分数应用题常用的解题方法
分数应用题的解题方法
分数应用题的解题方法1、引言在数学学习中,分数应用题是经常出现的题型之一。
解答这类题目需要掌握一定的解题方法和技巧。
本文将为大家介绍几种常见的解题方法,以帮助大家更好地解决分数应用题。
2、换算法在分数应用题中,经常需要将一个分数表达成另一种形式,这就需要用到换算法。
换算法的基本原理是乘以一个合适的分式,使得原分数的分母变化为所需的分母。
例如,将分数$\frac{2}{3}$转换成分母为6的分数,我们可以乘以$\frac{6}{2}$,得到$\frac{2}{3}\times\frac{6}{2}=\frac{12}{6}$,即$\frac{2}{3}=\frac{12}{6}$。
通过换算法,我们可以灵活地将分数转换为需要的形式,便于进行计算和分析。
3、化简法有时,分数应用题给出的分数较为复杂,需要进行化简才能得到准确的结果。
化简法是一种常见的解题方法。
化简法的关键在于找到分子和分母的最大公约数,并将分子分母同时除以最大公约数,从而将分数化简为最简形式。
例如,将分数$\frac{15}{25}$化简为最简形式,我们可以找到15和25的最大公约数为5,然后将分子分母同时除以5,得到$\frac{15}{25}=\frac{3}{5}$。
通过化简法,我们可以得到最简分数,便于进行计算和比较。
4、分数的加减法在分数应用题中,经常需要进行分数的加减运算。
分数的加减法需要找到相同的分母,然后按照相同的分母进行计算。
具体步骤如下:(1)找到两个分数的最小公倍数,作为相同的分母;(2)将分子按照相同的分母进行放大或缩小;(3)按照相同的分母进行分子的加减运算;(4)化简得到最简分数形式。
例如,计算$\frac{2}{3}+\frac{1}{4}$:(1)相同的分母为12,即$\frac{2}{3}\times\frac{4}{4}=\frac{8}{12}$,$\frac{1}{4}\times\frac{3}{3}=\frac{3}{12}$;(2)按照相同的分母进行计算,$\frac{8}{12}+\frac{3}{12}=\frac{11}{12}$;(3)化简得到最简分数形式,$\frac{11}{12}$。
分数应用题的解题方法和技巧
7类分数应用题解答方法汇总小学数学最难的题型是什么?相信很多同学都会不假思索地说:应用题!如果遇上的还是分数类的应用题,那就是难上加难了!复合应用题(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。
(2)含有三个已知条件的两步计算的应用题。
求比两个数的和多(少)几个数的应用题。
比较两数差与倍数关系的应用题。
(3)含有两个已知条件的两步计算的应用题。
已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。
已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。
(4)解答连乘连除应用题。
(5)解答三步计算的应用题。
(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。
答案:根据计算的结果,先口答,逐步过渡到笔答。
( 7 ) 解答加法应用题:a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。
b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。
(8)解答减法应用题:a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。
-b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。
c求比一个数少几的数的应用题:已知甲数是多少,乙数比甲数少多少,求乙数是多少。
01分数加减法应用题分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。
02分数乘法应用题是指已知一个数,求它的几分之几是多少的应用题。
特征:已知单位“1”的量和分率,求与分率所对应的实际数量。
解题关键:准确判断单位“1”的量。
找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。
03分数除法应用题求一个数是另一个数的几分之几(或百分之几)是多少。
分数乘除法应用题解题方法总结汇总(全面完整)
分数乘除法应用题解题方法总结汇总在初中数学的学习过程中,分数乘除法是一个很重要的知识点。
而应用题更是能够帮助我们更好地掌握这个知识点。
因此,在本文中,我们将会就分数乘除法的应用题解题方法进行详细的总结和归纳,以便同学们更好地掌握和运用这一知识点。
一、分数的乘法1.1 两个分数相乘实际应用题中,两个分数相乘时,需要转化为通分后再相乘,最后再约分。
例如:有一块长方形土地,面积为$\frac{3}{4}$ 亩,宽度是$\frac{3}{5}$ 亩。
求这块土地的长度。
解法:由于面积为$\frac{3}{4}$ 亩,宽度是$\frac{3}{5}$ 亩,所以这块土地的长度可以表示为:$\text{长度} = \dfrac{\text{面积}}{\text{宽度}}=\dfrac{\frac{3}{4}}{\frac{3}{5}}=\dfrac{5}{4}\times\dfrac{5}{3}=\dfrac{25}{12}$ 亩。
因此,这块土地的长度为$\frac{25}{12}$ 亩。
1.2 分数与整数相乘实际应用题中,分数与整数相乘时,先将整数化为分数,然后再进行通分运算。
例如:小明拥有$\frac{3}{5}$ 米宽的布料,他要用这些布料为客户定制长为2.6 米的窗帘。
他需要多少米的布料?解法:首先,将 2.6 米化为$\frac{26}{10}$ 米,然后将$\frac{26}{10}$ 与$\frac{3}{5}$ 相乘,即$\text{所需布料}=\frac{26}{10}\times\frac{3}{5}=\frac{26\times3}{10\times5}=\frac{ 39}{25}$ 米。
因此,小明需要$\frac{39}{25}$ 米的布料。
二、分数的除法2.1 分数与整数相除在实际应用题中,分数与整数相除时,可将整数化为分数,然后将两个分数相除,最后约分。
例如:某场馆共有150 个座位,其中$\frac{2}{5}$ 的座位已售出。
六年级数学上应用题分数技巧与方法
六年级数学上应用题分数技巧与方法一、分数应用题的解题方法1. 找单位“1”的量。
在审题时,首先要把问题中涉及的量与分率对应起来,看题目中有几个量,每个量所占的分率是多少,并确定出单位“1”的量。
2. 确定解题方法。
如果题目中单位“1”的量是未知的,就采用除法,进而转化为乘法运算;如果题目中单位“1”的量是已知的,就采用乘法运算。
3. 对应解题。
根据数量关系,把具体数量与分率对应起来,列出算式并计算。
二、分数应用题的解题步骤1. 读懂题意,确定解题方法。
在解答分数应用题时,首先要认真审题,弄清题目中涉及的量和分率,然后根据数量关系列出算式并计算。
2. 找准量与分率的对应关系。
在分数应用题中,量与分率对应是解题的关键。
要分清每个量所占的分率,进而确定出单位“1”的量。
3. 掌握基本数量关系式。
在分数应用题中,常用的数量关系式有:单位“1”的量×分率=部分量等。
4. 逐步解答。
在解答分数应用题时,要按照题目所给的条件,逐步解答。
一般可采用综合算式或分步计算的方法进行解答。
5. 检验答案。
在解答分数应用题时,要检验答案是否正确。
可以采用逆向思维或代入法进行检验。
三、分数应用题的练习方法1. 专项训练。
可以针对某一类型的分数应用题进行专项训练,如工程问题、行程问题等。
通过专项训练,可以加深对某一类型题目的理解和掌握。
2. 多做练习。
熟能生巧,多做练习是提高分数应用题解题能力的有效方法。
可以通过练习册、习题集等途径进行练习。
3. 归纳总结。
在练习过程中,要注意归纳总结解题方法,形成自己的解题思路和技巧。
同时,也可以借鉴他人的经验和技巧,不断提高自己的解题能力。
4. 注重思路。
在练习过程中,不要只关注答案是否正确,更要注重解题思路是否清晰、合理。
只有掌握了正确的解题思路,才能真正提高分数应用题的解题能力。
六年级分数应用题解题方法
分数(百分数)应用题典型解法一、数形结合思想数形结合是研究数学问题的重要思想,画线段图能将题目中抽象的数量关系,直观形象地表示出来,进行分析、推理和计算,从而降低解题难度。
画线段图常常与其它解题方法结合使用,可以说,它是学生弄清分数(百分数)应用题题意、分析其数量关系的基本方法。
【例1】一桶油第一次用去51,第二次比第一次多用去20千克,还剩下22千克。
原来这桶油有多少千克?[分析与解]从图中可以清楚地看出:这桶油的千克数×(1-51-51)=20+22,则这桶油的千克数为:(20+22)÷(1-51-51)=70(千克)【例2】一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克?[分析与解]显然,这堆煤的千克数×(1-20%-50%)=290+10,则这堆煤的千克数为: (290+10)÷(1-20%-50%)=1000(千克) 二、对应思想量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。
(量率对应常常和画线段图结合使用,效果极佳。
)【例3】缝纫机厂女职工占全厂职工人数的207,比男职工少144人,缝纫机厂共有职工多少人?[分析与解]解题的关键是找到与具体数量144人的相对应的分率。
从线段图上可以清楚地看出女职工占207,男职工占1-207=2013,女职工比男职工少占全厂职工人数的2013-207=103,也就是144人与全厂人数的103相对应。
全厂的人数为: 144÷(1-207-207)=480(人) 【例4】菜农张大伯卖一批大白菜,第一天卖出这批大白菜的31,第二天卖出余下的52,这时还剩下240千克大白菜未卖,这批大白菜共有多少千克?[分析与解]从线段图上可以清楚地看出240千克的对应分率是第一天卖出31后余下的(1-52)。
分数乘除法应用题的解题技巧和策略
分数乘除法应用题的解题技巧和策略分数乘除法在初中阶段是一个比较重要的知识点,同时也是考试的重点。
掌握好分数乘除法的解题技巧和策略,对于提高数学成绩是非常有帮助的。
下面我们来详细了解一下分数乘除法应用题的解题技巧和策略。
1、将分数化为带分数形式如果题目给出的是分数,我们可以将其化为带分数形式,使我们更容易进行乘法计算。
例如:(1)$ \frac{5}{8} \times 2=\frac{5}{8} \times \frac{16}{8}= \frac{5 \times 16}{8 \times 8}= \frac{40}{8}= 5$2、化简分数3、分母通分分母不同的分数,我们需要将它们通分之后再进行计算。
例如:4、连乘法如果有多个分数进行乘法计算,我们可以采取连乘法的方式,逐一计算每一个分数。
例如:1、分子分母倒数在分数除法中,我们可以将被除数的分子分母互换,变成除数的倒数,然后再进行乘法计算。
例如:2、通分计算3、分数除以整数4、除法与乘法配合对于一些复杂的分数除法应用题,我们可以通过乘除法配合的方式逐步推导出答案。
例如:1、读题理解解决任何数学题目,我们首先要读题理解,明确题目中要求我们解决的问题是什么。
在解决分数乘除法应用题时,需要找到题目中的关键信息,明确求解的目标。
2、画图辅助画图是解决数学问题的常用工具,在分数乘除法应用题中同样适用。
我们可以通过画图来更好地理解问题,并找到解题的关键点。
3、列式解题对于一些复杂的分数乘除法应用题,我们可以采用列式的方式,逐步分解问题,在列式中对每一步做出明确的注释。
这样可以更清晰地理解解题的过程,提高解题的准确性。
总之,分数乘除法应用题的解题技巧和策略需要我们在平时多加练习,多掌握一些方法和技巧。
同时在解题的过程中要多思考,多动脑,找到问题的本质,找到最简单,最可行的解法,提高解题的效率和准确性。
分数乘除法应用题解题方法总结汇总
分数乘除法应用题解题方法总结汇总在小学数学中,分数乘除法应用题是一个重点和难点。
很多同学在面对这类题目时,常常感到困惑,不知道如何下手。
其实,只要掌握了正确的解题方法和思路,这类问题就能迎刃而解。
接下来,我将为大家详细总结分数乘除法应用题的解题方法。
一、分数乘法应用题1、求一个数的几分之几是多少这是分数乘法应用题中最常见的类型。
例如:“小明有 120 元零花钱,花去了 1/3,花了多少钱?”解题思路:单位“1”的量×分率=对应量在这个例子中,单位“1”的量是小明原有的 120 元零花钱,分率是1/3,所以用 120×1/3 = 40(元),即小明花了 40 元。
2、连续求一个数的几分之几是多少例如:“果园里有苹果树 180 棵,梨树的棵数是苹果树的 2/3,桃树的棵数是梨树的 3/4,桃树有多少棵?”解题思路:先求出梨树的棵数,即 180×2/3 = 120(棵),再求出桃树的棵数,120×3/4 = 90(棵)。
二、分数除法应用题1、已知一个数的几分之几是多少,求这个数例如:“一本书,已经看了 1/4,正好是 50 页,这本书共有多少页?”解题思路:对应量÷分率=单位“1”的量在这里,对应量是 50 页,分率是 1/4,所以用 50÷1/4 = 200(页),即这本书共有 200 页。
2、已知比一个数多(或少)几分之几的数是多少,求这个数例如:“一件衣服,现价 120 元,比原价降低了 1/5,原价是多少元?”解题思路:如果单位“1”的量未知,设单位“1”的量为 x,根据数量关系列出方程求解。
设原价为 x 元,则(1 1/5)x = 120,解得 x = 150 元。
三、解题关键1、找准单位“1”单位“1”是分数乘除法应用题中的关键。
通常情况下,“是”“比”“占”后面的量就是单位“1”。
例如“男生人数是女生人数的3/4”,这里女生人数就是单位“1”。
六年级——分数应用题——八种解题法
数学作业
分数应用题八种解题法
一.对应的解题方法
1.筑路队修一条公路。
第一周修了全长的3/10 ,第二周修了全长的3/8,两周修的比全长的一半多2.8千米。
这条公路全长多少千米?
二.‘‘假设法’’解题
2.一项工程,单独做,甲队需要20天,乙队需要30天。
合做若干天后,乙队调出,甲队接着干,共用18天干完。
干完时乙队调出了几天?
三.转换条件的解题方法
3.某电厂原有职工160人,其中女职工占11/20,后来调走了一批女职工,这时女职工占总人数的5/11。
现在这个电厂有多少女职工?
四.等量代换的解题方法
4.果园里栽了110棵苹果树和梨树。
苹果树的1/3比梨树的1/5多10棵。
果园里有多少棵梨树?
五.消去同一个量的解题方法
5.有一箱苹果和一箱梨,苹果的1/2和梨的1/3重34千克。
苹果的1/3和梨的1/3重25千克,苹果和梨各重多少千克?
六.用归一法解答
6.一件上衣比一条裤子贵84元,上衣价格的1/2 相当于裤子价格的4/5。
求上衣和裤子的价格。
七.列方程解分数应用题
7.甲、乙两书架共有图书1000册,若从两个书架上各取掉1/5后,再把甲书架的书取40册给乙书架,这时两书架上的书一样多。
甲、乙两书架各有图书多少册?
八.用比例知识解分数应用题
例8. 某糖厂上半月共生产白糖和红糖1100吨,红糖的3/5 和白糖的1/2 相等。
这个厂上半月生产的白糖、红糖各多少吨?。
五年级分数应用题解题技巧
五年级分数应用题解题技巧一、分数应用题解题技巧及例题解析。
1. 确定单位“1”- 技巧:一般来说,“是”“比”“占”后面的量就是单位“1”。
- 例1:五年级一班男生人数占全班人数的(3)/(5),全班有50人,男生有多少人?- 解析:这里全班人数是单位“1”,已知全班人数为50人,求男生人数,就是求50的(3)/(5)是多少,用乘法计算,50×(3)/(5)=30(人)。
2. 已知单位“1”,求部分量。
- 技巧:用单位“1”的量乘以部分量对应的分率。
- 例2:果园里有苹果树200棵,梨树的棵数是苹果树的(3)/(4),梨树有多少棵?- 解析:苹果树的棵数是单位“1”,已知为200棵,梨树棵数是苹果树的(3)/(4),那么梨树的棵数为200×(3)/(4)=150棵。
3. 求单位“1”- 技巧:已知部分量和它对应的分率,用部分量除以分率得到单位“1”的量。
- 例3:五年级二班女生人数是18人,占全班人数的(3)/(7),全班有多少人?- 解析:这里全班人数是单位“1”,女生人数18人对应的分率是(3)/(7),所以全班人数为18÷(3)/(7)=18×(7)/(3)=42人。
4. 分数的加、减法应用题。
- 技巧:先确定各个量对应的分率,再根据题意进行加、减运算。
- 例4:一根绳子,第一次用去全长的(1)/(4),第二次用去全长的(1)/(3),两次一共用去全长的几分之几?- 解析:把绳子的全长看作单位“1”,第一次用去的分率是(1)/(4),第二次用去的分率是(1)/(3),两次一共用去的分率为(1)/(4)+(1)/(3)=(3 + 4)/(12)=(7)/(12)。
5. 比较两个量的分率关系。
- 技巧:先求出两个量分别对应的分率,然后进行比较。
- 例5:甲仓库有货物120吨,乙仓库有货物150吨,甲仓库货物是乙仓库货物的几分之几?乙仓库货物比甲仓库货物多几分之几?- 解析:- 甲仓库货物是乙仓库货物的:120÷150=(120)/(150)=(4)/(5)。
分数乘除法应用题的解题技巧和策略
分数乘除法应用题的解题技巧和策略分数乘除法是数学中一个重要的知识点,解题时需要掌握一些解题技巧和策略。
下面我来介绍一下。
1. 熟练掌握分数的乘除法运算规则:分数的乘法,直接将分子相乘得到新分子,分母相乘得到新的分母;分数的除法,将被除数乘以倒数,即将除号变成乘号,然后进行乘法运算。
2. 化简分数:分数乘除法运算的结果通常是一个带分数或者一个真分数。
如果需要化简结果,可以将分数转化为最简形式。
求分数的最大公约数,然后将分子和分母都除以最大公约数,得到最简形式的分数。
3. 将混合数转化为带分数:有些题目给出的是一个混合数,可以将它转化为带分数的形式,便于进行乘除法运算。
将混合数的整数部分乘以分数的分母,并加上分数的分子,分母不变。
4. 注意单位换算:在解决实际问题时,可能涉及到单位换算。
如果需要将一个分数乘以一个带有单位的数,可以先将带有单位的数化成真分数形式,然后直接进行乘法运算。
如果需要除以一个带有单位的数,可以将带有单位的数化成倒数的形式,然后进行乘法运算。
5. 注意运算次序:在解决复杂的分数乘除法问题时,要注意运算次序。
使用括号来控制运算的优先顺序,避免出现错误的结果。
可以将复杂分数的乘除法运算先进行分解,然后按照从左到右的顺序进行运算。
6. 细心审题:在解答分数乘除法应用题时,要仔细阅读题目,理解题目的意思。
找出问题的关键点,然后将问题转化为数学计算的步骤。
掌握分数乘除法的运算规则和一些解题技巧,灵活运用,能够解决各种类型的分数乘除法应用问题。
在解题过程中要注意细节,善于转化问题,合理利用已知条件,进行分析推理,找出解题思路。
加强练习,提高计算能力,相信大家一定能够在分数乘除法的运算中取得好成绩。
分数应用题的方法和技巧
分数应用题的方法和技巧
在解答分数应用题时,以下是一些常用的方法和技巧:
1. 确定未知数:首先明确问题中的未知数,并用一个变量来表示。
例如,如果问题涉及到某个人的年龄,可以用x来表示这个人的年龄。
2. 变量的分数表达式:根据问题描述,将变量表示为一个分数表达式。
例如,如果问题中提到某个人年龄的1/3等于15岁,则可以表示为x/3 = 15。
3. 解方程:将问题转化为一个方程,并求解这个方程来得到未知数的值。
在上述例子中,通过乘以3,可以得到x = 45。
4. 确认答案的合理性:将未知数的值代入原方程中,确认答案的合理性。
在上述例子中,将x = 45代入x/3 = 15,可以验证
等式成立。
5. 注意化简:在解题过程中,可能需要对分数进行化简。
例如,将2/4简化为1/2,便于计算。
6. 注意单位转换:问题中可能涉及到单位的转换。
在解题过程中,需要注意将单位转换为一致的形式,以便计算。
7. 图形辅助:对于某些问题,可以用图形进行辅助。
例如,在解决比例问题时,可以用图形表示比例关系,帮助理解和解决问题。
8. 相关知识点:对于一些特定的类型的分数应用题,掌握相关的数学知识点会有帮助。
例如,理解分数的基本运算法则、比例关系的性质等。
以上是一些常用的方法和技巧,希望对解答分数应用题有所帮助。
分数乘除法应用题解题方法总结汇总(全面完整)
(4)如果白兔有 48 只,灰兔比白兔多 3 ,灰兔比白兔多多少只? 4
2
3、求比一个数多几分之几是多少。
几 单位“1”的量×(1+ 几 )(分率)=是多少(分率对应的量)。
4 (1)人的心脏跳动的次数随着年龄而变化。青少年每分钟约跳 75 次,婴儿每分钟心跳的次数比青少年多5 。婴
几 5、求比一个数少几分之几是多少。单位“1”的量×(1- 几 )(分率)=是多少(分率对应的量)。
(1)学校有 20 个足球,篮球比足球少
1 5
,篮球有多少个?
2 (2)一种服装原价 105 元,现在降价7 ,现在售价多少元?
(3)某校计划每月用水 120 吨,实际比计划节约 1 ,实际每月用水多少吨? 6
3、已知一个数比另一个数多几分之几是多少,求这个数。 几
是多少(分率对应的量)÷(1+几 )(分率)=单位“1”的量。 1
例 1:学校有 20 个足球,足球比篮球多 4 ,篮球有多少个?
4、已知一个数比另一个数少几分之几少多少,求这个数。 几
少多少(分率对应的量)÷几 (分率)=单位“1”的量。 例 1:某工程队修筑一条公路。第一天修了 38 米,第二天了 42 米。第一天比第二天少修的是这条公路全长的 1 28 。这条公路全长多少米?
。小新储蓄多少钱?
2、求比一个数多几分之几多多少。
几 单位“1”的量×几 (分率)=多多少(分率对应的量)。
(1)人的心脏跳动的次数随着年龄而变化。青少年每分钟约跳 75 次,婴儿每分钟心跳的次数比青少年多45 。婴
儿每分钟心跳比青少年多多少次?
(2)学校有足球 20 个,篮球比足球多 1 ,篮球比足球多多少个? 2
分数乘除法应用题的解题技巧和策略
分数乘除法应用题的解题技巧和策略分数乘除法是数学中的一种常见运算,解题时需要注意一些技巧和策略。
下面将介绍一些解题时常用的技巧和策略:1. 分数乘法的技巧:- 若两个分数的分子、分母都可以进行因式分解,可先对两个分数进行因式分解,再进行乘法运算,最后将结果化简。
- 若两个分数的分子和分母都有一个相同的因子,可以将相同的因子约去,使乘法运算更简便。
2. 分数乘法的策略:- 将分数转化为小数进行计算,最后再将小数化为分数形式,可以简化计算过程。
- 将一个分数从真分数形式转化为带分数形式,可以在计算过程中简化操作,最后再将带分数化为假分数形式。
3. 分数除法的技巧:- 将除法运算转化为乘法运算,即将被除数乘以除数的倒数,然后进行乘法运算。
- 若除法中出现两个分数相除的情况,可将除号乘以被除数的倒数,然后进行乘法运算,最后将结果化简。
在解答分数乘除法的应用题时,需要根据题意确立解题方法和步骤。
一般来说,解题的步骤如下:1. 阅读题目,理解题意。
2. 确定问题的解题方法,是分数乘法还是分数除法。
3. 将问题中的已知条件抽象为数学表达式。
4. 根据已知条件运用分数乘法或分数除法进行计算。
5. 化简计算结果,以最简形式表示答案。
6. 验证计算结果是否符合题意。
在解答中,需要注意以下几个方面:- 注意分数的运算规则,特别是分数与整数的运算。
- 在计算过程中,要利用分数的性质,如因式分解、约分、通分等,化简计算过程或结果。
- 注意计算过程中的正负号,根据分数的正负性进行相应的处理。
- 保持计算的准确性,注意计算过程中的小数点位置以及小数的精确度。
解答分数乘除法应用题时,需要掌握分数乘除法的基本技巧和策略,并灵活运用这些技巧和策略去解决实际问题。
分数、百分数应用题的一般解题方法
分数、百分数应用题的一般解题方法(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--分数、百分数应用题的一般解题方法一、解决分数乘法问题1、求一个数的几分之几是多少(单位“1”已知)单位“1”×分率=分率所对应的量2、求一个数比单位“1”多几分之几是多少(单位“1”已知)单位“1”×(1+分率)=分率所对应的量3、求一个数比单位“1”少几分之几是多少(单位“1”已知)单位“1”×(1-分率)=分率所对应的量二、解决分数除法问题1、已知一个数的几分之几是多少,求这个数(单位“1”未知)数量÷数量所对应的分率=单位“1”2、已知一个数比另一个数多几分之分,求这个数(单位“1”未知)数量÷(1+分率)=单位“1”3、已知一个数比另一个数少几分之分,求这个数(单位“1”未知)数量÷(1-分率)=单位“1”三、解决百分数问题1、求百分率的问题:一个数是另一个数的百分之几。
另一个数一个数×100%=百分率2、求一个数比另一个数多(少)百分之几。
相差数÷单位“1”=多(少)百分之几 对应量÷单位“1”-13、求一个数的百分之几是多少(单位“1”已知)单位“1”×百分率=分率所对应的量已知一个数的百分之几是多少,求这个数。
(单位“1”未知)数量÷数量所对应的百分率=单位“1”4、求比一个数多(少)百分之几的数是多少单位“1”×(1+百分率)=分率所对应的数量5、已知比一个数多(少)百分之几的数是多少,求这个数。
数量÷(1+对应分率)=单位“1”6、折扣问题原价×折扣=现价7、纳税问题收入×税率=应纳税额8、利息问题本金×利率×时间=利息利息×税率=利息税利息—利息税=税后利息本息=本金+税后利息。
分数乘除法应用题解题方法总结汇总(全面完整)
分数应用题解题方法一、解题技巧:一抓,二找,三确定,四对应。
1、一抓:抓住关键句——分率句;(含几分之几的句子)2、二找:找准单位“1”的量;(不是藏在“的”前面,就是躲在“比”、“是、占、相当于”后面。
)(看分率是谁的几分之几,谁就是单位“1”的量)3、三确定:确定单位“1”是已知还是未知(已知单位“1”用乘法,未知单位“1”用除法)4、四对应:找出相对应的数量与分率,列出算式。
( 单位“1”的量×分率=分率对应量 ) (分率对应量÷分率=单位“1”的量)二、解题方法:解答分数乘法应用题时,可以借助于线段图来分析数量关系。
线段图有直观、形象等特点。
按题中的数量比例,恰当选用实线或虚线把已知条件和问题表示出来,数形三、分数应用题主要讨论的是以下三者之间的关系。
1、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。
2、标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。
(也叫单位“1”的数量)3、比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。
(也叫分率对应的数量)四、分数应用题的分类。
(三类)1这类问题特点是已知一个看作单位“1”的数,求它的几分之几是多少,它反映的是整体与部分之间关系的应用题,基本的数量关系是2这类问题特点是已知一个数的几分之几是多少的数量,求单位“1”的量。
基本的数量关系是:3、求一个数是另一个数的几分之几。
这类问题特点是已知两个数量,比较它们之间的倍数关系,解这类应用题用除法。
基本的数量关系是:五、分析解答实际的应用题。
第一类1、求一个数的几分之几是多少。
(用乘法计算) (1)学校买来100千克白菜,吃了 45,吃了多少千克?(2)一个排球定价60元,篮球的价格是排球的56。
篮球的价格是多少元?(3)小红体重42千克,小云体重40千克,小新体重相当于小红和小云体重总和的 2341,小新的体重是多少千克?(4)有一摞纸,共120张。
分数应用题解题技巧
一条1公路,已经修了4/7
公路长度×4/7=已修长度
另外,分数应用题中有一个“量率对应”的明显特点,对一 个单位“1”来说,每个分率都对应着一个具体的数量,而每一个 具体的数量,也同样对应着一个分率,因此,正确地确定“量率 对应”是解题的关键。比如:
一本书有240页,小兰已经看了全1书的 2 ,已经看了多少页?
应的分率转化成相当于整体的几分之几,再进行解答。比如:
1
3
一本书有240页,小兰第一天看了全书的 ,第二天看了余下的 ,
4
5
剩下的第三天看完。她第三天看了多少页?
分析:这道题目中,小兰第一天看的页数与第二天看的页数这两个分 率的单位"1"是不一样的。我们可以先将第二天看的页数转化成看了 全书的几分之几,然后再进行解答。当然,这道题还有其它解法。
2
一本书有240页,小兰已经看了全书的 ,还剩下多少页没
有看?
3
分析:这道题目中,已看的分率是已知条件,而问题是求未看的页数。
我率们是2可(1以- 根)据,“再已根看据页“数单+位未1看的页量数×对=总应页分数率”=对知应道量未”看求部出分未的看对的应页分 数。3
三、学会分率的正确转化。
1、分数与比的转化
240(11)(13) 45
2 4011411453
在解答分数应用题或有关比的应用题时,我们还要学会根据分 数与比的关系,灵活地将分数转化成比或将比转化成分数,从而 降低解题的难度。比如:
六(1)有52人,男生与女生人数的比是6:7。男、女生各有 多少人?
分析:这道题目,我们可以采用“按比例分配”的方法来解。也可以 根据男、女生人数的比先求出男、女生人数各占总人数的几分之几, 再求出52人的几分之几是多少。
分数应用题解的技巧
分数应用题解的技巧解答分数应用题要做到“四个善于”(这里的方法其实也是一种思路)分数应用题变化多端,但我们只要仔细审题,掌握一定的解题技巧,便能迎刃而解.一、善于对应.在解答分数(百分数)应用题时,找不准数量之间的对应关系是造成错误的重要原因.因而,要正确解答分数应用题首先要善于找出数量之间的对应关系.如:某工厂有工人1350人,其中男工人占,男工人比女工人多多少人?根据题意,可找出下列对应关系:二、善于比较.有意识地进行题组比较,能使我们分清分数应用题的结构特征,清晰分数应用题的解题思路.如:(1)水果店运来苹果2000千克,比运来的梨多,梨有多少千克?(2)水果店运来苹果2000千克,运来的梨比苹果多,梨有多少千克?比较两道题,就会发现:一是单位“1”不同.(1)题中的单位“1”是梨的数量(未知);(2)题中的单位“1”是苹果的数量(已知).二是数量2000千克对应的分率不同.(1)题中2000千克对应的分率是;(2)题中2000千克对应的分率是“1”.三是类型不同.(1)题是“已知一个数的几分之几是多少,求这个数”,用方程或除法解答;(2)题是“求一个数的几分之几是多少”,用乘法解答.四是列式与计算结果不同.三、善于假设.遇到某些难以解答的分数应用题,我们不妨合理假设具体条件,使抽象的数量关系具体化.如:水结成冰时,体积增加.冰化成水时,体积减少几分之几?我们可先假设水有11立方米,求出水结成冰后的体积是12立方米,再求出冰化成水后体积减少几分之几:即.四、善于沟通.对相类似的知识进行联想沟通,能使我们解题时融会贯通,举一反三.如:(1)小明去买早点,包里的钱单买油条可买10根,单买包子可买5个.他买了2根油条后,还可买几个包子?(2)一块木料单做椅子可把10把,单做桌子可做5张.李师傅先用这块木料做了2把椅子,还可做几张桌子?如果我们把这一类题与工程问题进行沟通,就会很快找到解题思路.分数应用题是小学教学中的难点之一,它主要有三种类型:1.已知两个数,求一个数是另一个数的几分之几;2.已知一个数,求它的几分之几;3.已知一个数的几分之几是多少,求这个数。
分数的应用题六种解法
分数的应用题六种解法分数是数学中常见的表示比例和部分的方式,它在生活中的应用也非常广泛。
今天,我将为大家介绍六种解决分数应用题的方法。
一、画图法画图法是一种直观的解题方法。
以某个具体的例子来说明。
假设小明有2/3的巧克力,小红有1/4的巧克力,他们想将巧克力平均分配。
我们可以画两个巧克力盒,并按比例将巧克力分配给小明和小红。
这样,他们就可以直观地理解分配的过程。
二、找最小公倍数解决一些关于分数的应用题时,我们需要找到最小公倍数。
例如,小明每天按照1/5的速度走路,小红按照1/3的速度走路,他们同时从同一个地方出发,问多少天后他们会在同一个地方相遇。
我们可以找到1/5和1/3的最小公倍数,即15。
因此,他们将在15天后相遇。
三、转化为整数运算有些分数应用题可以转化为整数运算来解决。
例如,小明用1/2小时完成作业,小红用1/3小时完成同样的作业,问他们两人一起完成这个作业需要多长时间。
我们可以将1/2和1/3转化为分母的最小公倍数,即6。
因此,他们一起完成这个作业需要1/6小时。
四、比较大小在比较大小的应用题中,我们需要将两个或多个分数进行比较。
例如,小明用2/5的时间做数学题,用1/4的时间做英语题,问他用了更多的时间做数学题还是英语题。
我们可以将2/5和1/4的分母取相同的最小公倍数,即20。
然后比较分子的大小,即2和5,得出结论小明用了更多的时间做数学题。
五、分数的加减运算在分数的加减运算中,我们需要将分母相同的分数进行运算。
例如,小明走了3/5的路程,小红走了2/5的路程,问他们总共走了多少路程。
我们可以将3/5和2/5的分母取相同的最小公倍数,即5。
然后将分子相加,得到答案5/5,即1。
因此,他们总共走了1个路程。
六、分数的乘除运算在分数的乘除运算中,我们需要将分子进行运算,再将分母进行运算。
例如,小明用2/3小时做完一个作业,小红用3/4小时做同样的作业,问小红完成这个作业需要多长时间。
六年级分数应用题解题方法
分数(百分数)应用题典型解法一、数形结合思想数形结合是研究数学问题的重要思想,画线段图能将题目中抽象的数量关系,直观形象地表示出来,进行分析、推理和计算,从而降低解题难度。
画线段图常常与其它解题方法结合使用,可以说,它是学生弄清分数(百分数)应用题题意、分析其数量关系的基本方法。
【例1】一桶油第一次用去51,第二次比第一次多用去20千克,还剩下22千克。
原来这桶油有多少千克?[分析与解]从图中可以清楚地看出:这桶油的千克数×(1-51-51)=20+22,则这桶油的千克数为:(20+22)÷(1-51-51)=70(千克)【例2】一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克?[分析与解]显然,这堆煤的千克数×(1-20%-50%)=290+10,则这堆煤的千克数为: (290+10)÷(1-20%-50%)=1000(千克) 二、对应思想量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。
(量率对应常常和画线段图结合使用,效果极佳。
)【例3】缝纫机厂女职工占全厂职工人数的207,比男职工少144人,缝纫机厂共有职工多少人?[分析与解]解题的关键是找到与具体数量144人的相对应的分率。
从线段图上可以清楚地看出女职工占207,男职工占1-207=2013,女职工比男职工少占全厂职工人数的2013-207=103,也就是144人与全厂人数的103相对应。
全厂的人数为: 144÷(1-207-207)=480(人) 【例4】菜农张大伯卖一批大白菜,第一天卖出这批大白菜的31,第二天卖出余下的52,这时还剩下240千克大白菜未卖,这批大白菜共有多少千克?[分析与解]从线段图上可以清楚地看出240千克的对应分率是第一天卖出31后余下的(1-52)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数应用题常用的解题方法
作者:蔡鸿
来源:《中国教育探索学刊》2014年第01期
【摘要】分数应用题,是六年级数学最重要也是最难的知识点,同时也是变化最多的知识点。
在此之前整个小学阶段学过的应用题,不管是数学的,还是奥数的,把题中的数字换成分数,就成了分数应用题。
所以,学习这章,要特别注意从思维和方法上去把握,以思维与方法上的“不变”应对题意上的“万变”。
【关键词】分数应用题思维与方法解题
分数应用题,是六年级数学最重要也是最难的知识点,同时也是变化最多的知识点。
在此之前整个小学阶段学过的应用题,不管是数学的,还是奥数的,把题中的数字换成分数,就成了分数应用题。
所以,学习这章,要特别注意从思维和方法上去把握,以思维与方法上的“不变”应对题意上的“万变”。
1.先要弄清两个概念:带单位的分数和不带单位的分数
带单位的分数,如3/4吨,叫数量,与我们以前学过的“3吨”、“0.3吨”表示的意义一样,都是表示一个物体的具体的数量。
只不过在这里用分数的形式表示出来而已。
不带单位的分数,如3/4,叫分率,它表示一个数的几分之几。
由于这两种分数表示意义不同,出现在应用题中,它们的分析思路、解题过程也不同。
请仔细看下面的对比例子:
例1.(1)一根铁丝长5米,用去了2/5米,还剩下多少米?(2)一根铁丝长5米,用去了2/5,还剩下多少米?
解析:(1)剩下的=总长-用去的= 5 - 2/5=4又3/5(米)
(2)用去的: 5 × 2/5=2(米);剩下 5-2=3(米)
例2.(1)一根铁丝,用去了2/5米,还剩下3米,这根铁丝多长?(2)一根铁丝,用去了2/5,还剩下3米,这根铁丝多长?
解析:(1)总长=用去的+剩下的=2/5 +3 =3又2/5(米)
(2) 3÷(1 - 2/5)=3 ÷ 3/5=5(米)
由此可见,大家在做分数应用题时,一定要看清楚题中的分数是哪类分数。
2.学生必背的几种常见问题的计算公式:
2.1 求A是B的几分之几?
A(前)÷B(后)
2.2 求一个数是另一个数的几分之几?
一个数 ÷另一个数 = 一个数是另一个数的几分之几
2.3 求一个数比另一个数多几分之几(或百分之几)公式:
多的数量÷单位“1” = 一个数比另一个数多几分之几(或百分之几)
2.4 求一个数比另一个数少几分之几(或百分之几)公式:
少的数量÷单位“1” = 一个数比另一个数少几分之几(或百分之几)
(3和4也可概括为:1.已知A比B多(少)几分之几。
求A或B
A与B的差÷A 或A与B的差÷B)
2.5 打折的分数应用题。
含义:“八折”的含义是:现价是原价的8/10;“八五折”的含义是:现价是原价的85/100
公式:
现价 = 原价 ×折数(通常写成分数或百分数形式)
原价=现价÷折数
原价-现价=便宜的或原价×(1-折数)
例1.国家一级保护动物野生丹顶鹤,2001年全世界约有2000只,我国占其中的1/4,其他国家约有多少只?
分析与解答:
(1)找准单位“1”.我国占其中的1/4,就是说我国的野生丹顶鹤是全世界的1/4,“是”字的后面是全世界,所以要把全世界的野生丹顶鹤只数看作单位“1”;
(2)确定乘除法。
单位“1”是2000只,即是已知的,所以用乘法。
(3)分析对应率。
用乘法解答的应用题要分析所求的问题是单位“1”的几分之几?因此要分析其它国家的野生丹顶鹤只数是全世界的几分之几。
分析:
全世界野生丹顶鹤(2000只)—— 1 (单位“1”已知用乘)
我国野生丹顶鹤——1/4
其它国家野生丹顶鹤(?只)——1-1/4 (分析问题的对应率,问题比1少1/4所以是1-1/4)
列式:2000×(1-1/4)
解答(略)
例2. 人的心脏跳动的次数随年龄而变化。
青少年每分钟约跳75次,婴儿每分钟心跳的次数比青少年多跳4/5.婴儿每分钟心跳多少次?
分析与解答:
(1)找准单位“1”.婴儿每分钟心跳的次数比青少年多跳4/5.“比”字后面是青少年。
所以,要把青少年心跳的次数看作单位“1”。
(2)确定乘除法。
单位“1”是已知的,所以用乘法。
(3)分析对应率。
用乘法解答的应用题要分析所求的问题是单位“1”的几分之几?因此要分析婴儿每分钟心跳次数是青少年的几分之几?
分析:
青少年心跳次数(75次)——- 1 (单位1是已知的,用乘法)
婴儿心跳的次数(?次)——1+4/5 (分析问题的对应率。
比1多4/5,所以是1+4/5
列式:75 ×(1+4/5)
解答(略)
例3.某汽车厂去年计划生产汽车12600辆,结果上半年完成全年计划的5/9,下半年完成全年计划的3/5。
去年超产汽车多少辆?
分析:
全年计划(12600辆)——1 (单位1是已知的,用乘法)
上半年完成——5/9
下半年完成——3/5
全年完成——5/9+3/5
全年超产——5/9+3/5-1 (分析问题的对应率。
全年完成的-全年计划)
列式:12600 ×(5/9+3/5-1)
解答(略)
例4.小红家买来一袋大米,吃了5/8,还剩15千克。
买来大米多少千克?
分析与解答:
(1)找准单位“1”.吃了5/8就是吃了的千克数是买来大米的5/8.“是”字后面是买来大米。
所以要把买来大米的千克数看作单位“1”.
(2)确定乘除法。
买来的大米是未知的是所求的问题。
用除法解答。
(3)分析对应率。
用除法解答的应用题要分析已知的数量是单位“1”的几分之几?因此此题要分析15千克(还剩的千克数)是单位“1”的几分之几。
分析:
买来的大米(?千克)——1 (单位1是未知的,求单位1用除法)
吃了——5/8
还剩(15千克)——(1-5/8)(分析已知数的对应率。
还剩下1-5/8)
列式: 15 ÷(1-5/8)
解答(略)
例5.某工厂十月份用水480吨,比原计划节约了1/9.十月份原计划用水多少吨?
(1)找准单位1.比原计划节约了1/9.“比”字后面是原计划。
所以把原计划看作单位1.
(2)确定乘除法。
原计划用水多少吨不知道,是所求的问题。
用除法解答。
(3)分析对应率。
用除法解答的应用题要分析已知的数量是单位“1”的几分之几?因此此题要分析480吨(实际用水的吨数)是单位“1”的几分之几。
分析:
原计划用水(?吨)——1 (单位1是未知的,求单位1用除法)
实际比原计划节约——1/9
实际用水(480吨)——1-1/9 (分析已知数的对应率。
实际比1 少1/9 实际是1-1/9)
列式:480÷(1-1/9)
解答(略)
拓展:若把例5中第二个条件改成“比原计划多用了1/9”怎样解答?
分析:
原计划用水(?吨)——1 (单位1是未知的,求单位1用除法)
实际比原计划多用——1/9
实际用水(480吨)——1+1/9 (分析已知数的对应率。
实际比1 多1/9;实际是1+1/9)
列式:480 ÷(1+1/9)
解答(略)
3.把分数看成比的方法
分数可以转化成比,把比当份数,也是一种好的解题方法。
例:学校田径队有35人,其中女生人数是男生人数的3/4,女生人数是多少?
解析:“女生人数是男生人数的3/4”转化成比,就是:女生人数和男生人数之比是3:4,女生人数是3份,男生人数是4份,总共7份,总共35人,每份就是 35÷7=5(人),那么,女生人数就是5×3=15(人)
4.方程法
在解任何应用题时,方程都是一种不能忽视的备用方法
例:某校有学生465人,其中女生的2/3比男生4/5少20人,男生有多少人?
解析;设男生为x人,女生就有(465-x)人
从“女生的2/3比男生4/5少20人”找题中的数量关系式:女生× 2/3+20=男生× 4/5
列方程 2/3 ×(465-x)+20= 4/5 ×x 解得x=225。