强磁场中,作用于线圈的最大力矩M= 4/2IB D N π 。
22、一面积为S 正方形线圈由外皮绝缘的细导线绕成,共有N 匝,放在磁感应强度为B ρ的外磁场中,当导线通有电流I 的电流时,线圈磁矩M ρ的最大值等于 NIBS 。
23.一个电容为c 带电量为q 平行板电容器,其静电场的能量为 c q 22。
24、一带电量为q +运动电荷以速度v r 在磁场B r 中运动,v r 和B r 不平行,电荷质量为m ,则该运动电荷运动的周期T =qBm π2 。
25.一运动速度为71.010/m s ⨯的电子,垂直进入33.010B T -=⨯的均匀磁场中,该电子在磁场中作匀速圆周运动的半径为___eBmv ____m 。
26、对于任一电流元l Id ϖ处于磁场B ϖ中,可知该电流元受到的安培力为 B l Id ρϖ⨯ 。
27、一段41圆弧导线,通有电流I ,圆的半径为R ,放在均匀磁场B 中,磁场与导线平面垂直,磁场作用在导线上的力 BIR 。
28、一段半圆形导线,通有电流I ,圆的半径为R ,放在均匀磁场B 中,磁场与导线平面垂直,磁场作用在半圆形导线上的力 2BIR 。
29、如图,半径为a 的1/4圆弧形载流导线cd 置于均匀磁场中,则该导线所受安培力的大小为 BIa 。
30、如图,一折线形载流导线cd 置于均匀磁场中,则该导线所受安培力的大小为 BIa 。
二、单项选择题(每小题3分)1、两点电荷在相距3㎝时,静电力为F ,若让它们相距6㎝,它们之间的静电力为( D )A、2F B 、F 2 C 、F D 、4F 2、真空中两平行放置的无限大带电平面,面电荷密度均为σ,则在两平面间的电场强度大小为( B )A 、02σεB 、0C 、0σεD 、02σε 3、两个无限大均匀带电平板,电荷面密度分别为δ、δ-,如图所示,则两个平板间的电场强度的大小是( D )。
A. 0B. 02/εδC. 0/2εδD. 0/εδ4、在真空中有相距很近的两带电平板,两板面积均为S ,带电量均为q +,相距为d ,若忽略边缘效应,则其中一板受到另一板作用的电场力的大小为( C )。
A 、 2024d q πεB 、 S q 02εC 、 S q 022εD 、 2022dq πε 5、在真空中有两根无限长带电直线,电荷线密度为λ,带电量均为q +,相距为d ,则其中一根直线受到另一根直线上电荷作用的电场力的大小为( B )。
A 、 d q 04πελB 、 d q 02πελC 、 204d q πελD 、 202dq πελ6、两根无限长的均匀的带电直线相互平行,相距为a ,线电荷密度分别为+λ和-λ,则每单位长度的带电直线受的作用力为( A )。
A .a 022πελB .a 02πελC .a024πελ D .a 04πελ 7、两根无限长的均匀的带电直线相互平行,相距为a 2,线电荷密度分别为+λ和-λ,则每单位长度的带电直线受的作用力为( C )。
A 、a 022πελB 、a 02πελC 、a024πελ D 、a 04πελ 8、两无限长均匀带电直线相互平行,电荷线密度分别为λ+和λ-,则每单位长度带电直线受的力F 与线密度λ的关系是:( D )A 、F λ∝B 、 1F λ∝C 、 21F λ∝D 、 2F λ∝9、两无限长均匀带电直线相互平行,电荷线密度分别为λ+和2λ-,则每单位长度带电直线受的力F 与线密度λ的关系是:( D )A 、λ∝FB 、 λ1∝FC 、 21λ∝FD 、 2λ∝F 10、某电场的电场线分布情况如图,一负电荷从M 点移到N 点,则下列说法中哪一个是正确的:( C )A 、电场强度E M E NB 、电势V M V NC 、电势能W M W ND 、电场力的功A0 11、下列说法正确的是( C )A 、静电场中,电场力做功与路径有关。
B 、在某点电荷附近的任一点,如果没有在该点放置试验电荷,则该点的场强为零。
C 、静电场中,电场力做功与路径无关。
D 、有两个带电量不相等的点电荷,它们相互作用时,电量大的电荷受力大,电量小的电荷受力小。
12、球形电容器是由半径分别为1R 和2R (21R R φ)的两个同心的金属球壳所组成的,设内球带电1Q ,外球带电2Q ,则外球壳上的电势1R U 为( B )A. 20210144R Q R Q πεπε+ B. 10214R Q Q πε+ C. 20214R Q Q πε+ D. 2024R Q πε 13.点电荷q 位于边长为a 的正立方体的中心,通过此立方体的每一面的电通量为( D )。
A . 0εqB . 02εqC . 03εq D. 06εq 14、球形电容器是由半径分别为1R 和2R (21R R φ)的两个同心的金属球壳所组成的,设内球带电+q ,外球带电-q ,则球壳的电容C 为( D )A. 21104R R R -πεB. 21204R R R -πεC. 2121041R R R R -πεD. 212104R R R R -πε 15、真空中有两根相互平行长直载流导线,彼此相距为r ,每一根导线中的电流强度都是I ,电流方向相同,位于两导线之间中间一点的磁感应强度B 的大小为( C )。
A . r I πμ40B . rI πμ20 C. 0 D . r I πμ0 16. 真空中有两根相互平行长直载流导线,彼此相距为r ,每一根导线中的电流强度都是I ,电流方向一个向上另一个向下,位于两导线中间一点的磁感应强度B 的大小为( C )。
A .r I πμ40B .rI πμ20 C .r I πμ02 D .r I πμ0 17、真空中有两根长直载流导线,彼此相距为r ,每一根导线中的电流强度都是I ,两根导线彼此垂直,电流方向一个向上另一个向右,位于两导线之间中间一点的磁感应强度B 的大小为( B )。
A . r I πμ40 B.r I πμ02 C .r I πμ220 D .rI πμ420 18、真空中有两条互相垂直的长直导线,彼此相距为r ,通过的电流都是I ,则两导线之间中间一点的磁感应强度的大小为( C )A 、0I r μπB 、02I rμπ C 、02I r μπ D 、0 19、电流强度为I ,半径为R 的圆环形电流在环心处产生的磁感应强度大小为( B )A 、02I μπB 、02I R μC 、02IR μπD 、02I Rμπ 20、真空中有两个同心的通电圆线圈,其半径分别为1R 和2R ,在其中分别通以逆时针方向的电流1I 和2I ,则圆心处的磁感应强度的大小为( B )A 、01021222I I R R μμππ+B 、01021222I I R R μμ+C 、01021222I I R R μμ-D 、01021222I I R R μμππ- 21.以一定速度v 运动的带电粒子垂直进入匀强磁场B 中最一般的运动形式是( A )。
A. 圆周运动 B . 直线运动 C . 椭圆运动 D . 螺旋运动22.以一定速度运动v 的带电粒子进入匀强磁场B 中最一般的运动形式是( D )。
A 、圆周运动B 、直线运动C 、椭圆运动D 、螺旋运动23、霍耳元件测量磁场是将霍耳元件做成的探测棒插入待测磁场中,使已知的电流I 通过霍耳元件,由毫伏表读出霍耳电势差U 和已知的霍耳系数H A ,可根据下面的哪个公式确定磁感强度B 的大小( B )(d 为导体板的厚度)。
A. dB I A U H = B. d IB A U H = C. Id B A U H = D. IBd A U H = 24、设圆柱形截面的半径为R ,恒定电流I 沿轴线方向流动,当电流均匀分布在圆柱截面上,离开轴线的距离为R/2时的磁感应强度B ( B )。
A. R I πμ80 B. R I πμ40 C. RI πμ20 D. R I πμ0 25、真空中有通电导线截面,载有的电流1I 、2I 、3I 如图所示,沿一闭合环路L 的磁感应强度的线积分⎰⋅L l d B ρρ=0μ( B )。