石油工程岩石力学地应力

合集下载

第4讲-岩石力学-油田地应力及其确定方法概要

第4讲-岩石力学-油田地应力及其确定方法概要

地下压力概念图示
什么是孔隙压力
静水压力与地表自由水位沟通
• 海上—海平面 • 陆上—潜水面
静水压力取决于流体密度
-地层水密度随溶解固体(主要为盐)浓度的变化而变化。 -盐度受以下因素影响:原生水史、温度、成岩作用、靠近盐体、渗透性
地层孔隙压力状态分类表(据杜栩,1995)
压力系数 <0.75 0.75-0.9 0.9-1.1 1.1-1.5 >1.5
地应力及其确定方法
提纲
一、油田地应力的定义及组成 二、油田地应力的确定方法 三、分层地应力 四、区域地应力预测
一、油田地应力的定义及组成
什么神秘的力量造成的满目疮痍,惨不忍睹 造成了地貌沧海桑田的巨变
一、油田地应力的定义及组成
盐膏层
套管 水泥环
套损区
什么原因导致深部盐层套管被挤毁?
一、油田地应力的定义及组成
地层压力预测方法
Eaton法求取地层压力
Eaton原始方法(Eaton,1972)利用的是孔隙压力和地震波旅行时间等参数 的幂指数关系,这种关系并不随岩性或深度的变化而变化:
n
pp
po
( po
ph )
tn to
式中,pp-预测的孔隙压力; pob-静岩压力; ph-正常的静水压力; Δtn-地震波在正常的泥岩中的旅行时间; Δto-实测的地震波在泥岩中的旅行时间; n-Eaton指数。
(4)生烃作用 在逐渐埋深期间,将有机物转化成烃的反应也产生流体体积
的增加,从而导致单个压力封存箱内的超压。许多研究表明与烃 类生成有关的超压产生的破裂是烃类从源岩中运移出来进入多孔 的、高渗透储集岩的机制,尤其是甲烷的生成在许多储集层中已 被引为超压产生的原因。气体典型地同异常压力有联系,异常压 力具有气体饱和的特点。当源岩中的有机质或进入储集层中的油 转变成甲烷时,引起相当大的体积增加。在良好的封闭条件下, 这些体积的增加能产生很强的超高压.

石油工程岩石力学-地应力

石油工程岩石力学-地应力
完整地层塌块小, 井眼长轴在最小水
平地应力方位
地应力纵向分布规律计算
不同深度,不同性质的地层其地应力大小及 非均匀性不同,即地应力不是随井深增加而 线性增大,对不同地层要分层计算地应力。
地应力主要来自于上覆岩层的自重及地质构 造运动产生的构造应力,用公式表示为:
H
H
H
T
地应力纵向分布规律计算
hmin
HMAX >> v > hmin
第二节 地应力的测量方法
垂直主应力的求取:
垂直地应力是由重力作用产生的(岩石的重量); 在任意深度,垂直地应力等于上覆岩层压力:
v = gz (密度×重力加速度×深度) 通常垂直地应力通过对密度测井数据积分获得; 在海上钻井要包含泥线以上海水产生的压力;
B A
C
largely unfractured shale
static basal sheet
compression
四、进行地应力研究的意义:
是所有地质力学问题中重要的初始条件; 是勘探、钻井及油藏等石油工程的重要参数; 是钻井工程中井壁稳定分析的重要参数; 是采油工程中出砂防砂分析的重要参数; 是油气层增产改造措施制定的重要参数;
直井井眼周围地层应力状态
由水平最大地应力 H所引起的井周应力分布
r
H 2
(1
R2 r2 )
H 2
(1
3R 4 r4
4R2 r 2 ) cos2
H 2
(1
R2 r2
)
H 2
(1
3R 4 r4
) cos2
r
H 2
(1
3R 4 r4
2R2 r2
) sin 2

3高等岩石力学-地应力测量

3高等岩石力学-地应力测量
34
高等岩石力学
一、水压致裂法
测量水压致裂裂隙和钻孔试验段天 然节理、裂隙的位置、 然节理、裂隙的位置、方向和大小 测量可以采用井下摄影机、 测量可以采用井下摄影机、井下电 井下光学望远镜或印模器。 视、井下光学望远镜或印模器。前三 种方法代价昂贵,操作复杂。 种方法代价昂贵,操作复杂。使用印 模器则比较简便,实用。 模器则比较简便,实用。
21
高等岩石力学
四、地应力测量方法分类
间接测量法是借助某些传感元件或某些
介质, 介质,测量和记录岩体中某些与应力有关的间 接物理量的变化, 岩体中的变形或应变、 接物理量的变化,如岩体中的变形或应变、岩 体的密度、渗透性、吸水性、电阻、电容, 体的密度、渗透性、吸水性、电阻、电容,弹 性波传播速度等 性波传播速度等,然后由测得的间接物理量的 变化,通过已知的公式计算岩体中的应力值。 变化,通过已知的公式计算岩体中的应力值。 套孔应力解除法是目前国内外应用最普遍 是目前国内外应用最普遍、 套孔应力解除法是目前国内外应用最普遍、 发展较成熟的一种地应力间接测量方法。 发展较成熟的一种地应力间接测量方法。
σ1 P 3σ2−σ1 σ2
30
高等岩石力学
一、水压致裂法
如果继续向封闭段注入高压水, 如果继续向封闭段注入高压水,使裂隙 进一步扩展,当裂隙深度达到3 进一步扩展,当裂隙深度达到3倍钻孔直径 此处已接近原岩应力状态,停止加压, 时,此处已接近原岩应力状态,停止加压, 保持压力恒定,将该恒定压力记为P 保持压力恒定,将该恒定压力记为Ps,Ps应 和原岩应力σ2相平衡,即: 和原岩应力σ 相平衡,
高等岩石力学
Adwanced Rock Mechanics
辽宁科技大学
1
高等岩石力学

岩石力学及其应用

岩石力学及其应用

至关重要,直接与经济效益挂钩。水力压裂是 油气井增产的一个重要
的手段,裂缝模型的设计(包括:裂缝的扩产模型、裂缝的延伸方向 等)都与地应力有分不开的关系,而研究地应力也是岩石力学的一个
主要的任务和发展方向。
三 岩石力学在采油工程领域中的应用
地应力在岩石力学中是一个比较重要的概念,所谓地应力是指地
壳中的天然应力。由于地球的自转产生的离心力,天体之间的万有引 力等,这些力作用在地球上使得地层发生变形,那么,地层内部肯定 要产生一个力与之相平衡,使地层保持原有的状态,因此单位面积上 的这种力称之为地应力。
是当今及以后的一个热点话题了,随着井深的增加,岩石的性质也有 很大的变化,主要是由于温度、压力等外界条件的改变,使得地层岩
石的力学性质发生的明显的变化。
二 岩石力学在钻井工程领域中的应用
在整个钻井工程中,井壁稳定对钻井施工的顺利进行起着至关重 要的作用。钻井之前,深埋地下的岩石受到上覆岩层压力、最大水平
三 岩石力学在采油工程领域中的应用
裂缝重新张开压力pre:瞬时停泵后启动注入泵,从而使闭合的 裂缝重新张开。由于张开闭合裂缝所需的压力pre与开裂压力pf′ 相比不需要克服岩石的抗拉强度,因此可以近似地认为破裂层的抗 拉强度等于这两个压力的差值,即有 :
三 岩石力学在采油工程领域中的应用
岩石力学在石油工程其他领域中还有重要的应用,由于本人水 平有限,想要更深入了解岩石力学的进展情况还需要参考有关著作 (程远方教授编著的《油气井工程岩石力学》、陈勉教授编著的 《石油工程岩石力学》等及其相关学术论文)。
时也包括裂缝的扩展方向。
三 岩石力学在采油工程领域中的应用
常用裂缝扩展模型:PKN模型和KGD模型。 PKN模型所假设的裂缝的形状为横截面和纵截面的形状均为椭圆

石油工程岩石力学-地应力知识讲解

石油工程岩石力学-地应力知识讲解
线
Kaiser效应试验结果的解释
σV σαPpKPc
σH
σ0σ 2
σ0σ90 2
1
1tg22 2
αPpKPc
σh
σ0σ90 2
σ0σ90 2
1
1tg22 2
HMAX hmin
v >> HMAX > hmin
hmin
Drill within a 60°cone (±30°) from the most favored direction
v HMAX ~ v
>> hmin
HMAX
v HMAX
In highly differential stress fields, the proper choice of an inclined hole facilitates drilling
AE Counts
Kaiser effect point
Load
室内岩心试验法:
MTS岩石力学 实验装置
SAMOS多通 道声发射装置
中国石油大学 (北京)岩石 力学室拥有美 国进口的先进 仪器设备,能 够完成凯塞尔 效应、单轴/三 轴抗压试验、 水力压裂室内 试验等多项实 验。
室内岩心试验法:

z
2
1 x
Principal stresses
p 3
Coordinates parallel to earth’s surface
Principal stresses are usually parallel and normal to the surface.
Drilling Direction and Stress
走滑断层(拗断层)与地应力

《岩石力学》 地应力及其测量

《岩石力学》 地应力及其测量

1. 地壳是静止不动的还是变动的?怎样理解岩体的自然平衡状态?答:地壳是变动的。

自然平衡状态是指:岩体中初始应力保持不变的状态。

2. 初始应力、二次应力和应力场的概念。

答:未受影响的应力称为初始应力工程开挖时,受工程开挖影响而形成的应力称为二次应力地应力是关于时间和空间的函数,可以用“场”的概念来描述,称之为地应力场。

3. 何谓海姆假说和金尼克假说?答:海姆首次提出了地应力的概念,并假定地应力是一种静水应力状态,即地壳中任意一点的应力在各个方向上均相等,且等于单位面积上覆岩层的重量,即σℎ=σv=γH金尼克认为地壳中各点的垂直应力等于上覆岩层的重量,而侧向应力(水平应力)是泊松效应的结果,其值应为乘以一个修正系数K。

他根据弹性力学理论,认为这个系数等于μ1−μ,即σv=γH,σℎ=μ1−μγH4. 地应力是如何形成的?答:地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。

另外,温度不均、水压梯度、地表剥蚀或其他物理化学变化等也可引起相应的应力场。

5. 什么是岩体的构造应力?构造应力是怎样产生的?土中有无构造应力?为什么?答:岩体中由于地质构造运动引起的应力称为构造应力。

关于构造应力的形成有两种观点:地质力学观点认为是地球自转速度变比的结果;大地构造学说则认为是出于地球冷却收缩、扩张、脉动、对流等引起的,如板块边界作用力。

土中没有构造应力,由于土本身是各向同性介质,不存在地质构造。

6. 试述自重应力场与构造应力场的区别和特点。

答:由地心引力引起的应力场称为重力应力场,重力应力场是各种应力场中惟一能够计算的应力场。

地壳中任一点的自重应力等于单位面积的上覆岩层的重量,即σG=γH。

重力应力为垂直方向应力,它是地壳中所有各点垂直应力的主要组成部分,但是垂直应力一般并不完全等于自重应力,因为板块移动,岩浆对流和侵入,岩体非均匀扩容、温度不均和水压梯度均会引起垂直方向应力变化。

岩石力学第五讲、地应力

岩石力学第五讲、地应力

5、地温梯度3℃/100m--热膨胀、收缩– 压应力
6、地表剥蚀的影响:松弛的速度、封闭应力
←大陆板快的推挤 中国板块的主应力迹线
地幔对流机制→ 上升流与下降流
第二节 自重应力与构造应力
1、原岩应力的地位与重要性: 力学研究的基本问题 岩体的荷载与材料力学的荷载 研究原岩应力的意义。 2、自重应力: 上覆岩体的重力引起的应力。 研究时将岩体视为半无限体的均 匀、连续、各向同性的弹性体。 垂直应力:σz = γH 水平应力:横向约束不变形,
第五节 地应力实测方法2
三、三孔交汇实测方法 为得到三维主应力的大小和方向, 将三个孔的实测资料汇总在一起。 1、孔径变形法:测量应力解除后钻孔直 径的变化量,在完整岩体内适用。 按弹性力学平面问题,圆孔孔径的变化: △d = f(E,μ,P x,P y,P x y,θ) 故至少应有三个不同方向的孔径变化才 能计算出P x,P y,P x y,一般在钻 孔变形计中安排4个孔径变化测头。 一般不测量沿钻孔轴线方向的应变,而 用三个孔的测量结果计算三维地应力
第三节
地应力的一般规律
一、重力应力场与构造应力场的分布特点: 1、重力应力场: ☆以垂直应力为主,垂直应力大于水平应力; ☆应力为压应力 ☆应力随深度增加而增加 在构造不发育地区、第四纪冲积层、裂隙 发育地区、岩性较软的塑性岩体地区,其应 力场基本符合重力应力场的分布规律。 2、构造应力场: ☆应力有压应力,也可有拉应力 ☆以水平应力为主,水平应力大于垂直应力 ☆分布很不均匀,通常以地壳浅部为主。 原岩应力基本由重力应力场和构造应力场叠加。 构造应力是复杂多变的,难以有定量的规律。
一、应力解除法实测的基本原理 1、岩体内有原岩应力 2、原岩应力已使岩体产生变形 3、将岩块从岩体母体分离出来,原岩 应力得到解除,变形将恢复 4、测量恢复的变形值,根据应力应变 关系,计算引起变形的应力值。 二、应力解除法的步骤: 1、钻大孔至测点,避开二次应力影响; 2、磨平孔底,钻同心小孔(测量孔), 一次扰动; 3、在测量孔安装测应变和位移的元件; 4、大孔套取岩芯,二次扰动,测量本 次扰动时应力解除后的应变。 5、用弹性力学中关于圆孔问题的解析 解建立观测方程。

岩石力学---第4章 地应力及其测量

岩石力学---第4章  地应力及其测量

基本概念
次生应力(二次应力)岩体开挖扰动了原岩的
自然平衡状态,使一定范围内的原岩应力发生变化,
变化后的应力称为次生应力或二次应力。
原岩应力≈自重应力+构造应力
迄今为止,对原岩应力还无法进行较完善的理论计 算,而只能依靠实际测量来建立岩体中初始应力状 态。
1. 地应力定义
地应力: 指岩体在天然状态下所存在的内应力,
第四章 地应力及其测量
基本要求
1.掌握初始应力的概念,了解构造应力的概 念,掌握自重应力的计算方法; 2.了解原岩应力的一般规律及影响原岩应力 分布的因素; 3.了解地应力的实测方法。
本章的重点难点:
1、岩体初始应力场的构成;
2、重力应力场和构造应力场的特点;
3、原岩应力场的分布状态; 4、应力解除法的基本原理。 关键术语:原岩、原岩应力、自重应力、构造应力、 应力解除 要求:1、掌握本课程重点难点内容; 2、了解原岩应力分布状态; 3、了解影响原岩应力分布的因素; 4、熟悉几种应力解除法测试原岩应力的 方法和测试步骤。
三、构造应力场分析
根据岩体变形破坏机理,对构造运动留下的遗 迹(构造形迹)进行分析,以判断构造应力的主应 力方向。 (一)构造形迹的形成机理 1、褶皱形成机理
2、断层和节理的形成机理 断层、节理形成机理有三种:张性的、扭性的、压性的。
(1)张性断层是由于岩体中的张应变超过极限而产生的。这 种断层层面不规则,断层走向与最大主应力方向平行。小的 张性断裂两盘岩石不一定发生错动,称之为张性节理。 (2)压性断层和扭性断层都可用莫尔-库伦理论来解释。
v H
其中,λ为侧压系数
h v

1

1
H
υ-上覆岩层泊松比

地应力测量及应用-中石化江汉油田测录井公司

地应力测量及应用-中石化江汉油田测录井公司
原地应力在时间、空间上是一个相对稳定的非稳定场。 原地应力在时间、空间上是一个相对稳定的非稳定场。 在浅层地层,最大水平主应力σ 普遍大于垂直应力σ 在浅层地层,最大水平主应力σH普遍大于垂直应力σv 。
即,侧压力系数λ= σH/ σv>1 侧压力系数λ=
原地应力的三个方向的主应力σ 原地应力的三个方向的主应力σv、 σH、σh均随深度的增加而增大。 均随深度的增加而增大。
主要内容
一、概述 二、原地应力分布的基本规律 三、原地应力的测量及计算 四、地应力研究在油田开发中的应用
中国石化江汉石油管理局测录井工程公司
Well Logging Engineering Company Jianghan Petroleum Administration SINOPEC
原地应力的分布基本规律
中国石化江汉石油管理局测录井工程公司
Well Logging Engineering Company Jianghan Petroleum Administr测录井工程公司
Well Logging Engineering Company Jianghan Petroleum Administration SINOPEC
Well Logging Engineering Company Jianghan Petroleum Administration SINOPEC
井壁崩落法
在不同地质时期形成的各种岩石,都具有一定的强度,根据脆性破裂理 在不同地质时期形成的各种岩石,都具有一定的强度, 论,当作用应力差超过该处岩石的破裂强度时,就会产生井壁崩落现象,形成 当作用应力差超过该处岩石的破裂强度时,就会产生井壁崩落现象, 井壁崩落椭圆,其长轴方向与最小水平主应力平行。 井壁崩落椭圆,其长轴方向与最小水平主应力平行。 确定井壁崩落的基本准则: 确定井壁崩落的基本准则: a)井眼崩落井段必须超过一定长度; )井眼崩落井段必须超过一定长度; b)两条井径中,其中较小的井径数值必须接近钻井的钻头尺寸; )两条井径中,其中较小的井径数值必须接近钻井的钻头尺寸; C)当井斜时,扩径的长轴方向不能与井眼的高边方位一致。 )当井斜时,扩径的长轴方向不能与井眼的高边方位一致。

简明石油工程岩石力学

简明石油工程岩石力学

简明石油工程岩石力学(讲义)金衍陈勉中国石油大学(北京)2007年8月目 录绪论-------------------------------------------------------------------------------------------------------------------1 第一章岩石的基本性质和变形特征----------------------------------------------------------------------5 §1.1 岩石力学性质室内试验-----------------------------------------------------------------------------6 §1.2 岩石的变形与强度-----------------------------------------------------------------------------------16 第二章弹性理论-----------------------------------------------------------------------------------------------25 §2.1 应力分析-----------------------------------------------------------------------------------------------25 §2.2 应变分析---------------------------------------------------------------------------------------------42 §2.3 弹性模型-----------------------------------------------------------------------------------------------49 第三章岩石中的流固耦合问题--------------------------------------------------------------------------51 §3.1 孔隙度和渗透率------------------------------------------------------------------------------------51 §3.2 通过孔隙介质流体的流动------------------------------------------------------------------------52 §3.3 体积变形---------------------------------------------------------------------------------------------54 §3.4 Biot静态孔隙弹性理论---------------------------------------------------------------------------54 §3.5 有效应力的概念------------------------------------------------------------------------------------58 第四章井壁围岩的应力状态-----------------------------------------------------------------------------60 §4.1 垂井井壁围岩应力分布---------------------------------------------------------------------------60 §4.2 大斜度井、水平井的井壁围岩应力分布------------------------------------------------------62 第五章油田地应力及确定方法--------------------------------------------------------------------------66 §5.1 地应力的概念---------------------------------------------------------------------------------------66 §5.2 水力压裂法测地应力-------------------------------------------------------------------------------68 §5.3 分层地应力解释方法------------------------------------------------------------------------------71 第六章钻井过程中的井壁稳定问题--------------------------------------------------------------------74 §6.1 井壁力学失稳的形式与原因---------------------------------------------------------------------74 §6.2 井壁坍塌剥落---------------------------------------------------------------------------------------75 §6.3 井壁破裂---------------------------------------------------------------------------------------------80 §6.4 安全钻井液密度窗口------------------------------------------------------------------------------81 第七章水力压裂--------------------------------------------------------------------------------------------83 §7.1 裂缝几何形状---------------------------------------------------------------------------------------83 §7.2 裂缝延伸模型---------------------------------------------------------------------------------------84 第八章出砂问题--------------------------------------------------------------------------------------------92 §8.1 固相产出---------------------------------------------------------------------------------------------92 §8.2 防砂方法的分类------------------------------------------------------------------------------------93 §8.3 预测出砂机理---------------------------------------------------------------------------------------95 §8.4 数学模型---------------------------------------------------------------------------------------------97 第九章油藏固结问题-------------------------------------------------------------------------------------101第十章岩石动力学与应用----------------------------------------------------------------------------111 §10.1 弹性介质中的纵、横波------------------------------------------------------------------------111 §10.2 利用声波测井确定岩石的弹性和强度参数------------------------------------------------112 §10.3 声波测井在石油工程中的应用---------------------------------------------------------------117 §10.4 地震资料的工程预测理论---------------------------------------------------------------------121绪论1绪论一、岩石力学及其发展历史岩石力学是力学的一个分支。

岩石力学第三章 地应力测量

岩石力学第三章 地应力测量

1926年,苏联学者金尼克修正了海姆的静水
压力假设,认为地壳中各点的垂直应力等于
上覆岩层的重量,而侧向应力(水平应力)是
泊松效应的结果,其值应为γH乘以一个修
正系数λ(侧压力系数)。他根据弹性力学
理论,认为:
vH,hH11 H
9
岩石力学
二、地应力认识的历史
朗金假设
朗金认为地壳中各点的垂直应力等于上覆岩
36
岩石力学
二、刚性包体应力计法
当E′/E>5时,σx′/σx的比值将趋向于 常数1.5。即当刚性包体的弹性模量超过岩体 的弹性模量5倍之后,在岩体中任何方位的应 力变化会在包体中相同方位引起1.5倍的应力, 因此只要测量出刚性包体中的应力变化就可知 道岩体中的应力变化。
为了保证刚性包体应力计能有效工作,包体 材料的弹性模量要尽可能大,至少要超过岩体 弹性模量的5倍。
37
岩石力学
二、刚性包体应力计法
刚性包体应力计具有很高的稳定 性,因而可用于对现场应力变化进 行长期监测,然而通常只能测量垂 直于钻孔平面的单向或双向应力变 化情况,而不能用于测量原岩应力。
38
岩石力学
三、水压致裂法
水压致裂法在20世纪 50年代被广泛应用于油 田钻井中制造人工裂隙 来提高石油的产量。
2
O
41
岩石力学
三、水压致裂法
钻孔周边(r=R)的应力:
(12)2(12)cos2 r 0
钻孔周边应力的最小值(θ=0°时):
,min 321
42
岩石力学
三、水压致裂法
水压致裂 系统是将 钻孔某段 封隔起来, 并向该段 钻孔注入 高压水。
43
岩石力学
三、水压致裂法

石油工程岩石力学期末考试之名词解释

石油工程岩石力学期末考试之名词解释

石油工程岩石力学期末考试之名词解释1.岩石力学是运用力学原理和方法来研究岩石的力学以及与力学有关现象的一门新兴科学。

—建筑世界《岩石力学研究的现状和未来》 岩石力学是运用力学和物理学的原理研究岩石的力学和物理性质的一门科学,目的在于充分掌握和利用岩石的固有性质,解决和解释生产建设中的实际问题—《中国大百科全书-力学卷》岩石力学是研究岩石力学性能的理论和应用科学,探讨岩石对周围物理环境中力场的反应的力学分支—美国科学院岩石力学委员会2.粘性元件:简称牛顿体(N 体),它是应力与应变率服从粘性牛顿定律的线性粘性体。

塑性元件:简称圣维南体(S 体),其特性是:当应力小于屈服应力时,介质完全不产生变形;当应力大于屈服应力时,则产生塑性流动。

弹性元件:简称虎克体(H 体),它是应力应变服从虎克定量的弹性体。

可用一个弹簧来模拟。

(弹性元件、粘性元件、塑性元件都是基本变形单元)3.蠕变:固体材料在保持应力不变的条件下,应变随时间延长而增加的现象。

4.孔隙度:岩石单元中孔隙体积V φ与实体骨架体积Vs 之间的比率5.渗透性:岩石中的多数孔隙是相互连通的,在一定压差作用下,岩石可以让流体在孔隙中流动的性质。

s V V ϕφ=6.渗透率:用于表征岩石渗透能力的一个参数。

绝对渗透率K:岩石完全为某种流体所饱和时,岩石与流体不发生物理化学反应,在压力作用下岩石允许该流体所通过能力的大小。

有效渗透率Ke:当岩石为两种或多种流体饱和时,岩石允许其中某种流体渗透能力的大小,不论此时其流体流动与否。

相对渗透率Kr:岩石的有效渗透率与绝对渗透率的比值。

7.原生孔隙:是在成岩过程中产生的孔隙。

次生孔隙:由于内、外力作用产生的孔隙。

8.孔隙压力:孔隙中的液体对颗粒产生的压力,这种压力与颗粒表面垂直,称为孔隙压力。

正常孔隙压力:岩石沉积速度和排流速度相平衡。

异常孔隙压力:岩石沉积速度大于排流速度9.有效围压:围压与孔隙液压之差。

(多孔岩石的强度取决于有效围压)10.天然应力:人类工程活动之前,天然状态下,岩体内部存在的应力,称为岩体天然应力或岩体初始应力,有时也称为地应力。

地应力在石油工业中的研究现状

地应力在石油工业中的研究现状

第15卷 第57期大 自 然 探 索V o l.15,Sum N o.57 1996年 第3期EXPLO RA T I ON O F NA TU R E N o.3,1996地应力在石油工业中的研究现状王越之 李自俊(江汉石油学院石油工程系,湖北荆沙434102)摘 要 石油勘探与开发的全过程都与地壳岩石的应力状态及其变化密切相关。

本文系统地介绍了地应力的力学分析、检测方法以及在石油工业中各领域的应用等方面的历史与现状。

关键词 地应力,历史,现状,石油工业地应力即地壳岩石应力,它是地壳岩石中广泛存在着的一种自然力,是在地球物理学、岩石力学、渗流力学与地质学等多学科的基础上发展起来的边缘学科。

任何与地壳岩石接触的工程都受到它的影响和制约。

诸如地震活动的规律及其预报,板块的运移与变迁,隧道的凿进,大坝的选址与安全以及油气的勘探与开发等都与地应力的状况及其变化规律有着密切的联系。

地应力的研究包括理论与应用两部分,其中理论研究又包括以岩石内部特征为基础,研究描述岩石所处应力状态的力学分析和以岩石所表现的外部应变特征,研究检测岩石应力的方法与技术。

理论研究是检测技术的基础。

1 地应力的力学分析地应力是地壳岩石所承受的应力,与其他应力一样,它是由于外因(力、温度变化等)引起物体变形时,在其内部任一截面单位面积上的作用力。

根据广义虎克定律,对于地壳岩石任意一个六面体来说,微元上的应力Ρij与应变Εij的关系可表示为Ρij=C ijk lΕk l(1)式中C ijk l为待定系数,它有34=81个,它们都是与岩石性质有关的常数。

111 地应力的力学简化分析由于上式中系数太多无法确定,在应用时将其简化。

假设岩石为各向同性,均匀一致,满足线弹性规律,且岩石在垂直方向上可以自由变形,水平方向上地应力相等〔1〕。

基于上述假设条件,安德森(R.A.A nderson)〔2〕等人于1973年首先推导出地应力的计算式Ρx=Ρy=ΛΡz(2)1-Λ大自然探索1996年第3期(总第57期)式中Ρx,Ρy和Ρz分别为两个水平方向(x和y)和垂直方向的地应力,Λ为岩石泊松比。

《岩石力学》地应力及其测量

《岩石力学》地应力及其测量

1. 地壳是静止不动的还是变动的?怎样理解岩体的自然平衡状态?答:地壳是变动的。

自然平衡状态是指:岩体中初始应力保持不变的状态。

2. 初始应力、二次应力和应力场的概念。

答:未受影响的应力称为初始应力工程开挖时,受工程开挖影响而形成的应力称为二次应力地应力是关于时间和空间的函数,可以用“场”的概念来描述,称之为地应力场。

3. 何谓海姆假说和金尼克假说?答:海姆首次提出了地应力的概念,并假定地应力是一种静水应力状态,即地壳中任意一点的应力在各个方向上均相等,且等于单位面积上覆岩层的重量,即σℎ=σv=γH金尼克认为地壳中各点的垂直应力等于上覆岩层的重量,而侧向应力(水平应力)是泊松效应的结果,其值应为乘以一个修正系数K。

他根据弹性力学理论,认为这个系数等于μ1−μ,即σv=γH,σℎ=μ1−μγH4. 地应力是如何形成的?答:地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。

另外,温度不均、水压梯度、地表剥蚀或其他物理化学变化等也可引起相应的应力场。

5. 什么是岩体的构造应力?构造应力是怎样产生的?土中有无构造应力?为什么?答:岩体中由于地质构造运动引起的应力称为构造应力。

关于构造应力的形成有两种观点:地质力学观点认为是地球自转速度变比的结果;大地构造学说则认为是出于地球冷却收缩、扩张、脉动、对流等引起的,如板块边界作用力。

土中没有构造应力,由于土本身是各向同性介质,不存在地质构造。

6. 试述自重应力场与构造应力场的区别和特点。

答:由地心引力引起的应力场称为重力应力场,重力应力场是各种应力场中惟一能够计算的应力场。

地壳中任一点的自重应力等于单位面积的上覆岩层的重量,即σG=γH。

重力应力为垂直方向应力,它是地壳中所有各点垂直应力的主要组成部分,但是垂直应力一般并不完全等于自重应力,因为板块移动,岩浆对流和侵入,岩体非均匀扩容、温度不均和水压梯度均会引起垂直方向应力变化。

岩石力学-地应力的测量

岩石力学-地应力的测量

实测地点
斯勘的纳维亚等 地
统计数 目
51
h,min/h,max (%)
1.0~0.7 0.75~0.5 0.50~0.2 0.25~ 合
5
0
5
0计
14
67
13
6 100
北美
222
22
46
23
9 100
中国
25
12
56
24
8 100
中国华北地区
18
6
61
22
11 100
课堂习题
已知5000m深处某岩体侧压力系λ=0.8,泊 松比μ=0.25,在岩体被剥蚀2000m后,侧 压力系数为多少?
h v H
式中,为水平应力;为垂直应力;为上覆岩层容重;为深度。
3.1 概论
3.1.1 地应力测量的必要性
c 地应力分布理论:
金尼克假设:(弹性力学假设)
v H
h

H 1
式中, 为上覆岩层的柏松比。
3.1 概论
3.1.1 地应力测量的必要性
c 地应力分布理论: 李四光:在构造应力的作用仅影响地壳上层一定厚度的情
b.一般地温梯度:


3 C
岩体的体膨胀系
/100m
数:
,岩体弹模E=104MPa;地温梯度引起的温度应力
10-5
约为:
T zE 0.03105 104 zMPa 0.003zMPa
z--深度/m。 温度应力是同深度的垂直应力的1/9,并呈静水压力状态。
3.1 概论
况下,水平应力分量的重要性远远超过垂直应力 分量。 哈斯特:地应力测量发现存在于地壳上部的最大主应力几 乎处处是水平或接近水平的,从根本上动摇了地 应力是静水压力的理论和以垂直应力为主的观点。

岩石力学基础教程教学课件侯公羽第6章地应力

岩石力学基础教程教学课件侯公羽第6章地应力

地应力测量的原理
岩石力学性质
地应力的测量依赖于对岩石力学 性质的充分了解,包括岩石的弹 性模量、泊松比、抗剪强度等参 数。
应变平衡方程
根据岩石中的应变平衡方程,通 过测量岩石中的位移和应变,结 合岩石的力学性质,可以推算出 地应力的大小和方向。
测量误差分析
地应力的测量存在误差,包括测 量设备的误差、岩石力学性质的 误差以及数据处理和分析的误差 等,需要进行误差分析和修正。
地应力的利用
地应力用于能源开发
地应力可以用于石油、天然气的开采,通过分析地应力分布,可 以提高开采效率。
地应力用于地下工程
在地下工程中,可以利用地应力进行支护和稳定,例如隧道、矿山 的开挖。
地应力用于地质灾害防控
通过分析地应力分布,可以预测地质灾害的发生,如滑坡、泥石流 等,从而采取相应的防控措施。
要点一
边坡工程中的地应力分布
边坡工程中的地应力分布受到地形、地质构造、地下水等 因素的影响。
要点二
地应力对边坡工程稳定性的影响
地应力的大小和方向对边坡工程的稳定性有着重要影响。 在边坡工程设计和施工过程中,需要对地应力进行测量和 评估,以确保边坡的稳定性和安全性。
05 地应力在工程中的利用与 控制
地应力测量的应用
岩土工程设计
在岩土工程设计中,地应力是重 要的设计参数,通过地应力测量 可以了解工程区域的地应力状态,
为工程设计和施工提供依据。
地质灾害防治
地应力测量可以帮助了解地质灾害 发生区域的地应力状态,为地质灾 害防治提供科学依据。
矿产资源开发
在矿产资源开发中,地应力测量可 以帮助了解矿体的应力状态,为矿 产资源的开采提供技术支持。
04 地应力对工程的影响

石油工程领域常用地应力计算模型统计

石油工程领域常用地应力计算模型统计

地应力计算公式(一)、井中应力场的计算及应用 主应力计算根据泊松比μ、地层孔隙压力贡献系数V 、孔隙压力0P 及密度测井值b ρ可以计算三个主应力值:()001H v A VP VP μσσμ⎡⎤=+-+⎢⎥-⎣⎦()001h v B VP VP μσσμ⎡⎤=+-+⎢⎥-⎣⎦Hv b dh σρ=⋅⎰相关系数计算:应用密度声波全波测井资料的纵波、横波时差(p t ∆、s t ∆)及测井的泥质含量sh V 可以计算泊松比μ、地层孔隙压力贡献系数V 、岩石弹性模量E 及岩石抗拉强度T S 。

① 泊松比22220.52()s p spt t t t μ∆-∆=∆-∆② 地层孔隙压力贡献系数 22222(34)12()b s s p m ms mp t t t V t t ρρ∆∆-∆=-∆-∆ ③ 岩石弹性模量 2222234s pb ss pt t E tt tρ∆-∆=⋅∆∆-∆④ 岩石抗拉强度 22(34)[(1)]T b s p sh sh S a t t b E V c E V ρ=⋅⋅∆-∆⋅⋅⋅-+⋅⋅注:,,,m ms mp t t ρρ∆∆分别为密度测井值,地层骨架密度,横波时差和纵波时差值。

,,a b c 为地区试验常数。

其它参数不同地区岩石抗压强度参数是参照岩石抗拉强度数值确定,一般是8~12倍,也可以通过岩心测试获得。

岩石内摩擦系数及岩石内聚力是岩石本身固有特性参数,可以通过测试分析获得。

地层孔隙压力由地层水密度针对深度积分求取,或者用重复地层测试器RFT 测量。

也可以通过地层压裂测试获得,测试时,当井孔压力下降至不再变化时,为储层的孔隙压力。

(二)、一种基于测井信息的山前挤压构造区地应力分析新方法基于弹性力学的测井地应力分析以弹性力学理论为基础,经过一定的假设条件和边界条件可以推演出用于计算地下原地应力的数学模型,用地球物理测井信息(包括声波全波列和密度等)确定模型参数,对地应力进行连续计算与分析。

第2讲-岩石力学-岩石力学及其在石油工程中的应用

第2讲-岩石力学-岩石力学及其在石油工程中的应用
• • • 应力的方向 应力的大小
垂直应力
Pp
孔隙压力
最大主应力 • 孔隙压力
岩石机械力学性质
最小主应力
C0
岩石外载-上覆岩层压力
岩石外载-上覆岩层压力
• 密度反演:当没有密度测井数据时,可以通过声波、电阻 率测井等数据进行反演。
The Rock Physics Handbook. Mavko et al., 2003
开发过程中地应力动态变化
二、岩石力学研究的系统性问题
工程角度:井筒的概念,小尺度、静载到动载、弹性塑性粘性、多场耦 合;研究钻头动载破碎力学和三维钻速方程,多场耦合组合岩性的井壁失稳 问题,非平面水力裂缝起裂、扩展机理,测试完井过程的井筒稳定力学;解 决高效钻头设计或优选、钻井液性能设计与工程对策、钻井井身结构和套管 强度设计、水平井压裂和深井压裂有利缝(网)的形成的方法与工程对策; 测试安全与完井井筒完整性。
根据应力应变曲线可确定抗压强度、杨 氏模量及泊松比
应力应变曲线
岩石力学性质-杨氏模量、泊松比
杨氏模量 :岩石每增加单位 应变所需增加的应力
E /
式中:E-弹性模量; -应力;-应变
泊松比:压缩应力作用下岩石
横向应变与纵向应变之比
横 纵
应力应变曲线
岩石力学性质
工程地质学
现代地质力学特点 成分 微结构 深部地质体 宏观结构
岩石力学
未来力学行为
强度力学行为 变形力学行为
地应力场
渗流场
温度场
破碎岩石 保持稳定
二、岩石力学研究的系统性问题
尺度:地质物探的大尺度;油藏开发的中等尺度;钻测录试的小尺度和细观 尺度;目前主要后者为主。

岩石力学基本教程 教学PPT 第6章 地应力综述.资料

岩石力学基本教程 教学PPT 第6章 地应力综述.资料
18
2.高地应力现象
(3)探洞和地下隧洞的洞壁产生剥离,岩体锤击为嘶哑声并有较大变形,在 中等强度以下的岩体中开挖探洞或隧洞,高地应力状况不会像岩爆那样剧烈, 洞壁岩体产生剥离现象,有时裂缝一直延伸到岩体浅层内部,锤击时有嘶哑 声。在软质岩体中洞体则产生较大的变形,位移显著,持续时间长、洞径明 显缩小。
(1)地应力是一个具有相对稳定性的非稳定应力场,它是时间和空间的函数。
➢ 地应力在绝大部分地区是以水平应力为主的三向不等压应力场。三个主应 力的大小和方向是随着时间和空间而变化的,因而它是一个非均匀的应力 场。
➢ 地应力在空间上的变化,从小范围来看,它在空间上的变化是比较明显的, 但就某个地区整体而言,其变化并不大。
相邻岩体的约束,不可能产生横向变形,即 x y 0 。而相邻岩体的阻 挡就相当于对单元体施加了侧向应力 x 及 y ,考虑广义虎克定律则有:
xE 1[x (yz)]0
(6.3a)
由此可得
yE 1[y (zx)]0 x y1 z1 H
(6.3b) (6.4)
式中,E为岩体的弹性模量, 为岩体的泊松比。令 (1) ,则有:
斯蒂芬森(O. Stephansson)等人根据实测结果给出了芬诺斯堪的亚古陆最大水平 主应力和最小水平主应力随深度变化的线性方程:
最大水平主应力
h , m a x 6 .7 0 .0 4 4 4 H ( M P a )
最小水平主应力
h , m i n 0 .8 0 .0 3 2 9 H ( M P a )
a.共性 ➢ h=(1/4-1/5)φ; ➢ 钻进过程差异卸荷回弹,破裂主要发生在一定高度的岩芯根部; ➢ 拉张和剪切复合机制; b.产生条件: ✓ 弹性高,储能条件好的岩性条件,如火成岩; ✓ 整体块状; ✓ 高地应力条件, max ≥ 30MPa。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水平主应力的求取:
在沉积岩中,地应力的大小一般应用下述方法获得: 构造地质力学方法 水力压裂法 室内岩心试验法 建立在测井资料上的方法 地应力的方向一般用下述方法获得: 井壁崩落椭圆法 压裂井井下电视法
凯塞尔效应试验法测定地应力的原理
岩石在施加载荷后, 岩石内部产生微裂缝 而发出声波信号,当 岩石加载到曾受到的 最大应力状态时,其 发射的这种信号会明 显增大,用专用仪器 可以监测出这种信号 的变化。由此可测出 岩石在井下时所受的 应力。
hmin
HMAX >> v > hmin
第二节 地应力的测量方法
垂直主应力的求取:
垂直地应力是由重力作用产生的(岩石的重量); 在任意深度,垂直地应力等于上覆岩层压力:
v = gz (密度×重力加速度×深度) 通常垂直地应力通过对密度测井数据积分获得; 在海上钻井要包含泥线以上海水产生的压力;
HMAX hmin
v >> HMAX > hmin
hmin
Drill within a 60°cone (±30°) from the most favored direction
v HMAX ~ v
>> hmin
HMAX
v HMAX
In highly differential stress fields, the proper choice of an inclined hole facilitates drilling
大部分是浅部,最深5108米(美国密执安水压致 裂法)。
三、天然应力的研究历史与研究意义
我国从50年代末开始天然应力量测
东部:太平洋板块向W俯冲
北部:西伯利亚板块阻挡 南部:菲律宾板块向N俯冲
区块分布特征
3
主应力
1 > 2 > 3
2
1
1
2 3
a = 1 slip
max planes
planes
z
2
1 x
Principal stresses
p 3
Coordinates parallel to earth’s surface
Principal stresses are usually parallel and normal to the surface.
Drilling Direction and Stress
B A
C
largely unfractured shale
static basal sheet
compression
四、进行地应力研究的意义:
是所有地质力学问题中重要的初始条件; 是勘探、钻井及油藏等石油工程的重要参数; 是钻井工程中井壁稳定分析的重要参数; 是采油工程中出砂防砂分析的重要参数; 是油气层增产改造措施制定的重要参数;
AE Counts
Kaiser effect point
Load
室内岩心试验法:
MTS岩石力学 实验装置
SAMOS多通 道声发射装置
中国石油大学 (北京)岩石 力学室拥有美 国进口的先进 仪器设备,能 够完成凯塞尔 效应、单轴/三 轴抗压试验、 水力压裂室内 试验等多项实 验。
室内岩心试验法:

Favored hole orientation
v
The best orientation to increase hole stability minimizes the principal stress difference normal to the borehole axis
60° cone
走滑断层(拗断层)与地应力
hmin = 3 HMAX
锐角
v = 2 HMAX = 1
几乎垂直的断层面
hmin
HMAX
伴生正断层
典型应力状态: HMAX = 1> v = 2 > Hmin = 3
逆掩断层与地应力
hinge points
high-p shale
v = 3 HMAX = 1
overthrust sheet highly fractured zone
++++++
天然应力



↓↑
重分布应力
概述
一般情况下主地应力表示方法
地表
H
垂直主应力σv
水平最小主应力σh
水平最大主应力σH
概述
地应力是场函数 地应力又称为地应力场 有大小和方向
水平最小大地应力 水平最大地应力
二、天然应力的构成及起源
1.构成:
• 岩体自重→自重应力 • 构造运动→构造应力 • 流体作用→渗流应力 • 其它(地温、地球化学作用等)
45 度 45 度





凯塞尔效应点
单轴压缩应力
凯塞尔效应试验曲线示意图
凯塞尔效应试验取芯位置
试验步骤:
加工好的岩样套上橡胶封隔套,装入高压釜中; 加围压至设定值,并使之保持恒定; 以恒定的加载速给岩样施加向载荷;记录下加载
二、天然应力的构成及起源
自重引起的天然应力场
gh
V
h1
h2
1
二、天然应力的构成及起源
2.起源(主要指构造运动的起源):
板块运动 地幔热对流 地球自转速度变化
三、天然应力的研பைடு நூலகம்历史
1.研究历史
1878年海姆提出天然应力 1932年,在美国胡佛水坝下的隧道中,首次成功
地测定了岩体中的天然应力 到目前天然应力测点遍布全球,有几十万个测点。
r = 3
r
三轴试验 应力状态
a
v H > h
h
z
H
原地应力
在石油工程中, 我们通常假设: v 为主应力之 一
Anderson理论——断层类型与主应力关系
正断层与地应力
v = 1
HMAX = 2
拉伸
hmin = 3
地垒-地堑结构
倾角 拉伸
典型应力状态: v = 1 >HMAX = 2>Hmin = 3
第一节 概 述
一、天然应力的概念
1.天然应力:人类工程活动之前,天然状态下,岩 体内部存在的应力,称为岩体天然应力或岩体 初始应力,有时也称为地应力。
2.重布应力:人类进行工程建设将引起一定范围内 岩体初始应力的改变,工程建设扰动后的岩体 应力称为重布应力或二次应力。
第一节 概 述
++++++
++++++
A Borehole in a Stress Field
Here, v = 2, HMAX = 1, hmin = 3,
and 1 > 2 > 3
Hole inclination parameters
y
Effective stresses:
1’ = 1 - p
2’ = 2 - p
3’ = 3 - p p = pore pressure
相关文档
最新文档